Chapter 5

Type Assignment

The lambda calculus as treated so far is usually referred to as a type-free theory.
This is so, because every expression (considered as a function) may be applied to
every other expression (considered as an argument). For example, the identity
function | = Az.x may be applied to any argument x to give as result that same
z. In particular | may be applied to itself.

There are also typed versions of the lambda calculus. These are introduced
essentially in Curry (1934) (for the so called Combinatory Logic, a variant of
the lambda calculus) and in Church (1940). Types are usually objects of a
syntactic nature and may be assigned to lambda terms. If M is such a term
and a type A is assigned to M, then we say ‘M has type A’ or ‘M in A’; the
denotation used for this is M : A. For example in some typed systems one has
I : (A—A), that is, the identity | may get as type A—A. This means that if
2 being an argument of | is of type A, then also the value lz is of type A. In
general, A— B is the type of functions from A to B.

Although the analogy is not perfect, the type assigned to a term may be
compared to the dimension of a physical entity. These dimensions prevent us
from wrong operations like adding 3 volt to 2 ampere. In a similar way types
assigned to lambda terms provide a partial specification of the algorithms that
are represented and are useful for showing partial correctness.

Types may also be used to improve the efficiency of compilation of terms
representing functional algorithms. If for example it is known (by looking at
types) that a subexpression of a term (representing a funtional program) is
purely arithmetical, then fast evaluation is possible. This is because the ex-
pression then can be executed by the ALU of the machine and not in the slower
way in which symbolic expressions are evaluated in general.

The two original papers of Curry and Church introducing typed versions of
the lambda calculus give rise to two different families of systems. In the typed
lambda calculi ¢ la Curry terms are those of the type-free theory. Each term
has a set of possible types. This set may be empty, be a singleton or consist
of several (possibly infinitely many) elements. In the systems d la Church the
terms are annotated versions of the type-free terms. Each term has (up to an
equivalence relation) a unique type that is usually derivable from the way the
term is annotated.

The Curry and Church approaches to typed lambda calculus correspond to
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34 Introduction to Lambda Calculus

two paradigms in programming. In the first of these a program may be written
without typing at all. Then a compiler should check whether a type can be
assigned to the program. This will be the case if the program is correct. A
well-known example of such a language is ML, see Milner (1984). The style of
typing is called implicit typing. The other paradigm in programming is called
explicit typing and corresponds to the Church version of typed lambda calculi.
Here a program should be written together with its type. For these languages
type-checking is usually easier, since no types have to be constructed. Examples
of such languages are Algol 68 and Pascal. Some authors designate the Curry
systems as ‘lambda calculi with type assignment’ and the Church systems as
‘systems of typed lambda calculus’.

Within each of the two paradigms there are several versions of typed lambda
calculus. In many important systems, especially those @ la Church, it is the case
that terms that do have a type always possess a normal form. By the unsolv-
ability of the halting problem this implies that not all computable functions can
be represented by a typed term, see Barendregt (1990), Theorem 4.2.15. This
is not so bad as it sounds, because in order to find such computable functions
that cannot be represented, one has to stand on one’s head. For example in
A2, the second order typed lambda calculus, only those partial recursive func-
tions cannot be represented that happen to be total, but not provably so in
mathematical analysis (second order arithmetic).

Considering terms and types as programs and their specifications is not the
only possibility. A type A can also be viewed as a proposition and a term M in A
as a proof of this proposition. This so called propositions-as-types interpretation
is independently due to de Bruijn (1970) and Howard (1980) (both papers
were conceived in 1968). Hints in this direction were given in Curry and Feys
(1958) and in Lauchli (1970). Several systems of proof checking are based
on this interpretation of propositions-as-types and of proofs-as-terms. See e.g.
de Bruijn (1980) for a survey of the so called AUTOMATH proof checking system.
Normalization of terms corresponds in the formulas-as-types interpretation to
normalisation of proofs in the sense of Prawitz (1965). Normal proofs often
give useful proof theoretic information, see e.g. Schwichtenberg (1977).

In this section a typed lambda calculus will be introduced in the style of
Curry. For more information, see Barendregt (1992).

The system A—-Curry

Originally the implicit typing paradigm was introduced in Curry (1934) for the
theory of combinators. In Curry and Feys (1958) and Curry et al. (1972) the
theory was modified in a natural way to the lambda calculus assigning elements
of a given set T of types to type free lambda terms. For this reason these calculi
d la Curry are sometimes called systems of type assignment. If the type o € T
is assigned to the term M € A one writes = M : o, sometimes with a subscript
under F to denote the particular system. Usually a set of assumptions I' is
needed to derive a type assignment and one writes I' = M : o (pronounce this
as ‘T" yields M in ¢’). A particular Curry type assignment system depends on
two parameters, the set T and the rules of type assignment. As an example we
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now introduce the system A—-Curry.

5.1. DEFINITION. The set of types of A—, notation Type(A—), is inductively
defined as follows. We write T = Type(A—). Let V = {«,a’,...} be a set of
type variables. It will be convenient to allow type constants for basic types such
as Nat, Bool. Let B be such a collection. Then

aeV = aeT,
BeB = BeT,
oreT = (o—7)€T (function space types).

For such definitions it is convenient to use the following abstract syntax to

form T.
with
V=al|V (type variables).
NoraTION. (i) If 01,...,0, € T then
0102 =0y
stands for

(o1—=(02— - —=(on—1—00)"));

that is, we use association to the right.
(ii) a,f,7,... denote arbitrary type variables.

5.2. DEFINITION. (i) A statement is of the form M : o with M € Aand o € T.
This statement is pronounced as ‘M in ¢’. The type o is the predicate and the
term M is the subject of the statement.

(ii) A basis is a set of statements with only distinct (term) variables as
subjects.

5.3. DEFINITION. Type derivations in the system A— are built up from as-
sumptions z:0, using the following inference rules.

o
M :o—T N :o M.ZT
MN : 7 Ae. M :o—T1

5.4. DEFINITION. (i) A statement M : o is derivable from a basis I', notation
'-M:o

(or T'Fy_, M : o if we wish to stress the typing system) if there is a derivation
of M : o in which all non-cancelled assumptions are in I'.
(ii) We use M : o as shorthand for ) - M : o.
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5.5. EXAMPLE. (i) Let 0 € T. Then F Afz.f(fz): (0—0)—0o—0, which is
shown by the following derivation.

%:—W(Q) oD
- (?) fr:o
f(fz):o
Ax.f(fx): 0—0
Mz f(fx): (0—0)—0o—0

(1)

2)

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.
(ii) One has + K : 0—7—o0 for any 0,7 € T, which is demonstrated as
follows. @
o

Y.z 1 T—0

(1

ALY. L : O—T—0
(iii) Similarly one can show for all o € T
Fl:o—o.

(iv) An example with a non-empty basis is the statement

yobkly:o.

Properties of \—

Several properties of type assignment in A— are valid. The first one analyses
how much of a basis is necessary in order to derive a type assignment.

5.6. DEFINITION. Let I' = {z1:01,...,2,:0,} be a basis.
(i) Write dom(I") = {z1,...,z,} and o; = I'(z;). That is, I" is considered
as a partial function.
(ii) Let Vi be a set of variables. Then I' [ Vi = {zx:i0 |z € V& o =T'(z)}.
(iii) For o,7 € T substitution of 7 for « in ¢ is denoted by oo := 7].

5.7. BAsis LEMMA. Let I' be a basis.
(i) If T’ D T is another basis, then

'M:0 = T'FM:o.

(i) TFM:0 = FV(M) C dom(T).
(ii) TFM:0 = T [FVWM)FM:o0.

PROOF. (i) By induction on the derivation of M : o. Since such proofs will
occur frequently we will spell it out in this simple situation in order to be shorter
later on.
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Case 1. M : o is x:0 and is element of I'. Then also z:0 € T and hence
I'tM:o.

Case 2. M : o is (M1Ms) : o and follows directly from M; : (t—o) and
My : 7 for some 7. By the IH one has T" - M : (t—0o) and TV - My : 7. Hence
P/ [ (MlMQ) L 0.

Case 3. M : o is (Ax.My) : (01—03) and follows directly from ',z : o
M : 0o. By the variable convention it may be assumed that the bound variable
x does not occur in dom(I"). Then I, z:07 is also a basis which extends I, x:07.
Therefore by the TH one has I, x:01 F M7 : 09 and so I - (A\x.M7) : (61—03).

(ii) By induction on the derivation of M : 0. We only treat the case that
M :ois (Ax.M;) : (01—02) and follows directly from I', z:00 = Mj : 09. Lety €
FV(A\x.M;), then y € FV(M;) and y # z. By the IH one has y € dom(T", z:01)
and therefore y € dom(T").

(i) By induction on the derivation of M : 0. We only treat the case that
M : o is (M1 M,) : 0 and follows directly from M; : (1—0o) and Ms : 7 for some
7. By the IH one has I | FV(M;) F M; : (t—o) and I | FV(M2) F My : 7. By
(i) it follows that T' | FV(M1Ms) b My : (t—o)and T' | FV(M1Ms) = My @ T
and hence I' [ FV(M 1 Ms) F (M1 M) : 0. O

The second property analyses how terms of a certain form get typed. It is
useful among other things to show that certain terms have no types.

5.8. GENERATION LEMMA. (i) 'z :0 = (z:0) €T.
(i) TFMN:7 = 3o['FM:(0—17)&I'F N :0].
(i) TEFXe. M :p = Fo,7[Tyxiob M :7&p = (0—7)].

PRrROOF. By induction on the structure of derivations. [J
5.9. PROPOSITION (Typability of subterms). Let M’ be a subterm of M. Then
'M:0 = T'FM:0 for someI’ and o'.

The moral is: if M has a type, i.e. ' M : o for some I' and o, then every
subterm has a type as well.

PRrROOF. By induction on the generation of M. [J
5.10. SUBSTITUTION LEMMA.
i) TFM:0 = Ta:=7FM:ola:=7]
(ii) Suppose I'yx:ob M :7 andT'F N : 0. Then ' Mz := N]: 7.

PROOF. (i) By induction on the derivation of M : o.
(ii) By induction on the derivation showing I', z:0 = M : 7. O

The following result states that the set of M € A having a certain type in
A— is closed under reduction.

5.11. SUBJECT REDUCTION THEOREM. Suppose M —»g M'. Then

'-M:0 = TFM :o.
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PRrOOF. Induction on the generation of — g using the Generation Lemma 5.8
and the Substitution Lemma 5.10. We treat the prime case, namely that M =
(Az.P)Q and M’ = Plz := Q]. Well, if

' (\x.P)Q:0o
then it follows by the Generation Lemma that for some 7 one has
'(\z.P):(r—o)and T'HQ : 7.
Hence once more by the Generation Lemma
NaxrkFP:ocand 'FQ: 7
and therefore by the Substitution Lemma
I'kPlz:=Q]:0. O
Terms having a type are not closed under expansion. For example,
Fl:(o0—0), but /Kl (A\zx.zz): (60—0).

See Exercise 5.1. One even has the following stronger failure of subject expan-
sion, as is observed in van Bakel (1992).

5.12. OBSERVATION. There are M, M’ € A and 0,0’ € T such that M’ —3 M
and
FM:o, FM o,

but
VM :o.

PROOF. Take M = Azy.y, M' = SK, 0 = a—(—p) and ¢’ = (f—a)—(8—0);
do Exercise 5.1. I

All typable terms have a normal form. In fact, the so-called strong nor-
malization property holds: if M is a typable term, then all reductions starting
from M are finite.

Decidability of type assignment

For the system of type assignment several questions may be asked. Note that
for T' = {xy:01,...,2y:0,} one has

'EM:0 & F(Azyio1- - Azpion.M) : (01— -+ - —0,—0),

therefore in the following one has taken I' = (). Typical questions are
(1) Given M and o, does one have - M : ¢?
(2) Given M, does there exist a o such that - M : o7
(3) Given o, does there exist an M such that - M : o7
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These three problems are called type checking, typability and inhabitation re-
spectively and are denoted by M : ¢?, M : 7 and 7 : 0.

Type checking and typability are decidable. This can be shown using the
following result, independently due to Curry (1969), Hindley (1969), and Milner
(1978).

5.13. THEOREM. (i) It is decidable whether a term is typable in \—.

(i1) If a term M is typable in A—, then M has a principal type scheme, i.e.
a type o such that every possible type for M is a substitution instance of o.
Moreover o is computable from M.

5.14. COROLLARY. Type checking for A— is decidable.

PROOF. In order to check M : 7 it suffices to verify that M is typable and that
T is an instance of the principal type of M. [

For example, a principal type scheme of K is a—f3—a.

Polymorphism

Note that in A— one has
Fl:o—0 forall 0 € T.

In the polymorphic lambda calculus this quantification can be internalized by
stating
Fl:Va.a—a.

The resulting system is the polymorphic of second-order lambda calculus due
to Girard (1972) and Reynolds (1974).

5.15. DEFINITION. The set of types of A2 (notation T = Type(A2)) is specified
by the syntax
T=V|B|T-T]|VV.T.
5.16. DEFINITION. The rules of type assignment are those of A—, plus
M :Va.o M:o
M : oo := 1] M :Va.o
In the latter rule, the type variable a may not occur free in any assumption on

which the premiss M : o depends.

5.17. EXaMPLE. (i) FI:Va.a—a.
(ii) Define Nat = Va.(a—a)—a—a. Then for the Church numerals ¢, =
Afz.f"(z) we have F ¢, : Nat.

The following is due to Girard (1972).

5.18. THEOREM. (i) The Subject Reduction property holds for 2.
(il) A2 is strongly normalizing.

Typability in A2 is not decidable; see Wells (1994).
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Exercises
5.1. (i) Give a derivation of
FSK: (a—f8)—(a—a).
(ii) Give a derivation of
FKI: f—(a—a).
(iii) Show that t/ SK : (a—f—0).
(iv) Find a common S-reduct of SK and KI. What is the most general type for
this term?
5.2.  Show that Az.zz and KI(Az.zz) have no type in A—.
5.3.  Find the most general types (if they exist) for the following terms.
(i) Azy.zyy.
(ii) SII.
(ili) Azy.y(Az.z(yx)).
5.4.  Find terms M, N € A such that the following hold in A—.
(i) FM:(a=p)=(F—7)=(a=7).
(ii) =N (((a=B)=B)—pB)—(a—p).
5.5. Find types in A2 for the terms in the exercises 5.2 and 5.3.



Chapter 1

The systems A\_,

1.1. The )\_ systems a la Curry

Types in this part are syntactic objects built from atomic types using the operator —.
In order to classify untyped lambda terms, such types will be assigned to a subset of
these terms. The main idea is that if M gets type A—B and N gets type A, then the
application M N is ‘legal’ (as M is considered as a function from terms of type A to
those of type B) and gets type B. In this way types help determining what terms fit
together.

1.1.1. DEFINITION. (i) Let A be a non-empty set of ‘atomic types’. The set of simple
types over A, notation T = T4, is inductively defined as follows.

aceA = aeT type atoms;
A, BeET = (A—=B)eT function space types.

Such definitions will be used often and for these it is convenient to use the so called
abstract syntaz, see Waite and Goos [1984]. As an example we give the abstract syntax
for T =T,.

T = A|T->T
Figure 1.1: Simple types

(ii) Let A, = {o}. Then we write T, = Ty4,.
(iii) Let Ao = {ap, a1, @2,...}. Then we write Moo = T4,

We consider that o = ag, hence T, C T,. If we write simply T, then this refers to T4
for an unspecified A.

1.1.2. NoTaTION. (i) If Ay,..., A, €T, then
A= ... —A, = (A1—(As— ... = (Ap_1—45).)).

That is, we use association to the right (here = denotes syntactic equality).

13



14 CHAPTER 1. THE SYSTEMS \_,

(ii) «,3,7,... denote arbitrary elements of A.
(iii) A, B,C,... denote arbitrary elements of T.

Remember the untyped lambda calculus denoted by A, see e.g. B[1984]!. It consists
of a set of terms A defined by the following abstract syntax.

vV = z|V
A = V|AVA|AA

Figure 1.2: Untyped lambda terms
This makes V = {z,2/,2",...} = {xo,21,22,...}.

1.1.3. NOTATION. (i) z,¥,2, ... denote arbitrary term variables.
(il) M, N, L,... denote arbitrary lambda terms.
(iii) MN1 “o Nk = ((MNl) . Nk)
(iv) Azp...2p.M = (Az1(..(Azn(M))..)).

1.1.4. DEFINITION. On A the following equational theory ABn is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), inluding congruence
with respect to abstraction:

M=N = \x.M = X\z.N,

and the following special axiom(schemes)

(AM.M)N = M|z := N] (B-rule)
.Mz = M, if t ¢ FV(M) (n-rule)

Figure 1.3: The theory ABn

As is know this theory can be analyzed by a notion of reduction.

1.1.5. DEFINITION. On A we define the following notions of reduction

(Ax.M)N — M][x:= N] (B)
\e.Mz — M, if ¢ FV(M) (n)

Figure 1.4: Bn-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations — g, — g, —y, —*y, —gn and —gy,. Also there are the corresponding conversion
relations =g, =y, and =g,. Terms in A will often be considered modulo =g or =g,,. If
we write M = N, then we mean M =g, N by default. (In B[1984] the default was =g.)

1.1.6. PROPOSITION. For all M,N € A one has

FAB,?M:N e M:’@nN.

!This is an abbreviation fo the reference Barendregt [1984].
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PROOF. See B[1984], Proposition 3.3.2. m

One reason why the analysis in terms of the notion of reduction 8n is useful is that
the following holds.

1.1.7. THEOREM (Church-Rosser Theorem for A\3n). For the notions of reduction —g
and —» gy one has the following.

(i) Let M,N € A. Then
(ii) Let M,Ny1,Na€A. Then

PRrROOF. (i) See Theorems 3.2.8 and 3.3.9 in B[1984].
(ii) By (i). m

1.1.8. DEFINITION (ASY). (i) A (type assignment) statement is of the form
M: A,
with M € A and A€ T. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.
(ii) A declaration is a statement with as subject a term variable.

(iii) A basis is a set of declarations with distinct variables as subjects.
(iv) A statement M:A is derivable from a basis I', notation

L M:A

(or Ty M :A THF M: Aoreven I M:A if there is little danger of confusion) if
I'F M:A can be produced by the following rules.

(x:A)el’ = Thka:A;
'-rM:(A—B), TFN:A = T'F(MN): B;

Iy 2:AFM:B = T'F(\.M):(A— B).

These rules are usually written as follows.



16 CHAPTER 1. THE SYSTEMS \_,

(axiom) F'kFax: A, if (x:A) €T

I'M:(A—B) TFN:A
' (MN):B ’

(—-elimination)

I'o:A+-M:B
(—-introduction) :
T'F(\e.M): (A— B)

Figure 1.5: The system A" of type assignment d la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as
developed in Curry et al. [1958].

NOTATION. Another way of writing these rules is sometimes found in the literature.

Introduction rule A

M:B
Ax.M : (A—B)

M:(A—B) N:A

Elimination rule
MN : B

S alternative version
In this version the axiom is considered as implicit and is not notated. The notation

r: A

M :B

denotes that M : B can be derived from z:A. Striking through x:A means that for the conclusion
Ax.M : A— B the assumption z:A is no longer needed; it is discharged.

1.1.9. DEFINITION. Let I' = {z1:A44,...,2,:A4,}. Then
(i) dom(T') = {x1,...,xpn}-
(i) z1: A1, ..., 2 Ay B M : A denotes T' = M : A.
(iii) In particular = M : A stands for § = M : A.
(iv) x1,...,xp:AF M : B stands for z1:A, ...,z A M : B.

1.1.10. EXaMPLE. (i) F (Azy.x): (A — B — A) for all A, B€T.
We will use the notation of version 1 of A_, for a derivation of this statement.

v Ay:BFx: A
Ak (A\y.x): B—A
F (AzAy.x) : A-B—A
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Note that Azy.x = Az Ay.z by definition.
(ii) A natural deduction derivation (for the alternative version of the system) of the
same type assignment is the following.

A2 B 1
x:A
1
(A\y.z) : (B— A)
(Azy.z) : (A— B— A)

The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule

a particular assumption is being discharged.
(iii)) A more explicit way of dealing with cancellations of statements is the ‘flag-

notation’ used by Fitch (1952) and in the languages AUTOMATH of de Bruijn (1980).
In this notation the above derivation becomes as follows.

z: A

y:B

z: A

() : (B — 4)

(Azy.z): (A— B — A)

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is
less obvious how a statement is derived from previous statements in case applications
are used.

(iv) Similarly one can show for all Ae T

F(Az.x): (A— A).
(v) An example with a non-empty basis is y:A F (A\x.x)y : A.

In the rest of this chapter and in fact in the rest of this book we usually will introduce
systems of typed lambda calculi in the style of the first variant of A_,.

1.1.11. DEFINITION. Let I" be a basis and A€ T. Then
(i) AL(A) = {McA|TF,_ M: A}
(ii) AL = UjerAL(4).
(iii) A_(A) = A?(A).

) A = AY,

(iv
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1.1.12. DEFINITION. Let I' be a basis, A€ T and M € A. Then
(i) If MeA_(A), then we say that
M has type A or A is inhabited by M.

(i) If M e A_,, then M is called typable.

(iii) If M €AY (A), then M has type A relative to T.
(iv) If M € A", then M is called typeable relative to T.
(v) If A(E)(A) # (0, then A is inhabited (relative to T').

1.1.13. EXAMPLE. We have

K € AQ_)(A—>B—>A);
Ke ¢ A=A(B-A).

1.1.14. DEFINITION. Let A€ T(A_).
(i) The depth of A, notation dpt(A), is defined as follows.

dpt(a) = 0
dpt(A—B) = max{dpt(A),dpt(B)} +1

(ii) The rank of A, notation rk(A), is defined as follows.

tk() = 0
tk(A—B) = max{rk(A)+ 1,rk(B)}

(iii) The order of A, notation ord(A), is defined as follows.

ord(er) = 1
ord(A—B) = max{ord(A4)+ 1,ord(B)}

(iv) The depth (rank or order) of a basis I is

mzax{dpt(Ai) | (zi:4;) €T},

THE SYSTEMS \_,

(similarly for the rank and order, respectively). Note that ord(A) = rk(A4) + 1.

1.1.15. DEFINITION. For A€ T we define A*— B by recursion on k:

A"-~B = B;
ARl B = A-AF B,

Note that rk(A¥—B) = rk(A—B), for all k > 0.
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Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1.1.18(3).

The asymmetry in the definition of rank is intended because e.g. a type like (0—0)—o0
is more complex than o—o0—o, as can be seen by looking to the inhabitants of these
types: functionals with functions as arguments versus binary function. Sometimes one
uses instead of ‘rank’ the name type level. This notion will turn out to be used most of
the times.

In logically motivated papers one finds the notion ord(A). The reason is that in
first-order logic one deals with domains and their elements. In second order logic one
deals with functions between first-order objects. In this terminology 0-th order logic can
be identified with propositional logic.

The minimal and maximal systems \°, and A%

The collection A of type variables serves as set of base types from which other types are
constructed. We have T, = {o} with just one type atom and T = {ag, a1, as,...}
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.

1.1.16. DEFINITION. We define the following systems of type assignment.
(i) A%, = ATe. This system is also called A\™ in the literature.
(ii) A% = AT,

If it becomes necessary to distinguish the set of atomic types, will use notations like
Ao(A) = A1, (A) and A (A) = A (A).

Many of the interesting features of the ‘larger’ A_, are already present in the minimal
version \°,. The complexity of A_, is already present in A\?,.

1.1.17. DEFINITION. (i) The following types of T, C T4 are often used.
0=o0, 1=0-0, 2= (0—0)—0, ....

In general
0=o0and k+1=k—0.

Note that rk(n) = n.
(ii) Define ng by cases on n.

o = O
(n+1), = nF—o.
For example
lg = o0—o0—o0;
23 = l—l—l—o.

Notice that rk(ny) = rk(n), for & > 0.
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1.1.18. LEMMA. (i) FEwvery type A of A% is of the form
A=A1—Ay— ... —A,—a.
(ii) Ewvery type A of \°, is of the form
A=A1—Ay— ... —A,—o0.
(iii) rk(A;—As— ... —A,—a) = max{rk(4;) +1|1<i<n}.

PRrROOF. (i) By induction on the structure (depth) of A. If A = «, then this holds for
n=0. If A= B—C, then by the induction hypothesis one has
C=0C—...—Cy—~. Hence A = B—C1— ... —C,—.

(i) By (i)

(iii) By induction on n. m

1.1.19. NOTATION. Let A€ Ty and suppose A = A1—Ay— ... —A,—a. Then the A;
are called the components of A. We write

arity(4) = n,
AGi) = A;, for 1 <i<mn;
target(4) = a.

Iterated components are denoted as follows
A(i, j) = A@)(7)-

Different versions of \,

The system A%, that was introduced in Definition 1.1.8 assigns types to untyped lambda
terms. These system will be referred to as the Curry system and be denoted by )\‘ﬁCu

or \°", as the set A often does not need to be specified. There will be introduced two
variants of \2,.

The first variant of A" is the Church version of A\*,, denoted by )\‘iCh or \°P. In
this theory the types are assigned to embellished terms in which the variables (free and

bound) come with types attached. For example the Curry style type assignments

Ft (Arz) t A—A (Icw)
y:A FU (Azay) : (A—>B)—A—B (2cu)

now becoming
(At .z?) e AP (A—A) (Lcn)

()\xAHB_xAHByA) . Agh((A—>B)—>A—>B) (2¢n)
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The second variant of A" is the de Bruijn version of A2, denoted by )\ﬁdB or N8, Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

FB - Az Az): A-A (1gB)
y:A FB (\z:(A—B).ay): (A>B)—A—B (24B)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. NOTATION. Terms like (Afz.f(fz)) € A?(1—0—0) will often be written

Afral f(fa)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A€ . Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. DEFINITION. Let A = A1— ... A,—« and suppose ' - M : A.

(i) Then M is in long-nf, notation Inf, if M = )\x{h .xdn My ... M, and each M,
is in Inf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a Infif M =g, N and N is a Inf.

In Exercise 1.5.16 it is proved that if M has a G-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique Inf and will be its unique B8n~! nf. Here
n~! is the notion of reduction that is the converse of 7.

1.2.2. ExaMPLES. (i) Note that Af'.f =g, Af'Az°.fz and that Af'.f is a Bn-nf but
not a Inf.

(i) Af'Ax°.fz is a Inf, but not a Bn-nf.

(iii) Az:o.z is both in Bn-nf and Inf.

(iv) The B-nf AF:2o\f:1.F f(A\z:0.fx) is neither in Bn-nf nor Inf.

(v) A variable of atomic type « is a Inf, but of type A— B not.

(vi) A variable f :1—1 has as Inf A\g' \z°. f(\y°.gy)z.

1.2.3. PROPOSITION. Ewvery B-nf M has a Inf M¢ such that M* —rn M.
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(ix) If M has the AK™ property then M [-reduces to only finitely many N. This follows
by (vii) and (viii).

(x) If M has the AK™ property then M is strongly B-normalizable. By (i), (iii) and
(ix).

(xi) If M has the \K™ property then M is strongly fn-normalizable. By (v) and (x).

(xii) For each M there is an N with the \K™ property such that N —» g, M. First
expand M by 7 expansion so that every subterm of M beginning with a lambda is a
lambda prefix followed by a matrix of type 0. Let a : o and f : 0—(0—0) be new
variables. For each type T' = Th'— ... =T}—a«a with T; = T;1— ... =T}, —a; for i =
1,...,t define terms Uy, : T recursively by

U() = aj
UT = )\:I)l...:L't.f(fL‘lUTLl "‘UTl,kl)"‘
(f(xtflUTt—l,l ce Uthl,kt_l)(xtUTt,l s UTt,kt))")'

Now recursively replace each dummy Ax occurring AzAy... \z.X with x : T'and X : 0
by AxAy ... A\z2. KX (2Ur, ...Ur,). Clearly the resulting N satisfies N —g,, M and the
AK™ property, since all dummy lambdas appear in K : 1.

(xiii) Fwvery typable term is strongly 6n normalizable. By (xi) and (xii). m

Still another proof is to be found in de Vrijer [1987] in which for a typed term M a
computation is given of the langest reduction path to 3-nf.

2.3. Checking and finding types

There are several natural problems concerning type systems.

2.3.1. DEFINITION. (i) The problem of type checking consists of determining, given basis
I', term M and type A whether I' - M : A.

(ii) The problem of typeability consists of given a term M determining whether M
has some type with respect to some I'.

(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible
types A and bases I' that type a given M.

(iv) The inhabitation problem consists of finding out whether a given type A is inhabited
by some term M in a given basis I'.

(v) The enumeration problem consists of determining for a given type A and a given
context I all possible terms M such that I' = M : A.

The five problems may be summarized stylistically as follows.

' k., M:A? type checking;
JA T[T Fy., M:A? typeability;
7 by, M:7 type reconstruction;
dM [T by, M:A]?  inhabitation;
I' Fn, 7:A enumeration.
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In another notation this is the following.

M e AY (4)? type checking;
JA,T M e AL, (A)? typeability;

M € AL(?) type reconstruction;
AU (A) £ 07 inhabitation;
7 € AL (4) enumeration.

In this section we will treat the problems of type checking, typeability and type
reconstruction for the three versions of A_.. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for A" and A4B than for A", The
problems of inhabitation and enumeration will be treated in the next section.

One may wonder what is the role of the context I' in these questions. The problem

dr4AT - M : A.
can be reduced to one without a context. Indeed, for I' = {z1:41,...,2,: A, }
F'FM:A & FAzi(GA) . den((A4,) M) : (AL — ... — A, — A).

Therefore
dFAI'-M: A] <= IB[F A\Z.M : B].
On the other hand the question
draM [I'F M : A]?

is trivial: take I' = {:A} and M = z. So we do not consider this question.
The solution of the problems like type checking for a fixed context will have important
applications for the treatment of constants.

Checking and finding types for A48 and A"

We will see again that the systems AP and A\9B are essentially equivalent. For these
systems the solutions to the problems of type checking, typeability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2.3.2. PROPOSITION (Type checking for A4B). Let ' be a basis of \AB. Then there is a
computable function typep : Ay — T U {error} such that

M € AL o (A) < typer(M) = A.
PROOF. Define
typep(z) = I'(z);
typep(MN) B, if typep(M) = typep(IN)—B,
error, else;

A—typepy gy (M), if typepy,. 43 (M) # error,
= error, else.

typep(Az:A.M)
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Then the statement follows by induction on the structure of M. m

2.3.3. COROLLARY. Typeability and type reconstruction for A8 are computable. In fact
one has the following.

(i) M € AL .z < typep(M) # error.

(ii) Each M € AL j5(typer) has a unique type; in particular

M e AL jp(typer(M)).
ProoOF. By the proposition. m

For AC! things are essentially the same, except that there are no bases needed, since
variables come with their own types.

2.3.4. PROPOSITION (Type checking for A°!). There is a computable function type :
A_cn — T U {error} such that

M € A cn(4) < type(M) = A.

PROOF. Define

type(z?) = 4
type(MN) = B, if type(M) = type(N)— B,
= error, else;
type(A\zt. M) = A—type(M), if type(M) # error,
= error, else.

Then the statement follows again by induction on the structure of M. m

2.3.5. COROLLARY. Typeability and type reconstruction for A°! are computable. In fact
one has the following.

(i) M € Acn < type(M) # error.

(ii) Each M € A_.cy has a unique type; in particular M € A_cn(type(M)).

ProoOF. By the proposition. m

Checking and finding types for A"

We now will show the computability of the three questions for A, This occupies 2.3.6
- 2.3.16 and in these items F stands for I—lrj’cu.

Let us first make the easy observation that in A" types are not unique. For example
| = Az.x has as possible type a—«, but also (3—3)—(8—/3) and (a—B—0)—(a—B—7).
Of these types a—« is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in a.
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2.3.6. DEFINITION. (i) A substitutor is an operation % : T — T such that
*(A — B) = x(A) — x(B).

(ii) We write A* for x(A).
(iii) Usually a substitution * has a finite support, that is, for all but finitely many
type variables v one has a* = « (the support of * being

sup() = {a | a” # a}).

In that case we write

x(A) = Alag == af,...,qn =],
where {a1,...,a,} O sup(x). We also write
x=|a :=af,...,an = )]
and
* =]

for the identity substitution.

2.3.7. DEFINITION. (i) Let A, BeT. A unifier for A and B is a substitutor * such that
A* = B*.

(ii) The substitutor  is a most general unifier for A and B if

e A*=D*

o Al = B*l = dxg %] = %90 %,

(i) Let E = {A1 = By,..., A, = By} be a finite set of equations between types.
The equations do not need to be wvalid. A unifier for E is a substitutor x such that

Ay =By & --- & Af = B}, In that case one writes * = E. Similarly one defines the
notion of a most general unifier for E.

2.3.8. EXaAMPLES. The types f — (o — () and (y — 7) — 0 have a unifier. For
example x = [ =7 = v, d  =a — (y = y)]orx =[f:=7 =7, a:=¢c — ¢
0:=¢ — e — (7 —7)]. The unifier * is most general, *; is not.

2.3.9. DEFINITION. A is a variant of B if for some *; and * one has
A= B" and B = A,
2.3.10. EXAMPLE. o — (3 — (3 is a variant of v — § — § but not of « — § — «a.

Note that if *; and %9 are both most general unifiers of say A and B, then A*! and
A*2 are variants of each other and similarly for B.

The following result due to Robinson (1965) states that unifiers can be constructed
effectively.
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2.3.11. THEOREM (Unification theorem). (i) There is a recursive function U having (after
coding) as input a pair of types and as output either a substitutor or fail such that

A and B have a unifier = U(A, B) is a most general unifier
for A and B;
A and B have no unifier = U(A, B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of
equations between types and as output either a substitutor or fail such that

E has a unifier = U(F) is a most general unifier for E;
E has no unifier = U(E) = fail.

ProoF. Note that A;—Ay = B1— By holds iff Ay = By and Ay = Bs hold.
(i) Define U(A, B) by the following recursive loop, using case distinction.

Ulw,B) = [a:=B], ifa ¢ FV(B),
= [], if B=a,
= fail, else;

U(A1—>A2,04) = U(Oé,Al—>A2);
U(A1—Ag, Bi—By) = U(AVA252) pUdeB)y 74, By,

where this last expression is considered to be fail if one of its parts is. Let #,4,(A, B) =‘the
number of variables in A — B’ and #_,(A, B)="‘the number of arrows in A — B’.
By induction on (#y4(A, B),# (A, B)) ordered lexicographically one can show that
U(A, B) is always defined. Moreover U satisfies the specification.

(i) f £ = {A; = By,..., A, = B,}, then define U(F) = U(A, B), where A =
Aj—---—A,and B=B;—---—B,. »

See [?77] for more on unification. The following result due to Parikh [1973] for
propositional logic (interpreted by the propositions-as-types interpretation) and Wand
[1987] simplifies the proof of the decidability of type checking and typeability for A_,.

2.3.12. PROPOSITION. For every basis I, term M € A and A€ T such that FV(M) C
dom(T") there is a finite set of equations E = E(I", M, A) such that for all substitutors
one has

x = B, M,A) = T*FM:A* (1)
IM"FM:A" = x EEI,M,A), (2)
for some x1 such that x and %1 have the same

effect on the type variables in I' and A.
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PROOF. Define E(I', M, A) by induction on the structure of M:

E(L,z,4) = {A=T(@)}

ET,MN,A) = EI,M,a—A) U E(I',N,«a),
where « is a fresh variable;

E, x.M,A) = ETU{zx:a},M,3) U {a—p= A},

where «, 3 are fresh.

By induction on M one can show (using the generation lemma (2.1.3)) that (1) and (2)
hold. m

2.3.13. DEFINITION. (i) Let M € A. Then (I', A) is a principal pair (pp) for M if
(1) TF M: A.
2) TVEM:A = W [[*CIV & A*=A'.
Here {z1:A1,...}* = {x1: 4], ...}
(ii) Let M € A be closed. Then A is a principal type (pt) for M if
() FM:A
(2) FM:A = Ik [A*=A.

Note that if (', A) is a pp for M, then every variant (I, A") of (T', A), in the obvious
sense, is also a pp for M. Conversely if (', A) and (I, A") are pp’s for M, then (I, A)
is a variant of (I', A). Similarly for closed terms and pt’s. Moreover, if (I, A) is a pp for
M, then FV(M) = dom(T").

The following result is independently due to Curry (1969), Hindley (1969) and Milner
(1978). It shows that for A_, the problems of type checking and typeability are decidable.

2.3.14. THEOREM (Principal type theorem for A°%). (i) There exists a computable function
pp such that one has

M has a type = pp(M) = (T, A), where (I, A) is a pp for M;
M has no type = pp(M) = fail.
(ii) There exists a computable function pt such that for closed terms M one has

M has a type = pt(M) = A, where A is a pt for M;
M has no type = pt(M) = fail.

Proor. (i) Let FV(M) = {z1,...,2z,} and set I’y = {x1:011,...,zp:0,} and Ay = 5.
Note that

M hasatype = dJI'dATHFM:A
= dx T{FM: A
= EEE" ':E(P(),M,Ao).
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Define
pp(M) = (g, Ap), i U(E(To, M, Ag)) = *;
= fail, if U(E(Ty, M, Ag)) = fail.
Then pp(M) satisfies the requirements. Indeed, if M has a type, then
U(E(Ty, M, Ap)) =

is defined and I'fj = M : Af by (1) in proposition 2.3.12. To show that (I'§, Af) is a pp,
suppose that also I" + M : A", Let I =T | FV(M); write I' = I'y® and A" = A°. Then
also I'p® B M : Ay°. Hence by (2) in proposition 2.3.12 for some #; (acting the same as
x0 on Iy, Ag) one has x; = E(T'g, M, Ap). Since * is a most general unifier (proposition
2.3.11) one has *; = x5 o * for some *9. Now indeed

(I§)2 =T =T =T C T

and
(A(’ﬁ)*2 = Agl = ASO = A’

If M has no type, then =3 % * = E(Tg, M, Ag) hence
U(To, M, Ag) = fail = pp(M).
(ii) Let M be closed and pp(M) = (T, A). Then I' = () and we can put pt(M) = A. m
2.3.15. COROLLARY. Type checking and typeability for A_, are decidable.
PRrROOF. As to type checking, let M and A be given. Then
FM:A << Ix[A=pt(M)"].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2.3.11).

As to the question of typeability, let M be given. Then M has a type iff pt(M) #
fail. m

The following result is due to Hindley [1969].

2.3.16. THEOREM (Second principal type theorem for A°%). (i) For every type A€ T one
has

FM:A = 3IM'[M —g, M & pt(M') = Al.

(ii) For every type A€ T there exists a basis I' and term M € A such that (', A) is a
pp for M.
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PROOF. (i) We present a proof by examples. We choose three situations in which we
have to construct an M’ that are representative for the general case. Do exercise 77 for
the general proof.

Case M = \zx.z and A = (a—B)—a—B. Then pt(M) = a—a. Take M' = Azy.zy.
The n-expansion of A\z.x to Axy.xy makes subtypes of A correspond to unique subterms
of M'.

Case M = Azy.y and A = (a—v)—B—0. Then pt(M) = a—pB—B. Take M’
Azy. Ky(Az.zz). The B-expansion forces = to have a functional type.

Case M = Mzy.x and A = a—a—a. Then pt(M) = a—B—a. Take M' =
Axy Kx(Af.[fz, fy]). The B-expansion forces x and y to have the same types.

(i) Let A be given. We know that - | : A—A. Therfore by (i) there exists an I’ — gy, |
such that pt(l'’) = A—A. Then take M = I'z. We have pp(I'z) = ({z:A}, A). m

Complexity

The space and time complexity of finding a type for a typable term is exponential, see
exercise 2.5.18.
In order to decide whether for two typed terms M, N € A_,(A) one has

M =g, N,

one can normalize both terms and see whether the results are syntactically equal (up to
a-conversion). In exercise 2.5.17 it will be shown that the time and space costs of doing
this is at least hyper-exponential (in the size of M N). The reason is that the type-free
application of Church numerals

CnCiy = Cipn

can be typed, even when applied iteratively
CniCny - - - Cn.-

In exercise 2.5.16 it is shown that the costs are also at most hyper-exponential. The
reason is that Turing’s proof of normalization for terms in A_, uses a succesive development
of redexes of ‘highest’ type. Now the length of each such development depends exponentially
on the length of the term, whereas the length of a term increases at most quadratically
at each reduction step. The result even holds for typable terms M, N € A_.cy(A), as the
cost of finding types only ads a simple exponential to the cost.

One may wonder whether there is not a more efficient way to decide M =g, N, for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem
for terms of some type in A°,. A shorter proof of this result can be found in Mairson
[1992].
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The second variant of A" is the de Bruijn version of A2, denoted by )\ﬁdB or N8, Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

FB - Az Az): A-A (1gB)
y:A FB (\z:(A—B).ay): (A>B)—A—B (24B)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. NOTATION. Terms like (Afz.f(fz)) € A?(1—0—0) will often be written

Afral f(fa)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A€ . Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. DEFINITION. Let A = A1— ... A,—« and suppose ' - M : A.

(i) Then M is in long-nf, notation Inf, if M = )\x{h .xdn My ... M, and each M,
is in Inf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a Infif M =g, N and N is a Inf.

In Exercise 1.5.16 it is proved that if M has a G-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique Inf and will be its unique B8n~! nf. Here
n~! is the notion of reduction that is the converse of 7.

1.2.2. ExaMPLES. (i) Note that Af'.f =g, Af'Az°.fz and that Af'.f is a Bn-nf but
not a Inf.

(i) Af'Ax°.fz is a Inf, but not a Bn-nf.

(iii) Az:o.z is both in Bn-nf and Inf.

(iv) The B-nf AF:2o\f:1.F f(A\z:0.fx) is neither in Bn-nf nor Inf.

(v) A variable of atomic type « is a Inf, but of type A— B not.

(vi) A variable f :1—1 has as Inf A\g' \z°. f(\y°.gy)z.

1.2.3. PROPOSITION. Ewvery B-nf M has a Inf M¢ such that M* —rn M.
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PROOF. Define M! by induction on the depth of the type of the closure of M as follows.
M= (A\ZyM, ... M,)" = \ezZyM! .. M'Z.
Then M* does the job. m

Now we will define a 2-level grammar for obtaining the collection of all Inf’s of a
given type A.

1.2.4. DEFINITION. Let N = {L(A;T") | A€ Ty;T a context of A,}. Let ¥ be the
alphabet of the terms of the AP, Define the following two-level grammar, see van
Wijngaarden et al. [1976], as a notion of reduction over words over N U3. The elements
of N are the non-terminals (unlike in a context-free language there are now infinitely
many of them).

L(o;T) = zL(B;;T)...L(By;T), if (z:B—a)eT;
L(A-B;T) = M .L(B;T,z:A).

Typical productions of this grammar are the following.
AF2.L(o; F?)
AF2.FL(1; F?)

AF2. F(A\z°.L(o; F%,2°))
AF2 F(\2°.x).

L(3;0)

Gl

But one has also

L(o; F?,2°) = FL(1;F? x°)
= F(\x$.L(o; F%,2°,29))
= F(A\z{.z1).

Hence (= denotes the transitive reflexive closure of =)

L(3;0) = AF2.F(\z°.F(\x$.x1)).

In fact, L(3;0) reduces to all possible closed Inf’s of type 3. Like in abstract syntax we
do not produce parentheses from the L(A;T"), but write them when needed.

1.2.5. PROPOSITION. Let I', M, A be given. Then
LAT)= M < I'EM: A& M isin Inf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all 3-nf’s.
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1.2.6. DEFINITION. The 2-level grammar N is defined as follows.

N(A;T) = zN(B;;T)...N(Bn;I), if (z:B—A)eT;
N(A—B;T) = X\e.N(B;T,z:A).

Now the 3-nf’s are being produced. As an example we make the following production.
Remember that 1 = o—o.

L(1—o—0;0) = Mf'.L(o—0; f:0—0)
= MLf.
1.2.7. PROPOSITION. Let I', M, A be given. Then

NAT) =M < I'FM:A& M is in B-nf.

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine M4 producing
the set of closed terms of that type. If one is interested in terms containing variables
:U‘141, e ,m;?", then one can also find these terms by considering the machine for the type
Ai—...—A,—A and look at the subproduction at node A.

1.2.8. EXAMPLES. (i) A = o0—0—0. Then My is

Az Ay°

0—0—0 [o] x
)

This shows that the type 15 has two closed inhabitants: Axy.x and Axy.y. We see that
the two arrows leaving [o] represent a choice.
(i) A= a—((0—B)—a)—B—a. Then My is

’ a—>((o—>ﬁ)—>a)aﬁ—>a ‘

lAaaAf(OHB)HOCAbﬁ
[o] a
/

[o=p]—"——[8]—

Again there are only two inhabitants, but now the production of them is rather different:
Aafb.a and Aafb.f(Az°.b).




24 CHAPTER 1. THE SYSTEMS \_,

(iii) A= ((a—B)—a)—a. Then My is

[((a—B)—a)—a]

lAF(O{*}B)Ha

(@) ————[a=8]==[4]

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A =1—0—0. Then M4 is

This is the type Nat having the Church’s numerals \f'z°. "z as inhabitants.
(v) A=1—1—0—0. Then My is

L)\fl)\gl/\x"
f C%]D g

T
Inhabitants of this type represent words over the alphabet ¥ = {f, g}, for example
Algta®.fgf fafgge,

where we have to insert parentheses associating to the right.
(vi) A = (a—B—v)—B—a—y. Then My is

[(a=B—)—B—a—1]

lx Fa—B=Y N N

7
f b

giving as term Af*B7Y AP a®. fab. Note the way an interpretation should be given
to paths going through f: the outgoing arcs (to[a]and @) should be completed both
separately in order to give f its two arguments.

a~—1[a]
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(vii) A=3. Then My is

This type 3 has inhabitants having more and more binders:
ANFZF\d . FA\x§. F(--- (A\a2.z;)))).

The novel phenomenon that the binder Az° may go round and round forces us to give new
incarnations Az{, Az{,... each time we do this (we need a counter to ensure freshness of
the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations zp. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.

(viii) A =3—0—0. Then My is

3—o0—o0

A@SAcoj
P
N @ri—-r)

|

C

This type, called the monster M, does have a potential infinite amount of binding,
having as terms e.g.

A3 DAL FLONf3 . fof1® .. ANfE fo ... fafic,

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f! in this case) becomes necessary, as the f going from [o]to itself needs
to be one that has already been incarnated.

(ix) A =13—0—0. Then My is

Apt2 Ac?
0

)

p

This is the type of binary trees, having as elements, e.g. Ap'2¢®.c and Ap'2c®.pe(pee).
Again, as in example (vi) the outgoing arcs from p (to [o]) should be completed both
separately in order to give p its two arguments.
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(x) A= 19—2—0. Then My is

AF12 \G2
@ -] —a

This is the type L corresponding to untyped lambda terms. For example the untyped
terms w = Az.zx and Q = (A\z.z2)(Az.zr) can be translated to (w)! = AF2G2.G(\x°. Fax)
and
Q) = AF2G2F(G(\x°.Fxz))(G(\x°.Fax))

=5 AG.F((w)'FG)((w)'FG)

=B (w)t 'L (w)tv
where for M, N €L one defines M -, N = AFG.F(MFG)(NFG). All features of
producing terms inhabiting types (bookkeeping bound variables, multiple paths) are
present here.

Following the 2-level grammar N one can make inhabitation machines for @-nf M E .

1.2.9. EXAMPLE. We show how the production machine for 3-nf’s differs from the one
for Inf’s. Let A = 1—0—0. Then Af'.f is the (unique) B-nf of type A that is not a Inf.
It will come out from the following machine M f .

1—o—o0

pr
[o=0]— f

l/)\x"

£ [o]——sa

So in order to obtain the B-nf’s, one has to allow output at types that are not atomic.

1.3. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in A%,. We start with several examples: Booleans, the natural numbers, the free monoid
over n generators (words over a finite alphabet with n elements) and trees with at the
leafs labels from a type A. The following definitions depend on a given type A. So in
fact Bool = Bool 4 etcetera. Often one takes A = o.
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Properties

2.1. First properties

In this section we will treat simple properties of the various systems A_,. Deeper
properties—Ilike strong normalization of typeable terms—will be considered in Section
2.2.

Properties of A", \°" and \4B

—

Unless stated otherwise, properties stated for A_, apply to both systems.

2.1.1. PROPOSITION (Weakening lemma for A_,).
Suppose T+ M : A and IV is a basis with T CTI”. Then T" = M : A.

ProoF. By induction on the derivation of ' M : A. m

2.1.2. LEMMA (Free variable lemma). (i) SupposeI' =M : A. Then FV (M) C dom(I").
(ii) IfT' - M : A, thenT [ FV(M) F A : M, where for a set X of variables one has
F'MFV(M) ={z:AeT |z X}.

PROOF. (i), (ii) By induction on the generation of ' M : A. m

The following result is related to the fact that the system A_, is ‘syntax directed’, i.e.
statements [' = M : A have a unique proof.

2.1.3. PROPOSITION (Generation lemma for A°Y).

(i) 'Fz:A = (zA)el.
(i) ’FMN:A = 3dBeT[I'FM:B—A&TFN:B|.
(i) TFAX2M:A = 3B,CeT[A=B-C&I',z:B+-M:C|.

PROOF. (i) Suppose I' - = : A holds in A_,. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (z:A)€T.

(i), (iii) The other two implications are proved similarly. m

49
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2.1.4. PROPOSITION (Generation lemma for \4B).

(i) 'Fz:A = (z:A)el.
(ii) 'FMN:A = 3dBeT[I'FM:B—-A&I'FN:B.
(i) TFAz:B.M:A = 3CeTM[A=B-C&I',©:B-M:(].

PrOOF. Similarly. m

2.1.5. PROPOSITION (Generation lemma for A\Ch).

(i) tBeACh(4) = B=A
(ii) (MN)eAM(A) = 3IBeT.[McA®™(B—A)& NcA®M(B).
(i) (M\2B.M)eAh(A) = 3ICeT.JA=(B—C)& McAPO)].

PROOF. As before. m

The following two results hold for A" and \IB. Variants already have been proved
for A", Propositions 1.4.2 and 1.4.4(iii).

2.1.6. PROPOSITION (Substitution lemma for A" and A9B).
(i) Iyx:ArM:B&TFN:A = T' M[z: = N]|:B.
(i) TFM:A = TDa:=B|FM: Ala := B].

PROOF. The proof will be given for A¢", for AP it is similar.

(i) By induction on the derivation of I', z:A = M : B. Write
P* = Plx: = NJ.

Case 1. I',x:AF M : B is an axiom, hence M =y and (y:B) €' U {z:A}.

Subcase 1.1. (y:B)€T. Then y Z 2z and I' = M* = y[x:N] =y : B.
Subcase 1.2. y:B=x:A. Theny =2 and B= A, hence 'F M*=N:A=B.

Case 2. I'yz:A - M : B follows from I''e:A + F : C—B, I'©:A + G : C and
FG = M. By the induction hypothesis one has I' - F* : C—B and I' - G* : C'. Hence
' (FG)* = F*G* : B.

Case 3. I',x:A+ M : B follows from I', x:A,y:D+ G : E, B= D—FE and \y.G = M.
By the induction hypothesis I, y:D - G* : E, hence I' - (\y.G)* = \y.G* : D—FE = B.

(ii) Similarly. m

2.1.7. PROPOSITION (Subject reduction property for A" and A4B). Suppose
M —gy, M'. ThenT HM:A = T'FM': A

PROOF. The proof will be given for A9B, for A°" it is similar. Suppose I' - M : A and
M — M’ in order to show that I' = M’ : A; then the result follows by induction on the
derivation of I' = M : A.

Case 1. ' = M : A is an axiom. Then M is a variable, contradicting M — M’.
Hence this case cannot occur.

Case 2. 'F M : AisT'F FN : A and is a direct consequence of I' - F' : B—A and
' N :B. Since FN = M — M’ we can have three subcases.
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Subcase 2.1. M’ = F'N with F — F’.
Subcase 2.2. M' = FN’' with N — N'.

In these two subcases it follows by the induction hypothesis that I' = M’ : A.
Subcase 2.3. F = \x:B.G and M’ = G[z: = N|. Since

I'FXe.G:B—A&T+HN:B
it follows by the generation lemma 2.1.3 for A_, that
Ne:BFG:A&THN:B.
Therefore by the substitution lemma 2.1.6 for A_, it follows that
'FGlz:=N]: A jie. THM: A
Case 3. ' M : Ais '+ Ax:B.N : B—C and follows from I'yz:B - N : C. Since
M — M’ we have M’ = A\x:B.N’ with N — N’. By the induction hypothesis one has
I,z:BFN':C, henceI' - Ae:B.N' : B—C,ie. TFM : A m

The following result also holds for A and A\9B, Exercise 2.5.4.

2.1.8. COROLLARY (Church-Rosser Theorem for AY). On typable terms of A° the Church-
Rosser theorem holds for the notions of reduction —»g and —»gy,.

(i) Let M,N € AL (A). Then
M =g N = 3Z€ A (A).M g4, Z & N —gm) Z.
(i) Let M, Ny, No € AL (A). Then
M — gy N1 & M —gy No = 3Z €AY (A).Ny g0 Z & Na — () Z.

Proor. By the Church-Rosser theorems for —g and — g, on untyped terms, Theorem
1.1.7, and Proposition 2.1.7. =

The following property of uniqueness of types only holds for the Church and de
Bruijn versions of A_,. It is instructive to find out where the proof brakes down for A°"
and also that the two contexts in (ii) should be the same.

2.1.9. PROPOSITION (Unicity of types for AC" and \1B).
(i) MecAPA)&MecAN(B) = A=B.
(i) TH® M:A&THE M:B = A=B.

PROOF. (i), (ii) By induction on the structure of M, using the generation lemma 2.1.4. m
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Normalization

For several applications, for example for the problem to find all possible inhabitants of a
given type, we will need the weak normalization theorem, stating that all typable terms
do have a Bn-nf (normal form). The result is valid for all versions of A\_, and a fortiori
for the subsystems A?,. The proof is due to Turing and is published posthumously in
Gandy [1980]. In fact all typable terms in these systems are 3n strongly normalizing,
which means that all 8n-reductions are terminating. This fact requires more work and
will be proved in §12.2.
The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding

of the proof of the normalization theorem.

2.1.10. DEFINITION. (i) An abstract reduction system is a pair (X, —pg), where X is a
set and — g is a binary relation on X.
(ii) An element x € X is said to be in R-normal form (R-nf) if for no y € X one has

r —RUY.
(iii) (X, R) is called weakly normalizing (R-WN, or simply WN) if every element has
an R-nf.
(iv) (X, R) is said to be strongly normalizing (R-SN, or simply SN) if every R-
reduction path
ro —R X1 —RI2 —R ....

is finite.

2.1.11. DEFINITION. (i) A multiset over nat can be thought of as a generalized set S in
which each element may occur more than once. For example

S ={3,3,1,0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera.

More formally, the above multiset S can be identified with a function f € NY that is
almost everywhere 0, except

fO)=1,f(1)=1,f(3) =2
This S is finite if f has finite support, where
support(f) = {z € N| f(x) # 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f € NV | support(f) is finite}.

2.1.12. DEFINITION. Let S7,S2 € S(N). Write

S1 —s 52
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if Sy results from S; by replacing some elements (just one occurrence) by finitely many
lower elements (in the usual ordering of N). For example

{3,3,1,0} —s{3,2,2,2,1,1,0}.

2.1.13. LEMMA. We define a particular (non-deterministic) reduction strategy F' on S(N).
A multi-set S is contracted to F(S) by taking a mazimal element n€ .S and replacing
it by finitely many numbers < n. Then F' is a normalizing reduction strategy, i.e. for
every S € S(N) the S-reduction sequence

S —s F(S) —s F?(S) —s ...
1s terminating.

Proor. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
< k obtaining 57 with maximal number < k. Then we are done by the induction
hypothesis. ®

In fact (S(N),—s) is SN. Although we do not strictly need this fact, we will give
even two proofs of it. In the first place it is something one ought to know; in the second
place it is instructive to see that the result does not imply that A_, satisfies SN.

2.1.14. LEMMA. The reduction system (S(N), —gs) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

PROOF;. Assign to every S € S(N) an ordinal #5 < w“ as suggested by the following
examples.

#{3,3,1,0,0,0} = 2w +w+3;
#{3,2,2,2,1,1,0} = w3+ 3w’ + 2w+ 1.
More formally, if S is represented by f € NN with finite support, then
#S = Tienf(i) - o'

Notice that
S1 —s Sy = #8517 > #55

(in the example because w® > 3w? + w). Hence by the well-foundedness of the ordinals
the result follows. m;

PROOFy. Define

Fr = {feNV|vn>kf(n)=0}
F = UgenFi.
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The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation —g for the formal definition of S(N).

f>g9 <= f(k)>g(k), where k €N is largest
such that f(k) # g(k).

It is easy to see that (F,>) is a linear ordering. We will show that it is even a well-
ordering, i.e. for every non-empty set X C F there is a least element fp€ X. This
implies that there are no infinite descending chains in F.

To show this claim it suffices to prove that each Fj is well-ordered, since

...>(fk+1\fk)>fk

element-wise. This will be proved by induction on k. If £ = 0, then this is trivial, since
Fo = {An.0}. Now assume (induction hypothesis) that Fj is well-ordered in order to
show the same for Fj;. Let X C Fj41 be non-empty. Define

X(k) = {f(K)|feX}CN;
X, = {feX|f(k) minimal in X(k)} C Fri1;
Xplk = {g€Fp|3f € Xk flk =g} C Fi,

where

fIk@) = fQ@), ifi<k;

= 0, else.

By the induction hypothesis Xy|k has a least element gg. Then gy = fy|k for some
fo € Xg. This fy is then the least element of X, and hence of X. mo

2.1.15. REMARK. The second proof shows in fact that if (D,>) is a well-ordered set,
then so is (S(D),>), defined analogously to (S(N),>). In fact the argument can be
carried out in Peano Arithmetic, showing

Fpa TI(a) — TI(a®),

where TI(«) is the principle of transfinite induction for the ordinal a.. Since TI(w) is in
fact ordinary induction we have in PA

TI(w), TI(w®), TI(w®)),....

This implies that the proof of TI(a) can be carried out in Peano Arithmetic for every
a < €. Gentzen [1936] shows that TI(eg), where ¢g = w*” | cannot be carried out in
PA.

In order to prove the A_, is WN it suffices to work with A". We will use the following
notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (Az4.M)N € termp we write (Az?4. MB)A=BNA,
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2.1.16. DEFINITION. (i) Let R = (AzA.MPB)A~BN4 be a redex. The depth of R,
notation # R, is defined as follows.

#R = #(A—B)
where # on types is defined inductively by

#a = 0;
#(A—B) = max(#A,#B)+ 1.

(ii) To each M in A°M we assign a multi-set Sy; as follows
Sy = {#R| R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in Syy;.

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2.1.17. EXAMPLE. (i) Let R be a redex occurrence in a typed term M. Assume
R
M—)'B N7

i.e. N results form M by contracting R. This contraction can duplicate other redexes.
For example (we write M[P], or M[P, Q)] to display subterms of M)

(Az.M|z,z])Ry —g M[Ry, R1]

duplicates the other redex R;.
(ii) (J.J. Lévy [1978]) Contraction of a B-redex may also create new redexes. For
example

)\acA_’B.M xA—>BPA C\(A—B)—C )\yA.QB N M )\yA.QB A—>BPA C;
B

()\:L,A'(AyB'M[:L,AvyB]C)BHC)AH(B—»C)PAQB —p (}\yB.M[PA’yB]C)BHCQB;
(AxA%B.xA—)B)(A—?B)—)(A—)B) (AyA.PB)A_)BQA —p ()\yA.PB)A—)BQA.

2.1.18. LEMMA. Assume Miﬁ N and let Ry be a created redex in N. Then #R > #R;.
PROOF. In Lévy [1978] it is proved that the three ways of creating redexes in example
2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of

three cases we can inspect that the statement holds. m

2.1.19. THEOREM (Weak normalization theorem for A\_,). If M € A is typable in A_., then
M is Bn-WN, i.e. has a Bn-nf.
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PrROOF. By Proposition 1.4.9(ii) it suffices to show this for terms in A“". Note n-
reductions decreases the length of a term; moreover, for B-normal terms n-contractions
do not create B-redexes. Therefore in order to establish 3n-WN it is sufficient to prove
that M has a B-nf.

Define the following B-reduction strategy F. If M is in nf, then F(M) = M.
Otherwise, let R be the rightmost redex of maximal depth n in M. Then

F(M)=N

where M iﬁ N. Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F(M) of depth < n. By lemma 2.1.18 redexes created in F'(M) by the
contraction M —g F(M) are also of depth < n. Therefore in case M is not in B-nf we
have

Sum —s Sk

Since —¢ is SN, it follows that the reduction
M —g F(M) =g F*(M) —g F*(M) —p ...
must terminate in a 3-nf. m

For B-reduction this weak normalization theorem was first proved by Turing, see Gandy
[1980b]. The proof does not really need SN for S-reduction. One may also use the
simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a S-reduction chain.
For example the two terms

(/\IA'yAHAHAxAIA)AHA(()\:CA“TA)AHA A)

yA—>A—>A(()\xA.xA)A—»AxA)(()\xA.xA)A—»A

€T gc]

)

give the multisets {1,1} and {1,1}. Nevertheless, SN does hold for all systems A_,, as
will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of A_, such that

M —g N = ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool, Nat, ¥*
and T) are standard, i.e. correspond to the intended elements. From WN for A_, and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard.

2.1.20. PROPOSITION. Let M €A be in nf. Then M = Axy---xn.yMy... My, with
n,m >0 and the My, ..., My, again in nf.
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PROOF. By induction on the structure of M. See Barendregt [1984], proposition 8.3.8
for some details if necessary. m

2.1.21. PROPOSITION. Let Bool = Bool,,, with « a type variable. Then for M in nf one
has

=M : Bool = M &{true, false}.

PRrROOF. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the
generation lemma for )&1, proposition 2.1.3, one has the following chain of arguments.

FM:a—a—a M = \x. M,y
T My a—o
My = \y. My

T,y Mo @«

vl

= My=2xor My =y.
So M = Axy.x = true or M = A\xy.y = false. m
2.1.22. PROPOSITION. Let Nat = Nat,. Then for M in nf one has
FM:Nat = Me{'n'|neN}
PROOF. Again we have

FM:a—(a—a)—a M = \x.M;

r:ak M : (a—a)—a
Ml = )\fMQ

T, fra—a b My a.

A

Now we have

v, framatMy:a = [My=zxV
My = fMs & z:a, fra—at Ms : ofl.

Therefore by induction on the structure of Ms it follows that
ra, fra—matk My:a = My = f"(x),
withn >0. So M = Az f.f"(x)="n'. =
2.1.23. PROPOSITION. Let Sigma* = Sigma},. Then for M in nf one has

F M : Sigma* = Mec{w|weX*}.
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PROOF. Again we have

FM:a—(a—a)f—a = M=X\x.N

= z:ak N:(a—a)'—a
= N =MXa1.N1 & z:a,a1:a—a - Ny : (a%a)kilﬁa
= N=Xai---ap.N &z:a,aq,...,a:a0—akF Ni @«
= [Ny=zV

[N = a, N & z:a, a4, ... ap:a—a b N} 2 al]
= Np=ag(ay,(---(a,)-))
= M = Azay - ag.ay (ai, (- (a,r) - -))

= A4y Qg -0 - Q. B

Before we can prove that inhabitants of tree[3] are standard, we have to intoduce
an auxiliary notion.

2.1.24. DEFINITION. Given t € T[by,. .., b,] define [t]P! € A as follows.

[ 1
[Pt t2)]P! = plt1]"![t2]P.

2.1.25. LEMMA. Forte€T[by,...,by] we have

] =5 Apl. [

Proor. By induction on the structure of ¢.

= \pl.[bi]P
[P(t1,t2)] = Apl.p([talpl)([t2]pl)
= Apl.p[t:]P![t2]P, by the IH,

= Mpl.[P(ty,t2)]"'. m

2.1.26. PROPOSITION. Let tree|3] = tree,[B3]. Then for M in nf one has

bi,...,bp:BF M :tree[8] = Me{[t]|teT[bi,...,by]}.
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PROOF. We have b:8 F M : (a—a—a)—(B—a)—a =

= M=\

= bl pa—a—at M : (B—a)—a
= M =M

=  bB,pla—a—a),:(B—a)F M : «a
= M'=Ilb; v [M" =pMi M &

g:,@,p:(a—>a—>a), L(B—a) - M;:a], j=12,
M" = [t]P*, for some t € T[b],
M = \pl.[t]"! =3 [t], by lemma 2.1.25. m

oy

2.2. Proofs of strong normalization

We now will give two proofs showing that A_, is strongly normalizing. The first one is
the classical proof due to Tait [1967] that needs little technique, but uses set theoretic
comprehension. The second proof due to Statman is elementary, but needs results about
reduction.

2.2.1. THEOREM (SN for A1), For all A€ Too, M € AP (A) one has SNg,(M).

PrOOF. We use an induction loading. First we add to A_, constants d, € A°"(a) for
each atom «, obtaining )\iCh. Then we prove SN for the extended system. It follows a
fortiori that the system without the constants is SN.

One first defines for A € T, the following class C4 of computable terms of type A.
We write SN for SNg,,.

Ca = {M AL (a) | SN}
Cap = {MeA”  (A=B)|VYPeCs.MPeCp}.
Then one defines the classes C% of terms that are computable under substitution
Ch={MeA _cn(A) |VGeC.[M[#: = Ge A ¢, (A) = M[# =(d]eCal}.
Write ) = (J{C) | Ae T(A)}. For A = Aj— ... —A,—a define
da = Ax1:A1 .. dxp: A, d,.

Then for A one has
MeCy < VPeC.MPeSN, (0)
MeCly < VP,QeC.M[i: = Q|PeSN, (1)

where the 13, Q should have the right types and M P and M [Z: = Q]ﬁ are of type a,
respectively. By an easy simultaneous induction on A one can show

MeCy = SN(M); 2)



Chapter 14

An Exemplary System ...

There are several systems that assign intersection types to untyped lambda
terms. These will be collectively denoted by An. In this section we consider
one particular system of this family, /\]%CD in order to outline the concepts and
related properties. Definitions and the statement of theorems will be given, but
no proofs. These can be found in the next chapters of Part III.

One motivation for the system presented comes from trying to modify the
system A_, in such a way that not only subject reduction, but also subject
expansion holds. The problem of subject expansion is the following. Suppose
Fa_ M : A and that M’ —g,, M. Does one have =) _ M’ : A? Let us focus on
one B-step. So let M = (A\z.P)Q be a redex and suppose

Fi. Plz:=Q]: A. (1)

—

Do we have F)_ (Az.P)Q : A? It is tempting to reason as follows. By
assumption (1) also @ must have a type, say B. Then (Az.P) has a type
B— A and therefore ) _ (Az.P)Q : A. The mistake is that in (1) there may be
several occurrences of ), say Q1 = Q2 = ... = @Q,, having as types respectively
Bi,...,B,. It may be impossible to find a single type for all the occurrences of
(@ and this prevents us from finding a type for the redex. For example

Fao, Az d(Kz)(lz)) @ A—A,
V. (Azy.z(Ky)(xy))! A—A.

The system introduced in this chapter with intersection types assigned to

untyped lambda terms remedies the situation. The idea is that if the several

occurrences of () have to have different types Bi,...,B,, we give them all of

these types:
FQ:BiN...N By,

implying that for all ¢ one has @) : B;. Then we have

F\x.P) : BiNn...NnB,—A and
F((Az.P)Q) : A

There is, however, a second problem. In the AK-calculus, with its terms
Az.P such that z ¢ FV(P) there is the extra problem that () may not be

9
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typable at all, as it may not occur in P[x := Q]! This is remedied by allowing
BiN...N By, also for n = 0 and writing this type as T, to be considered as the
universal type, i.e. assigned to all terms. Then in case x ¢ FV(P) one has

F(Az.P) : T—A  and
F((A\z.P)Q) : A.

This is the motivation to introduce a < relation on types with largest
element T and intersections such that ANB < A, ANB < B and the extension of
the type assignment by the sub-sumption rule ' M : A, A< B = I'F M :
B. Tt has as consequence that terms like Ax.zz get as type (A—B)N A)—B,
while (Az.zz)(Az.xzx) only gets T as type. Also we have subject conversion

'EM:A&M=3N = I'EN:A

This has as consequence that one can create a lambda model in which the
meaning of a closed term consists of the collection of types it gets. In this way
new lambda models will be obtained and new ways to study classical models
as well.

The type assignement system
the correspondig filter model in 14.2.

ABED will be introduced in Section 14.1 and

14.1. The system of type assignment \2P

A typical member of the family of intersection type assignment systems is )\ECD.
This system is introduced in Barendregt et al. [1983] as an extension of the
initial system in Coppo and Dezani-Ciancaglini [1980)].

14.1.1. DEFINITION. Let A be a set of type atoms.
(i) The intersection type language over A, denoted by T = "IT;% is defined by
the following abstract syntax.

T=A|T-T|TAT
(i) Write

Aoo - {¢0,¢1,¢27 .. }
AL = AnU{T},

where the type atom T ¢ A is considered as a constant.

NotaTION. (i) A, B,C, D, E range over arbitrary types. When writing intersection
types we shall use the following convention: the constructor N takes precedence
over the constructor — and it associates to the right. For example

(A-B—C)NA—-B—C = ((A—(B—C)) N A)—(B—C).

(ii) a, f,... range over A.
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14.1.2. REMARK. In Part III the set of syntactic types will be formed as above;
for many of these systems the set A will be finite. In this Chapter, however, we

take A = AL .

The following deductive system has as intention to introduce an appropriate
pre-order on T, compatible with the operator —, such that AN B is a greatest
lower bound of A and B, for each A, B.

.
14.1.3. DEFINITION (Intersection type preorder). On T = 'IT‘§°o a binary rela-
tion < ‘is subtype of’ is defined by the following axioms and rules.

(vefl) A<A

(incly,) ANB<A

(inclp) ANB<B

(81b) Cg ;4 AcréB

(trans) —A =B B=(C
ALC

(T) A<T

(T—) T<T->T

(—nN) (A—=B)N (A—C) < A—(BNCQC)

(=) A<A B<LPHB

(A=B) < (A'—DB)

14.1.4. DEFINITION. The intersection type theory BCD is the set of all judge-
ments A < B derivable from the axioms and rules in Definition 14.1.3. For
(A < B)eBCD we write A <pcp B or Fpep A < B (or often just A < B).

14.1.5. REMARK. All systems in Part III have the first five axioms and rules
of Definition 14.1.3. They differ in the extra axioms and rules and the set of
constants.

14.1.6. DEFINITION. Write A=gcpB (01“ A= B) for A <gcp B & B <pcp A.
In BCD we usually work with T modulo =gcp. By rule (—) one has

A=A"& B=B = (A-B)=(4-B).
Moreover, AN B becomes the glb of A, B.

14.1.7. DEFINITION. (i) A basis is a finite set of statements of the shape z:B,
where B € T, with all variables distinct.

(ii) The type assignment system ABP for deriving statements of the form
' M : Awith I' a basis, M € A (the set of untyped lambda terms) and A€ T
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is defined by the following axioms and rules.

(Ax) I'kFaz:A if (z:A) el
(=1) I' :A-M:B
_
T (\z.M) : (A=B)
(E) IFM:(A—B) TFN:A
T+ (MN):B
'-M:A T'EM:B
(NI)
TFM:(ANDB)
'-M:A
< _— i <
(=) TFM:B if A <pop B

(T-universal) T'kF M : T

(iii) We say that a term M is typable from a given basis T', if there is a type
A €T such that the judgement T'= M : A is derivable in AB“P. In this case we
write T’ I—ETCD M :Aorjust ' M : A, if there is little danger of confusion.

14.1.8. REMARK. All systems of type assignment in Part III have the first five
axioms and rules of Definition 14.1.7.

In the following Proposition we need the notions of admissible and derived
rule. Let us first informally define these notions for the simple logical theory of
propositional logic.

14.1.9. DEFINITION. Let F denote provability in propositional logic. Consider

the rule
A
— (R)
I'HB

(i) R is called admissible if one has
''-rA=TFB
(ii) R is called derived if one has

I'-A—B
For example we have that
I'-A—A—-B
I'-A—B
is derived. Also that for propositional variables 19, o
Fo
Fo
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is admissible, simply because - ¢ does not hold, but not derived. A derived rule
is always admissible and the example shows that the converse does not hold. If

A
I+B

is a derived rule, then for all I" D I" one has that
'+ A
I'+B

is also derived. Hence derived rules are closed under theory extension.
We will only be concerned with admissible and derived rules for theories of
type assignment.

14.1.10. PROPOSITION. (i) Notice that the rules (NE)

I'M:(ANB) TFM:(ANB)
IFM:A I'-M:B

are derived in NBCP.

(ii) The following rules are admissible in the intersection type assignment

system ABCP.
, T-M:A o ¢T
(weakening) T,o:BFM:A
, Fe:BFM:A ¢ FV(M)
(strengthening) TE M A
(cut) I'N'e:B-M:A T'HN:B
' (M[z:=N]): A
IaBFM:A C<B
(<L)
HaCHEM:A
(L) yBrFrM:A TEN:C z¢T
—
I z:(C—B)F (M[y:=xzN]): A
Ie:A-M: B
L Y
(NL) Fz:(ANC)FM: B

14.1.11. THEOREM. In (i) assume A # T. Then

(i) I'tz:A < 3BeT.[x:Bel & B< Al
(i) I't(MN):A < 3BeT.+M:(B—A)&T+N:B].
(iii) I'Ae.M:A < 3n>03By,...,Bp,Cy,....CheT

Vie{l,...,n}.[I'No:B;F M :C; &
(Bl—>Cl) n...N (Bn—>Cn) < A]
(iv) TFXe.M:B—C < T,z:BFM:C.
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14.1.12. DEFINITION. Let R be a notion of reduction. We introduce the following
rules:

TFM:A M—rN
TFN:A

(R-red)

IFM:A M—pN
I'EN:A

(R-exp)

14.1.13. PROPOSITION. The rules (B-red), (B-exp) and (n-red) are admissible
in ABCP. The rule (n-exp) is not.

The following result characterizes notions related to normalization in terms
of type assignment in the system ABCP. The notation T ¢ A means that T
does not occur in A.

14.1.14. THEOREM. Let M € A?.
(i) M has a head normal form << JA€T.[A#pcp T & = M : A
(ii) M has a normal form << JAeT. [T ¢ A& M : Al

Let M be alambda term. For the notion ‘approximant of M’, see Barendregt
[1984]. These are roughly obtained from the Béhm tree BT (M) of M by cutting
of branches and replacing these by a new symbol L. The set of approximants
of M is denoted by A(M). We have e.g. for the fixed-point combinator Y

A(Y) = {LYU AL L | n>0).

Approximants are being typed by letting the typing rules be valid for ap-
proximants. For example one has
FLl:T
FAffL:(T—A)—A
FALF(fL): (T—A) N (A1—Ar)—As

FAPL:(T—=A)N(A1—A)N...N(A_1—A,)—A,

The set of types of a term M coincides with the union of the sets of types of
its approximants P € A(M). This will give an Approximation Theorem for the
filter model of next section.

14.1.15. THEOREM. 'F M : A & FJPe A(M)T P : A.

For example since for all n Af.f" L is an approximant of Y we have that all
types of the shape (T—A;)N...N(A,—1—A,)—A, can be derived for Y.
Finally the question whether an intersection type is inhabited is undecidable.

14.1.16. THEOREM. The set {Ac T |IM € A - M : A} is undecidable.
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14.2. The filter model

14.2.1. DEFINITION. (i) A complete lattice (D,C) is a partial order which has

arbitrary least upper bounds (sup’s) (and hence has arbitrary inf’s).
(ii) A subset Z C D is directed if Z # () and

Ve,ye ZAz€ Z.x,y C z.

(iii) An element c€D is compact (in the literature also called finite) if for
each directed Z C D one has

cClZ = 3zeZcC 2.

Let IC(D) denote the set of compact elements of D.

(iv) A complete lattice is w-algebraic if (D) is countable, and for each d € D,
the set KC(d) = {c€ K(D) | ¢ C d} is directed and d = [JK(d).

(v) Let (D,C) be an w-algebraic complete lattice. The Scott topology on D
contains as open sets the U C D such that

(1) deU &dCe = ecU;
(2) if Z C D is directed then [ 1Z €U = Jz€Z.2€U.

(vi) If D, & are w-algebraic complete lattices, then [D—&] denotes the set of
continuous maps from D to £. This set can be ordered pointwise

fCg & VdeD.f(d) C g(d)

and ([D—£&],C) is again an w-algebraic lattice.
(vii) The category ALG is the category whose objects are the w-algebraic
complete lattices and whose morphisms are the (Scott) continuous functions.

14.2.2. DEFINITION. (i) A filter over T = 'ITF%IO is a non-empty set X C T such
that

(1) A e X& A<B = BeX;
(2) A,BeX = (ANnB)eX.
(ii) F denotes the set of filters over T.

14.2.3. DEFINITION. (i) If X C T is non-empty, then the filter generated by X,
notation TX, is the least filter containing X. Note that

1X ={A|3n>13B,...B,€ X.BiN...N B, < A}.

(ii) A principal filter is of the form T{A} for some A€ T. We shall denote
this simply by TA. Note that TA ={B | A < B}.

14.2.4. PROPOSITION. (i) F = (F,C) is an w-algebraic complete lattice.
(ii) F has as bottom element 1T and as top element T.
(iii) The compact elements of F are exactly the principal filters.
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14.2.5. DEFINITION. Let D be an w-algebraic lattice and let

F : D—[D-D]
G : [D—D|-D

be Scott continuous. D is called a reflezive via F,G if F'o G = idpp_p)-

A reflexive element of ALG is also a A-model in which the term interpretation
is naturally defined as follows (see Barendregt [1984], Section 5.4).

14.2.6. DEFINITION (Interpretation of terms). Let D be reflexive via F, G.

(i) A term environment in D is a map p : Var—D.

(ii) If p is a term environment and d€D, then p(x := d) is the term
environment p’ defined by

Ply) = ply) ifyZaz
plx) = d.

(iii) Given a term environment p, the interpretation [ |, : A—D is defined as
follows.

[z]; = »rla);
[MN]; = FIM]JINT;
Da.M]) = GAdeD.[M]], )

(iv) The statement M = N, for M, N untyped lambda terms, is true in D,
notation D = M = N iff

Vpe EnvD.[[M]]? = [[N]]?.

14.2.7. THEOREM. Let D be reflexive via F,G. Then D is a A\-model, in particular
for all M, N € A
DE (Ax.M)N = M[z: = NJ.

14.2.8. PROPOSITION. Define maps F' : F—[F—F] and G : [F—=F|—=F by

F(X)(Y) = 1{B|3AeY.(A=B)eX}
G(f) = HA-B|Bef(14)}

Then F is reflexive via F,G. Therefore F is a A-model.

An important property of the A-model F is that the meaning of a term is
the set of types which are deducible for it.

14.2.9. THEOREM. For all \-terms M one has
Foo_ .
[M], = {A[30Epl'FM: A},
where I' |= p iff for all (x:B) €T one has B € p(x).
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Lastly we notice that all continous functions are representable.
14.2.10. THEOREM.
[F=F|={f:F—-F| [ is representable},
where f € F—F is called representable iff for some X € F one has

VY e Ff(Y) = F(X)(Y).

14.3. Completeness of type assignment

14.3.1. DEFINITION (Interpretation of types). Let D be reflexive via F,G and
hence a \-model. For F(d)(e) we also write (as usual) d - e.

(i) A type environment in D is a map § : Ac—P(D).

(ii) For X,Y € P(D) define

X—=Y ={deD|d-XCY}={deD|VereX.d -z€Y}.

(iii) Given a type environment &, the interpretation [ [, : T—7P(D) is defined
as follows.

[Tl = D

[o]f = &(o), for o € Ane;
[A-BIg = [Al{—-[BIf:
[AnB]Y = [Alf N[BI¢-

14.3.2. DEFINITION (Satisfaction). (i) Given a A-model D, a term environment
p and a type environment & one defines the following.

DocEM:A & [MPelA.
D,p,6 =T & DplkEx:B, forall (:B)el.

() TEM:A & VD, p,e[D,pe =T = p,& = M: Al
14.3.3. THEOREM (Soundness).
'FM:A=TEM:A
14.3.4. THEOREM (Completeness).
'eM:A=TFM:A

The completeness proof is an application of the A-model F, see Barendregt et
al. [1983].



Chapter 15

The Systems )\% and )\gT

Intersection types are syntactic objects forming a free algebra T, which is
generated from a set of atoms A, using the operators — and N. Postulating
axioms and rules an intersection type theory results, which characterizes a pre-
order <7 on T with N as set intersection, giving for two elements a greatest
lower bound (glb). The class of these theories is abbreviated! as TT.

Taking into account the intuitive meaning of — as function space constructor
one usually requires that the resulting equivalence relation =7 is a congruence.
Then we speak of a compatible type theory, having a corresponding type structure

(8,<,Nn, =) =(M/=1,<,n,=).

The collection of type structures is denoted by TS. Each type structure can
be seen as coming from a compatible type theory and compatible type theories
and type structures are basically the same. In the present Part I1I of this book
both these syntactic and semantic aspects will be exploited.

TT T is a subset of TT, the set of top type theories, where the set of atoms
A has a top element T. Similarly a top intersection type structure TS' is of
the form (S, <,N,—, T).

The various type theories (and type structures) are introduced together in
order to give reasonably uniform proofs of their properties as well of those of
the corresponding type assignment systems and filter models.

Given a (top) type theory 7', one can define a corresponding type assignment
system. These type assignment systems will be studied extensively in later
chapters. We also introduce so-called filters, sets of types closed under intersection
N and preorder <. These play an important role in Chapter 17 to establish
equivalences of categories and in Chapter 18 to build A-models.

In Section 15.1 we define the notion of type theory and introduce 13 specific
examples, including basic lemmas for these. In Section 15.2 the type assignment
systems are defined. In Section 15.3 we discuss intersection type structures and
introduce specific categories of lattices and type structures to accommodate
these. Finally in Section 15.4 the filters are defined.

1Since all type theories in Part III of this book are using the intersection operator, we keep
this implicit and often simply speak about (top) type theories, leaving ‘intersection’ implicit.

19
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15.1. Type theories
As in Chapter 14 we will use as syntactic types T = 'IT‘% defined by
T=A|T->T|TNT

as abstract syntax. This time we will use various sets of atoms A. The letters
a, B,7,... range over arbitrary atoms. If we need special atoms for a special
purpose, like for example T,w, ¢, then we can identify them with some of the

1/}7;7 Le. T = 1/]07 W= wla Y= 1/]2'

15.1.1. DEFINITION. (i) An intersection type theory over a set of type atoms A
is a set of judgements 7 of the form A < B (to be read: A is a subtype of B),
with A, B € 'Il'ﬁ, satisfying the following axioms and rules.

(refly) A<A

(incly) ANB<A
(incly) ANB<B

C<A C<B

(&Ib) C<ANB

(trans) A<B B=<C
A<C

This means that e.g. (A< A)e7 and (A< B),(B<(C)eT = (A<(C)eT,
for all A, B,C.

(ii) A top intersection type theory is an intersection type theory with an
element T € T for which one can derive

(T) AT

(iii) The notion ‘(top) intersection type theory’ will be abbreviated as ‘(top)
type theory’, as the ‘intersection’ part is default.

(iv) TT stands for the set of type theories and TT T for that of top type
theories.

(v) If Te TT(T over A, then we also write T for TA.

In this and the next section 7 ranges over elements of TT(T). Most of them
have some extra axioms or rules, the above set being the minimum requirement.
For example the theory BCD over A = Al , defined in Chapter 14 is a TT T
and has the extra axioms (T—) and (—N) and rule (—).

15.1.2. NOTATION. Let 7 € TT. We write the following.
(i) A<rBortr A< Bfor (A< B)eT.
(ii) A =7 Bfor A<y B<sy A.
(iii) A<y Bfor A< B & A#7 B.
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(iv) If there is little danger of confusion and 7 is clear from the context, then
we will write <, =, < for respectively <7 ,=7, <7.

(v) We write A = B for syntactic identity. E.g. AN B = AN B, but
ANB#BNA.

15.1.3. LEMMA. For any T one has AN B =7 BN A.
PROOF. By (incly), (inclg) and (glb). m

15.1.4. DEFINITION. 7 is called compatible iff the following rule holds.

A=A B=-B
=7 B = a—B)

This means A =7 A’ & B =7 B’ = (A—B) =7 (A'—B’). One way to insure
this is to adopt (—~) as rule determining 7.

15.1.5. REMARKS. (i) Let 7 be compatible. Then by Lemma 15.1.3 one has
(ANB)—C = (BN A)—C.

(ii) The rule (glb) implies that the following rule is admissible.

A<A B<PB
ANB<ANB

(mon)

A 7 €TT can be seen as a structure with a pre-order
T =(T,<,N,—).
This means that < is reflexive and transitive, but not necessarily anti-symmetric
A<rB& B<;A % A=7 B.

If 7 is compatible one can go over to equivalence classes and obtain a type
structure

T/:T = (T/:Tvgaﬂv_)>'

If moreover 7 € TT T, then 7 /=7 has top [T]. In this structure A N B is
inf{A, B}, the greatest lower bound of A and B. If 7 is also compatible, then
— can be properly defined on the equivalence classes. This will be done in
Section 15.3.
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Specific intersection type theories

Now we will construct several, in total thirteen, type theories that will play an
important role in later chapters, by introducing the following axiom schemes,
rule schemes and axioms. Only two of them are non-compatible, so we obtain
eleven type structures.

In the following ¢, w and T are distinct atoms differing from those in A .

15.1.6. NOTATION. We introduce names for axiom(scheme)s and rule(scheme)s
in Figure 15.1. Using these names a list of well-studied type structures can
be specified in Figure 15.2 as the set of judgements axiomatized by mentioned
rule(scheme)s and axiom(scheme)s.

Axioms

(wscott) (Tow)=w
(wpark) (w—w) =w
(wep) w< g
(p—w) (p—w) =w
(w—=9p) (w—p) =
() (p=¢) N (w—w) =¢

Axiom schemes
(T) ALZT
(T—=) T<(A=T)
(Thazy) (A=B) < (T—T)
(—nN) (A—-=B)N(A—-C)< A—-BnC
(—N7) (A—=B)N (A—=C)=A—BnC

Rule schemes

A <A BB

=) (A-B) < (A D)
_ A=A B=DB

=7) (A=B) = (A—B')

Figure 15.1: Possible Axioms and Rules concerning <.

15.1.7. DEFINITION. In Figure 15.2 a collection of TTs is defined. For each
name 7 a set of atoms A7 and a set of rules and axiom(scheme)s are given.
The type theory 7 is the smallest set of judgements of the form A < B
with A,BeT? = 'ITﬁT which is closed under the axiom(scheme)s and the
rule(scheme)s of Definition 15.1.1 and the corresponding ones in Figure 15.2.

15.1.8. REMARK. (i) Note that CDS and CD are non-compatible, while the
other eleven are compatible.
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T AT Rules | Axiom Schemes Axioms

Scott [ {T,w} | (=) [(=N),(T),(T—=) | (wscott)

Park | {T,w} | (=) |(=N)(T),(T=) | (wpark)

CDZ [ {T,p,w}| (=) | (=N)(T),(T=) | (wp),(p—w), (w—yp)
HR {Topwl | (=) [ (=), (T),(T=) | (we), (p—w), (1)
DHM [ {T,p,w} | (=) | (=N),(T),(T—) | (wp), (w—), (wscott)
BCD | AL (=) | (=), (T),(T—)

o [ o) [ (Tia)

Plotkin | {T,w} (—=) | (T) -

Engeler | Al (—=7) | (—=N7),(T),(T—) | —

CDS |AL — (T) _

HL {o,w} | (=) | (=N) (W), (w—¢), (p—w)
CDhV Ay (=) | (=n) -

CD A — — —

Figure 15.2: Various type theories

(ii) The first ten type theories of Figure 15.2 belong clearly to TT . In
Lemma 15.1.14(i) we will see that also HL € TT " with ¢ as top. Instead CDS
and CD do not belong to TT ", as shown in Lemma 15.1.14(ii) and (iii).

In this list the given order is logical, rather than historical, and some of
the references define the models directly, others deal with the corresponding
filter models (see Sections 17 and 18): Scott [1972], Park [1976], Coppo et
al. [1987], Honsell and Ronchi Della Rocca [1992], Dezani-Ciancaglini et al.
[2005], Barendregt et al. [1983], Abramsky and Ong [1993], Plotkin [1993],
Engeler [1981], Coppo et al. [1979], Honsell and Lenisa [1999], Coppo et al.
[1981], Coppo and Dezani-Ciancaglini [1980]. These theories are denoted by
names (respectively acronymes) of the author(s) who have first considered the
A-model induced by such a theory.

The expressive power of intersection types is remarkable. This will become
apparent when we will use them as a tool for characterizing properties of A-terms
(see Sections 19.2 and 18.3), and for describing different A-models (see Section
18). Much of this expressive power comes from the fact that they are endowed
with a preorder relation, <, which induces, on the set of types modulo =, the
structure of a meet semi-lattice with respect to N. This appears natural when
we think of types as subsets of a domain of discourse D, which is endowed with a
(partial) application - : D x D—D, and interpret N as set-theoretic intersection,
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< as set inclusion, and give — the realizability interpretation.

[A] € D
A<B & [A]C[B]
[AnB] = [Aln[B]
[A—=B] = [Al=[B]={deD|d-[A] C [B]}.

This semantics, due to Scott, will be studied in Section 19.1.

The type T—T is the set of functions which applied to an arbitrary element
return again an arbitrary element. In that case axiom scheme (T—) expresses
the fact that all the objects in our domain of discourse are total functions, i.e.
that T is equal to A—T, hence A—T = B—T for all A, B (Barendregt et
al. [1983]). If now we want to capture only those terms which truly represent
functions, as we do for example in the lazy A-calculus, we cannot assume axiom
(T—). One still may postulate the weaker property (Tla,y) to make all functions
total (Abramsky and Ong [1993]). It simply says that an element which is a
function, because it maps A into B, maps also the whole universe into itself.

In Figure 15.3 below consider I—%—T for the ten type theories above the
horizontal line and I—Z for the other three. Define 77 C 75 as

VO,M,A. [T M: A = TR M : Al

If this is the case we have connected 7; with an edge towards the higher
positioned 75. In Exercise 16.3.21 we will show that the edges denote strict
inclusions.

DHM
CDZ HR Scott Park BCD
Plotkin CDS
HL \CDV
\

CD

Figure 15.3: Inclusion among some intersection type theories.

The intended interpretation of arrow types also motivates axiom (—n),
which implies that if a function maps A into B, and the same function maps
also A into C, then, actually, it maps the whole A into the intersection between
B and C (i.e. into BN C), see Barendregt et al. [1983].

Rule (—) is again very natural in view of the set-theoretic interpretation.
It implies that the arrow constructor is contravariant in the first argument and
covariant in the second one. It is clear that if a function maps A into B, and
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we take a subset A’ of A and a superset B’ of B, then this function will map
also A’ into B’, see Barendregt et al. [1983].

The rule (—N~) is similar to the rule (—N). It capture properties of the
graph models for the untyped lambda calculus, see Plotkin [1975] and Engeler
[1981], as we shall discuss in Section 19.3.

In order to capture aspects of the Al-calculus we introduce TTs without an
explicit mention of a top.

The remaining axioms express peculiar properties of D..-like inverse limit
models, see Barendregt et al. [1983], Coppo et al. [1984], Coppo et al. [1987],
Honsell and Ronchi Della Rocca [1992], Honsell and Lenisa [1993], Alessi,
Dezani-Ciancaglini and Honsell [2004]. We shall discuss them in more detail in
Section 19.3.

Some classes of type theories

Now we will consider some classes of T'T. In order to do this, we list the relevant
defining properties.

15.1.9. DEFINITION. We define special subclasses of T'T.

Class Defining axiom(-scheme)(s) or rule

graph | (—=7),(—=N7),(T)

lazy (=), (—=n),(T), (Tlazy)

natural | (=), (—nN),(T),(T—)

proper | (—),(—N)

15.1.10. NoTATION. The sets of graph, lazy, natural and proper type theories
are denoted by respectively GTTT, LTTT NTT' and PTT.

15.1.11. REMARK. The type theories of Figure 15.2 are classified as follows.

non compatible | CD,CDS

GTT' Plotkin, Engeler

LTTT AO

NTTT Scott, Park, CDZ, HR, DHM, BCD
PTT CDV,HL

15.1.12. REMARK. One has NTTT CLTT' C GTT' € TT and
LTTT C PTT C TT. These inclusions are sharp.
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Some properties about specific TTs

Results about proper type theories

15.1.13. PROPOSITION. Let T be a proper type theory. Then we have
(i) (A—=B)n(A'=B) <(AnA")—(BnB');
(ii) (A1—=B1)N...N(A,—B,) < (A1N...NA))—=(B1N...NDBy);

(ii) (A—=B1)N...N(A—=B,) =A—(B1N...B,).
ProoF. (i) (A—=B)N(A'—=B) < ((AnA)—B)n({(AnA)—B)
< (AnA)—(BnB),
by respectively (—) and (—nN).
(ii) Similarly (i.e. by induction on n>1, using (i) for the induction step).
(iii) By (ii) one has (A—B;)N...N(A—B,) < A—(B1N...By,). For > use
(—) to show that A—(B1N...N By) < (A—DB;), for all i. m

It follows that the mentioned equality and inequalities hold for Scott, Park, CDZ,
HR, DHM, BCD, AO, HL, and CDV.

Results about the type theories of Figure 15.2

15.1.14. LEMMA. (i) ¢ is the top and w the bottom element in HL.
(ii) CDV has no top element.
(iii) CD has no top element.

PRrROOF. (i) By induction on the generation of T one shows that w < A < ¢
for all AeTHL,
(ii) If v is a fixed atom and

By :=a| By, N B,

and A € B,, then one can show by induction on the generation of <cpy that
A <cpy B = A€B,. Hence if a <cpy B, then B € B,. Since B,, and B,,
are disjoint when a; and ag are two different atoms, we conclude that CDV
has no top element.

(iii) Similar to (ii). m

15.1.15. REMARK. By the above lemma ¢ turns out to be the top element in
HL. But we will not use this and therefore denote it by the name ¢ and not T.

In the following lemmas 15.1.16-15.1.20 we study the positions of the atoms
w, and ¢ in the compatible TTs introduced in Figure 15.2. The principal result
is that w < ¢ in HL and, as far as applicable,

w< < T,

in the theories Scott, Park, CDZ, HR, DHM and Plotkin.
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15.1.16. LEMMA. Let T € {Scott, Park, CDZ, HR, DHM, BCD, Engeler} be as de-
fined in Figure 15.2. Define inductively the following collection of types

B = T|T?=B|BNB

Then B={AcT?T |A=7T}.

ProOOF. By induction on the generation of A <7 B one proves that B is closed
upwards. This gives T < A = AeB.
By induction on the definition of B one shows, using (T—) and (—), that
AeB = T <A
Therefore
A=7T & T<A & AcB. nm

15.1.17. LEMMA. For 7 € {AO, Plotkin} define inductively

B = T|BnNnB

Then B={AcTT | A=7 T}, hence T—T #7 T.
PROOF. Similar to the proof of 15.1.14, but easier. m
15.1.18. LEMMA. For 7 € {CDZ,HR,DHM} define by mutual induction

B = ¢o|T|TT=B|H-TT |BNB
H = w|B-H|HNT? |TTnH

Then

p<B = BeB,
A<w = AeH.

Proor. By induction on <7 one shows
A<B = (AeB = BeB) = (BeEH = AcH).
From this the assertion follows immediately. m

15.1.19. LEMMA. We work with the theory HL.
(i) Define by mutual induction

B = ¢|H-B|BNB
H = w|B=>H|HNT|TNH

Then
B

H

{AeT™ | A =pp o}
{AE-"—HL | A =y, w}.

(il) w #nL ¢ and hence w <gr, ¢.
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PRrROOF. (i) By induction on <7 one shows
A<B = (AeB = BeB)& (BeH = AcH).

This gives
(p<B = BeB)& (A<w = AcH).

By simultaneous induction on the generation of B and H one shows, using that
w is the bottom element of HL, by Lemma 15.1.14(i),

(BeEB = B=p)& (AeH = A=w).

Now the assertion follows immediately.
(ii) By (i). m

15.1.20. PROPOSITION. In HL we have w < ¢ and as far as applicable we have
for the other systems of Figure 15.2

w<p< T,

More precisely,
(i) w<yandw # ¢ in HL.
In all other systems
(i) wSpw<T, p<T;
(iil) w#p,w#T,e#T.

PRrROOF. (i) By (w¢) and Lemma 15.1.19.

(ii) By (we) and (T).
(iii) By Lemmas 15.1.16-15.1.18. m

15.2. Type assignment

Assignment of types from type theories

In this subsection we define for a 7 in TT a type assignment system )\g, that
assigns to untyped lambda terms a (possibly empty set of) types in T7. For a
7 in TT T we also define a type assignment system )\gT.

15.2.1. DEFINITION. (i) A 7-statement is of the form M : A with the subject
an untyped lambda term M € A and the predicate a type A€ T7.

(ii) A T-declaration is a T-statement of the form x : A.

(iii) A 7-basis I is a finite set of 7-declarations, with all variables distinct.

(iv) A T -assertion is of the form I' = M : A, where M : A is a T-statement
and I is a 7-basis.

15.2.2. DEFINITION. (i) The (basic) type assignment system N% derives T-as-
sertions by the following axioms and rules.
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(Ax) ThkxzA if (z:A€T)
IaxA-M: B
(—1)
'Xe.M: A—B
'-M:A—B I'N:A
(—E)
I'-MN:B
() '-M:A I'EM:B
I'-M:ANB
'-M:A A<+ B
(<) :
I'-M:B

Figure 15.4: Basic type assignment system )\%.

(ii) If 7 has a top element T, then the T-type assignment system )\gT is
defined by adding the extra axiom to the basic system

’ (T-universal) T'FM: T

Figure 15.5: The extra axiom for the top assignment system )\gT

15.2.3. NOTATION. (i) We write I' l—gT M:AorTHL M : AT FM: Ais
derivable in )\gT or )\% respectively.
ii) The assertion FZ; may also be written as 7, -1 or simply F if by the
N N

context there is little danger of confusion. Similarly, I—% may be written as -7,
Fn or F.
(iii) Azﬁ) may be denoted by A-(t).

15.2.4. EXAMPLE. Let 7€ TT " with A, Be TZ. Write W = (\z.zx).
(i) FZW:AN(A—B)—B.
I—ZT WW T, but WW does not have a type in )\%.
(i) Let M = KI(WW). Then - M : (A—A) in A,

(iii) (van Bakel) Let M = Ayz.Kz(yz) and N = Ayz.z. Then M —g N. We
have FZ N : B»A—A, l—%} M : B—A—A, but /4 M : B—A—A.

(iv) P 1: (AN B)—C)—((Bn A)—C).

In general the type assignment systems )\ZT will be used for the the AK-
calculus and A for the Al-calculus.

15.2.5. DEFINITION. Define the rules (NE)

I'M:(ANB) T+M:(ANB)
TFM:A I'-M:B

Notice that these rules are derived in /\Z, /\%—T for all 7.

15.2.6. LEMMA. In )\g one has the following.
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i) I'FM:A = FV(M) C dom(I).
() TFM:A = (I | FV(M))F M : A
(iii) If in T with top T one has T = T—T, then

FV(M)Cdom(l') = I'FM:T.

PROOF. (i), (ii) By induction on the derivation.
(iii) By induction on M. m

Notice that ' - M : A = FV(M) C dom(I') does not hold in /\ZT, since by
axiom (T universal) we have 7 M : T for all 7 and all M.

15.2.7. REMARK. For the type theories of Figure 15.2 with T we have defined
the type assignment systems )\%. For those system having a top, there is
also the type assignment system )\gT. We will use for the type theories in
Figure 15.2 only one of the two possibilities. For the first ten systems, i.e.
Scott, Park, CDZ, HR, DHM, BCD, AO, Plotkin, Engeler and CDS, we only
consider )\zr. For the other 3 systems, i.e. HL,CDV and CD, we will only
consider \J. In fact by Lemma 15.1.14(ii) and (iii) we know that CDV and CD
have no top at all. The system HL has a top, but we will not use it, as we do
not know interesting properties of )\EIT“ So, for example, F5%" will be always

|—HL

I—%CTO“, whereas will be always FHL. The reader will be reminded of this.

We do not know wether there exist TTs where the interplay of )\% and )\ZT
yields results of interest.

Admissible rules

15.2.8. PROPOSITION. The following rules are admissible in )\gm.

, I-M:A 2 ¢7
(weakening) [,o:BFM:A
, Do:BFEM:A x2¢ FV(M)
(strengthening) T A ;
(cut) FeBFM:A T'EN:B
o TF(Mz=N):A4
aeBFEM:A <r B
(<L) , T C<r :
HaeCHEM:A
yBFM:A T'EN:C z¢T
(—L) ;
I z:(C—B)F (M[y:=xzN]): A
I''z:A-M: B
(NL) o (ANC)+ M : B’

Figure 15.6: Various admissible rules.

PrOOF. By induction on the structure of derivations. m
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Proofs later on in Part III will freely use the rules of the above proposition.
As we remarked earlier, there are various equivalent alternative presentations
of intersection type assignment systems. We have chosen a natural deduction
presentation, where 7 -bases are additive. We could have taken, just as well,
a sequent style presentation and replace rule (—E) with the three rules (—L),
(ML) and (cut) occuring in Proposition 15.2.8, see Barbanera et al. [1995],
Barendregt and Ghilezan [n.d.]. Next to this we could have formulated the
rules so that 7-bases “multiply”. Notice that because of the presence of the
type constructor N, a special notion of multiplication of T -bases can be given.

15.2.9. DEFINITION (Multiplication of 7-bases).

ryr’ {r:ANB|z:AeTl and z: BeI'}
{z:A|x:AeT and = ¢ T"}

{v:B|z:BeTl"andx ¢ T'}. m

cCcl

Accordingly we define:
rer <« ar".rur” =r".
For example, {z:A,y:B} W {x:C, 2:D} = {z:ANC,y:B, 2:D}.

15.2.10. PROPOSITION. The following rules are admissible in all )‘gﬁ)'

MEM:A
MwlihyFM:A

(multiple weakening)

IMtEM:A— B TI'hsayFN:A
IMwlyF-MN:B
'MFM:A To-M:B
MwleoFM:ANB

(relevant —E)

(relevant NT)

PRrROOF. By induction on derivations. m

In Exercise 16.3.17, it will be shown that we can replace rule (<) with
other more perspicuous rules. This is possible as soon as we will have proved
appropriate “inversion” theorems for )\gm. For some very special theories, one
can even omit altogether rule (<), provided the remaining rules are reformulated
“multiplicatively” with respect to 7-bases, see e.g. Di Gianantonio and Honsell
[1993]. We shall not follow up this line of investigation.

In /\gm7 assumptions are allowed to appear in the basis without any restric-
tion. Alternatively, we might introduce a relevant intersection type assignment
system, where only “minimal-base” judgements are derivable, (see Honsell and
Ronchi Della Rocca [1992]). Rules like (relevant —E) and (relevant N1I),
which exploit the above notion of multiplication of bases, are essential for this
purpose. Relevant systems are necessary, for example, for giving finitary logical
descriptions of qualitative domains as defined in Girard et al. [1989]. We will
not follow up this line of research either. See Honsell and Ronchi Della Rocca
[1992].
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Special type assignment for call-by-value A-calculus

We will study later the type theory EHR with APHR = {1} and the extra rule
(—) and axioms (—N) and

A—B <v.
EHR
Nv

The type assignment system A is defined by the axiom and rules of )\% in

Figure 15.4 with the extra axiom

(v universal) ' M\ze.M) :v.

The type theory EHR has a top, namely v, so one could consider it as an element
of TT ". This will not be done. Axiom (v-universal) is different from (T-
universal) in Definition 15.2.2. This type assignment system has one particular
application and will be studied in some exercises.

15.3. Type structures

Intersection type structures

Remember that a type algebra A, see Definition ?7?, is of the form A = (| A, —),
i.e. just an arbitrary set |A| with a binary operation — on it.

15.3.1. DEFINITION. (i) A meet semi-lattice is a structure
M = (M|, <,n),

such that M = (M|, <,N) is a partial order, for all A, B €|M]| the element
AN B (meet) is the greatest lower bound of A and B. MSL is the set of meet
semi-lattices.

(ii) A top meet semi-lattice is a similar structure

M = (M|, <,n,T),

such that M = (|M|,<,N) is a MSL and T is the (unique) top of M. MSLT
is the set of top meet semi-lattices.

15.3.2. DEFINITION. (i) An (intersection) type structure is a type algebra with
the additional structure of a meet semi-lattice

§= <|S‘7_)’§7ﬂ>'

TS is the set of type structures. The relation < and the operation — have a
priori no relation with each other, but in special structures this will be the case.
(ii) A top type structure is a type algebra that is also a top meet semi-lattice

S=(S],—,<,N,T).

TST is the set of top type structures.
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NOTATION. (i) As ‘intersection’ is everywhere in this Part III, we will omit this
word and only speak about a type structure.

(ii) Par abus de language we also use A, B, C, ... to denote arbitrary elements
of type structures and we write A€ S for A€ |S]|.

If 7 is a type theory that is not compatible, like CD and CDS, then —
cannot be defined on the equivalence classes. But if 7 is compatible, then one
can work on the equivalence classes and obtain a type structure in which < is
a partial order.

15.3.3. PROPOSITION. Let 7 be a compatible type theory. Then T induces a
type structure T /= defined as follows.

(T7 /=1, —,<,N),

by defining on the =1-equivalence classes

[A]=[B] = [A=B]%
[Aln[B] = [ANB];
[A]<[B] & A<rB.

If moreover T has a top T, then T /= is a top type structure with [T] as top.

PRrROOF. Here A, B,C range over 7. Having realized this the rest is easy.
Rule (—7) is needed to ensure that — is well-defined. m

The (top) type structure 7/ =, with 7 a type theory, is called a syntactical
(top) type structure. In Proposition 15.3.6 we show that every type structure
is isomorphic to a syntactical one.

Although essentially equivalent, type structures and type theories differ in
the following. In the theories the types are freely generated from a fixed set of
atoms and inequality can be controlled somewhat by choosing the right axioms
and rules (this will be exploited in Section 19.3). In type structures one has the
antisymmetric law A < B < A = A = B, which is in line with the common
theory of partial orders (this will be exploited in Chapter 17).

Now the notion of type assignment will also be defined for intersection type
structures. These structures arise naturally coming from algebraic lattices that
are used towards obtaining a semantics for untyped lambda calculus.

15.3.4. DEFINITION. (i) Now let S € TS. The notion of a S-statement M : A,
a S-declaration x : A, a S-basis and a S-assertion I' H M : A is as in Definition
15.2.1, now for A€ S an element of the type structure S.

(ii) The notion T' 2 M : A is defined by the same set of axioms and rules
as in Figure 15.4 where now <g is the inequality of the structure S. The
assignment system )\‘gT has (T-universal) as extra axiom.

2Here we misuse notation in a suggestive way, by using the same notation — for equivalence
classes as for types.
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The following result shows that for syntactic type structures type assignment
is essentially the same as the one coming from the corresponding lambda theory.

15.3.5. PROPOSITION. Let T € TTT) and let [T) = (T) =7,<,0,—(, T)) its
corresponding (top) type structure. For a type A €T write its equivalence class
as [A]€[T]. For T = {x1 : Bi,...,xy : Bp} a T-basis write [I'] = {1 :
[Bi],...,%n : [Bnl}, a [T]-basis. Then
T
T M A & [0 FTL oAl
PROOF. (=) By induction on the derivation of ' F7 M : A. (<) Show by

induction on the derivation of [I'] FIZ! M : [A] that for all A’ €[A] and I =
{z1:B},...,zy, : B}, with B} € [B;] for all 1 <i < n, one has

V'FT M A m

Using this result we could have defined type assignment first for type struc-
tures and then for compatible type theories via translation to the type assign-
ment for its corresponding syntactical type structure, essentially by turning the
previous result into a definition.

15.3.6. PROPOSITION. Fwvery type structure is isomorphic to a syntactical one.

PRrROOF. For a type structure S, define 7s as follows. Take A = {c | c€ S}.
Define <7, on T = 'IT‘% as follows. We make every element of T equal to an
element of A by requiring

(anb) =75 and, & (a—b) =75 a—b.

This means of course (aNb) <7, aNb, (aNb) >75 aNb, etcetera. We moreover
require

a<gh
a<z b

As a consequence a <7, T if § is a top type structure. The axioms and rules
(refl), (trans), (—=), (incly), (inclg) and (glb) also hold automatically. Then
S = 75/ =. This can be seen as follows. Define f : S—7s/ = by f(a) = [a].
For the inverse, first define g : 'IT}%—MS’ by

g(c) = ¢
9(A—B) = g(A)—g(B);
g(ANB) = g(A)Ng(B).

Then show A <7, B = g(A) < g(B). Finally set f~!([4]) = g(A), which is

well defined. It is easy to show that f, f~! constitute an isomorphism. m

15.3.7. REMARK. Each of the eleven compatible type theories 7 in Figure 15.2
may be considered as the intersection type structure 7 /=, also denoted as 7.
For example Scott can be a name, a type theory or a type structure.
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Categories of meet-semi lattices and type structures

For use in Chapter 17 we will introduce some categories related to given classes
of type structures.

15.3.8. DEFINITION. (i) The category MSL has as objects at most countable
meet semi-lattices and as morphisms maps f : M— M/, preserving <,N:
A<B = f(A) < f(B);
FANB) = F(A)N £(B).

(ii) The category MSL' is as MSL, but based on top meet semi-lattices.
So now also f(T) = T’ for morphisms.

The difference between MSL and MSL' is that, in the MSL case, the top
element is either missing or not relevant (not preserved by morphisms).

15.3.9. DEFINITION. (i) The category TS has as objects the at most countable
type structures and as morphisms maps f : S—S&’, preserving <,N, —:
A<B = f(A4) < [f(B);
f(AnB) = f(A)N f(B);
f(A=B) = [f(A)-'f(B).
(ii) The category TS is as TS, but based on top type structures. Now also
fm=1

for morphisms.

15.3.10. DEFINITION. We define four full subcategories of TS by specifying in
each case the objects.
(i) GTST with as objects the graph top type structures.
(ii) LTST with as objects the lazy top type structures.
(iii) NTS' with as objects the natural top type structures.
(iv) PTS with as objects the proper type structures.

15.4. Filters
15.4.1. DEFINITION. (i) Let 7€ TT and X C TZ. Then X is a filter over T if
the following hold.
(1) X is non-emptys;
(2) Ac X & A<B = BelX,
(3) A, BeX = AnBeX.
(ii) Write F7 = {X C T | X is a filter over T}.

We loosely say that filters are non-empty sets of types closed under < and N.

15.4.2. DEFINITION. Let 7 € TT.
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(i) For Ac 7 write |A={BeT? | A< B}.
(ii) For a non-empty X C T7 define 71X to be the least filter over M7
containing X; it can be described explicitly by

1X={BeT? |3In>134,,....A,e X.A1N...NA, <B}.
15.4.3. REMARK. C€ T{B; [i€T# 0} & I Cy .U # D& ;e B: <CJ.

15.4.4. PROPOSITION. Let T€TT T.
(i) FT =(FT,C) is a complete lattice, with for X C F7T the sup is

Ux = 1ux), X #0,
LHx = {T}, else.
(i) For Ac T one has 1A= 1{A} and TAc FT.
(iii) For A,BeT7 one has TALUTB =1(ANB).
(iv) For X € FT one has

X = UrA|Aex}
= {1414 c x}
= J{1414eXx}
= J{ra1ac xy.

(v) {TA| AeTT} is the set of finite elements of F7.
PROOF. Easy. m

15.4.5. DEFINITION. Let 7 € TT. Then FZ = F7 U {0} is the extension of F7
with the emptyset.

15.4.6. PROPOSITION. Let T € TT.
(1) FT = (FT,C) is a complete lattice, with for X C FS the sup is

[0, if X =0 or X ={0},
UX_{T(UX), else .

(i) For Ac T one has 1A= 1{A} and TAc FL.
(iii) For A,BeT7 one has JALUTB =1(AN B).
(iv) For X € FT one has

X = U{jA|Aex} = L{IA[1ACX)
— Ult4|4eX} = U{4|14C X},

(v) {TA| AeTT} U {0} is the set of finite elements of FLI.

ProOOF. Immediate. m
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15.4.7. REMARK. The items 15.1.9-15.2.10 and 15.4.1-15.4.6 are about type the-
ories, but can be translated immediately to structures and if no — are involved
to meet-semi lattices. For example Proposition 15.1.13 also holds for a proper
type structure, hence it holds for Scott, Park, CDZ, HR, DHM, BCD, AO, HL
and CDV considered as type structures. Also 15.1.14-15.1.20 immediately yield
corresponding valid statements for the corresponding type structures, though
the proof for the type theories cannot be translated to proofs for the type
structures because they are by induction on the syntactic generation of T
or <. Also 15.2.4-15.2.10 hold for type structures, as follows immediately
from Propositions 15.3.5 and 15.3.6. Finally 15.4.1-15.4.6 can be translated
immediately to type structures and meet semi-lattices. Therefore in the follo-
wing chapters everywhere the type theories may be translated to type structures
(or if no — is involved to meet semi-lattices). In Chapter 17 we work directly
with meet semi-lattices and type structures and not with type theories, because
there a partial order is needed.

15.5. Exercises 31.10.2006:581

15.5.1. Show that I', z: T I—gT M:A =T I—ZT M : A.

15.5.2. The system K and the type assignment system A of Krivine [1990] are
CD and ASP, but with rule (<) replaced by

'-M:AnB TI'FM:ANB
'-M:A '-M:B

(NE)

Similarly K" and AgTT are CDS and )\gTDS, with (<) replaced by (NE).
Show that

i) THM:4 & THPM:A
i) TH M:A & DFDSM:A
15.5.3. (i) Show that Az.xxzxz and (Az.xzz)l are typable in system K.
(ii) Show that all closed terms in normal forms are typable in system K.
15.5.4. Show the following;:
(i) FEX2KI(22) : (A—-B)NA—-C—C.
(ii) =3 Az Kl(zz) : T-C—C.
(i) FBP Az.Kl(z2) : T—»(A—BNC)—A-B.
15.5.5. For T a type theory, M, N € A and x ¢ dom(T") show
OTHFEM:A = TFL Mz:=N]:A;
(i) TH; M:A = TFL Mlz:=N]: A
15.5.6. Show that

M is a closed term = }—E'f}rk M :w.

Later we will show the converse (Theorem 18.3.22).
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15.5.7. Prove that for all types A € TAC there is an n such that
T"—=T <a0 A.

15.5.8. Prove that if (wy), (¢ — w) and (w — @) are axioms in 7, then for all
M in normal form {z : w,...,x, : w} FZ M : ¢, where {z1,...,2,} D
FV(M).

15.5.9. Let D = (D, -) be an applicative structure, i.e. a set with an arbitrary
binary operation on it. For X,Y C D define
X —-Y={deD|VecX.d-ecY}.

Consider (P(D),—,<,N, D), where P(D) is the power set of D, C and
N are the usual set theoretic notions and D is the top of P(D). Show

e (P(D),—,C,N) is a proper type structure.

e D=D —D.

e (P(D),—,C,N,D) is a natural type structure.



Chapter 16

Basic Properties ...

This Chapter is on type theories but, by Remark 15.4.7, applies as well to type
structures. That is, everywhere 7, TT and TT T may be replaced by S, TS
and TS, respectively.

Let 7 be a type theory. We derive properties of 7, where F7 stands for
l—% or I—ET. Whenever we need to require extra properties about 7, this will be
stated explicitly. Often 7 will be one of the theories from Figure 15.2.

The properties that will be studied are inversion theorems that will make it
possible to predict when statements

rHr M A (1)

are derivable, in particular from what other statments. This will be done in
Section 16.1. Building upon this, in Section 16.2 conditions are given when
type assignment statements remain valid after reducing or expanding the M
according to B or m-rules.

16.1. Inversion theorems

In the style of Coppo et al. [1984] and Alessi et al. [2003], [2005] we shall
isolate special properties which allow to ‘reverse’ some of the rules of the
type assignment system l—g, thereby achieving some form of ‘generation’ and
‘inversion’ properties. These state necessary and sufficient conditions when an
assertion I' 7 M : A holds depending on the form of M and A, see Theorems
16.1.1 and 16.1.10.

16.1.1. THEOREM (Inversion Theorem I). If F is 2, then the following statements

hold unconditionally; if it is I—gT, then they hold under the assumption that

39
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AT in (i) and (i1).

(i) 'Fz:A < TI(x) <A

(i) I'FMN:A < 3Fk>13By,...,B;,Ch,...,Ck
[CiN...NCy <A&Vie{l,... k}
I'-M:B,—C; &' N: B

(i) TFXM:A & 3k>13By,...,B;,C1,...,Ck
[(Bl—>01) n...N (Bk—>Ck) <A
&vie{l,...,k}.I',o:B; - M : Cj].

PROOF. We only treat (=) in (i)-(iii), as (<) is trivial. Let first - be F7.

(i) By induction on derivations. We reason according which axiom or rule
has been used in the last step. Only axiom (Ax), and rules (NI), (<) could have
been applied. In the first case one has I'(x) = A. In the other two cases the
induction hypothesis applies.

(ii) By induction on derivations. By assumption on A and the shape of the
term the last applied step has to be rule (—E), (<) or (NI). In the first case
the last applied rule is

'-mM:D—A TEN:D

I'FMN:A

We can take k =1 and C; = A and By = D. In the second case the last rule
applied is

(—E

I'-MN:B B<A

(<)
I'EFMN: A
and the induction hypothesis applies. In the last case A = A; N Ay and the last
applied rule is

() I'FMN:A; T'HMN: Ay
I'EMN:AiNAs
By the induction hypothesis there are B;, Cy, D;, Ej, with1 <i <k, 1 < j <k,
such that

I'M:B—C;, TFN:B,
I'-M:Dj—FEj, I'=N:Dj,
Cin...NnCL <Ay, Exn...NEy < As.
Hence we are done, as C1N...NCyNE N...NEy < A.
(iii) Again by induction on derivations. We only treat the case A = A; N As
and the last applied rule is (NI):

' Xe.M:A; T'EXxe.M: A
I'EXe.M: A NA; .

By the induction hypothesis there are B;, C;, D;, Ej with 1 <i <k, 1 <j <k
such that

(D)

De:Bi-M:C;;, (Bi—Cy)N...N (Bk—>Ck) < A,
I'z:Dj =M : Ej, (D1—E)N...N(Dy—Ek) < As.

We are done, since (B1—C1)N...N(Br—Ck)N(D1—E1)N...N(Dy—Ep) < A.

Now we prove (=) in (i)-(iii) for )\gr-
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(i) The condition A # T implies that axiom (T universal) cannot have been
used in the last step. Hence the reasoning above suffices.

(ii), (iii) The only interesting rule is (NI). Condition A # T implies that we
cannot have A1 = As = T. In case A1 # T and Ay # T the result follows as
above. The other cases are more easy. ®

Notice that as a consequence of this theorem the subformula property holds
for all )‘gm'

16.1.2. COROLLARY (Subformula property). Assume I' I—gm M : A and let N
be a subterm of M. Then N is typable in an extension IV =T, x1:B1,...,Tn: By
in which also the variables {x1,...,x,} = FV(N)—FV(M) get a type assigned.

PROOF. If we have rule (T-universal) the statement is trivial. Otherwise if N
is a subterm of M, then we can write M = C[N]. The statement is proved by
induction on the structure of C[ |. m

16.1.3. PROPOSITION. We have for fresh y (¢ dom(I")) the following.

dBI'FN:B&I'tF M[z: = N]|: 4] =
dABI'FN:B&T,y:BF Mz: =vy|: A].

PRrROOF. By induction on the structure of M. m

Under some conditions (that will hold for many TTs, notably the ones
introduced in Section 15.1), the Inversion Theorem can be restated in a more
memorable form. This will be done in Theorem 16.1.10.

16.1.4. DEFINITION. 7 is called B-sound if
Vk>1VA4,... ,Ax, By,...,B;,C, D.

CSAilﬂ...ﬂAip&Bilﬂ...ﬂBipSD, (*)
for some p > 1 and 1 <'iq,...,i, < k.

This definition immediately translates to type structures. The notion of 3-
soundness is introduced to prove invertibility of the rule (—I), which is important
for the next section.

16.1.5. LEMMA. Let T satisfy (T) and (T—). Suppose moreover that T is [3-
sound. Then for all A, B

A—-B=T & B=T.

PROOF. (=) T—T < T = A—B, by assumption; hence T < B (< T), by
B-soundness. (<) By rule (T—). m

Let 7 be B-sound. Then A—~B < A/—B" = A' <A & B<B'if B'is
not the top element (but not in general).
In 16.1.6-16.1.8 we will show that all 7’s of Figures 15.2 are B-sound.
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16.1.6. REMARK. Note that in a TT every type A can be written uniquely,
apart from the order, as

A=a1N...Na,N(B1—C1)N...N(Br—Ck) (+),
i.e. an intersection of atoms (a; € A) and arrow types.
For some of our 7 the shape (4) in Remark 16.1.6 can be simplified.

16.1.7. DEFINITION. For the type theories 7 of Figure 15.2 we define for each
AeT7 its canonical form, notation cf(A), as follows.
(i) If 7 € {BCD, AO, Plotkin, Engeler, CDS, CDV, CD}, then

(ii) If 7 € {Scott, Park, CDZ, HR, DHM, HL} then the definition is by induction
on A. For an atom « the canonical form cf(a) depends on the type theory in
question; moreover the mapping cf preserves —, N and T.

System 7 | A cf(A)
Scott w T—w
Park w w—w
CDZ,HL w p—w
@ w—p
HR w p—w
@ (w—w) N (=)
DHM %) w—p
w T—
All systems | T T
except HL
All systems | B—~C' | B—C
All systems | BNC' | cf(B) Ncf(C)

16.1.8. THEOREM. All theories T of Figure 15.2 are 3-sound.

PROOF. We prove the following stronger statement (induction loading). Let

A < A,
Cf(A) = alﬂ...ﬂanﬂ(B1—>Cl)ﬂ...ﬂ(Bk—>Ck),

Then
Vie{l,K}.[Cyp #T =
Ip>13i1,.. iy €{1,k}.[B; < B, N...NB;, & C;, N...NCy, < L.

The proof of the statement is by induction on the generation of A < A’. From
it @-soundness follows easily. m



16.1. INVERSION THEOREMS 43

16.1.9. REMARK. From the Theorem it follows immediately that for the compatible
theories of Fig. 15.2 the corresponding type structures are B-sound.

16.1.10. THEOREM (Inversion Theorem II). Of the following properties (i) holds
in general, (ii) provided that T is proper and A # T if & is I—%—T and (iii)
provided that T is (3-sound.

(i) Ie:Atz:B & A<B.
(ii) I'-(MN):A & 3B[FM:(B—A)&TFN:B.
(iii) 'k (A\z.M):(B—C) < TI',e:BFM:C.

PRrROOF. The proof of each (<) is easy. So we only treat (=).

(i) If B # T, then the conclusion follows from Theorem 16.1.1(i). If B =T,
then the conclusion holds trivially.

(ii) Suppose I'  M'N : A. Then by Theorem 16.1.1(ii) there are By, ... By,
Cy,...,C, with £ > 1, such that C1n...NCr, < A, I' v M : B;—C; and
I'EN:Bjfor1<i<k HenceI'N:ByN...N B and

'k M: (Blﬁcl)ﬂﬂ(Bk—)Ck)
<(BiN...NBk)—(Cin...NCy)
< (B1N...NBk)—A,

by Lemma 15.1.13. So we can take B = (B; N...N By).
(iii) Suppose I' - (Az.M) : (B—C). Then Theorem 16.1.1(iii) applies and
we have for some k£ > 1 and By,...,B,C1,...,Ck

(Bl—>01) n...N (Bk—>Ck) < B—(C,
I',x:B; = M : C; for all i.

If C = T, then the assertion holds trivially, so let C' # T. Then by B-soundness
there are 1 <iy,...,i <k, p > 1 such that

BSBilﬂ.‘.ﬂBiP,
Cilﬂ...ﬂ(]ipg(].

Applying (<-L) we get

Fe:BEM:Cy, 1< j<p,
F,:U:BI—M:C’ilﬂ...ﬂCing.l

We give a simple example which shows that in general rule (—E) cannot be
reversed, i.e. that if ' = M N : B, then it is not always true that there exists A
such that ' M : A—-Band ' N : A.

16.1.11. ExAMPLE. Let 7 = Engeler, one of the intersection type theories of
Figure 15.2. Let I' = {z:(po—¢1) N (p2—¢3),y:(¢o N p2)}. Then one has
T I—ZT xy : 1 N 3. Nevertheless, it is not possible to find a type B such that
L2 2 B—(e1Ngs) and TH ;- y: B.
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16.1.12. REMARK. In general
T (\e.M): A% 3B,C.A=(B—C) & T,z:B+T M : C.

A counterexample is FBCP | : (a1 —aq) N (ae—as), with a1, as atomic.

16.1.13. PROPOSITION. For 7T € {Scott, Park, CDZ, HR, DHM, BCD, AO} the
properties (i), (i) and (iii) of Theorem 16.1.10 hold for I—gT, provided that in
(ii)) A # T forT = AO. ForT € {HL,CDV} the properties hold unconditionally
for L.

PrOOF. For these 7 Theorem 16.1.10 applies since they are proper and 3-sound
(by Theorem 16.1.8). Moreover, by axiom (—T) we have T’ I—gT M:T — T for
all ', M, hence we do not need to assume A # T for 7 € {Scott, Park, CDZ, HR,
DHM, BCD}. m

16.2. Subject reduction and expansion

Various subject reduction and expansion properties are proved, for the classical
B, Bl and 1 notions of reduction. Other results can be found in Alessi et al.
[2003], Alessi et al. [2006]. We consider the following rules.

M—rpN I'FM:A
'-N:A

(R-red)

Mpe— N TFM:A
TFN:A

(R-eap)

where R is a notion of reduction, notably 3-, 8l, or n-reduction. If one of these
rules holds in )‘g(ﬂv we write )‘z(ﬂ = (R-{exp, red}), respectively. If both hold

we write )‘g(ﬂ E (R-cnw). These properties will be crucial in Chapters 17, 18
and 19, where we will discuss (untyped) A-models induced by these systems.
Recall that (Ax.M)N is a Bl-redex if x € FV(M), Curry and Feys [1958].

B-conversion

We first investigate when )\gm = (B(1)-red).
16.2.1. PROPOSITION. (i) A1) = (Bl-red) <
T \e.M): (B—A) &z eFV(M) = I,a:BFT M : A].
(i) A2y = (B-red) & [DHT (Az.M) : (B—A) = T,a:BH? M : A

PROOF. (i) (=) Assume I' - Az.M : B—A & x€FV(M), which implies
I,y:B F (Ax.M)y : A, by weakening and rule (—E) for a fresh y. Now rule
(Bl-red) gives us I',y:B = M[z:=y] : A. Hence I',2:B+ M : A.

(<) Suppose I' = (Az.M)N : A & x€FV(M), in order to show that
I' v M[z:=N] : A. We may assume A # T. Then Theorem 16.1.1(ii)
implies I' -V \e.M : B;—C;, ' W N : B; and C;N...NC, < A, for some
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Bi,...,Bg,Cq,...,Cr. By assumption I',x:B; = M : C;. Hence by rule (cut),
Proposition 15.2.8, one has I' b M[z:=N] : C;. Therefore I' - M[z:=N] : A,
using rules (NI) and (<).

(ii) Similarly. m

16.2.2. COROLLARY. Let T be 3-sound. Then )‘g(ﬂ E (B-red ).
PRrROOF. Using Theorem 16.1.10(iii). m

16.2.3. COROLLARY. (i) Let T € {Scott, Park, CDZ, HR, DHM, BCD, AO,
Plotkin, Engeler, CDS}. Then )\ZT = (B-red ).
(ii) Let T € {HL,CD,CDV}. Then M. |= (B-red).

Proor. By Corollary 16.2.2 and Theorem 16.1.8. m

In Definition 18.2.22 we will introduce a type theory that is not B-sound,
but nevertheless induces a type assignment system satisfying (3-red).
Now we investigate when /\zﬁ) = (B-ezp). As a warm-up, suppose that I' -
M[xz:=N] : A. Then we would like to conclude that N has a type, as it seems to
be a subformula, and therefore I' = (Az.M)N : A. There are two problems: N
may occur several times in M [z:=N], so that it has (should have) in fact several
types. In the system A_, this problem causes the failure of rule (3-exp). But in
the intersection type theories one has N : By N...N B, if N : By,...,N : By.
Therefore (Az.M)N has a type if M[z:=N] has one. The second problem arises
if N does not occur at all in M[z:=N], i.e. if the redex is a AK-redex. We would
like to assign as type to N the intersection over an empty sequence, i.e. the top
T. This makes (B-ezp) invalid in A%, but valid in systems )\ZT.

16.2.4. PROPOSITION. (i) Suppose I' =7 M[z:=N]: A. Then
IH? (A\e.M)N : A < N is typable in context T.
(11) )‘%—(T) ): (IB-eIp) g VFaMa NaA
[T+ M[z:=N]: A = N is typable in context T'].
(iii) A ) | (Bl-exp) < VI, M, N, A with x € FV(M)
[T +7 M[z:=N]: A = N is typable in context I].

PROOF. (i) (=) By Theorem 16.1.1(ii). (<) Let I' -+ M[z:=N] : A and
suppose N is typable in context I'. By proposition 16.1.3 for some B and a
fresh y one has ' N : B& T, y:B+ M[z: =y]: A. Then I' - Az.M : (B—A)
and hence I' - (Az.M)N : A.

(ii)) (=) Assume I' - M[z:=N] : A. Then I' - (Az.M)N : A, by (B-exp),
hence by (i) we are done. (<) Assume I' - L' : A, with L —g L'. By induction
on the generation of L —g L' we get I' = L : A from (i) and Theorem 16.1.1.

(iii) Similar to (ii). m
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16.2.5. COROLLARY. (i) AZ; |= (B-exp).
(i) M, = (Bl-exp).

PROOF. (i) Trivial, since every term has type T.
(ii) By the subformula property (Corollary 16.1.2). m

Now we can harvest results towards closure under 3-conversion.

16.2.6. THEOREM. Let 7 € T'T be B-sound.
(i) Let T€TT ". Then )\ZT E (B-cnv).

(i) M [ (Bl-cnw).

PRrROOF. (i) By Corollaries 16.2.2 and 16.2.5(1).
(ii) By Corollaries 16.2.2 and 16.2.5(ii). m

16.2.7. COROLLARY. (i) Let T € {Scott, Park, CDZ, HR, DHM, BCD, AO,
Plotkin, Engeler, CDS}. Then )‘ZT E (B-cnv).
(ii) Let 7 € {HL,CDV,CD}. Then A} = (Bl-cnw).

Proor. (i) By Theorem 16.2.6(i).
(ii) By Theorem 16.2.6(ii). m

17-CONVersion

First we give necessary and sufficient conditions for a system )\gm to satisfy
the rule (n-red).

16.2.8. THEOREM. (i) Let T € TT . Then
)\%—T = (n-red) < T is natural.
(ii) Let T € TT. Then
M = (n-red) < T is proper.

PROOF. (i) (=) Assume )‘%—T E (n-red) towards (—nN), (—) and (T—).
As to (—nN), one has

z:(A—-B)N(A—-C),y:AFzy: BNC,

hence by (—I) it follows that z:(A—B) N (A—C) F Ay.zy : A—(B N C).
Therefore z:(A—B) N (A—C) + =z : A—=(BNC), by (n-red). By Theorem
16.1.10(i) one can conclude (A—B) N (A—=C) < A—=(BnNCO).

As to (—), suppose that A < B and C < D, in order to show B—C <
A—D. One has x:B—C,y:A +F zy : C < D, so ©:B—C + \y.xy : A—D.
Therefore by (n-red) it follows that x:B—C F z : A—D and we are done as
before.

Asto T < T—T, notice that z:T,y:T F 2y : T, so we have :T F Ay.xy :
T—T. Therefore z:T F x : T—T and again we are done.
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(<) Let 7 be natural. Assume that I' - Az.Mz : A, with z ¢ FV(M), in
order to show I' = M : A. If A =T, we are done. Otherwise,

X Mx:A = T,oe:BiFMx:Ci1<i<k &
(Bl—>01) n...N (Bkﬁck) < A,
fOI“SOmeBl,...,Bk,Cl,...,Ck,

by Theorem 16.1.1(iii). By Lemma 16.1.5 we omit the i such that C; = T. There
is at least one C; # T, since otherwise A > (B1—T)N...N(Br—T) = T, again
by Lemma 16.1.5, and we would have A = T. Hence by Theorem 16.1.10(ii)

= I',z:B;+M : D;,—C; and

Ix:B;Fx: D, for some D1, ...,Dg,
= B; <D, by Theorem 16.1.10(i),
= I'FM:(B—C;), by (<-L) and (—),
= T'FM:((B1—Ci)N...N(Bx—Cy)) < A.

(ii) Similarly, but simpler. m

16.2.9. COROLLARY. (i) Let T € {Scott, Park, CDZ, HR, DHM, BCD}.
Then )\gT = (n-red).

(ii) Let T € {HL,CDV}. Then ML |= (n-red).

In order to characterize the admissibility of rule (n-exp), we need to introduce
a further condition on type theories. This condition is necessary and sufficient
to derive from the basis x:A the same type A for A\y.zy, as we will show in the
proof of Theorem 16.2.11.

16.2.10. DEFINITION. Let 7 € TT.
(i) 7 is called n-sound iff for all A there are k > 1, my,...,m; > 1 and
Bla s aBk) Cl) s 7Ck7

DH c. D1m1 Ell cee E1m1
and
Dyq... kak Eii... Ekmk
with
(B1—C1)N...N(By—Ci) < A
& A < (D11—>E11> n...N (D1m1_>E1m1) N

(Dk1—>Ek1) Nn...N (kakHEkmk)
& B; < Dilm-‘-mDimi&Eilm‘--mEimi < C;
for 1 <i<k.

(ii) Let 7€ TT T. Then 7 is called ' -sound iff for all A # T at least one
of the following two conditions holds.

(1) There are types By,...,B, with (Bi—T)N...N(B,—T) < 4;
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(2) There are k > 1, my,...,my > 1 and By,...,Bg, C1,...,Ch,

DH . D1m1 E11 . E1m1
. and
Dkl e kak Ekl e Ekmk

with

(Bl—>C1) n...N (Bk—>Ck) N
ﬂ(Bk+1—>—|—)ﬂ...ﬁ(Bn—>—|—) < A
& A < (D11—>E11)ﬂ...ﬁ(D1m1—>E1m1)ﬂ

(Dk1—>Ek1) N...N (kakHEkmk)
& B; < Dilm---mDimi&Eilm---mEimi < C;
for 1 <i<k.

This definition immediately translates to type structures. The validity of n-
expansion can be given as follows.

16.2.11. THEOREM (Characterization of n-exp).

(i) M = (n-exp) < T is n-sound.
(i) A%—T = (n-eap) << T ism' -sound.

PrROOF. (i) (=) Assume \] |= (n-exp). As 2:A F x : A, by assumption we
have z:A F \y.zy : A. From Theorem 16.1.1(iii) it follows that x:A, y:B; - zy :
C; and (B1—C1)N...N(Br—C}) < A for some B;, C;. By Theorem 16.1.1(ii)
for each i there exist D;;, E;;, such that for each j one has x:A,y:B; - z :
(Dij—Eij;), x:A,y:B; =y : Dij and Ej N ... N Eyy,, < C;. Hence by Theorem
16.1.1(i) we have A < (D;;—E;j) and B; < D;; for all 4 and j. Therefore we
obtain the condition of 16.2.10(i).

(<) Suppose that T'F M : A in order to show I' - Az. Mz : A, with x fresh.
By assumption A satisfies the condition of Definition 16.2.10(i).

& A < (D11—>E11)ﬂ...ﬂ(D1m1—>E1ml)ﬂ

(Dk1—>Ek1) Nn...N (kakHEkmk)
& B; < D“ﬂ...ﬂDimi &Eilﬁ...ﬂEimi < (j,
for1 <i<ek.

By rule (<) for all ¢,j we have I' = M : D;;—E;; and so I',x:D;;  Mx : Ej;
by rule (—E). From (< L), (NI) and (<) we get ', x:B; - Mx : C; and this
implies I' = A\x. Mz : B;—C}, using rule (—I). So we can conclude by (NI) and
(<) that T'F Az.Mz : A.

(ii) The proof is nearly the same as for (i). (=) Again we get 2:A,y:B;
zy: C; and (B1—C1)N...N(Bp—C%) < A for some B;,C;. If all C; = T, then
A satisfies the first condition of Definition 16.2.10(ii). Otherwise, consider the
i such that C; # T and reason as in the proof of (=) for (i).
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(<) Suppose that I'F M : A in order to show I' H Az. Mz : A, with x fresh.
If A satisfies the first condition of Definition 16.2.10(ii), that is (B;—T) N
...N(B,—T) < A, then by rule (T) it follows that I',x:B; = Mz : T, hence
' XMz : (Bi—T)N...Nn(B,—T) < A. Now let A satisfy the second
condition. Then the proof is similar to that for (<) in (i). m

For most intersection type theories of interest the condition of n(")-soundness
is deduced from the following proposition.

16.2.12. PROPOSITION. Let T € T'T with atoms A be proper.
(i) 7 ism-sound <& VA€A3IBy,...,Bi,Cq,....CpxIn>1
A= (Bl—>01) Nn...N (Bk—>Ck)
(ii) Let T€TT . Then

T isn'-sound << VAcA[T—T <AV3IBy,...,BCy,....Cy
& A< (Bl—>01) Nn...N (Bk_’ck)”

iii) Let 7 € NTT'. Then
(ii)
T is nT—sound < T is p-sound.

PROOF. (i) (=) Suppose 7 is m-sound. Let A€ A. Then A satisfies the
condition of Definition 16.2.10(i), for some By, ...,By, C1,...,Ck,
Dlla-'~aD1m17"°7Dk1)"'7ka15 Ella-”aElmlv"’7Ek17"'aE/€mk° By (_>m)
and (—), using Proposition 15.1.13, it follows that

A < (Diun...NDyp,—FEnN...NEpp,) N N
(Dkl n... ka;mk_’Ekl n... ﬂEkmk)
< (B1—=Ci)Nn...N(Bp—Ch),

hence A =7 (Bl—>01) Nn...N (Bk—>0k>
(<) By induction on the generation of A one can show that A satisfies the
condition of n-soundness. The case A;— As is trivial and the case A = A1 N As
follows by the induction hypothesis and Rule (mon).
(ii) Similarly. Note that (T—T) < (B—T) for all B.
(iii) Immediately by (ii) using rule (T—). m

16.2.13. COROLLARY. (i) Let T € {Scott, Park, CDZ, HR, DHM, AO}. Then T
is " -sound.

(ii) HL is n-sound.
PRrROOF. Easy. For AO in (i) one applies (ii) of the Proposition. m

16.2.14. COROLLARY. (i) Let T € {Scott, Park, CDZ, HR, DHM, AO}. Then

A+ = (n-exp).
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(ii) Let T = HL, then
A [ (n-eap).

PrOOF. By the previous Corollary and Theorem 16.2.11. m

Exercise 16.3.15 shows that the remaining systems of Figure 15.2 do not

satisfy (n-exp).
Now we can harvest results towards closure under n-conversion.

T B-red | Bl-red | B-exp | Bl-exp | n-red | n-exp
seott |V v v v v |V
Park |/ vi v vi Voo
CbzZ |V |V v v VooV
HR |V (v |V |V |V |V
DM |v v v v v |V
BD |v v v v v |+
o v v v v | v
Plotkin |/ vV Vv Vv 1 p
Engeler | / vV Vv Vv ' 1
CDS V V V vV t 1
me v o [v |- v v v
CDV |/ v ' v v f
CD vV V ¥ vV ¥ ¥

Figure 16.1: Type theories versus reduction and expansion
16.2.15. THEOREM. (i) Let T € TT '. Then
A%—T = (g-cnw) < T is natural and n' -sound.
(ii) Let T € TT. Then
M = (n-env) < T is proper and n-sound.

PRrROOF. (i) By Theorems 16.2.11(ii) and 16.2.8(i).
(ii) By Theorems 16.2.11(i) and 16.2.8(ii). m

16.2.16. THEOREM. (i) For T € {Scott, Park, CDZ, HR, DHM} one has
)\%-T E (n-cnw).
(ii) For T = HL one has
AL = (n-cnw).

PRrROOF. (i) By Corollaries 16.2.9(i) and 16.2.14(i).
(ii) By Corollaries 16.2.9(ii) and 16.2.14(ii). m

Figure 16.1 summarises the results of this section and of the exercises in the
following section for the type theories of Figure 15.2. The symbol ‘y/” stands
for “the property holds” and /' for “the property fails”.
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16.3. Exercises

16.3.1. Show that for each number n € N there is a type A, € TP such that for
the Church numerals c¢,, one has I l—gD Cpi1: Ap, but T }‘gD c, A,

16.3.2. Show that S(KI)(II) and (Az.zxx)S are typable in F&P.

16.3.3. Derive FP% (Az.zz2)S : ¢ and yw, ziw FSP? (Az.zxz)(Syz) : w.

16.3.4. Find the relation between the following three types w.r.t. <cpz.
(W= (p—=p)—=w) N ((p—=p) =), (W—w)—w and p—(w—w)—e.

16.3.5. Using the Inversion Theorems show the following.
(1) gD 1: a—a, where « is any constant.
(ii) VK w.
(iii) 1 w.
(iv) b/glé’tkm Iz : w.
16.3.6. We say that M and M’ have the same types in I, notation M ~p M’ if
VACFM:A & T'FM: A

Prove that M ~p M’ = MN ~p M'N.

16.3.7. Show that 7 = Plotkin is B-sound by checking that it satisfies the
following stronger condition.

(AlﬁBl)ﬁﬂ(AnHBn) <C—D =
Elk#Oﬂzl,,zklgzjgn&C:Al] &B“ﬂﬂBZk:D

16.3.8. Show that 7 = Engeler is B-sound by checking that it satisfies the
following stronger condition:

(Ai—B1)N...N(A,—B,) <C—-D&D # T =
Elk;é03@1,,zk1 §z] <n& C:Al] &le ﬂﬂBZk =D.
16.3.9. Let A7 = {T,w} and 7 be defined by the axioms and rules of the

theories Scott and Park together. Show that 7 is not B-sound [Hint:
show that T # w].

16.3.10. Prove that Theorem 16.1.10(ii) still holds if the condition of properness
is replaced by the following two conditions

A<y B = C—A<;y(C—B

(A—-=B)Nn(C—D)<r AnC—BnND.
16.3.11. Show that the following condition

A-B=rT—T = B=7T

is necessary for the admissibility of rule (B8-red) in A}. [Hint: Use
Proposition 16.2.1(ii).]
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16.3.12. Remember that the systems ¥ and )\Ir(jTT are defined in Exercise 15.5.2.

(i) Show that rules (8-red) and (Bl-exp) are admissible in AX, while
(B-exp) is not admissible.
(ii) Show that rules (B-red) and (3-exp) are admissible in A’;jT

16.3.13. (i) Show that for 7 € {AO, Engeler, Plotkin, CDS} one has
)‘%—T (n-red).
(ii) Show that for 7 = CD one has

)\g ¥ (n-red).

16.3.14. Verify the following.
(i) m-soundness implies 1 T-soundness.
(ii) Let 7 € {BCD, Plotkin, Engeler, CDS}. Then 7 is not nT-sound.
(iii) Let 7€ { ' CDV,CD}. Then 7 is not n-sound.
Comment: it is very
interesting that AO is nT-sound but not n-sound, why do you propose
to erase it?

16.3.15. (i) Show that for 7 € {BCD, Engeler, Plotkin, CDS} one has

/\%—T [~ (n-exp).

(ii) Show that for 7 € {CDV,CD} one has

AL e (m-exp).

16.3.16. Show that rules (n-red) and (n-exp) are not admissible in the systems
A and )\Irf:T as defined in Exercises 15.5.2.

16.3.17. Let - denote derivability in the system obtained from the system )\gDV

by replacing rule (<) by the rules (NE), see Definition 15.2.5, and adding

the rule
Xz Mz: A

r-mM:A
Show that T FEPY M : A < TF M : A

16.3.18. (Barendregt et al. [1983]) Let - denote derivability in the system
obtained from APFP by replacing rule (<) by the rules (NE) and adding
(Rn) as defined in Exercise 16.3.17. Verify that

(Rn) if 2 ¢ FV(M).

TFEP M A & THM: A

16.3.19. Let A be a basis that is allowed to be infinite. We define A - M : A
iff there exists a finite basis I' C A such that I' = M : A.

(i) Show that all the typability rules are derivable except possibly for
(—=1).
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(ii) Suppose dom(A) is the set of all the variables. Show that the rule
(—1) is derivable if it is reformulated as

Ag,v:AFM:B = AF (Ax.M): (A— B),

with A, the result of removing any x:C' from A.
(iii) Reformulate and prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1
and 16.1.10 for infinite bases.

16.3.20. A multi-basis T is a set of declarations, in which the requirement that
v AyBel = xz=y = A=1B

is dropped. Let A be a (possibly infinite) multi-basis. We define A
M : A iff there exists a singled (only one declaration per variable) basis
I' C A such that I' = M : A.

(i) Show that x : a1,z : as P x: a Nas.

(i) Show that x: a; — a9,z : aq P 22 : an.

(iii) Consider A ={z:a1Nag,z:a1};

A = ao;
B:(a1—>a2—>a3)—>a3;
M = \y.yxx.

Show that A,z : AFCP M : B, but A °P (\z.M) : (A — B).

(iv) We say that a multi-basis is closed under N if for all z € dom(A) the

set X = A(x) is closed under N, i.e. A, BEX = ANBEX, up to
equality of types in the TT under consideration.
Show that all the typability rules of Figures 15.4 and 15.6, except
for (—I), are derivable for (possibly infinite) multi-bases that are
closed under N.

(v) Let A be closed under N. We define

Alz =X]={y: Aly) |ly#z}u{z: A| Ac X}

Prove that the following reformulation of (—1I) using principal filters
is derivable
Alz:=71B]F N :C
AFXe.N:B—C
(vi) Prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1 and 16.1.10 for
(possible infinite) multi-bases reformulating the statements when-

ever it is necessary.

(vii) Prove that if A(z)’s are filters then {A | Az : A} = A(x).
16.3.21. Show that the inclusions suggested in 15.3 are strict.
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12
12

NTS' NZS NLS
~ ~ e o e
LTST LZS LLS
TST ‘ LS o LS
/PTS — PZS* — PLS*
o — —
TS 2S5 e T Q8
type zip lambda
structures structures structures

Figure 17.3: Equivalences proved in Sections 17.3 and 17.4

17.1. Meet semi-lattices and algebraic lattices

Categories of meet semi-lattices

Remember the following notions, see Definitions 15.3.8-15.3.10. The category
MSL has as objects at most countable meet semi-lattices and as morphisms
maps preserving < and N.

The category MSLT is as MSL, but based on top meet semi-lattices. So
now morphisms also should preserve the top.

The category TS has as objects the at most countable type structures and
as morphisms maps [ : S—&’, preserving <,N, —

The category TS is as TS, but based on top type structures. Now also
morphisms should preserve the top.

In Definition 15.3.10 we defined four full subcategories of T'S by specifying
in each case the objects: GTST with as objects the graph top type structures;
LTS" with as objects the lazy top type structures; NTST with as objects the
natural top type structures; PTS with as objects the proper type structures.

Categories of algebraic lattices
Comment:

e indexes are denoted either by I or by Z, you must choose to give some
meaning to this notational difference (I finite and Z possibly infinite?),
state and respect it, or use the same notation.

The following has already been given in Definition 14.2.1, but now we treat in
in greater detail.

17.1.1. DEFINITION. (i) A complete lattice is a poset D = (D,C) such that for
arbitrary X C D the supremum || X €D exists. Then one has also a top element
Tp =LID, a bottom element Lp =10, arbitrary infima

NX =Wz |vVzeXzCa}
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and the sup and inf of two elements
Uy =z, y}, eny=MHz,y}.
(ii) A subset Z C D is called directed if Z is non-empty and
Ve,ye Z dze ZaxC z &y C 2.

(iii) An element d €D is called compact (also sometimes called finite in the
literature) if for every directed Z C D one has

dClUZ = 3zeZdC 2.

Note that if d, e are compact, then so is d Ll €.
(iv) K(D) ={deD|d is compact}.
(v) £*(D) = K(D) — {Lp}.

(vi) D is called an algebraic lattice if
VrxeDa =|{ecK(D)|eC x}.

D is called an w-algebraic lattice if moreover K(D) is countable (finite or
countably infinite).

Instead of d€D or X C D we often write d €D or X C D, respectively. When
useful we will decorate T, L, [1, L, T, U and M with D, e.g. Cp etcetera.

The following connects the notion of a compact element to the notion of
compact subset of a topological space.

17.1.2. LEMMA. Let D be a complete lattice. Then d €D is compact iff
VZ CD.JAC Z = 37y C Z.|Zy is finite & d T Zo)].
PROOF. (=) Suppose d € D is compact. Given Z C D, let
zt={U2%y| 2o C Z & Z, finite}.
Then Z C ZT,11Zy =|1Z and Z7 is directed. Hence

dclz = dclUzt
= JtezZTdC 2"
= dZyCZdLC I_lZ() & Zj is finite.

(<) Suppose d C |1Z with Z C D directed. By the condition d C | Z, for
some finite Zy C Z. If Zj is non-empty, then by the directedness of Z there
exists a z € Z such that z J[1Zy 3 d. If Zy is empty, then d = L and we can
take an arbitrary element z in the non-empty Z satisfying d C z. m

3In general it is not true that if d C e € (D), then d € K(D); take for example w + 1 in
the ordinal w +w = {0,1,2,... w,w+ 1w+ 2,...}. It is compact, but w (E w + 1) is not.
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17.1.3. NOTATION. Let D be an w-algebraic lattice. For x € D, write

K(z) = {deK(D)|dC z}.

Comment: I do not agree to cancel this, it
helps the reader! Henk: But we are not consistent: in 17.1.9 @’ is not compact.
Also not in 17.1.7(ii).

17.1.4. DEFINITION. Let D, & be complete lattices and f : D—E.
(i) fis called (Scott) continuous iff for all directed X C D one has

FUX) =UfX) (=H{[ () |z € X}).

(ii) [D—&] ={f:D—E& | f is Scott continuous functions}.
(iii) f is called strict iff f(L) = L.
(iv) Write [D—€&] for the collection of continuous strict maps.

17.1.5. PROPOSITION. Let D, & be algebraic lattices.
(i) Let f € [D—E]. Then for x €D

fl@)=L{f(e)[eCa&ecK(D)}.
(ii) Let f,g€[D—E]. Suppose f | K(D) =g | K(D). Then f =g.

ProoF. (i) Use that » = [l{e | e C x} is a directed sup and that f is
continuous.

(ii) By (i). m

17.1.6. DEFINITION. The category ALG has as objects the w-algebraic complete
lattices and as morphisms the continuous maps.

17.1.7. DEFINITION. (i) [D—7D’] is partially ordered pointwise as follows.
fCg & YzeD.f(x) C g(x).
(ii) If aeD, o' € D', then a—d’ is the step function defined by

(a—a)(d) = d, if a C d;
= lop, else.

17.1.8. LEMMA. [D—D'] is a complete lattice with

(U Hd)y= U fa.
feXx fex
17.1.9. LEMMA. For a,beD, d/,b' € D" and f € [D—D’| one has
(i) a compact = a—d is continuous.
i) a—ad’ is continuous and o' # L = a is compact.
(iii) a' compact < a—d' compact.
) &' C fla) & (ad)C f.
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(V) bCa & d TV = (a—d)C (V).
(a—a') U (b—=b) C (aT1b)—(a' LUY).

ProoOF. Easy. m

17.1.10. LEMMA. For allb,ay,...,a, €D,V d},...,a, €D, and f € [D—D’]
(b—=b) C (a1—a)) U...U (ap—al) <
< AIC{l,...,n}[Uicra; Cb & b Llieja;].
Clearly in (=) we have I # 0 if d # Lp.

PROOF. Easy. m

17.1.11. PROPOSITION. Let D,D' € ALG.
(i) For f € [D—D'] onehas f =l{a=d' |d C f(a), ac K(D),d' € K(D')}.
(ii) Let De ALG and let f : [D—D'] be compact. Then

[ =(a1—a))U...U(ap—al,),

for some ay,...,a, € K(D),d},....a, € K(D').
(i) [D—D'] € ALG.

Proor. (i) It suffices to show that RHS and LHS are equal when applied to
an arbitrary element d € D.

fd) = fU{alaCd&ack(D)))
= Wf(a) |a Ed& ac (D)}
= Wd |d C fla) &aCld&acK(D),d cK(D)}
= W(a—d)(d)|d C fla) & a T d& acK(D),a € K(D')}
= {(a—d')(d) | d' C f(a) & a€K(D),a’ € K(D')}
= (W{(a—d') | d E f(a) & a € K(D),a’ € K(D')(d)}.

(ii) For f compact one has f =|l{a—ad' | d’ C f(a) & a € K(D),d’ € K(D')},
by (i). Hence by Lemma 17.1.2 for some ay,...,a, € K(D),d}, ... a, € K(D')

f=(a1—d))U...U(ay—al,). (17.1)

(iii) It remains to show that there are only countably many compact elements
in [D—D]. Since K(D) is countable, there are only countably many expressions
in the RHS of (17.1). (The cardinality is < ¥,,n.8% = R(.) Therefore there are
countable many compact f € [D—D]. (There may be more expressions on the
RHS for one f, but this results in less compact elements.) m

17.1.12. DEFINITION. (i) The category ALG, has the same objects as ALG
and as morphisms ALG,(D,D’) maps f : D—D’ that satisfy the properties
‘compactness preserving’ and ‘additive’:

(cmp-pres) Va€K(D).f(a) € K(D');
(add) VX CD.fUX) =Lf(X).
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In this Chapter filter models, the main tool of Part III on the intersection types,
will be introduced. A filter is a collection of types closed under intersection (M)
and expansion (<). It turns out that there is a natural way to define application
on such filters. This depends on the order < on types and it will be shown for
which of the type theories introduced in Chapter 15 the filters will turn out to
be models of the untyped lambda calculus.

In Section 18.2 the filter models will be introduced as an applicative structures.
Also it will be shown that the value of an untyped lambda term M in this
structure is the collection of types that can be assigned to M. In Section 18.3
the approximation theorem will be shown, i.e. the interpretation of a lambda
term is the supremum of those of its approximations.

18.1. Lambda models

Given a lambda structure Dpe = (D, F,G), i.e. a D€ ALG with continuous
F : D-D—D and G : [D—D]—D, it is well known how one can interprete
(untyped) lambda-terms in it. For lambda structures of the form D = F7
this interpretation turns out to have a simple form: the interpretation of a
lambda term equals the set (actually a filter) of its possible types (in T7).
This will help us to determine for what 7 the corresponding filter structure is
a lambda-model. This characterization can also be given for the Al-calculus.

18.1.1. DEFINITION. (i) Let D be a set and Var the set of variables of the
untyped lambda calculus. An environment in D is a total map

p: Var—D.

The set of environments in D is denoted by Envp.
(ii) If p€Envp and d € D, then p[x := d] is the p’ € Envp defined by

plz) = d
p'y) = ply), ify#z

The definition of a syntactic lambda-models was given in Barendregt [1984]
(Definition 5.3.1) or Hindley and Longo [1980]. We simply call these A\-models.

99
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We introduce also applicative structures (Definition 5.1.1 of Barendregt [1984])
and quasi A-models.

18.1.2. DEFINITION. (i) An applicative structure is a pair (D, -), where D is a set
and - : D x D—D is a binary operation on D.
(ii) A quasi A\-model is of the form

D :<D’ K [[ ]]D>’

where (D,-) is an applicative structure and [ ]P : A x Envp—D satisfies the
following.

(1) H% = plx)
(2) [MNT, = [M])-INTD
(3) DeM]) = [y.Mz =yl (@),

provided y ¢ FV(M),
(4) VdeD.M]y,_y =[N ey = DaM=DaND (9
(5) p I FV(M)=p [FV(N) = [M])=[M]}.

(iii) A A-model is a quasi A-model which safisfies:
(6) DaMp-d = Mg ()

(iv) A (quasi) M-model is defined similarly but replacing A by A', the set
of Al-terms that require for each abstraction term A\x.M that x € FV(M). The
corresponding clauses are denoted by (al), (381) and (&l).

We will write simply [ ] , instead of [ ]]2 when there is no danger of confusion.

We have the following implications.

D A-model — D Al-model

l I

D quasi A-model = D quasi A\l-model

18.1.3. DEFINITION. Let D = (D,-,[ ]) be a (quasi) A(I)-model.
(i) The statement M = N, for M, N untyped lambda terms, is true in D,
notation D = M = N iff
Vp € Envp.[M], = [N],.
(ii) As usual one defines D |= x, where y is any statement built up using

first order predicate logic from equations between untyped lambda terms.
(iii) A A(l)-model D is called extensional iff

DE (Ve.Mz = Nz) = M = N.
(iv) A A(l)-model D is called an n-model iff

Dk Ae.Mz = M for z ¢ FV(M) (n)
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18.1.4. DEFINITION. (i) Let Dp ¢ = (D, F, G) be a lambda structure, Definition
17.4.1(i). Then Dp ¢ induces a quasi A-model (D, -, [ [*“) as follows.

e First we obtain an applicative structure by setting for d,e €D
d-e=F(d)(e).

e Then the map [ ]©¢ : A x Envp — D as defined as follows.

[=]5¢ p(z);

[MN];S = F(IM]S)(INT,);
PaM]PY = GAdeD.[M]T ).

Notice that the function Ad € D.[[M]]p[m:

(ii) Now let Dp g = (D, F,G) be a strict lambda structure, see Definition
17.4.1(ii). Then Dp¢ induces a quasi Al-model as above above, changing the

clause for [Ax.M ]]E’G into

g used for [Az.M] , is continuous.

[re.M];¢ = G(Ad€D. if d = Lp then Lp else [M]}/7 ).

18.1.5. PROPOSITION. (i) Let (D, F,G) be a lambda structure. Then
(D, [ 1) is a \-model.
(ii) Let (D, F,G) be a strict lambda structure. Then (D, -, [ ") is a Al-model.

PrOOF. Easy. m

The only requirement that a (strict) lambda structure misses to be a A(l)-
model is the axiom (3(1)).

18.1.6. PROPOSITION. (i) Let (D, F,G) with D€ ALG be a lambda structure.
Then the following statements are equivalent.

(1) D = (\e.M)N = Mlz: = N], for all M,N € A;
(2) [Ae.M],.d = [M], gy for all M €A and deD;
(3) D is a A-model;

(4) D {M =N | A3+ M = N}.

(ii) Let (D, F,G) with D€ ALG be a strict lambda structure. Then the
following statements are equivalent.

(1) DE (Ae.M)N = M[z: = N, for all M, N € A with x € FV(M);
(2) [Me.M],.d=[M],._q), for all M € A, with withx € FV(M), and d € D;
(3) D is a Ml-model;
(4)

4) DE{M=N|A3I+M=N}.
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Proor. (i) (1)=+(2). By (1) one has [(Az.M)N], = [M[z: = N]],. Taking
N =z and p/ = p(x: = d) one obtains
[(ha2)a, = 1],
hence
[Mz.M],-d=[M]

as p | FV(Az. M) = p' | FV(A\x.M).

(2)=-(3). By (ii), Definition 18.1.4 and Proposition 18.1.5 all conditions to
be a A-model, see Definition 18.1.2, are fulfilled.

(3)=(4). By Theorem 5.3.4 in Barendregt [1984].

(4)=-(1). Trivial.

(ii) Similarly. m

P

18.1.7. COROLLARY. Let Dpg = (D, F,G) be a (strict) lambda structure and a
A()-model. Then

D is a A(I)n-model < D is an extensional A(1)-model.
PROOF. (=) Suppose that for some p one has for all d € D

[[Mx]]p[{L‘ZZd] = [[N‘T]]p[xtzcl]'
Then by (n) and Proposition 18.1.5(ii) one has

[M], = [Az.Mz], = [Ax.Nz], = [N],.

(<) Note that by (8(1)) one has D = (Az.Mz)y = My, where x is fresh.
Hence by extensionality one has D = Az.Mx = M. m

Isomorphisms of A-models

18.1.8. DEFINITION. Let Dp be a lambda structure.
(i) Drg is called reflerive if F'o G = Idp_p).
(ii) Dr is called extensional if G o F' = Idp.

18.1.9. PROPOSITION. Let Dr g be a lambda structure.
(i) If Dpq is reflexive, then it is a A\-model.
(ii) If Dr is moreover extensional, then it is an extensional A-model.

PRrROOF. This is Theorem 5.4.4 of Barendregt [1984].

18.1.10. DEFINITION. (i) An isomorphism between two reflexive structures
(D, F,G) and (D', F',G’) is a bijective mapping m such that

(1) m(G(f)) =G'(mo fom™)
(2) m(F(d)(e)) = F'(m(d))(m(e))
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If we write f™ = mo f om™! then we can write these conditions as
m(G(f) = G'(fM)
m(d-pe) = m(d) - m(e).

18.1.11. PROPOSITION. (i) If D and D’ are isomorphic A\-models via m then for
all \-terms M and environments p:

m([M]7) = [M]5.

mop

(ii) If two A-models are isomorphic then they equal the same terms, i.e.

DEM=N iff D' =M = N.

PRroOF. (i) By induction on M.
(ii) By (i). m

18.2. Filter models

Now we introduce the fundamental notion of filter structure, which will be
used extensively in this Section. It is of paramount importance, and one can
say that all the preceding sections in this Chapter are a build-up to it. Since
the seminal paper Barendregt et al. [1983], this notion has played a major role
in the study of the mathematical semantics of lambda calculus.

Remember Definition 15.4.2(ii) where for 7€ TT T and X a non-empty
subset of 7 one defines the filter generated by X

11X = {7 |In>132;...2p X1 N... Ny <}y if X #0;
0 = {T}, else.

Now we extend this notion as follows.
18.2.1. DEFINITION. (i) Let 7 € TT. Then we define 1° X € FS by

X = 1X, if X #0;
0 = 0.

18.2.2. DEFINITION. (i) Let 7 € TT'. Define

FT o [FT=[FT=FT)], and
GT o [[FT—FT-FT]

as follows.

FT(X)(v) = 1{BeT? |JAeY.(A—B)eX};
GT(f) = HA=B|Be[(1A)}.
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(ii) Let 7 € TT. Define

FI o [FI—=F7T—FT)),  and
GT « [[FI=Fl—FT
as follows.
FI(X)(Y) = 1°{BeT7? |34cY.(A-B)ecX};

GI(f) = 1°{A—=B|Bef(1A)}.

18.2.3. LEMMA. (i) Let TT € TT T. Then (FT,FT G7) is a lambda structure.
(ii) Let T €TT. Then FI = (FI,FT G7) is a strict lambda structure.

PRrROOF. (i) It is easy to verify that F7, G7 are continuous.
(ii) Similarly. m

18.2.4. DEFINITION. (i) Let 7€ TT T. Then F7 = (F7, F7,G7) is called the
filter lambda structure over 7T .

(ii) Let 7 € TT. Then FI = (FI,FT,G7) is called the strict filter lambda
structure over 7.

Recall that by Proposition 15.3.3 a compatible element of TT T induces a
type structure in TST. We can take advantage in this case of the equivalencies
between type and zip structures (Theorems 17.3.17 and 17.3.37).

18.2.5. LEMMA. (i) If S€TST, then FS = Fys and G° = Gys, where Fys
and Gzs are defined in Definitions 17.3.10 and 17.4.12.

(ii) If SETS, then F$ = Fys and GS = Gys, where Fys and Ggs are
defined in Definitions 17.3.26 and 17.4.52

PROOF. (i) Taking the suprema in F€ one has

FS(X)(Y) = 1{14|3BeY.(B—A)e X}
L{1A[3BeY.1(B—A) C X}
L{TA|31B CY.Z5(1B,14) € X}
X ysY.

Moreover,

GS(f) = M{B—A|A€f(1B)}
= W{1(B—A) | A f(1B)}
= W{z(1B,1A) | 1AC F(1B)}.

(ii) Now the suprema are taken in ¢ and LI} = ), the bottom of FS. m

Now we work towards the characterization of those type theories 7 such that
F7T is a A(I)-model, a so-called filter A-model. This happens in 18.2.6-18.2.14.
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The following type-semantics theorem is important. It has as consequence that
for a closed untyped lambda term M and a 7 € TT " one has

IM]T" = {A | M : A},

i.e. the semantical meaning of M in the filter A-model corresponding to a
T eTT T is the collection of its types. For a 7 € TT one has

(M) = {A|FL M : A).

(s)

T
Fs)

18.2.6. DEFINITION. A context I' agrees with an environment p € Env notation

I'E=p,if
(x:A)el = Aep(x).

18.2.7. PROPOSITION. (i) T'Ep &IV Ep = TWI' Ep.
(i) T = ple =10 A] = D\z = p.

Proor. Immediate. m

18.2.8. THEOREM (Type-semantics Theorem). (i) LetT € TT" and F7 its cor-
responding filter structure. Then, for any lambda-term M and p € Envgr,

[[M]]pr ={A|TF.r M: A for someT = p}.

(ii) Let T € TT and FI its corresponding strict filter structure. Then, for

S

any lambda-term M and p € EnvSFT,
[[Mﬂfg ={A|T L M: A for someT |= p}.

PROOF. (i) By induction on the structure of M.

If M =z, then
177 = plx)
{A]Aep()}

= {A\AGp(x)&x:Al—ng:A}
= {A|T I—gr x: A for some I' = p}, by Definition 18.2.6 and the

Inversion Theorem 16.1.1(i).

If M = NL, then
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[NTZ - [LT7

{A[3Be[L]?.(B— A)e[N]1}

{4 | 3k>03By,...,By,C4,...,Cy.

[(Bi=Ci) €[NT] & Bi € [LI] & (My<ier Co) < AP UT{T}
by definition of T,

{A | 3k>03By,...,B,Cy,...,Ck, 31, Ty

[T, Toi = p & Ty bl N2 (Bi—Cy)

&ToiFlr L:B; & CiN...NCpy < AJJUT{T},
by the induction hypothesis,

{A|T I—ZT NL: A for some I' = p},

taking ' =T'yW... W1k W.. . Wy W... Wy,
by Theorem 16.1.1(ii) and Proposition 18.2.7(i).

If M = \x.N, then

[[)\x.N]]Z =

GTAX eF NI x)

1{(B=C) | C € [NTpmy}

{A| Ik>03By,...,B,Cy,...,Cp. 3050 E plz: = 1B &

Ty, 2:B; FXr N : C; & (Bi—Ch)N...N (B—Cy) < A],

by the induction hypothesis,

{A|T I—gT Az.N : A for some I' = p},

taking I' = (I'1 ... W I'y)\z, by Theorem 16.1.1(iii), rule (<)

and Proposition 18.2.7(ii).

(ii) Similarly, with T replaced by 1¢. Note that in the case M = N L we drop
‘UT{T}’ both times. In case M = Az.N, using Definition 18.1.4, it follows that
[[)\x.N]]Z =1 {(B—=C)|Ce [[N]}T}p[x::TB} holds, because 1B # (). m

18.2.9. COROLLARY. (i) Let T € TT T. Then

FT is a A\-model < [T }—%—T (Ax.M): (B—A) = I',a:B l—gT M : Al

(ii) Let T € TT. Then

F7T s a M-model <

S

T HL (Ax.M) : (B—A) & 2 €FV(M) = T,z:B+FL M : Al
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PRrROOF. (i) By Propositions 18.1.6(i), 16.2.1(ii) and Corollary 16.2.5(i).
(ii) By Propositions 18.1.6(ii), 16.2.1(i) and Corollary 16.2.5(ii). m

18.2.10. COROLLARY. (i) Let T € TT '. Then
T is B-sound = F7 is a A\-model.
(ii) Let T € TT. Then

T is B-sound = FI is a M-model.

s

PRrROOF. By the Corollary above and Theorem 16.1.10(iii). m

18.2.11. COROLLARY. (i) Let 7 € {Scott, Park, CDZ, HR, DHM, BCD, AO,
Plotkin, Engeler, CDS}. Then

FT is a A\-model.
(ii) Let T € {HL,CDV,CD}. Then

FT is a M-model.

S

PROOF. (i) By (i) of the previous Corollary and Theorem 16.1.8.
(ii) By (ii) of the Corollary, using Theorem 16.1.8. m

18.2.12. PROPOSITION. (i) Let T€TT . Then
T is natural and B- and n' -sound = FT is an extensional A-model.
(ii) Let T € TT. Then

T is proper and B- and n-sound = .7-"37 18 an extensional N\l-model.

Proor. (i) and (ii). F7 (F7)is a A(l)-model by Corollary 18.2.10(i)((ii)). For
extensionality by Corollary 18.1.9 one needs to verify for x ¢ FV (M)

P Me], = [M],, ()
This follows from Theorems 18.2.8(i), and 16.2.15(i). =
18.2.13. COROLLARY. (i) Let T € {Scott, Park, CDZ,HR, DHM}. Then
FT is an extensional A-model.
(ii) Let 7 = HL. Then
FT

5 15 an extensional Al-model.

PROOF. (i) and (ii) By Corollary 16.2.13. m
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3.3.37. EXAMPLE. Let M be a typed structure. Let A C M. Write A(A4A) = ANM(A).
Assume that A(A) # ) for all A€ and

de A(A—B),ec A(A) = deec A(B).

Then A may fail to be a typed structure because it is not extensional. Equality as
binary relation E, on A(o) x A(o) induces a binary logical relation £ on A x A. Let
AF ={de A | E(d,d)}. Then the restriction of E to A¥ is an applicative congruence
and the equivalence classes form a structure. In particular, if M is a model, then write

At ={deM |3IMAN3d; ...d, [M]d; ...d, = d}

for the applicative closure of A. The Gandy hull of A in M is the set AT#. From the
fundamental theorem for logical relations it can be derived that

MA:A+E/E

is a model. This model will be also called the Gandy hull of A in M.

3.4. Type reducibility

Remember that a type A is reducible to type B, notation A <g, B if for some closed
term ®:A— B one has for all closed M7, My:A

M1 =pn M2 <~ (I)Ml =pn (I)Mg.
3.4.1. DEFINITION. Write A ~g,, B iff A <, B & B <g, A.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of M(A_) can be reduced. At first this may seem impossible. Indeed, in a full
typed structure M the cardinality of the sets of higher type increase arbitrarily. So one
cannot always have an injection My —Mp. But reducibility means that one restricts
oneself to definable elements (modulo =g,) and then the injections are possible. The
proof will occupy 3.4.2-3.4.7. There are four main steps. In order to show that ®M; =g,
®M, = My =g, M in all cases a (pseudo) inverse &1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes ® ! is definable, but the property ®~!(®M) = M only holds in an extension
of the theory; because the extension will be conservative over =g, the reducibility follows.
Next the type hierarchy theorem, also due to Statman [1980a], will be given. Rather
unexpectedly it turns out that under <g, types form a well-ordering of length w + 3.
Finally some consequences of the reducibility theorem will be given, including the 1-
section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank < 3. The proof is rather syntactic. In order to show that the
definable function ® is 1-1, a non-definable inverse is needed. A warmup exercise for
this is 3.6.4.
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3.4.2. PROPOSITION. For every type A there is a type B such that rank(B) < 3 and
A <g, B.

PRrROOF. [The intuition behind the construction of the the term & responsible for the
reducibility is as follows. If M is a term with Béhmtree (see Barendregt [1984])

Ax1:A . xgi Ay

)\gjl.zl )\gjn.zn

/ N\ / N\

Now let UM be a term with “Bohmtree” of the form

AL1:0 . .. Xg:0.UT;

AYY . uzy AYD uzp,

/ N\ / N\

where all the typed variables are pushed down to type o and the variables u (each
occurrence possibly different) takes care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank < 1.
Also that M can be reconstructed from UM so that U is injective. ®M is just UM with
the auxiliary variables bound. This makes it of type with rank < 3. What is less clear
is that U and hence ® are lambda-definable.]

Define inductively for any type A the types Af and A°.

o = o

o = o
(A= ... —A,—0)F = o0—A— .. —A—o;
(A1— ... —A,—0) = (0"—o0).

Notice that rank(Af) < 2.
In the potentially infinite context

{ua:A* | AT}
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define inductively for any type A terms V4 : 0—A, Uy : A— AP,

U, = Azn:o.z;

V, = Az:o.z;
Udj—. —Ay—0o = Az2tAXx1, ... 2q:0.2(Va,21) ... (Va,x4a);
ViAo Ao = A:0Ay1AL . YarAguaz(Uayyr) - . (Ua,Ya),

where A = A1— ... —>A,—o0. Write A; = Aj1— ... —A;p—o.
Remark that for C' = A1— ... —>A,—B one has

Uc = Az:CAxq,. .. xq:0.Ug(2(Va, 1) ... (Va,xa)). (1)
Indeed, both sides are equal to

AZ:C}‘$17 ey Lay Yl e ,beO.Z(VAlﬂfl) s (VAaxa)(VBlyl) s (VBbyb)7

with B = B1— ... —Bp—o.
Notice that for a closed term M of type A = A;— ... —A,—o0 one can write

M =g Ay1:A1 .. YarAayi(Miyr . Ya) .. (Mpy1 - . - Ya),
with the My, ..., M, closed. Now verify that

UaM = Xxy,...,z00.M(Va,x1)...(Va,xa)
= ANE.(Va,x)) (Mi(Va,x1) ... (Va,2a)) .. (M (Va,x1) ... (Va,zq))
= ANua,x;(Ua,, (Mi(Va,z1) ... (Va,za))) ... (Ua,, (Mp(Va,z1) ... (Va,za)))
= Mug,x;(Up, MiZ)... (U, M,%),

using (1), where B; = A;— ... —A,—A;; for 1 < j < n is the type of M;. Hence we
have that if UaM =g, UsN, then for 1 <j <n

UBij =pBn UBJ.N]'.

Therefore it follows by induction on the complexity of M that if UsM =g, UsN, then
M =g, N.

Now take as term for the reducibility ® = Am:AAup, ... up,.Usm, where the u are
all the ones occurring in the construction of Uy4. It follows that

A <g, Bii—> . —>B£—>Ab.
Since rank(B§—> . —>B£—>Aﬁ) < 3, we are done. m

For an alternative proof, see Exercise 3.6.9.

In the following proposition it will be proved that we can further reduce types to
one particular type of rank 3. First do exercise 3.6.5 to get some intuition. We need the
following notation.
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3.4.3. NOTATION. (i) For k > 0 write

1, = ok—>0,

where in general A°—o0 = 0 and A" 0 = A—(A*—0).
(ii) For ky,...,ky, > 0 write

(k1,... kn) = 1jy— ... =1, —o0.
(iii) For ki1,... king,s -y kmi, -, kmn,, > 0 write
kin ... ki,
= (k11,-- -, kiny )= .- —=(km1, - - -, kmn,, ) —0.
Emi oo kmn,,

Note the “matrix” has a dented right side (the n; are unequal in general).
3.4.4. PROPOSITION. Every type A of rank < 3 is reducible to
1y—1—1—2—0.
PrROOF. Let A be a type of rank < 3. It is not difficult to see that A is of the form

kll . klnl

b1 - K,

We will first reduce A to type 3 = 2—o0 using a term ¢ containing free variables of type
19,1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12,p1:1, p2:l}.
Consider the notion of reduction p defined by the contraction rules
pi(pMyMaz)—, M.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with & and jump to those starting with é.]

& This notion of reduction satisfies the subject reduction property. Moreover Gnp
is Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extending
the notion of reduction by adding

p(p1M)(poM)— M

preserves the CR property. In the untyped calculus this is not the case, see Klop [1980]
or Barendregt [1984], ch. 14.] Goto #.
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& Given the pairing p, p1, p2 one can extend it as follows. Write

pl = Ao
PP = x o zpzngrop(PFEy . 2n) T
p% = A\x:0.1;
Pt = o
f“ = Az:o.pk(p2), for i < k;
P* = M. feldzop®(fiz) ... (fr2);
PF = Ag:l)z0.pF(92), for i < k.

We have that pF acts as a coding for k-tuples of elements of type o with projections pf .
The P, Pf‘C do the same for type 1. In context containing {f:1j, g:1} write

7l = Azof(phz) ... (ph2);
g'77F = Az zpog(Pta L z).
Then f*~1is f moved to type 1 and g'~* is ¢ moved to type 1.
Using Bnp-convertibility one can show

pf(pkzl S ZE) =2
PEPRfi fi) = fi
k—1,1—k
[ = I
For ¢'~FF=1 = g one needs s, the surjectivity of the pairing.

In order to define the term required for the reducibility start with the term ¥:A—3
(containing p,p1,pe as only free variables). We need an auxiliary term W1, acting as
an inverse for ¥ in the presence of a “true pairing”.

U = AMMNF:2.M
— k?n_’l
M1y - - Fing g 1 (FP™ T f T

Mot L - - Frrmon Lk, D (F (P fromd =l flhmnn =1y,
U = AN:(2—=0)AK1:(ki1, - ki) - MK (Kids - - K, )-
NOf:Lp™[Kq (P )R (P )t hm] L
(Ko (P f)F Rt (Pl )t Ramm )

Claim. For closed terms M7, M5 of type A we have
M1 =pBn M2 = \I’Ml =pBn \I/MQ.
It then follows that for the reduction A <g, 1s—1—1—3 we can take

P = )\MZA.)\pilg)\pl,pgil.\I/M.
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It remains to show the claim. The only interesting direction is (<=). This follows in

two ways. We first show that
\I’_l(\I’M) =pnp M. (1)

We will write down the computation for the “matrix”
(i b
ko1 koo

UM =g  AF:2.M[\fir:le, pr(F(P )]
[>‘f21:1k21/\f22:1k22'pQ(F(P2 5121_& 5222_&))];
\I’_l(\I’M) =3 )\Kli(kll))\th(kgl,kgg).

UM (Af:Lp! K (P f) R [Ka (PR f) P (PR3 f) )

= )\Kli(kll))\th(kgl,kgg).\I/MH, say,

= MK KoM\ fiipi(H(P' i)
M or\ oo pa(H (P2 fo2 4 f527))];

=pBp )\KlKQ.M[)\fll.pl (p2 [Klfll][..‘junk’..])]
[Af21 A fo2.p2(P?[.-junk’. ] [K2 fo1 fo2]);

=p A Ko M(Af11. K1 f11) (A far faz- Ko fo1 f22)

=, AMGKy MK K>

=y M,

which is perfectly general.

since
H(Plfll) =pBp p2[K1f11][..‘junk’..]
H(P? 5121_}1 5222_}1) =gp P°[..Junk’.)[K2 fo1 fa].

The argument now can be finished in a model theoretic or syntactic way.

& If UMy =g, UMy, then U1 (UM;) =g,) U~1(UM>). But then by (1) My =gy,
M. It follows from the Church-Rosser theorem for Bmp that M; =g, Ma, since these
terms do not contain p. Goto m.

’ WIRVBYA =pBn W Ms, then

)\pzlg/\plpg:l.\lf_l(\I’Ml) =8n /\p:12)\p1p2:1.\lf_1(\IJM2).

Hence
M(w) = Ap:LlaApipo: LU YW (M) = Ap:1oApipo: 1. U H(WMy).

Let q be an actual pairing on w with projections q1,qz. Then in M(w)
(Ap:LoAp1p2: 1.0~ (WMy))aardz = Ap:loApipe: .U (W Ms)qqiqs.
Since (M(w),q,q1,qz2) is a model of Bnp conversion it follows from (1) that
M(w) E My = M.

But then M; =g,, M>, by a result of Friedman [1975]. m
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We will see below, corollary 3.4.23 (i), that Friedman’s result will follow from the
reducibility theorem. Therefore the syntactic approach is preferable.
The proof of the next proposition is again syntactic. A warmup is exercise 3.6.7.

3.4.5. PROPOSITION. Let A be a type of rank < 2. Then

2—A <g, 1=1—0—A.

Proor. Let A = (1¥1,... 1%) = 1, —...1,—o0. The term that will perform the
reduction is relatively simple

O = AM:(2—A)Nf, g:1Az:0 b1 1y, .. Abp: 1y, M (A1 f(R(g(h2)))).
In order to show that for all M7, M5:2— A one has
My =g, DMy = My =g, My,
we may assume w.l.o.g. that A = 1,—0. A typical element of 2—15,—0 is
M = AF:2)\b:19.F (Az.F(Ay.byx)).
Note that its translation has the following long Bn-nf

OM = Af,g:1Az:0A\b:1g. f(Ny[z: = g(N[z: = 2]])),
where N, = f(b(g(bzz))x),
= A, g1Az0Ab 1o f(f(b(g(bz[g(f (b(g(b22))2))])) g (f(b(g(b22))2))])-

This term M and its translation have the following trees.

BT(M) AFb.F

AT,
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and
BT (®M) Afgzb-,)‘f
~ ( Qénnd_by
boundby b\
'-.g
|
g f
i |
VRN RN
z g g z
i i
| /N
b z z

g z
/ b\
z z
Note that if we can ‘read back’ M from its translation ®M, then we are done. Let

Cut,_. be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cuty..(PM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the term M, by reading f as F(A®. The
remaining problem is how to reconstruct the binding effect of each occurrence of the A®.
Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is accomplished
by a realizing that the occurrence z coming from g(P) should be bound at the position
[ just above where Cut,_..(P) matches in Cut,_,,(®M) above that z. For a precise
inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise 3.6.10. m

The following simple proposition brings almost to an end the chain of reducibility of
types.
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3.4.6. PROPOSITION.
14—>12—>0—>o <pgn la—o—o.
PROOF. As it is equally simple, let us prove instead
I—1s—0—0 <g, lo—o0—o0.
Define ® : (1—13—0—0)—12—0—0 by
O = AM:(1—13—0—0)Ab:1aAc:0 A f:1Ab: 19 c:0. M (f ) (b7 )e,
where

T = Xob(#)t;
bt = My, t2:0.b(#b)(bt1ts);

#f = beg
#b = be(bee).

The terms #f,#b serve as recognizers (“Godel numbers”). Notice that M of type
1—19—0—0 has a closed long Bn-nf of the form

MM = Af:1 b1 c:o.t
with ¢ an element of the set T generated by the grammar
T::=c|fT|bTT.
Then for such M one has ®M =g, &(M™) = M+ with
MT = Af:1A\b:1ahcio.t ™,
where tT is inductively defined by

ct = ¢

(f)Y = b#NHT;
(btita)t = b(#b)(bt]tT).

It is clear that M™ can be constructed back from MT. Therefore

OMy =g, My = M =g, M

= M =M
= MM =Myt
= M =pn My. m

By the same method one can show that any type of rank < 2 is reducible to T, do
exercise 3.6.12

Combining propositions 3.4.2-3.4.6 we can complete the proof of the reducibility
theorem.
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3.4.7. THEOREM (Reducibility theorem, Statman [1980a]). Let
T = 1s—o0—o.

Then
VAeT A<g, T.

PROOF. Let A be any type. Harvesting the results we obtain

A <z, B, with rank(B) < 3, by 3.4.2,
<gy, la—1*—2-0, by 3.4.4,
<sn 2—15—1%2—0, by simply permuting arguments,
<g; 1’—0—13—17—0, by 3.4.5,
<gn l2—o0—0, by an other permutation and 3.4.6 m

Now we turn attention to the type hierarchy, Statman [1980a].

3.4.8. DEFINITION. For the ordinals o < w + 3 define the type A, € T(\?,) as follows.

Ay = o

Ay = o—0;

A, = o'—o;

A, = 1l—o—0;
Apr1 = 1—=1—0—0;
Aw+2 = 3—0—0;
Aw+3 = 12 —0—0.

3.4.9. PROPOSITION. For a,3 < w + 3 one has
a<g = A, gﬁnAg.
Proor. For all finite k one has Ay <g, A1 via the map
P k1 = AmiApAzxy .. xpiomay . Ty =gy AmiAg. Km.
Moreover, A <g, A, via
Dy o = AmuARAf:lAzom(ci fx) ... (cpfx).
Then A, <g, Awy1 via

D, i1 = AN, gl z0o.m f.
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Now Aw+1 Sﬁn Aw+2 via
Qi 1, wr2 = AmiA, i AH B3 z0. H(A f:1.H(Ag:1.m fgx)).

Finally, A, 12 <g, Awt3 = T because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term @19 1 3. W

3.4.10. PROPOSITION. For a,3 < w + 3 one has
a< B« A, <g, Ag.
Proor. This will be proved in 3.5.32. m
3.4.11. COROLLARY. For a,3 < w + 3 one has
Ao <pnp A = a <.

For a proof that these types {Aq}a<w+3 are a good representation of the reducibility
classes we need some syntactic notions.

3.4.12. DEFINITION. A type A€M (\?,) is called large if it has a negative subterm
occurrence of the form B1— ... —B,—o0, with n > 2; A is small otherwise.

3.4.13. EXAMPLE. lp—o0—o0 is large; (13—0)—o0 and 3—o0—o0 are small.
Now we will partition the types T = T(\%,) in the following classes.

3.4.14. DEFINITION. Define the following sets of types.
T_; = {A] A has no closed inhabitant};

To = {o—o}

T, = {oF—o|k>1};

Ty, = {l—0%—o0|q¢>0}U{(l,—0)—0—0|p>0,q9>0};
Ty = {A]| Aissmall, rank(A)€{2,3} and A ¢ Ta};

T, = {A] Aissmall and rank(A) > 3};

T = {A] Aislarge}.

It is clear that the T; form a partition of M. A typical element of T_; is 0. This class
we will not consider much.

3.4.15. THEOREM (Hierarchy theorem, Statman [1980al).

AeT; = A~gyla—o—o0;

AeTy — A~gy3—0—0;

AeT; = A~gyl—=l—o—o;

AecTy — A~gyl—o—o;

AeTy = A~gy oF—o, for some k > 1;
AeTy — A ~gyo—0;

AeT 4, — A ~@n O.



124 CHAPTER 3. TOOLS

PROOF. Since the T; form a partition, it is sufficient to show just the =’s.

As to T35, it is enough to show that 13—o—o0 <g, A, for every large type A, since
we know already the converse. For this see Statman [1980a], lemma 7. As a warmup
exercise do 3.6.20.

As to Ty, it is shown in Statman [1980a], proposition 2, that if A is small, then
A <g, 3—o0—o. It remains to show that for any small type A of rank > 3 one has
3—o0—0 <g, A. Do exercise 3.6.27.

As to T3, the implication is shown in Statman [1980a], lemma 12. The condition
about the type in that lemma is equivalent to belonging to 3.

As to Ty, do exercise 3.6.22(ii).

As to T;, with ¢ = 1,0, —1, notice that Aﬁ(ok—m) contains exactly k closed terms for
k > 0. This is sufficient. m

For an application in the next section we need a refinement of the hierarchy theorem.

3.4.16. DEFINITION. Let A, B be types.
(i) Ais head-redicible to B, notation A <;, B, iff for some closed term ® € A?(A—B)
one has
VMl,MQZA [Ml =pn M2 <~ (I)Ml =pn (I)Mg],

and moreover ® is of the form
D = m:Adxq ... xp:B.mPy ... P,, (+)

with m ¢ FV(Py,...,P,).
(ii) A is multi head-reducible to B, notation A <,+ B, iff there are closed terms
®y,...,®,, € A(A—B) each of the form (4) such that

VMl,MQZA [Ml =pn M2 <~ (I)lMl =pn (I>1M2 &...& (I)li =pn (I)mMg.

(iii) Write A ~, B iff A <, B <;, A and similarly
A~y Bift A<+ B <;+ A.

3.4.17. PrROPOSITION. (i) A<, B = A <g, B.
(ii) Let A,BeT;, with i 75 2. Then A~y B.
(iii) Let A,B€TMy. Then A ~y+ B.

(iV) A §5,7 B = A<,+ B.

PRrROOF. (i) Trivial.

(i) Suppose A <g, B. By inspection of the proof of the hierarchy theorem in all
cases except for A € Ty one obtains A <;, B. Do exercise 3.6.24.

(iii) In the exceptional case one obtains A <,+ B, see exercise 3.6.23. m

(iv) By (ii) and (iii), using the hierarchy theorem.
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3.4.18. COROLLARY (Hierarchy theorem (revisited), Statman [1980b]).

AeTs — A~y la—o0—0;
AeTy — A~y 3—0—0;
AeT; — A~pl-l—-0—0;
AeT, — A ~p+ 1—0—0;
AeTy = A ~pr 0?0
AeTy — A~y 0—0;
AeT_ 1 <— A~yjo.

2

PROOF. The only extra fact to verify is that 0¥ —o0 <,+ 0*—o0. ®

Applications of the reducibility theorem

The reducibility theorem has several consequences.
3.4.19. DEFINITION. Let C be a class of A_, models. C is called complete iff
YVM,NeN[Cl=M=N < M =g, N].

3.4.20. DEFINITION. (i) 7 = Ty is the algebraic structure of trees inductively defined

as follows.
T=c|bTT

(ii) For a A_, model M we say that 7 can be embedded into M, notation 7 — M,
iff there exist by € M(0—0—0), ¢y € M(0) such that
Vi, seT[t#s = M tbocy # sdboco],

where u! = \b:o—o—oAc:0.u, is the closure of ue 7.

The elements of 7 are binary trees with ¢ on the leaves and b on the connecting nodes.
Typical examples are ¢, bec, be(bee) and b(bee)e. The existence of an embeding using
by, co implies for example that byco(bococo), bococo and ¢y are mutually different in M.

Note that 7 <+ M(2). To see this, write gz = bxxz. One has g%(c) # g*(c), but
M(2) | Vg:o—oVe:0.9%(c) = g*(c), do exercise 3.6.13.

3.4.21. LEMMA. (i) e M;EM =N <= VicI.M;}=M =N,
(i) MeN(T) < 3s€T.M =g, s°.

PRrOOF. (i) Since [M]"e™Mi = Xje I.[M]M.
(ii) By an analysis of the possible shape of the normal forms of terms of type T =
lo—o—o0. 1

3.4.22. THEOREM (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {M;};c1 of structurs in C such that

7T — Hie]Mi.
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PROOF. (=) Suppose C is complete. Let t,s € 7. Then

t£s = t9 #pn s
= CRtd =59, by completeness,
= My =t £ s for some Mg €C,
= My B M0 # 5Mbscrs,

for some b5 € M(0—0—0), ¢t € M(0) by extensionality. Note that in the third implication
the axiom of (countable) choice is used.
It now follows by lemma 3.4.21(i) that

Ht;ﬁths ): tCl 7£ sda

since they differ on the pair bycy with bg(ts) = bys and similarly for cg.
(<) Suppose T — II; ¢ ;M; with M; €C. Let M, N be closed terms of some type
A. By soundness one has
M=y, N = CEM=N.

For the converse, let by the reducibility theorem £ : A—T be such that
M =g, N <= FM =g, F'N,
for all M, N € A°. Then

CEM=N = I M;EM=N, by the lemma,
= HZGIMZ):FM:FN,
= HieIMi ):tdzsd,

where t, s are such that
FM =g, t*, FN =g, 5%, (%)

noting that every closed term of type T is @n-convertible to some u® with v € 7. Now
the chain of arguments continues as follows

= t=s, by the embedding property,
= FM =g, FN, by (*),
= M =g, N, by reducibility. m

3.4.23. COROLLARY. (i) [Friedman [1975]] { My} is complete.
(ii) [Plotkin [19857]] { My, }nen is complete.
(i) {My, } is complete.
(iv) {MD}D a finite cpo, is complete.

PRrROOF. Immediate from the theorem. m
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The completeness of the collection {M,, },, ¢y essentially states that for every pair of
terms M, N of a given type A there is a number n = nys y such that M,, =M =N =
M =g, N. Actually one can do better, by showing that n only depends on M.

3.4.24. PROPOSITION (Finite completeness theorem, Statman [1982]). For every type A
in M(A2,) and every M € A?(A) there is a number n = ny; such that for all N € A?(A)

My, EM=N <= M =g, N.

PROOF. By the reduction theorem 3.4.7 it suffices to show this for A = T. Let M a
closed term of type T be given. Each closed term N of type T has as long Bn-nf

N = A\b:13)\c:0.5y,

where sy €7. Let p : NoN—N be an injective pairing on the integers such that
p(k1,k2) > k;. Take
na = [M]M“p0+ 1.

Define p": X2, — X, 41, where X,,11 = {0,...,n+ 1}, by

p(ki,ka) = p(ki,ka),  if k1, ko < np(k, ko) <n;
= n+1 else.

Suppose M,, = M = N. Then [[M]]M”p’O = [[N]]M"p’O. By the choice of n it follows
that [M]M"p0 = [NJM"p0 and hence sy; = sy. Therefore M =g, N.m

3.5. The five canonical term-models

The open terms of \°, form an extensional model, the term-model Mp,. One may
wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type o. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on A2[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type o coincides with
=gy, can be obtained in this way. From now on D will range over sets of constants such
that there are closed terms for every type A (i.e. in A2[D](A)).

3.5.1. DEFINITION. Let M, N € A2[D](A) with A = A;— ... —A,—o.
(i) M is D-estensionally equivalent with N, notation M ~$3* N, iff

V1 € A[D](A1) ... t, € A[D](Ay). Mt =g, NT.
[If a = 0, then M, N € A2[D](0); in this case M ~&* N <= M =4, N.]



