
Chapter 5

Type Assignment

The lambda calculus as treated so far is usually referred to as a type-free theory.
This is so, because every expression (considered as a function) may be applied to
every other expression (considered as an argument). For example, the identity
function I ≡ λx.x may be applied to any argument x to give as result that same
x. In particular I may be applied to itself.

There are also typed versions of the lambda calculus. These are introduced
essentially in Curry (1934) (for the so called Combinatory Logic, a variant of
the lambda calculus) and in Church (1940). Types are usually objects of a
syntactic nature and may be assigned to lambda terms. If M is such a term
and a type A is assigned to M , then we say ‘M has type A’ or ‘M in A’; the
denotation used for this is M : A. For example in some typed systems one has
I : (A→A), that is, the identity I may get as type A→A. This means that if
x being an argument of I is of type A, then also the value Ix is of type A. In
general, A→B is the type of functions from A to B.

Although the analogy is not perfect, the type assigned to a term may be
compared to the dimension of a physical entity. These dimensions prevent us
from wrong operations like adding 3 volt to 2 ampère. In a similar way types
assigned to lambda terms provide a partial specification of the algorithms that
are represented and are useful for showing partial correctness.

Types may also be used to improve the efficiency of compilation of terms
representing functional algorithms. If for example it is known (by looking at
types) that a subexpression of a term (representing a funtional program) is
purely arithmetical, then fast evaluation is possible. This is because the ex-
pression then can be executed by the alu of the machine and not in the slower
way in which symbolic expressions are evaluated in general.

The two original papers of Curry and Church introducing typed versions of
the lambda calculus give rise to two different families of systems. In the typed
lambda calculi à la Curry terms are those of the type-free theory. Each term
has a set of possible types. This set may be empty, be a singleton or consist
of several (possibly infinitely many) elements. In the systems à la Church the
terms are annotated versions of the type-free terms. Each term has (up to an
equivalence relation) a unique type that is usually derivable from the way the
term is annotated.

The Curry and Church approaches to typed lambda calculus correspond to
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34 Introduction to Lambda Calculus

two paradigms in programming. In the first of these a program may be written
without typing at all. Then a compiler should check whether a type can be
assigned to the program. This will be the case if the program is correct. A
well-known example of such a language is ML, see Milner (1984). The style of
typing is called implicit typing . The other paradigm in programming is called
explicit typing and corresponds to the Church version of typed lambda calculi.
Here a program should be written together with its type. For these languages
type-checking is usually easier, since no types have to be constructed. Examples
of such languages are Algol 68 and Pascal . Some authors designate the Curry
systems as ‘lambda calculi with type assignment ’ and the Church systems as
‘systems of typed lambda calculus’.

Within each of the two paradigms there are several versions of typed lambda
calculus. In many important systems, especially those à la Church, it is the case
that terms that do have a type always possess a normal form. By the unsolv-
ability of the halting problem this implies that not all computable functions can
be represented by a typed term, see Barendregt (1990), Theorem 4.2.15. This
is not so bad as it sounds, because in order to find such computable functions
that cannot be represented, one has to stand on one’s head. For example in
λ2, the second order typed lambda calculus, only those partial recursive func-
tions cannot be represented that happen to be total, but not provably so in
mathematical analysis (second order arithmetic).

Considering terms and types as programs and their specifications is not the
only possibility. A type A can also be viewed as a proposition and a termM in A
as a proof of this proposition. This so called propositions-as-types interpretation
is independently due to de Bruijn (1970) and Howard (1980) (both papers
were conceived in 1968). Hints in this direction were given in Curry and Feys
(1958) and in Läuchli (1970). Several systems of proof checking are based
on this interpretation of propositions-as-types and of proofs-as-terms. See e.g.
de Bruijn (1980) for a survey of the so called automath proof checking system.
Normalization of terms corresponds in the formulas-as-types interpretation to
normalisation of proofs in the sense of Prawitz (1965). Normal proofs often
give useful proof theoretic information, see e.g. Schwichtenberg (1977).

In this section a typed lambda calculus will be introduced in the style of
Curry. For more information, see Barendregt (1992).

The system λ→-Curry

Originally the implicit typing paradigm was introduced in Curry (1934) for the
theory of combinators. In Curry and Feys (1958) and Curry et al. (1972) the
theory was modified in a natural way to the lambda calculus assigning elements
of a given set T of types to type free lambda terms. For this reason these calculi
à la Curry are sometimes called systems of type assignment . If the type σ ∈ T

is assigned to the term M ∈ Λ one writes `M : σ, sometimes with a subscript
under ` to denote the particular system. Usually a set of assumptions Γ is
needed to derive a type assignment and one writes Γ ` M : σ (pronounce this
as ‘Γ yields M in σ’). A particular Curry type assignment system depends on
two parameters, the set T and the rules of type assignment. As an example we
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now introduce the system λ→-Curry.

5.1. Definition. The set of types of λ→, notation Type(λ→), is inductively
defined as follows. We write T = Type(λ→). Let V = {α, α′, . . .} be a set of
type variables. It will be convenient to allow type constants for basic types such
as Nat, Bool. Let B be such a collection. Then

α ∈ V ⇒ α ∈ T,

B ∈ B ⇒ B ∈ T,

σ, τ ∈ T ⇒ (σ→τ) ∈ T (function space types).

For such definitions it is convenient to use the following abstract syntax to
form T.

T = V | B | T→T

with

V = α | V
′ (type variables).

Notation. (i) If σ1, . . . , σn ∈ T then

σ1→σ2→· · ·→σn

stands for

(σ1→(σ2→· · ·→(σn−1→σn)··));

that is, we use association to the right.

(ii) α, β, γ, . . . denote arbitrary type variables.

5.2. Definition. (i) A statement is of the form M : σ with M ∈ Λ and σ ∈ T.
This statement is pronounced as ‘M in σ’. The type σ is the predicate and the
term M is the subject of the statement.

(ii) A basis is a set of statements with only distinct (term) variables as
subjects.

5.3. Definition. Type derivations in the system λ→ are built up from as-
sumptions x:σ, using the following inference rules.

M : σ→τ N : σ

MN : τ

x : σ
·
·
·

M : τ

λx.M : σ→τ

5.4. Definition. (i) A statement M : σ is derivable from a basis Γ, notation

Γ `M : σ

(or Γ `λ→ M : σ if we wish to stress the typing system) if there is a derivation
of M : σ in which all non-cancelled assumptions are in Γ.

(ii) We use `M : σ as shorthand for ∅ `M : σ.
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5.5. Example. (i) Let σ ∈ T. Then ` λfx.f(fx) : (σ→σ)→σ→σ, which is
shown by the following derivation.

f : σ→σ (2)

f : σ→σ (2) x : σ (1)

fx : σ

f(fx) : σ
(1)

λx.f(fx) : σ→σ
(2)

λfx.f(fx) : (σ→σ)→σ→σ

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

(ii) One has ` K : σ→τ→σ for any σ, τ ∈ T, which is demonstrated as
follows.

x : σ (1)

λy.x : τ→σ
(1)

λxy.x : σ→τ→σ

(iii) Similarly one can show for all σ ∈ T

` I : σ→σ.

(iv) An example with a non-empty basis is the statement

y:σ ` Iy : σ.

Properties of λ→

Several properties of type assignment in λ→ are valid. The first one analyses
how much of a basis is necessary in order to derive a type assignment.

5.6. Definition. Let Γ = {x1:σ1, . . . , xn:σn} be a basis.

(i) Write dom(Γ) = {x1, . . . , xn} and σi = Γ(xi). That is, Γ is considered
as a partial function.

(ii) Let V0 be a set of variables. Then Γ � V0 = {x:σ | x ∈ V0 &σ = Γ(x)}.
(iii) For σ, τ ∈ T substitution of τ for α in σ is denoted by σ[α := τ ].

5.7. Basis Lemma. Let Γ be a basis.

(i) If Γ′ ⊇ Γ is another basis, then

Γ `M : σ ⇒ Γ′ `M : σ.

(ii) Γ `M : σ ⇒ FV(M) ⊆ dom(Γ).

(iii) Γ `M : σ ⇒ Γ � FV(M) `M : σ.

Proof. (i) By induction on the derivation of M : σ. Since such proofs will
occur frequently we will spell it out in this simple situation in order to be shorter
later on.
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Case 1. M : σ is x:σ and is element of Γ. Then also x:σ ∈ Γ′ and hence
Γ′ `M : σ.

Case 2. M : σ is (M1M2) : σ and follows directly from M1 : (τ→σ) and
M2 : τ for some τ . By the IH one has Γ′ `M1 : (τ→σ) and Γ′ `M2 : τ . Hence
Γ′ ` (M1M2) : σ.

Case 3. M : σ is (λx.M1) : (σ1→σ2) and follows directly from Γ, x : σ1 `
M1 : σ2. By the variable convention it may be assumed that the bound variable
x does not occur in dom(Γ′). Then Γ′, x:σ1 is also a basis which extends Γ, x:σ1.
Therefore by the IH one has Γ′, x:σ1 `M1 : σ2 and so Γ′ ` (λx.M1) : (σ1→σ2).

(ii) By induction on the derivation of M : σ. We only treat the case that
M : σ is (λx.M1) : (σ1→σ2) and follows directly from Γ, x:σ1 `M1 : σ2. Let y ∈
FV(λx.M1), then y ∈ FV(M1) and y 6≡ x. By the IH one has y ∈ dom(Γ, x:σ1)
and therefore y ∈ dom(Γ).

(iii) By induction on the derivation of M : σ. We only treat the case that
M : σ is (M1M2) : σ and follows directly from M1 : (τ→σ) and M2 : τ for some
τ . By the IH one has Γ � FV(M1) `M1 : (τ→σ) and Γ � FV(M2) `M2 : τ . By
(i) it follows that Γ � FV(M1M2) ` M1 : (τ→σ)and Γ � FV(M1M2) ` M2 : τ
and hence Γ � FV(M1M2) ` (M1M2) : σ. �

The second property analyses how terms of a certain form get typed. It is
useful among other things to show that certain terms have no types.

5.8. Generation Lemma. (i) Γ ` x : σ ⇒ (x:σ) ∈ Γ.
(ii) Γ `MN : τ ⇒ ∃σ [Γ `M : (σ→τ) &Γ ` N : σ].
(iii) Γ ` λx.M : ρ ⇒ ∃σ, τ [Γ, x:σ `M : τ & ρ ≡ (σ→τ)].

Proof. By induction on the structure of derivations. �

5.9. Proposition (Typability of subterms). Let M ′ be a subterm of M . Then

Γ `M : σ ⇒ Γ′ `M ′ : σ′ for some Γ′ and σ′.

The moral is: if M has a type, i.e. Γ ` M : σ for some Γ and σ, then every
subterm has a type as well.

Proof. By induction on the generation of M . �

5.10. Substitution Lemma.

(i) Γ `M : σ ⇒ Γ[α := τ ] `M : σ[α := τ ].
(ii) Suppose Γ, x:σ `M : τ and Γ ` N : σ. Then Γ `M [x := N ] : τ .

Proof. (i) By induction on the derivation of M : σ.
(ii) By induction on the derivation showing Γ, x:σ `M : τ . �

The following result states that the set of M ∈ Λ having a certain type in
λ→ is closed under reduction.

5.11. Subject Reduction Theorem. Suppose M →→β M
′. Then

Γ `M : σ ⇒ Γ `M ′ : σ.
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Proof. Induction on the generation of →→β using the Generation Lemma 5.8
and the Substitution Lemma 5.10. We treat the prime case, namely that M ≡
(λx.P )Q and M ′ ≡ P [x := Q]. Well, if

Γ ` (λx.P )Q : σ

then it follows by the Generation Lemma that for some τ one has

Γ ` (λx.P ) : (τ→σ) and Γ ` Q : τ.

Hence once more by the Generation Lemma

Γ, x:τ ` P : σ and Γ ` Q : τ

and therefore by the Substitution Lemma

Γ ` P [x := Q] : σ. �

Terms having a type are not closed under expansion. For example,

` I : (σ→σ), but 6` KI (λx.xx) : (σ→σ).

See Exercise 5.1. One even has the following stronger failure of subject expan-
sion, as is observed in van Bakel (1992).

5.12. Observation. There are M,M ′ ∈ Λ and σ, σ′ ∈ T such that M ′ →→β M
and

`M : σ, `M ′ : σ′,

but
6`M ′ : σ.

Proof. Take M ≡ λxy.y,M ′ ≡ SK, σ ≡ α→(β→β) and σ′ ≡ (β→α)→(β→β);
do Exercise 5.1. �

All typable terms have a normal form. In fact, the so-called strong nor-
malization property holds: if M is a typable term, then all reductions starting
from M are finite.

Decidability of type assignment

For the system of type assignment several questions may be asked. Note that
for Γ = {x1:σ1, . . . , xn:σn} one has

Γ `M : σ ⇔ ` (λx1:σ1 · · · λxn:σn.M) : (σ1→· · ·→σn→σ),

therefore in the following one has taken Γ = ∅. Typical questions are
(1) Given M and σ, does one have `M : σ?
(2) Given M , does there exist a σ such that `M : σ?
(3) Given σ, does there exist an M such that `M : σ?
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These three problems are called type checking , typability and inhabitation re-
spectively and are denoted by M : σ?, M : ? and ? : σ.

Type checking and typability are decidable. This can be shown using the
following result, independently due to Curry (1969), Hindley (1969), and Milner
(1978).

5.13. Theorem. (i) It is decidable whether a term is typable in λ→.
(ii) If a term M is typable in λ→, then M has a principal type scheme, i.e.

a type σ such that every possible type for M is a substitution instance of σ.
Moreover σ is computable from M .

5.14. Corollary. Type checking for λ→ is decidable.

Proof. In order to check M : τ it suffices to verify that M is typable and that
τ is an instance of the principal type of M . �

For example, a principal type scheme of K is α→β→α.

Polymorphism

Note that in λ→ one has

` I : σ→σ for all σ ∈ T.

In the polymorphic lambda calculus this quantification can be internalized by
stating

` I : ∀α.α→α.

The resulting system is the polymorphic of second-order lambda calculus due
to Girard (1972) and Reynolds (1974).

5.15. Definition. The set of types of λ2 (notation T = Type(λ2)) is specified
by the syntax

T = V | B | T→T | ∀V.T.

5.16. Definition. The rules of type assignment are those of λ→, plus

M : ∀α.σ

M : σ[α := τ ]

M : σ

M : ∀α.σ

In the latter rule, the type variable α may not occur free in any assumption on
which the premiss M : σ depends.

5.17. Example. (i) ` I : ∀α.α→α.
(ii) Define Nat ≡ ∀α.(α→α)→α→α. Then for the Church numerals cn ≡

λfx.fn(x) we have ` cn : Nat.

The following is due to Girard (1972).

5.18. Theorem. (i) The Subject Reduction property holds for λ2.
(ii) λ2 is strongly normalizing.

Typability in λ2 is not decidable; see Wells (1994).



40 Introduction to Lambda Calculus

Exercises

5.1. (i) Give a derivation of
` SK : (α→β)→(α→α).

(ii) Give a derivation of
` KI : β→(α→α).

(iii) Show that 6` SK : (α→β→β).
(iv) Find a common β-reduct of SK and KI. What is the most general type for

this term?

5.2. Show that λx.xx and KI(λx.xx) have no type in λ→.

5.3. Find the most general types (if they exist) for the following terms.
(i) λxy.xyy.
(ii) SII.
(iii) λxy.y(λz.z(yx)).

5.4. Find terms M,N ∈ Λ such that the following hold in λ→.
(i) `M : (α→β)→(β→γ)→(α→γ).
(ii) ` N : (((α→β)→β)→β)→(α→β).

5.5. Find types in λ2 for the terms in the exercises 5.2 and 5.3.
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The systems λ→

1.1. The λ→ systems à la Curry

Types in this part are syntactic objects built from atomic types using the operator →.
In order to classify untyped lambda terms, such types will be assigned to a subset of
these terms. The main idea is that if M gets type A→B and N gets type A, then the
application MN is ‘legal’ (as M is considered as a function from terms of type A to
those of type B) and gets type B. In this way types help determining what terms fit
together.

1.1.1. Definition. (i) Let A be a non-empty set of ‘atomic types’. The set of simple
types over A, notation TT = TTA, is inductively defined as follows.

α∈A ⇒ α∈TT type atoms;

A,B ∈TT ⇒ (A→B)∈TT function space types.

Such definitions will be used often and for these it is convenient to use the so called
abstract syntax , see Waite and Goos [1984]. As an example we give the abstract syntax
for TT = TTA.

TT = A |TT→TT

Figure 1.1: Simple types

(ii) Let Ao = {o}. Then we write TTo = TTAo .
(iii) Let A∞ = {α0, α1, α2, . . .}. Then we write TT∞ = TTA∞

We consider that o = α0, hence TTo ⊆ TT∞. If we write simply TT, then this refers to TTA

for an unspecified A.

1.1.2. Notation. (i) If A1, . . . , An ∈TT, then

A1→ . . .→An ≡ (A1→(A2→ . . .→(An−1→An)..)).

That is, we use association to the right (here ≡ denotes syntactic equality).

13
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(ii) α,β, γ, . . . denote arbitrary elements of A.
(iii) A,B,C, . . . denote arbitrary elements of TT.

Remember the untyped lambda calculus denoted by λ, see e.g. B[1984]1. It consists
of a set of terms Λ defined by the following abstract syntax.

V = x |V′

Λ = V |λV Λ |Λ Λ

Figure 1.2: Untyped lambda terms

This makes V = {x, x′, x′′, . . .} = {x0, x1, x2, . . .}.
1.1.3. Notation. (i) x, y, z, . . . denote arbitrary term variables.

(ii) M,N,L, . . . denote arbitrary lambda terms.
(iii) MN1 . . . Nk ≡ (..(MN1) . . . Nk).
(iv) λx1 . . . xn.M ≡ (λx1(..(λxn(M))..)).

1.1.4. Definition. On Λ the following equational theory λβη is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), inluding congruence
with respect to abstraction:

M = N ⇒ λx.M = λx.N,

and the following special axiom(schemes)

(λx.M)N = M [x := N ] (β-rule)
λx.Mx = M, if x /∈FV(M) (η-rule)

Figure 1.3: The theory λβη

As is know this theory can be analyzed by a notion of reduction.

1.1.5. Definition. On Λ we define the following notions of reduction

(λx.M)N → M [x: = N ] (β)
λx.Mx → M, if x /∈FV(M) (η)

Figure 1.4: βη-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations→β,→→β,→η,→→η,→βη and→→βη. Also there are the corresponding conversion
relations =β,=η and =βη. Terms in Λ will often be considered modulo =β or =βη. If
we write M = N , then we mean M =βη N by default. (In B[1984] the default was =β.)

1.1.6. Proposition. For all M,N ∈Λ one has

⊢λβη M = N ⇐⇒ M =βη N.

1This is an abbreviation fo the reference Barendregt [1984].
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Proof. See B[1984], Proposition 3.3.2.

One reason why the analysis in terms of the notion of reduction βη is useful is that
the following holds.

1.1.7. Theorem (Church-Rosser Theorem for λβη). For the notions of reduction →→β

and →→βη one has the following.

(i) Let M,N ∈Λ. Then

M =β(η) N ⇒ ∃Z ∈Λ.M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈Λ. Then

M →→β(η) N1 & M →→β(η) N2 ⇒ ∃Z ∈Λ.N1 →→β(η) Z & N2 →→β(η) Z.

Proof. (i) See Theorems 3.2.8 and 3.3.9 in B[1984].

(ii) By (i).

1.1.8. Definition (λCu
→ ). (i) A (type assignment) statement is of the form

M : A,

with M ∈Λ and A∈TT. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.

(ii) A declaration is a statement with as subject a term variable.

(iii) A basis is a set of declarations with distinct variables as subjects.

(iv) A statement M :A is derivable from a basis Γ, notation

Γ ⊢Cu
λ→

M :A

(or Γ ⊢λ→
M : A, Γ ⊢Cu M : A or even Γ ⊢M :A if there is little danger of confusion) if

Γ ⊢M :A can be produced by the following rules.

(x:A)∈Γ ⇒ Γ ⊢ x : A;

Γ ⊢M : (A→ B), Γ ⊢ N : A ⇒ Γ ⊢ (MN) : B;

Γ, x:A ⊢M : B ⇒ Γ ⊢ (λx.M) : (A→ B).

These rules are usually written as follows.
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(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢M : (A→ B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢M : B

.
Γ ⊢ (λx.M) : (A→ B)

Figure 1.5: The system λCu
→ of type assignment á la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as
developed in Curry et al. [1958].

Notation. Another way of writing these rules is sometimes found in the literature.

Introduction rule x : A
...

M : B

λx.M : (A→B)

Elimination rule
M : (A → B) N : A

MN : B

λCu
→ alternative version

In this version the axiom is considered as implicit and is not notated. The notation

x : A
...

M : B

denotes that M : B can be derived from x:A. Striking through x:A means that for the conclusion
λx.M : A→B the assumption x:A is no longer needed; it is discharged.

1.1.9. Definition. Let Γ = {x1:A1, . . . , xn:An}. Then
(i) dom(Γ) = {x1, . . . , xn}.
(ii) x1:A1, . . . , xn:An ⊢M : A denotes Γ ⊢M : A.
(iii) In particular ⊢M : A stands for ∅ ⊢M : A.
(iv) x1, . . . , xn:A ⊢M : B stands for x1:A, . . . , xn:A ⊢M : B.

1.1.10. Example. (i) ⊢ (λxy.x) : (A→ B → A) for all A,B ∈TT.
We will use the notation of version 1 of λ→ for a derivation of this statement.

x:A, y:B ⊢ x : A

x:A ⊢ (λy.x) : B→A
⊢ (λxλy.x) : A→B→A
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Note that λxy.x ≡ λxλy.x by definition.
(ii) A natural deduction derivation (for the alternative version of the system) of the

same type assignment is the following.

x:A 2 y:B 1

x:A
1

(λy.x) : (B → A)
2

(λxy.x) : (A→ B → A)

The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule
a particular assumption is being discharged.

(iii) A more explicit way of dealing with cancellations of statements is the ‘flag-
notation’ used by Fitch (1952) and in the languages AUTOMATH of de Bruijn (1980).
In this notation the above derivation becomes as follows.

y:B

x:A

(λxy.x) : (A→ B → A)

(λy.x) : (B → A)

x:A

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is
less obvious how a statement is derived from previous statements in case applications
are used.

(iv) Similarly one can show for all A∈TT

⊢ (λx.x) : (A→ A).

(v) An example with a non-empty basis is y:A ⊢ (λx.x)y : A.

In the rest of this chapter and in fact in the rest of this book we usually will introduce
systems of typed lambda calculi in the style of the first variant of λ→.

1.1.11. Definition. Let Γ be a basis and A∈TT. Then

(i) ΛΓ
→(A) = {M ∈Λ |Γ ⊢λ→

M : A}.
(ii) ΛΓ

→ =
⋃

A∈TT
ΛΓ
→(A).

(iii) Λ→(A) = Λ∅
→(A).

(iv) Λ→ = Λ∅
→
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1.1.12. Definition. Let Γ be a basis, A∈TT and M ∈Λ. Then

(i) If M ∈Λ→(A), then we say that

M has type A or A is inhabited by M .

(ii) If M ∈Λ→, then M is called typable.

(iii) If M ∈ΛΓ
→(A), then M has type A relative to Γ.

(iv) If M ∈ΛΓ
→, then M is called typeable relative to Γ.

(v) If Λ
(Γ)
→ (A) 6= ∅, then A is inhabited (relative to Γ).

1.1.13. Example. We have

K ∈ Λ∅
→(A→B→A);

Kx ∈ Λ{x:A}
→ (B→A).

1.1.14. Definition. Let A∈TT(λ→).

(i) The depth of A, notation dpt(A), is defined as follows.

dpt(α) = 0

dpt(A→B) = max{dpt(A),dpt(B)}+ 1

(ii) The rank of A, notation rk(A), is defined as follows.

rk(α) = 0

rk(A→B) = max{rk(A) + 1, rk(B)}

(iii) The order of A, notation ord(A), is defined as follows.

ord(α) = 1

ord(A→B) = max{ord(A) + 1, ord(B)}

(iv) The depth (rank or order) of a basis Γ is

max
i
{dpt(Ai) | (xi:Ai)∈Γ},

(similarly for the rank and order, respectively). Note that ord(A) = rk(A) + 1.

1.1.15. Definition. For A∈TT we define Ak→B by recursion on k:

A0→B = B;

Ak+1→B = A→Ak→B.

Note that rk(Ak→B) = rk(A→B), for all k > 0.
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Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1.1.18(i).

The asymmetry in the definition of rank is intended because e.g. a type like (o→o)→o
is more complex than o→o→o, as can be seen by looking to the inhabitants of these
types: functionals with functions as arguments versus binary function. Sometimes one
uses instead of ‘rank’ the name type level. This notion will turn out to be used most of
the times.

In logically motivated papers one finds the notion ord(A). The reason is that in
first-order logic one deals with domains and their elements. In second order logic one
deals with functions between first-order objects. In this terminology 0-th order logic can
be identified with propositional logic.

The minimal and maximal systems λo
→ and λ∞→

The collection A of type variables serves as set of base types from which other types are
constructed. We have TTo = {o} with just one type atom and TT∞ = {α0, α1, α2, . . .}
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.

1.1.16. Definition. We define the following systems of type assignment.
(i) λo

→ = λTTo
→ . This system is also called λτ in the literature.

(ii) λ∞→ = λTT∞
→ .

If it becomes necessary to distinguish the set of atomic types, will use notations like
Λo(A) = ΛTTo(A) and Λ∞(A) = ΛTT∞

(A).
Many of the interesting features of the ‘larger’ λ→ are already present in the minimal

version λo
→. The complexity of λ→ is already present in λo

→.

1.1.17. Definition. (i) The following types of TTo ⊆ TTA are often used.

0 = o, 1 = 0→0, 2 = (0→0)→0, . . . .

In general
0 = o and k + 1 = k→0.

Note that rk(n) = n.
(ii) Define nk by cases on n.

ok = o;

(n+ 1)k = nk→o.

For example

12 = o→o→o;
23 = 1→1→1→o.

Notice that rk(nk) = rk(n), for k > 0.
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1.1.18. Lemma. (i) Every type A of λ∞→ is of the form

A = A1→A2→ . . .→An→α.

(ii) Every type A of λo
→ is of the form

A = A1→A2→ . . .→An→o.

(iii) rk(A1→A2→ . . .→An→α) = max{rk(Ai) + 1 | 1 ≤ i ≤ n}.

Proof. (i) By induction on the structure (depth) of A. If A = α, then this holds for
n = 0. If A = B→C, then by the induction hypothesis one has
C = C1→ . . .→Cn→γ. Hence A = B→C1→ . . .→Cn→γ.

(ii) By (i).

(iii) By induction on n.

1.1.19. Notation. Let A∈TTA and suppose A = A1→A2→ . . .→An→α. Then the Ai

are called the components of A. We write

arity(A) = n,

A(i) = Ai, for 1 ≤ i ≤ n;

target(A) = α.

Iterated components are denoted as follows

A(i, j) = A(i)(j).

Different versions of λA
→

The system λA
→ that was introduced in Definition 1.1.8 assigns types to untyped lambda

terms. These system will be referred to as the Curry system and be denoted by λA
→Cu

or λCu
→ , as the set A often does not need to be specified. There will be introduced two

variants of λA
→.

The first variant of λCu
→ is the Church version of λA

→, denoted by λA
→Ch or λCh

→ . In
this theory the types are assigned to embellished terms in which the variables (free and
bound) come with types attached. For example the Curry style type assignments

⊢Cu
λ→

(λx.x) : A→A (1Cu)

y:A ⊢Cu
λ→

(λx.xy) : (A→B)→A→B (2Cu)

now becoming

(λxA.xA)∈ΛCh
→ (A→A) (1Ch)

(λxA→B.xA→ByA) : ΛCh
→ ((A→B)→A→B) (2Ch)
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The second variant of λCu
→ is the de Bruijn version of λA

→, denoted by λA
→dB or λdB

→ . Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

⊢dB
λ→

(λx : A.x) : A→A (1dB)

y:A ⊢dB
λ→

(λx : (A→B).xy) : (A→B)→A→B (2dB)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. Notation. Terms like (λfx.f(fx))∈Λø(1→o→o) will often be written

λf1x0.f(fx)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. Definition. Let A = A1→ . . . An→α and suppose Γ ⊢M : A.

(i) Then M is in long-nf, notation lnf, if M ≡ λxA1
1 . . . xAn

n .xM1 . . .Mn and each Mi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1.5.16 it is proved that if M has a β-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique lnf and will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1.2.2. Examples. (i) Note that λf1.f =βη λf
1λxo.fx and that λf1.f is a βη-nf but

not a lnf.

(ii) λf1λxo.fx is a lnf, but not a βη-nf.

(iii) λx:o.x is both in βη-nf and lnf.

(iv) The β-nf λF :22λf :1.Ff(λx:o.fx) is neither in βη-nf nor lnf.

(v) A variable of atomic type α is a lnf, but of type A→B not.

(vi) A variable f : 1→1 has as lnf λg1λxo.f(λyo.gy)x.

1.2.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ →→η M .
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(ix) If M has the λK− property then M β-reduces to only finitely many N. This follows
by (vii) and (viii).

(x) If M has the λK− property then M is strongly β-normalizable. By (i), (iii) and
(ix).

(xi) If M has the λK− property then M is strongly βη-normalizable. By (v) and (x).
(xii) For each M there is an N with the λK− property such that N →→βη M . First

expand M by η expansion so that every subterm of M beginning with a lambda is a
lambda prefix followed by a matrix of type 0. Let a : α and f : 0→(0→0) be new
variables. For each type T = T1→ . . .→Tt→α with Ti = Ti,1→ . . .→Ti,ki

→αi for i =
1, . . . , t define terms UA : T recursively by

U0 = a;

UT = λx1 . . . xt.f(x1UT1,1 . . . UT1,k1
) . . .

(f(xt−1UTt−1,1 . . . UTt−1,kt−1
)(xtUTt,1 . . . UTt,kt

))..).

Now recursively replace each dummy λx occurring λxλy . . . λz.X with x : T and X : 0
by λxλy . . . λz.KX(xUT1 . . . UTt). Clearly the resulting N satisfies N →→βη M and the
λK− property, since all dummy lambdas appear in K : 12.
(xiii) Every typable term is strongly βη normalizable. By (xi) and (xii).

Still another proof is to be found in de Vrijer [1987] in which for a typed term M a
computation is given of the langest reduction path to β-nf.

2.3. Checking and finding types

There are several natural problems concerning type systems.

2.3.1. Definition. (i) The problem of type checking consists of determining, given basis
Γ, term M and type A whether Γ ⊢M : A.

(ii) The problem of typeability consists of given a term M determining whether M
has some type with respect to some Γ.

(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible
types A and bases Γ that type a given M .

(iv) The inhabitation problem consists of finding out whether a given typeA is inhabited
by some term M in a given basis Γ.

(v) The enumeration problem consists of determining for a given type A and a given
context Γ all possible terms M such that Γ ⊢M : A.

The five problems may be summarized stylistically as follows.

Γ ⊢λ→
M : A ? type checking ;

∃A,Γ [Γ ⊢λ→
M : A] ? typeability ;

? ⊢λ→
M : ? type reconstruction;

∃M [Γ ⊢λ→
M : A] ? inhabitation;

Γ ⊢λ→
? : A enumeration.
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In another notation this is the following.

M ∈ ΛΓ
→(A) ? type checking ;

∃A,Γ M ∈ ΛΓ
→ (A)? typeability ;

M ∈ Λ?
→(?) type reconstruction;

ΛΓ
→(A) 6= ∅ ? inhabitation;

? ∈ ΛΓ
→(A) enumeration.

In this section we will treat the problems of type checking, typeability and type
reconstruction for the three versions of λ→. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for λCh

→ and λdB
→ than for λCu

→ . The
problems of inhabitation and enumeration will be treated in the next section.

One may wonder what is the role of the context Γ in these questions. The problem

∃Γ∃A Γ ⊢M : A.

can be reduced to one without a context. Indeed, for Γ = {x1:A1, . . . , xn:An}
Γ ⊢M : A ⇔ ⊢ (λx1(:A1) . . . λxn(:An).M) : (A1 → . . .→ An → A).

Therefore
∃Γ∃A [Γ ⊢M : A] ⇐⇒ ∃B [⊢ λ~x.M : B].

On the other hand the question

∃Γ∃M [Γ ⊢M : A] ?

is trivial: take Γ = {x:A} and M ≡ x. So we do not consider this question.
The solution of the problems like type checking for a fixed context will have important

applications for the treatment of constants.

Checking and finding types for λdB
→ and λCh

→

We will see again that the systems λCh
→ and λdB

→ are essentially equivalent. For these
systems the solutions to the problems of type checking, typeability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2.3.2. Proposition (Type checking for λdB
→ ). Let Γ be a basis of λdB

→ . Then there is a
computable function typeΓ : ΛTT → TT ∪ {error} such that

M ∈ ΛΓ
→Ch(A) ⇐⇒ typeΓ(M) = A.

Proof. Define

typeΓ(x) = Γ(x);

typeΓ(MN) = B, if typeΓ(M) = typeΓ(N)→B,

= error, else;

typeΓ(λx:A.M) = A→typeΓ∪{x:A}(M), if typeΓ∪{x:A}(M) 6= error,

= error, else.
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Then the statement follows by induction on the structure of M .

2.3.3. Corollary. Typeability and type reconstruction for λdB
→ are computable. In fact

one has the following.

(i) M ∈ ΛΓ
→dB ⇐⇒ typeΓ(M) 6= error.

(ii) Each M ∈ΛΓ
→dB(typeΓ) has a unique type; in particular

M ∈ ΛΓ
→dB(typeΓ(M)).

Proof. By the proposition.

For λCh
→ things are essentially the same, except that there are no bases needed, since

variables come with their own types.

2.3.4. Proposition (Type checking for λCh
→ ). There is a computable function type :

Λ→Ch → TT ∪ {error} such that

M ∈ Λ→Ch(A) ⇐⇒ type(M) = A.

Proof. Define

type(xA) = A;

type(MN) = B, if type(M) = type(N)→B,

= error, else;

type(λxA.M) = A→type(M), if type(M) 6= error,

= error, else.

Then the statement follows again by induction on the structure of M .

2.3.5. Corollary. Typeability and type reconstruction for λCh
→ are computable. In fact

one has the following.

(i) M ∈ Λ→Ch ⇐⇒ type(M) 6= error.

(ii) Each M ∈Λ→Ch has a unique type; in particular M ∈ Λ→Ch(type(M)).

Proof. By the proposition.

Checking and finding types for λCu
→

We now will show the computability of the three questions for λCu
→ . This occupies 2.3.6

- 2.3.16 and in these items ⊢ stands for ⊢TT∞

λ→Cu
.

Let us first make the easy observation that in λCu
→ types are not unique. For example

I ≡ λx.x has as possible type α→α, but also (β→β)→(β→β) and (α→β→β)→(α→β→β).
Of these types α→α is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in α.
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2.3.6. Definition. (i) A substitutor is an operation ∗ : TT→ TT such that

∗(A→ B) ≡ ∗(A)→ ∗(B).

(ii) We write A∗ for ∗(A).
(iii) Usually a substitution ∗ has a finite support, that is, for all but finitely many

type variables α one has α∗ ≡ α (the support of ∗ being

sup(∗) = {α | α∗ 6≡ α}).

In that case we write

∗(A) = A[α1 := α∗
1, . . . , αn := α∗

n],

where {α1, . . . , αn} ⊇ sup(∗). We also write

∗ = [α1 := α∗
1, . . . , αn := α∗

n]

and
∗ = [ ]

for the identity substitution.

2.3.7. Definition. (i) Let A,B ∈TT. A unifier for A and B is a substitutor ∗ such that
A∗ ≡ B∗.

(ii) The substitutor ∗ is a most general unifier for A and B if

• A∗ ≡ B∗

• A∗1 ≡ B∗1 ⇒ ∃ ∗2 . ∗1 ≡ ∗2 ◦ ∗.
(iii) Let E = {A1 = B1, . . . , An = Bn} be a finite set of equations between types.

The equations do not need to be valid. A unifier for E is a substitutor ∗ such that
A∗

1 ≡ B∗
1 & · · · & A∗

n ≡ B∗
n. In that case one writes ∗ |= E. Similarly one defines the

notion of a most general unifier for E.

2.3.8. Examples. The types β → (α → β) and (γ → γ) → δ have a unifier. For
example ∗ = [β := γ → γ, δ := α → (γ → γ)] or ∗1 = [β := γ → γ, α := ε → ε,
δ := ε→ ε→ (γ → γ)]. The unifier ∗ is most general, ∗1 is not.

2.3.9. Definition. A is a variant of B if for some ∗1 and ∗2 one has

A = B∗1 and B = A∗2 .

2.3.10. Example. α→ β → β is a variant of γ → δ → δ but not of α→ β → α.

Note that if ∗1 and ∗2 are both most general unifiers of say A and B, then A∗1 and
A∗2 are variants of each other and similarly for B.

The following result due to Robinson (1965) states that unifiers can be constructed
effectively.
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2.3.11. Theorem (Unification theorem). (i) There is a recursive function U having (after
coding) as input a pair of types and as output either a substitutor or fail such that

A and B have a unifier ⇒ U(A,B) is a most general unifier

for A and B;

A and B have no unifier ⇒ U(A,B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of
equations between types and as output either a substitutor or fail such that

E has a unifier ⇒ U(E) is a most general unifier for E;

E has no unifier ⇒ U(E) = fail.

Proof. Note that A1→A2 ≡ B1→B2 holds iff A1 ≡ B1 and A2 ≡ B2 hold.

(i) Define U(A,B) by the following recursive loop, using case distinction.

U(α,B) = [α := B], if α /∈ FV(B),

= [ ], if B = α,

= fail, else;

U(A1→A2, α) = U(α,A1→A2);

U(A1→A2, B1→B2) = U(A
U(A2,B2)
1 , B

U(A2,B2)
1 ) ◦ U(A2, B2),

where this last expression is considered to be fail if one of its parts is. Let #var(A,B) =‘the
number of variables in A → B’ and #→(A,B)=‘the number of arrows in A → B’.
By induction on (#var(A,B),#→(A,B)) ordered lexicographically one can show that
U(A,B) is always defined. Moreover U satisfies the specification.

(ii) If E = {A1 = B1, . . . , An = Bn}, then define U(E) = U(A,B), where A =
A1→· · ·→An and B = B1→· · ·→Bn.

See [???] for more on unification. The following result due to Parikh [1973] for
propositional logic (interpreted by the propositions-as-types interpretation) and Wand
[1987] simplifies the proof of the decidability of type checking and typeability for λ→.

2.3.12. Proposition. For every basis Γ, term M ∈Λ and A∈TT such that FV(M) ⊆
dom(Γ) there is a finite set of equations E = E(Γ,M,A) such that for all substitutors ∗
one has

∗ |= E(Γ,M,A) ⇒ Γ∗ ⊢M : A∗, (1)

Γ∗ ⊢M : A∗ ⇒ ∗1 |= E(Γ,M,A), (2)

for some ∗1 such that ∗ and ∗1 have the same

effect on the type variables in Γ and A.
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Proof. Define E(Γ,M,A) by induction on the structure of M :

E(Γ, x, A) = {A = Γ(x)};
E(Γ,MN,A) = E(Γ,M, α→A) ∪ E(Γ, N, α),

where α is a fresh variable;

E(Γ, λx.M,A) = E(Γ ∪ {x:α},M, β) ∪ {α→β = A},
where α, β are fresh.

By induction on M one can show (using the generation lemma (2.1.3)) that (1) and (2)
hold.

2.3.13. Definition. (i) Let M ∈Λ. Then (Γ, A) is a principal pair (pp) for M if

(1) Γ ⊢M : A.

(2) Γ′ ⊢M : A′ ⇒ ∃∗ [Γ∗ ⊆ Γ′ & A∗ ≡ A′].

Here {x1:A1, . . .}∗ = {x1:A
∗
1, . . .}.

(ii) Let M ∈Λ be closed. Then A is a principal type (pt) for M if

(1) ⊢M : A

(2) ⊢M : A′ ⇒ ∃∗ [A∗ ≡ A′].

Note that if (Γ, A) is a pp for M , then every variant (Γ′, A′) of (Γ, A), in the obvious
sense, is also a pp for M . Conversely if (Γ, A) and (Γ′, A′) are pp’s for M , then (Γ′, A′)
is a variant of (Γ, A). Similarly for closed terms and pt’s. Moreover, if (Γ, A) is a pp for
M , then FV(M) = dom(Γ).

The following result is independently due to Curry (1969), Hindley (1969) and Milner
(1978). It shows that for λ→ the problems of type checking and typeability are decidable.

2.3.14. Theorem (Principal type theorem for λCu
→ ). (i) There exists a computable function

pp such that one has

M has a type ⇒ pp(M) = (Γ, A), where (Γ, A) is a pp for M ;

M has no type ⇒ pp(M) = fail.

(ii) There exists a computable function pt such that for closed terms M one has

M has a type ⇒ pt(M) = A, where A is a pt for M ;

M has no type ⇒ pt(M) = fail.

Proof. (i) Let FV(M) = {x1, . . . , xn} and set Γ0 = {x1:α1, . . . , xn:αn} and A0 = β.
Note that

M has a type ⇒ ∃Γ ∃A Γ ⊢M : A

⇒ ∃ ∗ Γ∗
0 ⊢M : A∗

0

⇒ ∃ ∗ ∗ |= E(Γ0,M,A0).
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Define

pp(M) = (Γ∗
0, A

∗
0), if U(E(Γ0,M,A0)) = ∗;

= fail, if U(E(Γ0,M,A0)) = fail.

Then pp(M) satisfies the requirements. Indeed, if M has a type, then

U(E(Γ0,M,A0)) = ∗

is defined and Γ∗
0 ⊢ M : A∗

0 by (1) in proposition 2.3.12. To show that (Γ∗
0, A

∗
0) is a pp,

suppose that also Γ′ ⊢M : A′. Let Γ̃ = Γ′ ↾ FV(M); write Γ̃ = Γ∗0
0 and A′ = A∗0

0 . Then
also Γ∗0

0 ⊢ M : A∗0
0 . Hence by (2) in proposition 2.3.12 for some ∗1 (acting the same as

∗0 on Γ0, A0) one has ∗1 |= E(Γ0,M,A0). Since ∗ is a most general unifier (proposition
2.3.11) one has ∗1 = ∗2 ◦ ∗ for some ∗2. Now indeed

(Γ∗
0)

∗2 = Γ∗1
0 = Γ∗0

0 = Γ̃ ⊆ Γ′

and

(A∗
0)

∗2 = A∗1
0 = A∗0

0 = A′.

If M has no type, then ¬∃ ∗ ∗ |= E(Γ0,M,A0) hence

U(Γ0,M,A0) = fail = pp(M).

(ii) Let M be closed and pp(M) = (Γ, A). Then Γ = ∅ and we can put pt(M) = A.

2.3.15. Corollary. Type checking and typeability for λ→ are decidable.

Proof. As to type checking, let M and A be given. Then

⊢M : A ⇐⇒ ∃∗ [A = pt(M)∗].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2.3.11).

As to the question of typeability, let M be given. Then M has a type iff pt(M) 6=
fail.

The following result is due to Hindley [1969].

2.3.16. Theorem (Second principal type theorem for λCu
→ ). (i) For every type A∈TT one

has

⊢M : A ⇒ ∃M ′[M ′ →→βη M & pt(M ′) = A].

(ii) For every type A∈TT there exists a basis Γ and term M ∈Λ such that (Γ, A) is a
pp for M.
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Proof. (i) We present a proof by examples. We choose three situations in which we
have to construct an M ′ that are representative for the general case. Do exercise ?? for
the general proof.

Case M ≡ λx.x and A ≡ (α→β)→α→β. Then pt(M) ≡ α→α. Take M ′ ≡ λxy.xy.
The η-expansion of λx.x to λxy.xy makes subtypes of A correspond to unique subterms
of M ′.

Case M ≡ λxy.y and A ≡ (α→γ)→β→β. Then pt(M) ≡ α→β→β. Take M ′ ≡
λxy.Ky(λz.xz). The β-expansion forces x to have a functional type.

Case M ≡ λxy.x and A ≡ α→α→α. Then pt(M) ≡ α→β→α. Take M ′ ≡
λxy.Kx(λf.[fx, fy]). The β-expansion forces x and y to have the same types.

(ii) Let A be given. We know that ⊢ I : A→A. Therfore by (i) there exists an I′ →→βη I

such that pt(I′) = A→A. Then take M ≡ I′x. We have pp(I′x) = ({x:A}, A).

Complexity

The space and time complexity of finding a type for a typable term is exponential, see
exercise 2.5.18.

In order to decide whether for two typed terms M,N ∈Λ→(A) one has

M =βη N,

one can normalize both terms and see whether the results are syntactically equal (up to
α-conversion). In exercise 2.5.17 it will be shown that the time and space costs of doing
this is at least hyper-exponential (in the size of MN). The reason is that the type-free
application of Church numerals

cncm = cmn

can be typed, even when applied iteratively

cn1cn2 . . . cnk
.

In exercise 2.5.16 it is shown that the costs are also at most hyper-exponential. The
reason is that Turing’s proof of normalization for terms in λ→ uses a succesive development
of redexes of ‘highest’ type. Now the length of each such development depends exponentially
on the length of the term, whereas the length of a term increases at most quadratically
at each reduction step. The result even holds for typable terms M,N ∈Λ→Cu(A), as the
cost of finding types only ads a simple exponential to the cost.

One may wonder whether there is not a more efficient way to decide M =βη N , for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem
for terms of some type in λo

→. A shorter proof of this result can be found in Mairson
[1992].



1.2. NORMAL INHABITANTS 21

The second variant of λCu
→ is the de Bruijn version of λA

→, denoted by λA
→dB or λdB

→ . Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

⊢dB
λ→

(λx : A.x) : A→A (1dB)

y:A ⊢dB
λ→

(λx : (A→B).xy) : (A→B)→A→B (2dB)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. Notation. Terms like (λfx.f(fx))∈Λø(1→o→o) will often be written

λf1x0.f(fx)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. Definition. Let A = A1→ . . . An→α and suppose Γ ⊢M : A.

(i) Then M is in long-nf, notation lnf, if M ≡ λxA1
1 . . . xAn

n .xM1 . . .Mn and each Mi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1.5.16 it is proved that if M has a β-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique lnf and will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1.2.2. Examples. (i) Note that λf1.f =βη λf
1λxo.fx and that λf1.f is a βη-nf but

not a lnf.

(ii) λf1λxo.fx is a lnf, but not a βη-nf.

(iii) λx:o.x is both in βη-nf and lnf.

(iv) The β-nf λF :22λf :1.Ff(λx:o.fx) is neither in βη-nf nor lnf.

(v) A variable of atomic type α is a lnf, but of type A→B not.

(vi) A variable f : 1→1 has as lnf λg1λxo.f(λyo.gy)x.

1.2.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ →→η M .
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Proof. Define M ℓ by induction on the depth of the type of the closure of M as follows.

M ℓ ≡ (λ~x.yM1 . . .Mn)ℓ = λ~x~z.yM ℓ
1 . . .M

ℓ
n~z

ℓ.

Then M ℓ does the job.

Now we will define a 2-level grammar for obtaining the collection of all lnf’s of a
given type A.

1.2.4. Definition. Let N = {L(A; Γ) | A∈TTA; Γ a context of λ→}. Let Σ be the
alphabet of the terms of the λCh

→ . Define the following two-level grammar, see van
Wijngaarden et al. [1976], as a notion of reduction over words over N ∪Σ. The elements
of N are the non-terminals (unlike in a context-free language there are now infinitely
many of them).

L(α; Γ) ⇒ xL(B1; Γ) . . . L(Bn; Γ), if (x: ~B→α)∈Γ;

L(A→B; Γ) ⇒ λxA.L(B; Γ, x:A).

Typical productions of this grammar are the following.

L(3; ∅) ⇒ λF 2.L(o;F 2)

⇒ λF 2.FL(1;F 2)

⇒ λF 2.F (λxo.L(o;F 2, xo))

⇒ λF 2.F (λxo.x).

But one has also

L(o;F 2, xo) ⇒ FL(1;F 2, xo)

⇒ F (λxo
1.L(o;F 2, xo, xo

1))

⇒ F (λxo
1.x1).

Hence (⇒⇒ denotes the transitive reflexive closure of ⇒)

L(3; ∅) ⇒⇒ λF 2.F (λxo.F (λxo
1.x1)).

In fact, L(3; ∅) reduces to all possible closed lnf’s of type 3. Like in abstract syntax we
do not produce parentheses from the L(A; Γ), but write them when needed.

1.2.5. Proposition. Let Γ,M,A be given. Then

L(A,Γ)⇒⇒M ⇐⇒ Γ ⊢M : A & M is in lnf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all β-nf’s.
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1.2.6. Definition. The 2-level grammar N is defined as follows.

N(A; Γ) ⇒ xN(B1; Γ) . . . N(Bn; Γ), if (x: ~B→A)∈Γ;

N(A→B; Γ) ⇒ λxA.N(B; Γ, x:A).

Now the β-nf’s are being produced. As an example we make the following production.
Remember that 1 = o→o.

L(1→o→o; ∅) ⇒ λf1.L(o→o; f :o→o)
⇒ λf1.f.

1.2.7. Proposition. Let Γ,M,A be given. Then

N(A,Γ)⇒⇒M ⇐⇒ Γ ⊢M : A & M is in β-nf.

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine MA producing
the set of closed terms of that type. If one is interested in terms containing variables
xA1

1 , . . . , xAn
n , then one can also find these terms by considering the machine for the type

A1→ . . .→An→A and look at the subproduction at node A.

1.2.8. Examples. (i) A = o→o→o. Then MA is

o→o→o λxoλyo

// o // x

y
��

This shows that the type 12 has two closed inhabitants: λxy.x and λxy.y. We see that
the two arrows leaving o represent a choice.

(ii) A = α→((o→β)→α)→β→α. Then MA is

α→((o→β)→α)→β→α

λaαλf (o→β)→αλbβ

��
α

f
��

// a

o→β
λyo

// β // b

Again there are only two inhabitants, but now the production of them is rather different:
λafb.a and λafb.f(λxo.b).
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(iii) A = ((α→β)→α)→α. Then MA is

((α→β)→α)→α

λF (α→β)→α

��
α F // α→β

λxα
// β

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A = 1→o→o. Then MA is

1→o→o
λf1λxo

��
f o@GAFBE // x

This is the type Nat having the Church’s numerals λf1xo.fnx as inhabitants.
(v) A = 1→1→o→o. Then MA is

1→1→o→o
λf1λg1λxo

��
f o g@GAFBE AFBECD

��
x

Inhabitants of this type represent words over the alphabet Σ = {f, g}, for example

λf1g1xo.fgffgfggx,

where we have to insert parentheses associating to the right.
(vi) A = (α→β→γ)→β→α→γ. Then MA is

(α→β→γ)→β→α→γ

λfα→β→γλbβλaα

��
γ

��
a αoo oo f // β // b

giving as term λfα→β→γλbβλaα.fab. Note the way an interpretation should be given
to paths going through f : the outgoing arcs (to α and β ) should be completed both
separately in order to give f its two arguments.
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(vii) A = 3. Then MA is

3

λF 2

��
o

��

F **
1

λxo

jj

x

This type 3 has inhabitants having more and more binders:

λF 2.F (λxo
0.F (λxo

1.F (· · · (λxo
n.xi)))).

The novel phenomenon that the binder λxo may go round and round forces us to give new
incarnations λxo

0, λx
o
1, . . . each time we do this (we need a counter to ensure freshness of

the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations xk. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.
(viii) A = 3→o→o. Then MA is

3→o→o

λΦ3λco

��
f o@GAFBE

Φ
**

��

2
λf1

jj

c

This type, called the monster M, does have a potential infinite amount of binding,
having as terms e.g.

λΦ3co.Φλf1
1 .f1Φλf

1
2 .f2f1Φ . . . λf

1
n.fn . . . f2f1c,

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f1 in this case) becomes necessary, as the f going from o to itself needs
to be one that has already been incarnated.

(ix) A = 12→o→o. Then MA is

12→o→o
λp12λco

// o

��

// c

p

JJ TT

This is the type of binary trees, having as elements, e.g. λp12co.c and λp12co.pc(pcc).
Again, as in example (vi) the outgoing arcs from p (to o ) should be completed both
separately in order to give p its two arguments.
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(x) A = 12→2→o. Then MA is

1

λxo




12→2→o λF 12λG2

// o

G

JJ

��

// x

F

II UU

This is the type L corresponding to untyped lambda terms. For example the untyped
terms ω ≡ λx.xx and Ω ≡ (λx.xx)(λx.xx) can be translated to (ω)t ≡ λF 12G2.G(λxo.Fxx)
and

(Ω)t ≡ λF 12G2.F (G(λxo.Fxx))(G(λxo.Fxx))
=β λFG.F ((ω)tFG)((ω)tFG)
=β (ω)t ·L (ω)t,

where for M,N ∈L one defines M ·L N = λFG.F (MFG)(NFG). All features of
producing terms inhabiting types (bookkeeping bound variables, multiple paths) are
present here.

Following the 2-level grammar N one can make inhabitation machines for β-nf Mβ
A .

1.2.9. Example. We show how the production machine for β-nf’s differs from the one
for lnf’s. Let A = 1→o→o. Then λf1.f is the (unique) β-nf of type A that is not a lnf.

It will come out from the following machine Mβ
A .

1→o→o
λf1

��
o→o //

λxo

��

f

f o@GAFBE // x

So in order to obtain the β-nf’s, one has to allow output at types that are not atomic.

1.3. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in λo

→. We start with several examples: Booleans, the natural numbers, the free monoid
over n generators (words over a finite alphabet with n elements) and trees with at the
leafs labels from a type A. The following definitions depend on a given type A. So in
fact Bool = BoolA etcetera. Often one takes A = o.



Chapter 2

Properties

2.1. First properties

In this section we will treat simple properties of the various systems λ→. Deeper
properties—like strong normalization of typeable terms—will be considered in Section
2.2.

Properties of λCu
→ , λCh

→ and λdB
→

Unless stated otherwise, properties stated for λ→ apply to both systems.

2.1.1. Proposition (Weakening lemma for λ→).
Suppose Γ ⊢M : A and Γ′ is a basis with Γ ⊆ Γ′. Then Γ′ ⊢M : A.

Proof. By induction on the derivation of Γ ⊢M : A.

2.1.2. Lemma (Free variable lemma). (i) Suppose Γ ⊢M : A. Then FV (M) ⊆ dom(Γ).
(ii) If Γ ⊢ M : A, then Γ ↾ FV(M) ⊢ A : M , where for a set X of variables one has

Γ ↾ FV(M) = {x:A∈Γ |x∈X}.

Proof. (i), (ii) By induction on the generation of Γ ⊢M : A.

The following result is related to the fact that the system λ→ is ‘syntax directed’, i.e.
statements Γ ⊢M : A have a unique proof.

2.1.3. Proposition (Generation lemma for λCu
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx.M : A ⇒ ∃B,C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

Proof. (i) Suppose Γ ⊢ x : A holds in λ→. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (x:A)∈Γ.

(ii), (iii) The other two implications are proved similarly.

49
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2.1.4. Proposition (Generation lemma for λdB
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx:B.M : A ⇒ ∃C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

Proof. Similarly.

2.1.5. Proposition (Generation lemma for λCh
→ ).

(i) xB ∈ΛCh
→ (A) ⇒ B = A.

(ii) (MN)∈ΛCh
→ (A) ⇒ ∃B ∈TT.[M ∈ΛCh

→ (B→A) & N ∈ΛCh
→ (B)].

(iii) (λxB.M)∈ΛCh
→ (A) ⇒ ∃C ∈TT.[A = (B→C) & M ∈ΛCh

→ (C)].

Proof. As before.

The following two results hold for λCu
→ and λdB

→ . Variants already have been proved
for λCh

→ , Propositions 1.4.2 and 1.4.4(iii).

2.1.6. Proposition (Substitution lemma for λCu
→ and λdB

→ ).
(i) Γ, x:A ⊢M : B & Γ ⊢ N : A ⇒ Γ ⊢M [x: = N ] : B.
(ii) Γ ⊢M : A ⇒ Γ[α := B] ⊢M : A[α := B].

Proof. The proof will be given for λCu
→ , for λdB

→ it is similar.
(i) By induction on the derivation of Γ, x:A ⊢M : B. Write

P ∗ ≡ P [x: = N ].
Case 1. Γ, x:A ⊢M : B is an axiom, hence M ≡ y and (y:B)∈Γ ∪ {x:A}.

Subcase 1.1. (y:B)∈Γ. Then y 6≡ x and Γ ⊢M∗ ≡ y[x:N ] ≡ y : B.
Subcase 1.2. y:B ≡ x:A. Then y ≡ x and B ≡ A, hence Γ ⊢M∗ ≡ N : A ≡ B.

Case 2. Γ, x:A ⊢ M : B follows from Γ, x:A ⊢ F : C→B, Γ, x:A ⊢ G : C and
FG ≡ M . By the induction hypothesis one has Γ ⊢ F ∗ : C→B and Γ ⊢ G∗ : C. Hence
Γ ⊢ (FG)∗ ≡ F ∗G∗ : B.

Case 3. Γ, x:A ⊢M : B follows from Γ, x:A, y:D ⊢ G : E, B ≡ D→E and λy.G ≡M .
By the induction hypothesis Γ, y:D ⊢ G∗ : E, hence Γ ⊢ (λy.G)∗ ≡ λy.G∗ : D→E ≡ B.

(ii) Similarly.

2.1.7. Proposition (Subject reduction property for λCu
→ and λdB

→ ). Suppose
M →→βη M

′. Then Γ ⊢M : A ⇒ Γ ⊢M ′ : A.

Proof. The proof will be given for λdB
→ , for λCu

→ it is similar. Suppose Γ ⊢ M : A and
M → M ′ in order to show that Γ ⊢ M ′ : A; then the result follows by induction on the
derivation of Γ ⊢M : A.

Case 1. Γ ⊢ M : A is an axiom. Then M is a variable, contradicting M → M ′.
Hence this case cannot occur.

Case 2. Γ ⊢ M : A is Γ ⊢ FN : A and is a direct consequence of Γ ⊢ F : B→A and
Γ ⊢ N : B. Since FN ≡M →M ′ we can have three subcases.
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Subcase 2.1. M ′ ≡ F ′N with F → F ′.

Subcase 2.2. M ′ ≡ FN ′ with N → N ′.
In these two subcases it follows by the induction hypothesis that Γ ⊢M ′ : A.

Subcase 2.3. F ≡ λx:B.G and M ′ ≡ G[x: = N ]. Since

Γ ⊢ λx.G : B→A & Γ ⊢ N : B

it follows by the generation lemma 2.1.3 for λ→ that

Γ, x:B ⊢ G : A & Γ ⊢ N : B.

Therefore by the substitution lemma 2.1.6 for λ→ it follows that
Γ ⊢ G[x: = N ] : A, i.e. Γ ⊢M ′ : A.

Case 3. Γ ⊢ M : A is Γ ⊢ λx:B.N : B→C and follows from Γ, x:B ⊢ N : C. Since
M → M ′ we have M ′ ≡ λx:B.N ′ with N → N ′. By the induction hypothesis one has
Γ, x:B ⊢ N ′ : C, hence Γ ⊢ λx:B.N ′ : B→C, i.e. Γ ⊢M ′ : A.

The following result also holds for λCh
→ and λdB

→ , Exercise 2.5.4.

2.1.8. Corollary (Church-Rosser Theorem for λCu
→ ). On typable terms of λCu

→ the Church-
Rosser theorem holds for the notions of reduction →→β and →→βη.

(i) Let M,N ∈ΛΓ
→(A). Then

M =β(η) N ⇒ ∃Z ∈ΛΓ
→(A).M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈ΛΓ
→(A). Then

M →→βη N1 & M →→β(η) N2 ⇒ ∃Z ∈ΛΓ
→(A).N1 →→β(η) Z & N2 →→β(η) Z.

Proof. By the Church-Rosser theorems for→→β and→→βη on untyped terms, Theorem
1.1.7, and Proposition 2.1.7.

The following property of uniqueness of types only holds for the Church and de
Bruijn versions of λ→. It is instructive to find out where the proof brakes down for λCu

→

and also that the two contexts in (ii) should be the same.

2.1.9. Proposition (Unicity of types for λCh
→ and λdB

→ ).

(i) M ∈ΛCh
→ (A) & M ∈ΛCh

→ (B) ⇒ A = B.

(ii) Γ ⊢dB
λ→

M : A & Γ ⊢dB
λ→

M : B ⇒ A = B.

Proof. (i), (ii) By induction on the structure of M , using the generation lemma 2.1.4.
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Normalization

For several applications, for example for the problem to find all possible inhabitants of a
given type, we will need the weak normalization theorem, stating that all typable terms
do have a βη-nf (normal form). The result is valid for all versions of λ→ and a fortiori
for the subsystems λo

→. The proof is due to Turing and is published posthumously in
Gandy [1980]. In fact all typable terms in these systems are βη strongly normalizing,
which means that all βη-reductions are terminating. This fact requires more work and
will be proved in §12.2.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding
of the proof of the normalization theorem.

2.1.10. Definition. (i) An abstract reduction system is a pair (X,→R), where X is a
set and →R is a binary relation on X.

(ii) An element x∈X is said to be in R-normal form (R-nf) if for no y ∈X one has
x→R y.

(iii) (X,R) is called weakly normalizing (R-WN, or simply WN) if every element has
an R-nf.

(iv) (X,R) is said to be strongly normalizing (R-SN, or simply SN) if every R-
reduction path

x0 →R x1 →R x2 →R . . . .

is finite.

2.1.11. Definition. (i) A multiset over nat can be thought of as a generalized set S in
which each element may occur more than once. For example

S = {3, 3, 1, 0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera.

More formally, the above multiset S can be identified with a function f ∈N
N that is

almost everywhere 0, except

f(0) = 1, f(1) = 1, f(3) = 2.

This S is finite if f has finite support , where

support(f) = {x∈N | f(x) 6= 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f ∈N

N | support(f) is finite}.

2.1.12. Definition. Let S1, S2 ∈S(N). Write

S1 →S S2
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if S2 results from S1 by replacing some elements (just one occurrence) by finitely many
lower elements (in the usual ordering of N). For example

{3, 3, 1, 0} →S {3, 2, 2, 2, 1, 1, 0}.

2.1.13. Lemma. We define a particular (non-deterministic) reduction strategy F on S(N).
A multi-set S is contracted to F (S) by taking a maximal element n∈S and replacing
it by finitely many numbers < n. Then F is a normalizing reduction strategy, i.e. for
every S ∈S(N) the S-reduction sequence

S →S F (S)→S F
2(S)→S . . .

is terminating.

Proof. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
≤ k obtaining S1 with maximal number ≤ k. Then we are done by the induction
hypothesis.

In fact (S(N),→→S) is SN. Although we do not strictly need this fact, we will give
even two proofs of it. In the first place it is something one ought to know; in the second
place it is instructive to see that the result does not imply that λ→ satisfies SN.

2.1.14. Lemma. The reduction system (S(N),→S) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

Proof1. Assign to every S ∈S(N) an ordinal #S < ωω as suggested by the following
examples.

#{3, 3, 1, 0, 0, 0} = 2ω3 + ω + 3;

#{3, 2, 2, 2, 1, 1, 0} = ω3 + 3ω2 + 2ω + 1.

More formally, if S is represented by f ∈N
N with finite support, then

#S = Σi∈Nf(i) · ωi.

Notice that
S1 →S S2 ⇒ #S1 > #S2

(in the example because ω3 > 3ω2 + ω). Hence by the well-foundedness of the ordinals
the result follows. 1

Proof2. Define

Fk = {f ∈N
N | ∀n ≥ k f(n) = 0};

F = ∪k∈NFk.
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The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation →S for the formal definition of S(N).

f > g ⇐⇒ f(k) > g(k), where k∈N is largest

such that f(k) 6= g(k).

It is easy to see that (F , >) is a linear ordering. We will show that it is even a well-
ordering, i.e. for every non-empty set X ⊆ F there is a least element f0 ∈ X. This
implies that there are no infinite descending chains in F .

To show this claim it suffices to prove that each Fk is well-ordered, since

. . . > (Fk+1 \ Fk) > Fk

element-wise. This will be proved by induction on k. If k = 0, then this is trivial, since
F0 = {λλn.0}. Now assume (induction hypothesis) that Fk is well-ordered in order to
show the same for Fk+1. Let X ⊆ Fk+1 be non-empty. Define

X(k) = {f(k) | f ∈X} ⊆ N;

Xk = {f ∈X | f(k) minimal in X(k)} ⊆ Fk+1;

Xk|k = {g ∈Fk | ∃f ∈Xk f |k = g} ⊆ Fk,

where

f |k(i) = f(i), if i < k;

= 0, else.

By the induction hypothesis Xk|k has a least element g0. Then g0 = f0|k for some
f0 ∈Xk. This f0 is then the least element of Xk and hence of X. 2

2.1.15. Remark. The second proof shows in fact that if (D,>) is a well-ordered set,
then so is (S(D), >), defined analogously to (S(N), >). In fact the argument can be
carried out in Peano Arithmetic, showing

⊢PA TI(α)→ TI(αω),

where TI(α) is the principle of transfinite induction for the ordinal α. Since TI(ω) is in
fact ordinary induction we have in PA

TI(ω), TI(ωω), TI(ω(ωω)), . . . .

This implies that the proof of TI(α) can be carried out in Peano Arithmetic for every
α < ǫ0. Gentzen [1936] shows that TI(ǫ0), where ǫ0 = ωωω...

, cannot be carried out in
PA.

In order to prove the λ→ is WN it suffices to work with λCh
→ . We will use the following

notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (λxA.M)N ∈ termB we write (λxA.MB)A→BNA.
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2.1.16. Definition. (i) Let R ≡ (λxA.MB)A→BNA be a redex. The depth of R,
notation #R, is defined as follows.

#R = #(A→B)

where # on types is defined inductively by

#α = 0;

#(A→B) = max(#A,#B) + 1.

(ii) To each M in λCh
→ we assign a multi-set SM as follows

SM = {#R |R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in SM .

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2.1.17. Example. (i) Let R be a redex occurrence in a typed term M . Assume

M−→R β N,

i.e. N results form M by contracting R. This contraction can duplicate other redexes.
For example (we write M [P ], or M [P,Q] to display subterms of M)

(λx.M [x, x])R1 →β M [R1, R1]

duplicates the other redex R1.
(ii) (J.J. Lévy [1978]) Contraction of a β-redex may also create new redexes. For

example

(λxA→B .M [xA→BPA]C)(A→B)→C(λyA.QB) →β M [(λyA.QB)A→BPA]C ;

(λxA.(λyB .M [xA, yB ]C)B→C)A→(B→C)PAQB →β (λyB .M [PA, yB ]C)B→CQB ;

(λxA→B .xA→B)(A→B)→(A→B)(λyA.PB)A→BQA →β (λyA.PB)A→BQA.

2.1.18. Lemma. Assume M−→R β N and let R1 be a created redex in N . Then #R > #R1.

Proof. In Lévy [1978] it is proved that the three ways of creating redexes in example
2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of
three cases we can inspect that the statement holds.

2.1.19. Theorem (Weak normalization theorem for λ→). If M ∈Λ is typable in λ→, then
M is βη-WN, i.e. has a βη-nf.
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Proof. By Proposition 1.4.9(ii) it suffices to show this for terms in λCh
→ . Note η-

reductions decreases the length of a term; moreover, for β-normal terms η-contractions
do not create β-redexes. Therefore in order to establish βη-WN it is sufficient to prove
that M has a β-nf.

Define the following β-reduction strategy F . If M is in nf, then F (M) = M .
Otherwise, let R be the rightmost redex of maximal depth n in M . Then

F (M) = N

where M−→R β N . Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F (M) of depth < n. By lemma 2.1.18 redexes created in F (M) by the
contraction M →β F (M) are also of depth < n. Therefore in case M is not in β-nf we
have

SM →S SF (M).

Since →S is SN, it follows that the reduction

M →β F (M)→β F
2(M)→β F

3(M)→β . . .

must terminate in a β-nf.

For β-reduction this weak normalization theorem was first proved by Turing, see Gandy
[1980b]. The proof does not really need SN for S-reduction. One may also use the
simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a S-reduction chain.
For example the two terms

(λxA.yA→A→AxAxA)A→A((λxA.xA)A→AxA) →β

yA→A→A((λxA.xA)A→AxA)((λxA.xA)A→AxA)

give the multisets {1, 1} and {1, 1}. Nevertheless, SN does hold for all systems λ→, as
will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of λ→ such that

M →β N ⇒ ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool, Nat, Σ∗

and TB) are standard, i.e. correspond to the intended elements. From WN for λ→ and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard.

2.1.20. Proposition. Let M ∈Λ be in nf. Then M ≡ λx1 · · ·xn.yM1 . . .Mm, with
n,m ≥ 0 and the M1, . . . ,Mm again in nf.
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Proof. By induction on the structure of M . See Barendregt [1984], proposition 8.3.8
for some details if necessary.

2.1.21. Proposition. Let Bool ≡ Boolα, with α a type variable. Then for M in nf one
has

⊢M : Bool ⇒ M ∈{true, false}.

Proof. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the
generation lemma for λCu

→ , proposition 2.1.3, one has the following chain of arguments.

⊢M : α→α→α ⇒ M ≡ λx.M1

⇒ x:α ⊢M1 : α→α
⇒ M1 ≡ λy.M2

⇒ x:α, y:α ⊢M2 : α

⇒ M2 ≡ x or M2 ≡ y.

So M ≡ λxy.x ≡ true or M ≡ λxy.y ≡ false.

2.1.22. Proposition. Let Nat ≡ Natα. Then for M in nf one has

⊢M : Nat ⇒ M ∈{ n |n∈N}.

Proof. Again we have

⊢M : α→(α→α)→α ⇒ M ≡ λx.M1

⇒ x:α ⊢M1 : (α→α)→α
⇒ M1 ≡ λf.M2

⇒ x:α, f :α→α ⊢M2 : α.

Now we have

x:α, f :α→α ⊢M2 : α ⇒ [M2 ≡ x ∨
[M2 ≡ fM3 & x:α, f :α→α ⊢M3 : α]].

Therefore by induction on the structure of M2 it follows that

x:α, f :α→α ⊢M2 : α ⇒ M2 ≡ fn(x),

with n ≥ 0. So M ≡ λxf.fn(x) ≡ n .

2.1.23. Proposition. Let Sigma∗ ≡ Sigma∗
α. Then for M in nf one has

⊢M : Sigma∗ ⇒ M ∈{w |w∈Σ∗}.
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Proof. Again we have

⊢M : α→(α→α)k→α ⇒ M ≡ λx.N
⇒ x:α ⊢ N : (α→α)k→α
⇒ N ≡ λa1.N1 & x:α, a1:α→α ⊢ N1 : (α→α)k−1→α
. . .

⇒ N ≡ λa1 · · · ak.N & x:α, a1, . . . , ak:α→α ⊢ Nk : α

⇒ [Nk ≡ x ∨
[Nk ≡ aijN

′
k & x:α, a1, . . . , ak:α→α ⊢ Nk

′ : α]]

⇒ Nk ≡ ai1(ai2(· · · (aipx) · ·))
⇒ M ≡ λxa1 · · · ak.ai1(ai2(· · · (aipx) · ·))

≡ ai1ai2 · · · aip .

Before we can prove that inhabitants of tree[β] are standard, we have to intoduce
an auxiliary notion.

2.1.24. Definition. Given t∈T [b1, . . . , bn] define [t]p,l ∈Λ as follows.

[bi]
p,l = lbi;

[P (t1, t2)]
p,l = p[t1]

p,l[t2]
p,l.

2.1.25. Lemma. For t∈T [b1, . . . , bn] we have

[t] =β λpl.[t]
p,l.

Proof. By induction on the structure of t.

[bi] ≡ λpl.lbi

≡ λpl.[bi]
p,l;

[P (t1, t2)] ≡ λpl.p([t1]pl)([t2]pl)

= λpl.p[t1]
p,l[t2]

p.l, by the IH,

≡ λpl.[P (t1, t2)]
p,l.

2.1.26. Proposition. Let tree[β] ≡ treeα[β]. Then for M in nf one has

b1, . . . , bn:β ⊢M : tree[β] ⇒ M ∈{[t] | t∈T [b1, . . . , bn]}.
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Proof. We have ~b:β ⊢M : (α→α→α)→(β→α)→α ⇒

⇒ M ≡ λp.M ′

⇒ ~b:β, p:α→α→α ⊢M ′ : (β→α)→α
⇒ M ′ ≡ λl.M ′′

⇒ ~b:β, p:(α→α→α), l:(β→α) ⊢M ′′ : α

⇒ M ′′ ≡ lbi ∨ [M ′′ ≡ pM1M2 &

~b:β, p:(α→α→α), l:(β→α) ⊢Mj : α], j=1,2,

⇒ M ′′ ≡ [t]p,l, for some t∈T [~b],

⇒ M ≡ λpl.[t]p,l =β [t], by lemma 2.1.25.

2.2. Proofs of strong normalization

We now will give two proofs showing that λ→ is strongly normalizing. The first one is
the classical proof due to Tait [1967] that needs little technique, but uses set theoretic
comprehension. The second proof due to Statman is elementary, but needs results about
reduction.

2.2.1. Theorem (SN for λCh
→ ). For all A∈TT∞, M ∈ΛCh

→ (A) one has SNβη(M).

Proof. We use an induction loading. First we add to λ→ constants dα ∈ΛCh
→ (α) for

each atom α, obtaining λ+
→Ch. Then we prove SN for the extended system. It follows a

fortiori that the system without the constants is SN.
One first defines for A∈TT∞ the following class CA of computable terms of type A.

We write SN for SNβη.

Cα = {M ∈Λ∅
→Ch(α) | SN(M)};

CA→B = {M ∈Λ∅
→Ch(A→B) | ∀P ∈CA.MP ∈CB}.

Then one defines the classes C∗A of terms that are computable under substitution

C∗A = {M ∈Λ→Ch(A) | ∀ ~Q∈C.[M [~x: = ~Q]∈Λ∅
→Ch(A) ⇒ M [~x: = ~Q]∈CA]}.

Write C(∗) =
⋃{C(∗)

A | A∈TT(λ+
→)}. For A = A1→ . . .→An→α define

dA ≡ λx1:A1 . . . λxn:An.dα.

Then for A one has
M ∈CA ⇐⇒ ∀~P ∈C.M ~P ∈SN, (0)

M ∈C∗A ⇐⇒ ∀~P , ~Q∈C.M [~x: = ~Q]~P ∈SN, (1)

where the ~P , ~Q should have the right types and M ~P and M [~x: = ~Q]~P are of type α,
respectively. By an easy simultaneous induction on A one can show

M ∈CA ⇒ SN(M); (2)



Chapter 14

An Exemplary System 31.10.2006:581

There are several systems that assign intersection types to untyped lambda
terms. These will be collectively denoted by λ∩. In this section we consider
one particular system of this family, λBCD

∩ in order to outline the concepts and
related properties. Definitions and the statement of theorems will be given, but
no proofs. These can be found in the next chapters of Part III.

One motivation for the system presented comes from trying to modify the
system λ→ in such a way that not only subject reduction, but also subject
expansion holds. The problem of subject expansion is the following. Suppose
⊢λ→

M : A and that M ′ →→βη M . Does one have ⊢λ→
M ′ : A? Let us focus on

one β-step. So let M ≡ (λx.P )Q be a redex and suppose

⊢λ→
P [x := Q] : A. (1)

Do we have ⊢λ→
(λx.P )Q : A? It is tempting to reason as follows. By

assumption (1) also Q must have a type, say B. Then (λx.P ) has a type
B→A and therefore ⊢λ→

(λx.P )Q : A. The mistake is that in (1) there may be
several occurrences of Q, say Q1 ≡ Q2 ≡ . . . ≡ Qn, having as types respectively
B1, . . . ,Bn. It may be impossible to find a single type for all the occurrences of
Q and this prevents us from finding a type for the redex. For example

⊢λ→
(λx.I(Kx)(Ix)) : A→A,

6⊢λ→
(λxy.x(Ky)(xy))I : A→A.

The system introduced in this chapter with intersection types assigned to
untyped lambda terms remedies the situation. The idea is that if the several
occurrences of Q have to have different types B1, . . . ,Bn, we give them all of
these types:

⊢ Q : B1 ∩ . . . ∩Bn,

implying that for all i one has Q : Bi. Then we have

⊢ (λx.P ) : B1 ∩ . . . ∩Bn→A and

⊢ ((λx.P )Q) : A.

There is, however, a second problem. In the λK-calculus, with its terms
λx.P such that x /∈ FV(P ) there is the extra problem that Q may not be

9
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typable at all, as it may not occur in P [x := Q]! This is remedied by allowing
B1 ∩ . . .∩Bn also for n = 0 and writing this type as ⊤, to be considered as the
universal type, i.e. assigned to all terms. Then in case x /∈ FV(P ) one has

⊢ (λx.P ) : ⊤→A and

⊢ ((λx.P )Q) : A.

This is the motivation to introduce a ≤ relation on types with largest
element⊤ and intersections such that A∩B ≤ A,A∩B ≤ B and the extension of
the type assignment by the sub-sumption rule Γ ⊢ M : A, A ≤ B ⇒ Γ ⊢ M :
B. It has as consequence that terms like λx.xx get as type ((A→B) ∩ A)→B,
while (λx.xx)(λx.xx) only gets ⊤ as type. Also we have subject conversion

Γ ⊢M : A & M =β N ⇒ Γ ⊢ N : A.

This has as consequence that one can create a lambda model in which the
meaning of a closed term consists of the collection of types it gets. In this way
new lambda models will be obtained and new ways to study classical models
as well.

The type assignement system λBCD
∩ will be introduced in Section 14.1 and

the correspondig filter model in 14.2.

14.1. The system of type assignment λ
BCD
∩

A typical member of the family of intersection type assignment systems is λBCD
∩ .

This system is introduced in Barendregt et al. [1983] as an extension of the
initial system in Coppo and Dezani-Ciancaglini [1980].

14.1.1. Definition. Let A be a set of type atoms.
(i) The intersection type language over A, denoted by TT = TTA

∩ is defined by
the following abstract syntax.

TT = A | TT→TT | TT ∩ TT

(ii) Write

A∞ = {ψ0, ψ1, ψ2, . . .}
A
⊤
∞ = A∞ ∪ {⊤},

where the type atom ⊤ /∈A∞ is considered as a constant.

Notation. (i) A,B,C,D,E range over arbitrary types. When writing intersection
types we shall use the following convention: the constructor ∩ takes precedence
over the constructor → and it associates to the right. For example

(A→B→C) ∩A→B→C ≡ ((A→(B→C)) ∩A)→(B→C).

(ii) α, β, . . . range over A.
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14.1.2. Remark. In Part III the set of syntactic types will be formed as above;
for many of these systems the set A will be finite. In this Chapter, however, we
take A = A

⊤
∞.

The following deductive system has as intention to introduce an appropriate
pre-order on TT, compatible with the operator →, such that A∩B is a greatest
lower bound of A and B, for each A,B.

14.1.3. Definition (Intersection type preorder). On TT = TT
A⊤
∞

∩ a binary rela-
tion ≤ ‘is subtype of ’ is defined by the following axioms and rules.

(refl) A ≤ A
(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

(⊤) A ≤ ⊤
(⊤→) ⊤ ≤ ⊤→⊤
(→∩) (A→B) ∩ (A→C) ≤ A→(B ∩ C)

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

14.1.4. Definition. The intersection type theory BCD is the set of all judge-
ments A ≤ B derivable from the axioms and rules in Definition 14.1.3. For
(A ≤ B)∈BCD we write A ≤BCD B or ⊢BCD A ≤ B (or often just A ≤ B).

14.1.5. Remark. All systems in Part III have the first five axioms and rules
of Definition 14.1.3. They differ in the extra axioms and rules and the set of
constants.

14.1.6. Definition. Write A=BCDB (or A = B) for A ≤BCD B & B ≤BCD A.
In BCD we usually work with TT modulo =BCD. By rule (→) one has

A = A′ & B = B′ ⇒ (A→B) = (A′→B′).

Moreover, A ∩B becomes the glb of A,B.

14.1.7. Definition. (i) A basis is a finite set of statements of the shape x:B,
where B ∈TT, with all variables distinct.

(ii) The type assignment system λBCD
∩ for deriving statements of the form

Γ ⊢M : A with Γ a basis, M ∈Λ (the set of untyped lambda terms) and A∈TT
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is defined by the following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A)∈Γ

(→I)
Γ, x:A ⊢M : B

Γ ⊢ (λx.M) : (A→B)

(→E)
Γ ⊢M : (A→ B) Γ ⊢ N : A

Γ ⊢ (MN) : B

(∩I)
Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : (A ∩B)

(≤)
Γ ⊢M : A

Γ ⊢M : B
if A ≤BCD B

(⊤-universal) Γ ⊢M : ⊤

(iii) We say that a term M is typable from a given basis Γ, if there is a type
A∈TT such that the judgement Γ ⊢M : A is derivable in λBCD

∩ . In this case we
write Γ ⊢BCD

∩⊤ M : A or just Γ ⊢M : A, if there is little danger of confusion.

14.1.8. Remark. All systems of type assignment in Part III have the first five
axioms and rules of Definition 14.1.7.

In the following Proposition we need the notions of admissible and derived
rule. Let us first informally define these notions for the simple logical theory of
propositional logic.

14.1.9. Definition. Let ⊢ denote provability in propositional logic. Consider
the rule

Γ ⊢ A
(R)

Γ ⊢ B

(i) R is called admissible if one has

Γ ⊢ A ⇒ Γ ⊢ B

(ii) R is called derived if one has

Γ ⊢ A→B

For example we have that
Γ ⊢ A→A→B

Γ ⊢ A→B
is derived. Also that for propositional variables ϑ, ̺

⊢ ϑ
⊢ ̺
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is admissible, simply because ⊢ ϑ does not hold, but not derived. A derived rule
is always admissible and the example shows that the converse does not hold. If

Γ ⊢ A
Γ ⊢ B

is a derived rule, then for all Γ′ ⊇ Γ one has that

Γ′ ⊢ A
Γ′ ⊢ B

is also derived. Hence derived rules are closed under theory extension.
We will only be concerned with admissible and derived rules for theories of

type assignment.

14.1.10. Proposition. (i) Notice that the rules (∩E)

Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

are derived in λBCD
∩ .

(ii) The following rules are admissible in the intersection type assignment
system λBCD

∩ .

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A

(≤-L)
Γ, x:B ⊢M : A C ≤ B

Γ, x:C ⊢M : A

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ

Γ, x:(C→B) ⊢ (M [y := xN ]) : A

(∩L)
Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B

14.1.11. Theorem. In (i) assume A 6= ⊤. Then

(i) Γ ⊢ x : A ⇔ ∃B ∈TT.[(x:B ∈Γ & B ≤ A].
(ii) Γ ⊢ (MN) : A ⇔ ∃B ∈TT.[Γ ⊢M : (B→A) & Γ ⊢ N : B].

(iii) Γ ⊢ λx.M : A ⇔ ∃n>0∃B1, . . . ,Bn, C1, . . . ,Cn ∈TT

∀i∈{1, . . . , n}.[Γ, x:Bi ⊢M : Ci &
(B1→C1) ∩ . . . ∩ (Bn→Cn) ≤ A].

(iv) Γ ⊢ λx.M : B→C ⇔ Γ, x:B ⊢M : C.



14 CHAPTER 14. AN EXEMPLARY SYSTEM 31.10.2006:581

14.1.12. Definition. LetR be a notion of reduction. We introduce the following
rules:

(R-red)
Γ ⊢M : A M →R N

Γ ⊢ N : A

(R-exp)
Γ ⊢M : A M ←R N

Γ ⊢ N : A

14.1.13. Proposition. The rules (β-red), (β-exp) and (η-red) are admissible
in λBCD

∩ . The rule (η-exp) is not.

The following result characterizes notions related to normalization in terms
of type assignment in the system λBCD

∩ . The notation ⊤ /∈ A means that ⊤
does not occur in A.

14.1.14. Theorem. Let M ∈Λø.

(i) M has a head normal form ⇔ ∃A∈TT.[A 6=BCD ⊤ & ⊢M : A].

(ii) M has a normal form ⇔ ∃A∈TT.[⊤ /∈ A & ⊢M : A].

LetM be a lambda term. For the notion ‘approximant ofM ’, see Barendregt
[1984]. These are roughly obtained from the Böhm tree BT(M) of M by cutting
of branches and replacing these by a new symbol ⊥. The set of approximants
of M is denoted by A(M). We have e.g. for the fixed-point combinator Y

A(Y) = {⊥} ∪ {λf.fn⊥ | n>0}.

Approximants are being typed by letting the typing rules be valid for ap-
proximants. For example one has

⊢ ⊥ : ⊤
⊢ λf.f⊥ : (⊤→A1)→A1

⊢ λf.f(f⊥) : (⊤→A1) ∩ (A1→A2)→A2

. . .

⊢ λf.fn⊥ : (⊤→A1) ∩ (A1→A2) ∩ . . . ∩ (An−1→An)→An

. . .

The set of types of a term M coincides with the union of the sets of types of
its approximants P ∈A(M). This will give an Approximation Theorem for the
filter model of next section.

14.1.15. Theorem. Γ ⊢M : A ⇔ ∃P ∈A(M).Γ ⊢ P : A.

For example since for all n λf.fn⊥ is an approximant of Y we have that all
types of the shape (⊤→A1) ∩ . . . ∩ (An−1→An)→An can be derived for Y.

Finally the question whether an intersection type is inhabited is undecidable.

14.1.16. Theorem. The set {A∈TT | ∃M ∈Λø ⊢M : A} is undecidable.
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14.2. The filter model

14.2.1. Definition. (i) A complete lattice (D,⊑) is a partial order which has
arbitrary least upper bounds (sup’s) (and hence has arbitrary inf’s).

(ii) A subset Z ⊆ D is directed if Z 6= ∅ and

∀x, y ∈Z∃z ∈Z.x, y ⊑ z.

(iii) An element c∈D is compact (in the literature also called finite) if for
each directed Z ⊆ D one has

c ⊑ Z ⇒ ∃z ∈Z.c ⊑ z.

Let K(D) denote the set of compact elements of D.

(iv) A complete lattice is ω-algebraic if K(D) is countable, and for each d∈D,
the set K(d) = {c∈K(D) | c ⊑ d} is directed and d = K(d).

(v) Let (D,⊑) be an ω-algebraic complete lattice. The Scott topology on D
contains as open sets the U ⊆ D such that

(1) d∈U & d ⊑ e ⇒ e∈U ;

(2) if Z ⊆ D is directed then Z ∈U ⇒ ∃z ∈Z.z ∈U.
(vi) If D, E are ω-algebraic complete lattices, then [D→E ] denotes the set of

continuous maps from D to E . This set can be ordered pointwise

f ⊑ g ⇔ ∀d∈D.f(d) ⊑ g(d)

and 〈[D→E ],⊑〉 is again an ω-algebraic lattice.

(vii) The category ALG is the category whose objects are the ω-algebraic
complete lattices and whose morphisms are the (Scott) continuous functions.

14.2.2. Definition. (i) A filter over TT = TT
A⊤
∞

∩ is a non-empty set X ⊆ TT such
that

(1) A∈X & A ≤ B ⇒ B ∈X;

(2) A,B ∈X ⇒ (A ∩B)∈X.

(ii) F denotes the set of filters over TT.

14.2.3. Definition. (i) If X ⊆ TT is non-empty, then the filter generated by X,
notation ↑X, is the least filter containing X. Note that

↑X = {A | ∃n≥1∃B1 . . . Bn ∈X.B1 ∩ . . . ∩Bn ≤ A}.

(ii) A principal filter is of the form ↑{A} for some A∈TT. We shall denote
this simply by ↑A. Note that ↑A = {B | A ≤ B}.

14.2.4. Proposition. (i) F = 〈F ,⊆〉 is an ω-algebraic complete lattice.

(ii) F has as bottom element ↑⊤ and as top element TT.

(iii) The compact elements of F are exactly the principal filters.
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14.2.5. Definition. Let D be an ω-algebraic lattice and let

F : D→[D→D]

G : [D→D]→D

be Scott continuous. D is called a reflexive via F,G if F ◦G = id[D→D].

A reflexive element of ALG is also a λ-model in which the term interpretation
is naturally defined as follows (see Barendregt [1984], Section 5.4).

14.2.6. Definition (Interpretation of terms). LetD be reflexive via F,G.
(i) A term environment in D is a map ρ : Var→D.
(ii) If ρ is a term environment and d∈D, then ρ(x := d) is the term

environment ρ′ defined by

ρ′(y) = ρ(y) if y 6≡ x;
ρ′(x) = d.

(iii) Given a term environment ρ, the interpretation [[ ]]ρ : Λ→D is defined as
follows.

[[x]]Dρ = ρ(x);

[[MN ]]Dρ = F [[M ]]Dρ [[N ]]Dρ ;

[[λx.M ]]Dρ = G(λλd∈D.[[M ]]Dρ(x:=d)).

(iv) The statement M = N , for M,N untyped lambda terms, is true in D,
notation D |= M = N iff

∀ρ∈EnvD.[[M ]]Dρ = [[N ]]Dρ .

14.2.7. Theorem. Let D be reflexive via F,G. Then D is a λ-model, in particular
for all M,N ∈Λ

D |= (λx.M)N = M [x: = N ].

14.2.8. Proposition. Define maps F : F→[F→F ] and G : [F→F ]→F by

F (X)(Y ) = ↑{B | ∃A∈Y.(A→B)∈X}
G(f) = ↑{A→B | B ∈ f(↑A)}.

Then F is reflexive via F,G. Therefore F is a λ-model.

An important property of the λ-model F is that the meaning of a term is
the set of types which are deducible for it.

14.2.9. Theorem. For all λ-terms M one has

[[M ]]Fρ = {A | ∃Γ |= ρ.Γ ⊢M : A},

where Γ |= ρ iff for all (x:B)∈Γ one has B ∈ ρ(x).
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Lastly we notice that all continous functions are representable.

14.2.10. Theorem.

[F→F ] = {f : F→F | f is representable},

where f ∈F→F is called representable iff for some X ∈F one has

∀Y ∈F .f(Y ) = F (X)(Y ).

14.3. Completeness of type assignment

14.3.1. Definition (Interpretation of types). Let D be reflexive via F,G and
hence a λ-model. For F (d)(e) we also write (as usual) d · e.

(i) A type environment in D is a map ξ : A∞→P(D).
(ii) For X,Y ∈P(D) define

X→Y = {d∈D | d ·X ⊆ Y } = {d∈D | ∀x∈X.d · x∈Y }.

(iii) Given a type environment ξ, the interpretation [[ ]]ξ : TT→P(D) is defined
as follows.

[[⊤]]Dξ = D;

[[α]]Dξ = ξ(α), for α∈A∞;

[[A→B]]Dξ = [[A]]Dξ →[[B]]Dξ ;

[[A ∩B]]Dξ = [[A]]Dξ ∩ [[B]]Dξ .

14.3.2. Definition (Satisfaction). (i) Given a λ-model D, a term environment
ρ and a type environment ξ one defines the following.

D, ρ, ξ |= M : A ⇔ [[M ]]Dρ ∈ [[A]]Dξ .

D, ρ, ξ |= Γ ⇔ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii) Γ |= M : A ⇔ ∀D, ρ, ξ.[D, ρ, ξ |= Γ ⇒ ρ, ξ |= M : A].

14.3.3. Theorem (Soundness).

Γ ⊢M : A ⇒ Γ |= M : A.

14.3.4. Theorem (Completeness).

Γ |= M : A ⇒ Γ ⊢M : A.

The completeness proof is an application of the λ-model F , see Barendregt et
al. [1983].
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The Systems λ
T∩ and λ

T
∩⊤ 31.10.2006:581

Intersection types are syntactic objects forming a free algebra TT, which is
generated from a set of atoms A, using the operators → and ∩. Postulating
axioms and rules an intersection type theory results, which characterizes a pre-
order ≤T on TT with ∩ as set intersection, giving for two elements a greatest
lower bound (glb). The class of these theories is abbreviated1 as TT.

Taking into account the intuitive meaning of→ as function space constructor
one usually requires that the resulting equivalence relation =T is a congruence.
Then we speak of a compatible type theory, having a corresponding type structure

〈S,≤,∩,→〉 = 〈TT/=T ,≤,∩,→〉.

The collection of type structures is denoted by TS. Each type structure can
be seen as coming from a compatible type theory and compatible type theories
and type structures are basically the same. In the present Part III of this book
both these syntactic and semantic aspects will be exploited.

TT ⊤ is a subset of TT, the set of top type theories, where the set of atoms
A has a top element ⊤. Similarly a top intersection type structure TS⊤ is of
the form 〈S,≤,∩,→,⊤〉.

The various type theories (and type structures) are introduced together in
order to give reasonably uniform proofs of their properties as well of those of
the corresponding type assignment systems and filter models.

Given a (top) type theory T , one can define a corresponding type assignment
system. These type assignment systems will be studied extensively in later
chapters. We also introduce so-called filters, sets of types closed under intersection
∩ and preorder ≤. These play an important role in Chapter 17 to establish
equivalences of categories and in Chapter 18 to build λ-models.

In Section 15.1 we define the notion of type theory and introduce 13 specific
examples, including basic lemmas for these. In Section 15.2 the type assignment
systems are defined. In Section 15.3 we discuss intersection type structures and
introduce specific categories of lattices and type structures to accommodate
these. Finally in Section 15.4 the filters are defined.

1Since all type theories in Part III of this book are using the intersection operator, we keep
this implicit and often simply speak about (top) type theories, leaving ‘intersection’ implicit.
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15.1. Type theories

As in Chapter 14 we will use as syntactic types TT = TTA
∩ defined by

TT = A | TT→TT | TT ∩ TT

as abstract syntax. This time we will use various sets of atoms A. The letters
α, β, γ, . . . range over arbitrary atoms. If we need special atoms for a special
purpose, like for example ⊤, ω, ϕ, then we can identify them with some of the
ψi, i.e. ⊤ = ψ0, ω = ψ1, ϕ = ψ2.

15.1.1. Definition. (i) An intersection type theory over a set of type atoms A

is a set of judgements T of the form A ≤ B (to be read: A is a subtype of B),
with A,B ∈TTA

∩, satisfying the following axioms and rules.

(refl) A ≤ A

(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

This means that e.g. (A ≤ A)∈T and (A ≤ B), (B ≤ C)∈T ⇒ (A ≤ C)∈T ,
for all A,B,C.

(ii) A top intersection type theory is an intersection type theory with an
element ⊤∈TT for which one can derive

(⊤) A ≤ ⊤

(iii) The notion ‘(top) intersection type theory’ will be abbreviated as ‘(top)
type theory’, as the ‘intersection’ part is default.

(iv) TT stands for the set of type theories and TT ⊤ for that of top type
theories.

(v) If T ∈TT(⊤) over A, then we also write TTT for TTA
∩.

In this and the next section T ranges over elements of TT(⊤). Most of them
have some extra axioms or rules, the above set being the minimum requirement.
For example the theory BCD over A = A

⊤
∞, defined in Chapter 14 is a TT ⊤

and has the extra axioms (⊤→) and (→∩) and rule (→).

15.1.2. Notation. Let T ∈TT. We write the following.

(i) A ≤T B or ⊢T A ≤ B for (A ≤ B)∈T .

(ii) A =T B for A ≤T B ≤T A.

(iii) A <T B for A ≤ B & A 6=T B.
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(iv) If there is little danger of confusion and T is clear from the context, then
we will write ≤,=, < for respectively ≤T ,=T , <T .

(v) We write A ≡ B for syntactic identity. E.g. A ∩ B ≡ A ∩ B, but
A ∩B 6≡ B ∩A.

15.1.3. Lemma. For any T one has A ∩B =T B ∩A.

Proof. By (inclL), (inclR) and (glb).

15.1.4. Definition. T is called compatible iff the following rule holds.

(→=)
A = A′ B = B′

(A→B) = (A′→B′)

This means A =T A′ & B =T B′ ⇒ (A→B) =T (A′→B′). One way to insure
this is to adopt (→=) as rule determining T .

15.1.5. Remarks. (i) Let T be compatible. Then by Lemma 15.1.3 one has

(A ∩B)→C = (B ∩A)→C.

(ii) The rule (glb) implies that the following rule is admissible.

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′

A T ∈TT can be seen as a structure with a pre-order

T = 〈TT,≤,∩,→〉.

This means that ≤ is reflexive and transitive, but not necessarily anti-symmetric

A ≤T B & B ≤T A 6⇒ A =T B.

If T is compatible one can go over to equivalence classes and obtain a type
structure

T /=T = 〈TT/=T ,≤,∩,→〉.

If moreover T ∈TT ⊤, then T /=T has top [⊤]. In this structure A ∩ B is
inf{A,B}, the greatest lower bound of A and B. If T is also compatible, then
→ can be properly defined on the equivalence classes. This will be done in
Section 15.3.
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Specific intersection type theories

Now we will construct several, in total thirteen, type theories that will play an
important role in later chapters, by introducing the following axiom schemes,
rule schemes and axioms. Only two of them are non-compatible, so we obtain
eleven type structures.

In the following ϕ, ω and ⊤ are distinct atoms differing from those in A∞.

15.1.6. Notation. We introduce names for axiom(scheme)s and rule(scheme)s
in Figure 15.1. Using these names a list of well-studied type structures can
be specified in Figure 15.2 as the set of judgements axiomatized by mentioned
rule(scheme)s and axiom(scheme)s.

Axioms

(ωScott) (⊤→ω) = ω

(ωPark) (ω→ω) = ω

(ωϕ) ω ≤ ϕ
(ϕ→ω) (ϕ→ω) = ω

(ω→ϕ) (ω→ϕ) = ϕ

(I) (ϕ→ϕ) ∩ (ω→ω) = ϕ

Axiom schemes

(⊤) A ≤ ⊤
(⊤→) ⊤ ≤ (A→⊤)

(⊤lazy) (A→B) ≤ (⊤→⊤)

(→∩) (A→B) ∩ (A→C) ≤ A→B ∩ C
(→∩=) (A→B) ∩ (A→C) = A→B ∩ C

Rule schemes

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

(→=)
A′ = A B = B′

(A→B) = (A′→B′)

Figure 15.1: Possible Axioms and Rules concerning ≤.

15.1.7. Definition. In Figure 15.2 a collection of TTs is defined. For each
name T a set of atoms A

T and a set of rules and axiom(scheme)s are given.
The type theory T is the smallest set of judgements of the form A ≤ B
with A,B ∈TTT = TTAT

∩ which is closed under the axiom(scheme)s and the
rule(scheme)s of Definition 15.1.1 and the corresponding ones in Figure 15.2.

15.1.8. Remark. (i) Note that CDS and CD are non-compatible, while the
other eleven are compatible.
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T A
T Rules Axiom Schemes Axioms

Scott {⊤, ω} (→) (→∩), (⊤), (⊤→) (ωScott)
Park {⊤, ω} (→) (→∩), (⊤), (⊤→) (ωPark)
CDZ {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ϕ→ω), (ω→ϕ)
HR {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ϕ→ω), (I)
DHM {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ω→ϕ), (ωScott)
BCD A⊤

∞ (→) (→∩), (⊤), (⊤→)

AO {⊤} (→) (→∩), (⊤) (⊤lazy)

Plotkin {⊤, ω} (→=) (⊤) −
Engeler A

⊤
∞ (→=) (→∩=), (⊤), (⊤→) −

CDS A
⊤
∞ − (⊤) −

HL {ϕ, ω} (→) (→∩) (ωϕ), (ω→ϕ), (ϕ→ω)

CDV A∞ (→) (→∩) −
CD A∞ − − −

Figure 15.2: Various type theories

(ii) The first ten type theories of Figure 15.2 belong clearly to TT ⊤. In
Lemma 15.1.14(i) we will see that also HL∈TT ⊤ with ϕ as top. Instead CDS
and CD do not belong to TT ⊤, as shown in Lemma 15.1.14(ii) and (iii).

In this list the given order is logical, rather than historical, and some of
the references define the models directly, others deal with the corresponding
filter models (see Sections 17 and 18): Scott [1972], Park [1976], Coppo et
al. [1987], Honsell and Ronchi Della Rocca [1992], Dezani-Ciancaglini et al.
[2005], Barendregt et al. [1983], Abramsky and Ong [1993], Plotkin [1993],
Engeler [1981], Coppo et al. [1979], Honsell and Lenisa [1999], Coppo et al.
[1981], Coppo and Dezani-Ciancaglini [1980]. These theories are denoted by
names (respectively acronymes) of the author(s) who have first considered the
λ-model induced by such a theory.

The expressive power of intersection types is remarkable. This will become
apparent when we will use them as a tool for characterizing properties of λ-terms
(see Sections 19.2 and 18.3), and for describing different λ-models (see Section
18). Much of this expressive power comes from the fact that they are endowed
with a preorder relation, ≤, which induces, on the set of types modulo =, the
structure of a meet semi-lattice with respect to ∩. This appears natural when
we think of types as subsets of a domain of discourseD, which is endowed with a
(partial) application · : D×D→D, and interpret ∩ as set-theoretic intersection,
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≤ as set inclusion, and give → the realizability interpretation.

[[A]] ⊆ D

A ≤ B ⇔ [[A]] ⊆ [[B]]

[[A ∩B]] = [[A]] ∩ [[B]]

[[A→B]] = [[A]]→[[B]] = {d∈D | d · [[A]] ⊆ [[B]]}.

This semantics, due to Scott, will be studied in Section 19.1.

The type ⊤→⊤ is the set of functions which applied to an arbitrary element
return again an arbitrary element. In that case axiom scheme (⊤→) expresses
the fact that all the objects in our domain of discourse are total functions, i.e.
that ⊤ is equal to A→⊤, hence A→⊤ = B→⊤ for all A,B (Barendregt et
al. [1983]). If now we want to capture only those terms which truly represent
functions, as we do for example in the lazy λ-calculus, we cannot assume axiom
(⊤→). One still may postulate the weaker property (⊤lazy) to make all functions
total (Abramsky and Ong [1993]). It simply says that an element which is a
function, because it maps A into B, maps also the whole universe into itself.

In Figure 15.3 below consider ⊢T
∩⊤ for the ten type theories above the

horizontal line and ⊢T∩ for the other three. Define T1 ⊆ T2 as

∀Γ,M,A. [Γ ⊢T1 M : A ⇒ Γ ⊢T2 M : A].

If this is the case we have connected T1 with an edge towards the higher
positioned T2. In Exercise 16.3.21 we will show that the edges denote strict
inclusions.

DHM

CDZ

PPPPPPPPPPPPPPPPP

66
66

66
66

6 HR

IIIIIIIIIIIII Scott

��
��

��
��

�

44
44

44
44

4 Park

��
��
��
��
�

ooooooooooooooooo
BCD

iiiiiiiiiiiiiiiiiiiiiiiiiiiii
xxx

x

Engeler

AO Plotkin CDS

HL CDV

CD

Figure 15.3: Inclusion among some intersection type theories.

The intended interpretation of arrow types also motivates axiom (→∩),
which implies that if a function maps A into B, and the same function maps
also A into C, then, actually, it maps the whole A into the intersection between
B and C (i.e. into B ∩ C), see Barendregt et al. [1983].

Rule (→) is again very natural in view of the set-theoretic interpretation.
It implies that the arrow constructor is contravariant in the first argument and
covariant in the second one. It is clear that if a function maps A into B, and
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we take a subset A′ of A and a superset B′ of B, then this function will map
also A′ into B′, see Barendregt et al. [1983].

The rule (→∩=) is similar to the rule (→∩). It capture properties of the
graph models for the untyped lambda calculus, see Plotkin [1975] and Engeler
[1981], as we shall discuss in Section 19.3.

In order to capture aspects of the λI-calculus we introduce TTs without an
explicit mention of a top.

The remaining axioms express peculiar properties of D∞-like inverse limit
models, see Barendregt et al. [1983], Coppo et al. [1984], Coppo et al. [1987],
Honsell and Ronchi Della Rocca [1992], Honsell and Lenisa [1993], Alessi,
Dezani-Ciancaglini and Honsell [2004]. We shall discuss them in more detail in
Section 19.3.

Some classes of type theories

Now we will consider some classes of TT. In order to do this, we list the relevant
defining properties.

15.1.9. Definition. We define special subclasses of TT.

Class Defining axiom(-scheme)(s) or rule

graph (→=), (→∩=), (⊤)

lazy (→), (→∩), (⊤), (⊤lazy)

natural (→), (→∩), (⊤), (⊤→)

proper (→), (→∩)

15.1.10. Notation. The sets of graph, lazy, natural and proper type theories
are denoted by respectively GTT⊤, LTT⊤ NTT⊤ and PTT.

15.1.11. Remark. The type theories of Figure 15.2 are classified as follows.

non compatible CD,CDS

GTT⊤ Plotkin,Engeler

LTT⊤ AO

NTT⊤ Scott, Park,CDZ,HR,DHM,BCD

PTT CDV,HL

15.1.12. Remark. One has NTT⊤ ⊆ LTT⊤ ⊆ GTT⊤ ⊆ TT and
LTT⊤ ⊆ PTT ⊆ TT. These inclusions are sharp.
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Some properties about specific TTs

Results about proper type theories

15.1.13. Proposition. Let T be a proper type theory. Then we have

(i) (A→B) ∩ (A′→B′) ≤ (A ∩A′)→(B ∩B′);

(ii) (A1→B1) ∩ . . . ∩ (An→Bn) ≤ (A1 ∩ . . . ∩An)→(B1 ∩ . . . ∩Bn);

(iii) (A→B1) ∩ . . . ∩ (A→Bn) = A→(B1 ∩ . . . Bn).

Proof. (i) (A→B) ∩ (A′→B′) ≤ ((A ∩A′)→B) ∩ ((A ∩A′)→B′)

≤ (A ∩A′)→(B ∩B′),
by respectively (→) and (→∩).

(ii) Similarly (i.e. by induction on n>1, using (i) for the induction step).

(iii) By (ii) one has (A→B1)∩ . . .∩ (A→Bn) ≤ A→(B1 ∩ . . . Bn). For ≥ use
(→) to show that A→(B1 ∩ . . . ∩Bn) ≤ (A→Bi), for all i.

It follows that the mentioned equality and inequalities hold for Scott,Park,CDZ,
HR,DHM,BCD,AO,HL and CDV.

Results about the type theories of Figure 15.2

15.1.14. Lemma. (i) ϕ is the top and ω the bottom element in HL.

(ii) CDV has no top element.

(iii) CD has no top element.

Proof. (i) By induction on the generation of TTHL one shows that ω ≤ A ≤ ϕ
for all A∈TTHL.

(ii) If α is a fixed atom and

Bα := α | Bα ∩ Bα

and A∈Bα, then one can show by induction on the generation of ≤CDV that
A ≤CDV B ⇒ A∈Bα. Hence if α ≤CDV B, then B ∈Bα. Since Bα1 and Bα2

are disjoint when α1 and α2 are two different atoms, we conclude that CDV
has no top element.

(iii) Similar to (ii).

15.1.15. Remark. By the above lemma ϕ turns out to be the top element in
HL. But we will not use this and therefore denote it by the name ϕ and not ⊤.

In the following lemmas 15.1.16-15.1.20 we study the positions of the atoms
ω, and ϕ in the compatible TTs introduced in Figure 15.2. The principal result
is that ω < ϕ in HL and, as far as applicable,

ω < ϕ < ⊤,

in the theories Scott,Park,CDZ,HR,DHM and Plotkin.
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15.1.16. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,Engeler} be as de-
fined in Figure 15.2. Define inductively the following collection of types

B := ⊤ | TTT→B | B ∩ B

Then B = {A∈TTT | A =T ⊤}.

Proof. By induction on the generation of A ≤T B one proves that B is closed
upwards. This gives ⊤ ≤ A ⇒ A∈B.

By induction on the definition of B one shows, using (⊤→) and (→), that
A∈B ⇒ ⊤ ≤ A.

Therefore
A =T ⊤ ⇔ ⊤ ≤ A ⇔ A∈B.

15.1.17. Lemma. For T ∈ {AO,Plotkin} define inductively

B := ⊤ | B ∩ B

Then B = {A∈TTT | A =T ⊤}, hence ⊤→⊤ 6=T ⊤.

Proof. Similar to the proof of 15.1.14, but easier.

15.1.18. Lemma. For T ∈ {CDZ,HR,DHM} define by mutual induction

B = ϕ | ⊤ | TTT→B | H→TTT | B ∩ B
H = ω | B→H | H ∩ TTT | TTT ∩H

Then

ϕ ≤ B ⇒ B ∈B,
A ≤ ω ⇒ A∈H.

Proof. By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) ⇒ (B ∈H ⇒ A∈H).

From this the assertion follows immediately.

15.1.19. Lemma. We work with the theory HL.
(i) Define by mutual induction

B = ϕ | H→B | B ∩ B
H = ω | B→H | H ∩ TT | TT ∩H

Then
B = {A∈TTHL | A =HL ϕ};
H = {A∈TTHL | A =HL ω}.

(ii) ω 6=HL ϕ and hence ω <HL ϕ.



28 CHAPTER 15. THE SYSTEMS λT∩ AND λT
∩⊤ 31.10.2006:581

Proof. (i) By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) & (B ∈H ⇒ A∈H).

This gives

(ϕ ≤ B ⇒ B ∈B) & (A ≤ ω ⇒ A∈H).

By simultaneous induction on the generation of B and H one shows, using that
ω is the bottom element of HL, by Lemma 15.1.14(i),

(B ∈B ⇒ B = ϕ) & (A∈H ⇒ A = ω).

Now the assertion follows immediately.

(ii) By (i).

15.1.20. Proposition. In HL we have ω < ϕ and as far as applicable we have
for the other systems of Figure 15.2

ω < ϕ < ⊤.

More precisely,

(i) ω ≤ ϕ and ω 6= ϕ in HL.

In all other systems

(ii) ω ≤ ϕ, ω ≤ ⊤, ϕ ≤ ⊤;

(iii) ω 6= ϕ, ω 6= ⊤, ϕ 6= ⊤.

Proof. (i) By (ωϕ) and Lemma 15.1.19.

(ii) By (ωϕ) and (⊤).

(iii) By Lemmas 15.1.16-15.1.18.

15.2. Type assignment

Assignment of types from type theories

In this subsection we define for a T in TT a type assignment system λT∩ , that
assigns to untyped lambda terms a (possibly empty set of) types in TTT . For a
T in TT ⊤ we also define a type assignment system λT

∩⊤ .

15.2.1. Definition. (i) A T -statement is of the form M : A with the subject
an untyped lambda term M ∈Λ and the predicate a type A∈TTT .

(ii) A T -declaration is a T -statement of the form x : A.

(iii) A T -basis Γ is a finite set of T -declarations, with all variables distinct.

(iv) A T -assertion is of the form Γ ⊢ M : A, where M : A is a T -statement
and Γ is a T -basis.

15.2.2. Definition. (i) The (basic) type assignment system λT∩ derives T -as-
sertions by the following axioms and rules.
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(Ax) Γ ⊢ x:A if (x:A∈Γ)

(→I)
Γ, x:A ⊢M : B

Γ ⊢ λx.M : A→B

(→E)
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

(∩I)
Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : A ∩B

(≤)
Γ ⊢M : A A ≤T B

Γ ⊢M : B

Figure 15.4: Basic type assignment system λT∩ .

(ii) If T has a top element ⊤, then the ⊤-type assignment system λT
∩⊤ is

defined by adding the extra axiom to the basic system

(⊤-universal) Γ ⊢M : ⊤

Figure 15.5: The extra axiom for the top assignment system λT
∩⊤

15.2.3. Notation. (i) We write Γ ⊢T
∩⊤ M : A or Γ ⊢T∩ M : A if Γ ⊢ M : A is

derivable in λT
∩⊤ or λT∩ respectively.

(ii) The assertion ⊢T
∩⊤ may also be written as ⊢T , ⊢∩⊤ or simply ⊢ if by the

context there is little danger of confusion. Similarly, ⊢T∩ may be written as ⊢T ,
⊢∩ or ⊢.

(iii) λT
∩(⊤) may be denoted by λ∩(⊤) .

15.2.4. Example. Let T ∈TT ⊤ with A,B ∈TTT . Write W ≡ (λx.xx).
(i) ⊢T∩ W : A ∩ (A→B)→B.

⊢T
∩⊤ WW : ⊤, but WW does not have a type in λT∩ .

(ii) Let M ≡ KI(WW ). Then ⊢M : (A→A) in λT
∩⊤ .

(iii) (van Bakel) Let M ≡ λyz.Kz(yz) and N ≡ λyz.z. Then M →→β N . We
have ⊢T∩ N : B→A→A, ⊢T

∩⊤ M : B→A→A, but 6⊢T∩ M : B→A→A.

(iv) 6⊢CD
∩ I : ((A ∩B)→C)→((B ∩A)→C).

In general the type assignment systems λT
∩⊤ will be used for the the λK-

calculus and λT∩ for the λI-calculus.

15.2.5. Definition. Define the rules (∩E)

Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

Notice that these rules are derived in λT∩ , λT
∩⊤ for all T .

15.2.6. Lemma. In λT∩ one has the following.
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(i) Γ ⊢M : A ⇒ FV(M) ⊆ dom(Γ).
(ii) Γ ⊢M : A ⇒ (Γ ↾ FV(M)) ⊢M : A.
(iii) If in T with top ⊤ one has ⊤ = ⊤→⊤, then

FV(M) ⊆ dom(Γ) ⇒ Γ ⊢M : ⊤.

Proof. (i), (ii) By induction on the derivation.
(iii) By induction on M .

Notice that Γ ⊢M : A⇒ FV(M) ⊆ dom(Γ) does not hold in λT
∩⊤ , since by

axiom (⊤ universal) we have ⊢T M : ⊤ for all T and all M .

15.2.7. Remark. For the type theories of Figure 15.2 with ⊤ we have defined
the type assignment systems λT∩ . For those system having a top, there is
also the type assignment system λT

∩⊤ . We will use for the type theories in
Figure 15.2 only one of the two possibilities. For the first ten systems, i.e.
Scott,Park,CDZ,HR, DHM, BCD,AO, Plotkin,Engeler and CDS, we only
consider λT

∩⊤ . For the other 3 systems, i.e. HL,CDV and CD, we will only

consider λT∩ . In fact by Lemma 15.1.14(ii) and (iii) we know that CDV and CD
have no top at all. The system HL has a top, but we will not use it, as we do
not know interesting properties of λHL

∩⊤ . So, for example, ⊢Scott will be always

⊢Scott
∩⊤ , whereas ⊢HL will be always ⊢HL

∩ . The reader will be reminded of this.

We do not know wether there exist TTs where the interplay of λT∩ and λT
∩⊤

yields results of interest.

Admissible rules

15.2.8. Proposition. The following rules are admissible in λT
∩(⊤).

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A
;

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A
;

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A
;

(≤-L)
Γ, x:B ⊢M : A C ≤T B

Γ, x:C ⊢M : A
;

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ

Γ, x:(C→B) ⊢ (M [y := xN ]) : A
;

(∩L)
Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B
.

Figure 15.6: Various admissible rules.

Proof. By induction on the structure of derivations.
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Proofs later on in Part III will freely use the rules of the above proposition.
As we remarked earlier, there are various equivalent alternative presentations

of intersection type assignment systems. We have chosen a natural deduction
presentation, where T -bases are additive. We could have taken, just as well,
a sequent style presentation and replace rule (→E) with the three rules (→L),
(∩L) and (cut) occuring in Proposition 15.2.8, see Barbanera et al. [1995],
Barendregt and Ghilezan [n.d.]. Next to this we could have formulated the
rules so that T -bases “multiply”. Notice that because of the presence of the
type constructor ∩, a special notion of multiplication of T -bases can be given.

15.2.9. Definition (Multiplication of T -bases).

Γ ⊎ Γ′ = {x:A ∩B | x:A∈Γ and x:B ∈Γ′}
∪ {x:A | x:A∈Γ and x /∈ Γ′}
∪ {x:B | x:B ∈Γ′ and x /∈ Γ}.

Accordingly we define:

Γ ⊆+ Γ′ ⇔ ∃Γ′′.Γ ⊎ Γ′′ = Γ′.

For example, {x:A, y:B} ⊎ {x:C, z:D} = {x:A ∩ C, y:B, z:D}.

15.2.10. Proposition. The following rules are admissible in all λT
∩(⊤).

(multiple weakening)
Γ1 ⊢M : A

Γ1 ⊎ Γ2 ⊢M : A

(relevant →E)
Γ1 ⊢M : A→ B Γ2 ⊢ N : A

Γ1 ⊎ Γ2 ⊢MN : B

(relevant ∩ I)
Γ1 ⊢M : A Γ2 ⊢M : B

Γ1 ⊎ Γ2 ⊢M : A ∩B

Proof. By induction on derivations.

In Exercise 16.3.17, it will be shown that we can replace rule (≤) with
other more perspicuous rules. This is possible as soon as we will have proved
appropriate “inversion” theorems for λT

∩(⊤) . For some very special theories, one
can even omit altogether rule (≤), provided the remaining rules are reformulated
“multiplicatively” with respect to T -bases, see e.g. Di Gianantonio and Honsell
[1993]. We shall not follow up this line of investigation.

In λT
∩(⊤) , assumptions are allowed to appear in the basis without any restric-

tion. Alternatively, we might introduce a relevant intersection type assignment
system, where only “minimal-base” judgements are derivable, (see Honsell and
Ronchi Della Rocca [1992]). Rules like (relevant →E) and (relevant ∩ I),
which exploit the above notion of multiplication of bases, are essential for this
purpose. Relevant systems are necessary, for example, for giving finitary logical
descriptions of qualitative domains as defined in Girard et al. [1989]. We will
not follow up this line of research either. See Honsell and Ronchi Della Rocca
[1992].
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Special type assignment for call-by-value λ-calculus

We will study later the type theory EHR with AEHR = {ν} and the extra rule
(→) and axioms (→∩) and

A→B ≤ ν.
The type assignment system λEHR

∩ν is defined by the axiom and rules of λT∩ in
Figure 15.4 with the extra axiom

(ν universal) Γ ⊢ (λx.M) : ν.

The type theory EHR has a top, namely ν, so one could consider it as an element
of TT ⊤. This will not be done. Axiom (ν-universal) is different from (⊤-
universal) in Definition 15.2.2. This type assignment system has one particular
application and will be studied in some exercises.

15.3. Type structures

Intersection type structures

Remember that a type algebra A, see Definition ??, is of the form A = 〈|A|,→〉,
i.e. just an arbitrary set |A| with a binary operation → on it.

15.3.1. Definition. (i) A meet semi-lattice is a structure

M = 〈|M|,≤,∩〉,

such that M = 〈|M|,≤,∩〉 is a partial order, for all A,B ∈ |M| the element
A ∩ B (meet) is the greatest lower bound of A and B. MSL is the set of meet
semi-lattices.

(ii) A top meet semi-lattice is a similar structure

M = 〈|M|,≤,∩,⊤〉,

such that M = 〈|M|,≤,∩〉 is a MSL and ⊤ is the (unique) top of M. MSL⊤

is the set of top meet semi-lattices.

15.3.2. Definition. (i) An (intersection) type structure is a type algebra with
the additional structure of a meet semi-lattice

S = 〈|S|,→,≤,∩〉.

TS is the set of type structures. The relation ≤ and the operation → have a
priori no relation with each other, but in special structures this will be the case.

(ii) A top type structure is a type algebra that is also a top meet semi-lattice

S = 〈|S|,→,≤,∩,⊤〉.

TS⊤ is the set of top type structures.
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Notation. (i) As ‘intersection’ is everywhere in this Part III, we will omit this
word and only speak about a type structure.

(ii) Par abus de language we also useA,B,C, . . . to denote arbitrary elements
of type structures and we write A∈S for A∈ |S|.

If T is a type theory that is not compatible, like CD and CDS, then →
cannot be defined on the equivalence classes. But if T is compatible, then one
can work on the equivalence classes and obtain a type structure in which ≤ is
a partial order.

15.3.3. Proposition. Let T be a compatible type theory. Then T induces a
type structure T /= defined as follows.

〈TTT /=T ,→,≤,∩〉,

by defining on the =T -equivalence classes

[A]→[B] = [A→B]2;

[A] ∩ [B] = [A ∩B];

[A] ≤ [B] ⇔ A ≤T B.

If moreover T has a top ⊤, then T /= is a top type structure with [⊤] as top.

Proof. Here A,B,C range over TTT . Having realized this the rest is easy.
Rule (→=) is needed to ensure that → is well-defined.

The (top) type structure T / =, with T a type theory, is called a syntactical
(top) type structure. In Proposition 15.3.6 we show that every type structure
is isomorphic to a syntactical one.

Although essentially equivalent, type structures and type theories differ in
the following. In the theories the types are freely generated from a fixed set of
atoms and inequality can be controlled somewhat by choosing the right axioms
and rules (this will be exploited in Section 19.3). In type structures one has the
antisymmetric law A ≤ B ≤ A ⇒ A = B, which is in line with the common
theory of partial orders (this will be exploited in Chapter 17).

Now the notion of type assignment will also be defined for intersection type
structures. These structures arise naturally coming from algebraic lattices that
are used towards obtaining a semantics for untyped lambda calculus.

15.3.4. Definition. (i) Now let S ∈TS. The notion of a S-statement M : A,
a S-declaration x : A, a S-basis and a S-assertion Γ ⊢M : A is as in Definition
15.2.1, now for A∈S an element of the type structure S.

(ii) The notion Γ ⊢S∩ M : A is defined by the same set of axioms and rules
as in Figure 15.4 where now ≤S is the inequality of the structure S. The
assignment system λS

∩⊤ has (⊤-universal) as extra axiom.

2Here we misuse notation in a suggestive way, by using the same notation → for equivalence
classes as for types.
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The following result shows that for syntactic type structures type assignment
is essentially the same as the one coming from the corresponding lambda theory.

15.3.5. Proposition. Let T ∈TT(⊤) and let [T ] = 〈T / =T ,≤,∩,→(,⊤)〉 its
corresponding (top) type structure. For a type A∈T write its equivalence class
as [A]∈ [T ]. For Γ = {x1 : B1, . . . , xn : Bn} a T -basis write [Γ] = {x1 :
[B1], . . . , xn : [Bn]}, a [T ]-basis. Then

Γ ⊢T
∩(⊤) M : A ⇔ [Γ] ⊢[T ]

∩(⊤) M : [A].

Proof. (⇒) By induction on the derivation of Γ ⊢T M : A. (⇐) Show by
induction on the derivation of [Γ] ⊢[T ] M : [A] that for all A′ ∈ [A] and Γ′ =
{x1 : B′

1, . . . , xn : B′
n}, with B′

i ∈ [Bi] for all 1 ≤ i ≤ n, one has

Γ′ ⊢T M : A′.

Using this result we could have defined type assignment first for type struc-
tures and then for compatible type theories via translation to the type assign-
ment for its corresponding syntactical type structure, essentially by turning the
previous result into a definition.

15.3.6. Proposition. Every type structure is isomorphic to a syntactical one.

Proof. For a type structure S, define TS as follows. Take A = {c | c∈S}.
Define ≤TS on TT = TTA

∩ as follows. We make every element of TT equal to an
element of A by requiring

(a ∩ b) =TS a ∩ b, & (a→b) =TS a→b.

This means of course (a∩b) ≤TS a ∩ b, (a∩b) ≥TS a ∩ b, etcetera. We moreover
require

a ≤S b

a ≤TS b
.

As a consequence a ≤TS ⊤ if S is a top type structure. The axioms and rules
(refl), (trans), (→=), (inclL), (inclR) and (glb) also hold automatically. Then
S ∼= TS/ =. This can be seen as follows. Define f : S→TS/ = by f(a) = [a].
For the inverse, first define g : TTA

∩→S by

g(c) = c;

g(A→B) = g(A)→g(B);

g(A ∩B) = g(A) ∩ g(B).

Then show A ≤TS B ⇒ g(A) ≤ g(B). Finally set f−1([A]) = g(A), which is
well defined. It is easy to show that f, f−1 constitute an isomorphism.

15.3.7. Remark. Each of the eleven compatible type theories T in Figure 15.2
may be considered as the intersection type structure T /=, also denoted as T .
For example Scott can be a name, a type theory or a type structure.
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Categories of meet-semi lattices and type structures

For use in Chapter 17 we will introduce some categories related to given classes
of type structures.

15.3.8. Definition. (i) The category MSL has as objects at most countable
meet semi-lattices and as morphisms maps f :M→M′, preserving ≤,∩:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B).

(ii) The category MSL⊤ is as MSL, but based on top meet semi-lattices.
So now also f(⊤) = ⊤′ for morphisms.

The difference between MSL and MSL⊤ is that, in the MSL case, the top
element is either missing or not relevant (not preserved by morphisms).

15.3.9. Definition. (i) The category TS has as objects the at most countable
type structures and as morphisms maps f : S→S ′, preserving ≤,∩,→:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B);

f(A→B) = f(A)→′f(B).

(ii) The category TS⊤ is as TS, but based on top type structures. Now also

f(⊤) = ⊤′

for morphisms.

15.3.10. Definition. We define four full subcategories of TS by specifying in
each case the objects.

(i) GTS⊤ with as objects the graph top type structures.
(ii) LTS⊤ with as objects the lazy top type structures.
(iii) NTS⊤ with as objects the natural top type structures.
(iv) PTS with as objects the proper type structures.

15.4. Filters

15.4.1. Definition. (i) Let T ∈TT and X ⊆ TTT . Then X is a filter over T if
the following hold.

(1) X is non-empty;

(2) A∈X & A ≤ B ⇒ B ∈X;

(3) A,B ∈X ⇒ A ∩B ∈X.

(ii) Write FT = {X ⊆ T | X is a filter over T }.

We loosely say that filters are non-empty sets of types closed under ≤ and ∩.

15.4.2. Definition. Let T ∈TT.
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(i) For A∈TTT write ↑A = {B ∈TTT | A ≤ B}.
(ii) For a non-empty X ⊆ TTT define ↑X to be the least filter over TTT

containing X; it can be described explicitly by

↑X = {B ∈TTT | ∃n ≥ 1∃A1, . . . ,An ∈X.A1 ∩ . . . ∩An ≤ B}.

15.4.3. Remark. C ∈ ↑ {Bi | i∈I 6= ∅} ⇔ ∃I ⊆fin I.[I 6= ∅ &
⋂

i∈ I Bi ≤ C].

15.4.4. Proposition. Let T ∈TT ⊤.

(i) FT = 〈FT ,⊆〉 is a complete lattice, with for X ⊆ FT the sup is

X = ↑(∪X ), if X 6= ∅,
X = {⊤}, else.

(ii) For A∈TTT one has ↑A = ↑{A} and ↑A∈FT .

(iii) For A,B ∈TTT one has ↑A ⊔ ↑B = ↑(A ∩B).

(iv) For X ∈FT one has

X = {↑A | A∈X}
= {↑A | ↑A ⊆ X}
=

⋃

{↑A | A∈X}

=
⋃

{↑A | ↑A ⊆ X}.

(v) {↑A | A∈TTT } is the set of finite elements of FT .

Proof. Easy.

15.4.5. Definition. Let T ∈TT. Then FT
s = FT ∪{∅} is the extension of FT

with the emptyset.

15.4.6. Proposition. Let T ∈TT.

(i) FT
s = 〈FT

s ,⊆〉 is a complete lattice, with for X ⊆ FS
s the sup is

X =

{

∅, if X = ∅ or X = {∅},
↑(∪X ), else .

(ii) For A∈TTT one has ↑A = ↑{A} and ↑A∈FT
s .

(iii) For A,B ∈TTT one has ↑A ⊔ ↑B = ↑(A ∩B).

(iv) For X ∈FT
s one has

X = {↑A | A∈X} = {↑A | ↑A ⊆ X}
=

⋃{↑A | A∈X} =
⋃{↑A | ↑A ⊆ X}.

(v) {↑A | A∈TTT } ∪ {∅} is the set of finite elements of FT
s .

Proof. Immediate.
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15.4.7. Remark. The items 15.1.9-15.2.10 and 15.4.1-15.4.6 are about type the-
ories, but can be translated immediately to structures and if no→ are involved
to meet-semi lattices. For example Proposition 15.1.13 also holds for a proper
type structure, hence it holds for Scott,Park,CDZ,HR,DHM,BCD,AO,HL
and CDV considered as type structures. Also 15.1.14-15.1.20 immediately yield
corresponding valid statements for the corresponding type structures, though
the proof for the type theories cannot be translated to proofs for the type
structures because they are by induction on the syntactic generation of TT

or ≤. Also 15.2.4-15.2.10 hold for type structures, as follows immediately
from Propositions 15.3.5 and 15.3.6. Finally 15.4.1-15.4.6 can be translated
immediately to type structures and meet semi-lattices. Therefore in the follo-
wing chapters everywhere the type theories may be translated to type structures
(or if no → is involved to meet semi-lattices). In Chapter 17 we work directly
with meet semi-lattices and type structures and not with type theories, because
there a partial order is needed.

15.5. Exercises 31.10.2006:581

15.5.1. Show that Γ, x:⊤ ⊢T
∩⊤ M : A ⇒ Γ ⊢T

∩⊤ M : A.

15.5.2. The system K and the type assignment system λK∩ of Krivine [1990] are
CD and λCD

∩ , but with rule (≤) replaced by

(∩E)
Γ ⊢M : A ∩B

Γ ⊢M : A

Γ ⊢M : A ∩B
Γ ⊢M : B

Similarly K
⊤ and λK

⊤

∩⊤ are CDS and λCDS
∩⊤ , with (≤) replaced by (∩E).

Show that

(i) Γ ⊢K M : A ⇔ Γ ⊢CD
∩ M : A.

(ii) Γ ⊢K⊤ M : A ⇔ Γ ⊢CDS
∩⊤ M : A.

15.5.3. (i) Show that λx.xxx and (λx.xx)I are typable in system K.

(ii) Show that all closed terms in normal forms are typable in system K.

15.5.4. Show the following:

(i) ⊢K λz.KI(zz) : (A→B) ∩A→C→C.
(ii) ⊢K⊤ λz.KI(zz) : ⊤→C→C.
(iii) ⊢BCD

∩⊤ λz.KI(zz) : ⊤→(A→B ∩ C)→A→B.
15.5.5. For T a type theory, M,N ∈Λ and x /∈dom(Γ) show

(i) Γ ⊢T∩ M : A ⇒ Γ ⊢T∩ M [x: = N ] : A;

(ii) Γ ⊢T
∩⊤ M : A ⇒ Γ ⊢T

∩⊤ M [x: = N ] : A.

15.5.6. Show that

M is a closed term ⇒ ⊢Park
∩⊤ M : ω.

Later we will show the converse (Theorem 18.3.22).
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15.5.7. Prove that for all types A∈TTAO there is an n such that

⊤n→⊤ ≤AO A.

15.5.8. Prove that if (ωϕ), (ϕ→ ω) and (ω → ϕ) are axioms in T , then for all
M in normal form {x1 : ω, . . . , xn : ω} ⊢T M : ϕ, where {x1, . . . , xn} ⊇
FV(M).

15.5.9. Let D = 〈D, ·〉 be an applicative structure, i.e. a set with an arbitrary
binary operation on it. For X,Y ⊂ D define

X → Y = {d∈D | ∀e∈X.d · e∈Y }.

Consider (P(D),→,⊆,∩, D), where P(D) is the power set of D, ⊆ and
∩ are the usual set theoretic notions and D is the top of P(D). Show

• (P(D),→,⊆,∩) is a proper type structure.

• D = D → D.

• (P(D),→,⊆,∩,D) is a natural type structure.
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This Chapter is on type theories but, by Remark 15.4.7, applies as well to type
structures. That is, everywhere T , TT and TT ⊤ may be replaced by S, TS
and TS⊤, respectively.

Let T be a type theory. We derive properties of ⊢T , where ⊢T stands for
⊢T∩ or ⊢T

∩⊤ . Whenever we need to require extra properties about T , this will be
stated explicitly. Often T will be one of the theories from Figure 15.2.

The properties that will be studied are inversion theorems that will make it
possible to predict when statements

Γ ⊢T M : A (1)

are derivable, in particular from what other statments. This will be done in
Section 16.1. Building upon this, in Section 16.2 conditions are given when
type assignment statements remain valid after reducing or expanding the M
according to β or η-rules.

16.1. Inversion theorems

In the style of Coppo et al. [1984] and Alessi et al. [2003], [2005] we shall
isolate special properties which allow to ‘reverse’ some of the rules of the
type assignment system ⊢T∩ , thereby achieving some form of ‘generation’ and
‘inversion’ properties. These state necessary and sufficient conditions when an
assertion Γ ⊢T M : A holds depending on the form of M and A, see Theorems
16.1.1 and 16.1.10.

16.1.1. Theorem (Inversion Theorem I). If ⊢ is ⊢T∩ , then the following statements
hold unconditionally; if it is ⊢T

∩⊤, then they hold under the assumption that

39
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A 6= ⊤ in (i) and (ii).

(i) Γ ⊢ x : A ⇔ Γ(x) ≤ A.
(ii) Γ ⊢MN : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[C1 ∩ . . . ∩ Ck ≤ A & ∀i∈{1, . . . , k}
Γ ⊢M : Bi→Ci & Γ ⊢ N : Bi].

(iii) Γ ⊢ λx.M : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& ∀i∈{1, . . . , k}.Γ, x:Bi ⊢M : Ci].

Proof. We only treat (⇒) in (i)-(iii), as (⇐) is trivial. Let first ⊢ be ⊢T∩ .
(i) By induction on derivations. We reason according which axiom or rule

has been used in the last step. Only axiom (Ax), and rules (∩I), (≤) could have
been applied. In the first case one has Γ(x) ≡ A. In the other two cases the
induction hypothesis applies.

(ii) By induction on derivations. By assumption on A and the shape of the
term the last applied step has to be rule (→E), (≤) or (∩I). In the first case
the last applied rule is

(→E)
Γ ⊢M : D→A Γ ⊢ N : D

.
Γ ⊢MN : A

We can take k = 1 and C1 ≡ A and B1 ≡ D. In the second case the last rule
applied is

(≤)
Γ ⊢MN : B B ≤ A

Γ ⊢MN : A
and the induction hypothesis applies. In the last case A ≡ A1∩A2 and the last
applied rule is

(∩I)
Γ ⊢MN : A1 Γ ⊢MN : A2

Γ ⊢MN : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej , with 1 ≤ i ≤ k, 1 ≤ j ≤ k′,
such that

Γ ⊢M : Bi→Ci, Γ ⊢ N : Bi,
Γ ⊢M : Dj→Ej , Γ ⊢ N : Dj ,
C1 ∩ . . . ∩ Ck ≤ A1, E1 ∩ . . . ∩ Ek′ ≤ A2.

Hence we are done, as C1 ∩ . . . ∩ Ck ∩ E1 ∩ . . . ∩ Ek′ ≤ A.
(iii) Again by induction on derivations. We only treat the case A ≡ A1 ∩A2

and the last applied rule is (∩I):

(∩I)
Γ ⊢ λx.M : A1 Γ ⊢ λx.M : A2

Γ ⊢ λx.M : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej with 1 ≤ i ≤ k, 1 ≤ j ≤ k′
such that

Γ, x:Bi ⊢M : Ci, (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A1,
Γ, x:Dj ⊢M : Ej , (D1→E1) ∩ . . . ∩ (Dk′→Ek′) ≤ A2.

We are done, since (B1→C1)∩. . .∩(Bk→Ck)∩(D1→E1)∩. . .∩(Dk′→Ek′) ≤ A.

Now we prove (⇒) in (i)-(iii) for λT
∩⊤ .
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(i) The condition A 6= ⊤ implies that axiom (⊤ universal) cannot have been
used in the last step. Hence the reasoning above suffices.

(ii), (iii) The only interesting rule is (∩I). Condition A 6= ⊤ implies that we
cannot have A1 = A2 = ⊤. In case A1 6= ⊤ and A2 6= ⊤ the result follows as
above. The other cases are more easy.

Notice that as a consequence of this theorem the subformula property holds
for all λT

∩(⊤) .

16.1.2. Corollary (Subformula property). Assume Γ ⊢T
∩(⊤) M : A and let N

be a subterm of M . Then N is typable in an extension Γ+ = Γ, x1:B1, . . . , xn:Bn

in which also the variables {x1, . . . ,xn} = FV(N)−FV(M) get a type assigned.

Proof. If we have rule (⊤-universal) the statement is trivial. Otherwise if N
is a subterm of M , then we can write M ≡ C[N ]. The statement is proved by
induction on the structure of C[ ].

16.1.3. Proposition. We have for fresh y ( /∈dom(Γ)) the following.

∃B [Γ ⊢ N : B & Γ ⊢M [x: = N ] : A] ⇒
∃B [Γ ⊢ N : B & Γ, y:B ⊢M [x: = y] : A].

Proof. By induction on the structure of M .

Under some conditions (that will hold for many TTs, notably the ones
introduced in Section 15.1), the Inversion Theorem can be restated in a more
memorable form. This will be done in Theorem 16.1.10.

16.1.4. Definition. T is called β-sound if

∀k≥1∀A1, . . . ,Ak, B1, . . . ,Bk, C,D.

(A1→B1) ∩ . . . ∩ (Ak→Bk) ≤ (C→D) & D 6= ⊤ ⇒
C ≤ Ai1 ∩ . . . ∩Aip & Bi1 ∩ . . . ∩Bip ≤ D,
for some p ≥ 1 and 1 ≤ i1, . . . ,ip ≤ k.







(∗)

This definition immediately translates to type structures. The notion of β-
soundness is introduced to prove invertibility of the rule (→I), which is important
for the next section.

16.1.5. Lemma. Let T satisfy (⊤) and (⊤→). Suppose moreover that T is β-
sound. Then for all A,B

A→B = ⊤ ⇔ B = ⊤.

Proof. (⇒) ⊤→⊤ ≤ ⊤ = A→B, by assumption; hence ⊤ ≤ B (≤ ⊤), by
β-soundness. (⇐) By rule (⊤→).

Let T be β-sound. Then A→B ≤ A′→B′ ⇒ A′ ≤ A & B ≤ B′ if B′ is
not the top element (but not in general).

In 16.1.6-16.1.8 we will show that all T ’s of Figures 15.2 are β-sound.
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16.1.6. Remark. Note that in a TT every type A can be written uniquely,
apart from the order, as

A ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck) (+),

i.e. an intersection of atoms (αi ∈A) and arrow types.

For some of our T the shape (+) in Remark 16.1.6 can be simplified.

16.1.7. Definition. For the type theories T of Figure 15.2 we define for each
A∈TTT its canonical form, notation cf(A), as follows.

(i) If T ∈ {BCD,AO,Plotkin,Engeler,CDS,CDV,CD}, then

cf(A) ≡ A.

(ii) If T ∈ {Scott,Park,CDZ,HR,DHM,HL} then the definition is by induction
on A. For an atom α the canonical form cf(α) depends on the type theory in
question; moreover the mapping cf preserves →,∩ and ⊤.

System T A cf(A)

Scott ω ⊤→ω
Park ω ω→ω
CDZ,HL ω ϕ→ω

ϕ ω→ϕ
HR ω ϕ→ω

ϕ (ω→ω) ∩ (ϕ→ϕ)
DHM ϕ ω→ϕ

ω ⊤→ϕ
All systems ⊤ ⊤
except HL

All systems B→C B→C
All systems B ∩ C cf(B) ∩ cf(C)

16.1.8. Theorem. All theories T of Figure 15.2 are β-sound.

Proof. We prove the following stronger statement (induction loading). Let

A ≤ A′,

cf(A) ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck),

cf(A′) ≡ α′
1 ∩ . . . ∩ α′

n′ ∩ (B′
1→C ′

1) ∩ . . . ∩ (B′
k′→C ′

k′).

Then

∀j ∈{1, k′}.[Cj′ 6= ⊤ ⇒
∃p≥1∃i1, . . . ip ∈{1, k}.[B′

j ≤ Bi1 ∩ . . . ∩Bip & Ci1 ∩ . . . ∩ Cip ≤ C ′
j ]].

The proof of the statement is by induction on the generation of A ≤ A′. From
it β-soundness follows easily.
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16.1.9. Remark. From the Theorem it follows immediately that for the compatible
theories of Fig. 15.2 the corresponding type structures are β-sound.

16.1.10. Theorem (Inversion Theorem II). Of the following properties (i) holds
in general, (ii) provided that T is proper and A 6= ⊤ if ⊢ is ⊢T

∩⊤ and (iii)
provided that T is β-sound.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. The proof of each (⇐) is easy. So we only treat (⇒).

(i) If B 6= ⊤, then the conclusion follows from Theorem 16.1.1(i). If B = ⊤,
then the conclusion holds trivially.

(ii) Suppose Γ ⊢MN : A. Then by Theorem 16.1.1(ii) there are B1, . . . ,Bk,
C1, . . . ,Ck, with k ≥ 1, such that C1 ∩ . . . ∩ Ck ≤ A, Γ ⊢ M : Bi→Ci and
Γ ⊢ N : Bi for 1 ≤ i ≤ k. Hence Γ ⊢ N : B1 ∩ . . . ∩Bk and

Γ ⊢M : (B1→C1) ∩ . . . ∩ (Bk→Ck)
≤ (B1 ∩ . . . ∩Bk)→(C1 ∩ . . . ∩ Ck)
≤ (B1 ∩ . . . ∩Bk)→A,

by Lemma 15.1.13. So we can take B ≡ (B1 ∩ . . . ∩Bk).

(iii) Suppose Γ ⊢ (λx.M) : (B→C). Then Theorem 16.1.1(iii) applies and
we have for some k ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ B→C,
Γ, x:Bi ⊢M : Ci for all i.

If C = ⊤, then the assertion holds trivially, so let C 6= ⊤. Then by β-soundness
there are 1 ≤ i1, . . . ,ip ≤ k, p ≥ 1 such that

B ≤ Bi1 ∩ . . . ∩Bip ,

Ci1 ∩ . . . ∩ Cip ≤ C.

Applying (≤-L) we get

Γ, x:B ⊢M : Cij , 1 ≤ j ≤ p,
Γ, x:B ⊢M : Ci1 ∩ . . . ∩ Cip ≤ C.

We give a simple example which shows that in general rule (→E) cannot be
reversed, i.e. that if Γ ⊢MN : B, then it is not always true that there exists A
such that Γ ⊢M : A→B and Γ ⊢ N : A.

16.1.11. Example. Let T = Engeler, one of the intersection type theories of
Figure 15.2. Let Γ = {x:(ϕ0→ϕ1) ∩ (ϕ2→ϕ3), y:(ϕ0 ∩ ϕ2)}. Then one has
Γ ⊢T

∩⊤ xy : ϕ1 ∩ ϕ3. Nevertheless, it is not possible to find a type B such that

Γ ⊢T
∩⊤ x : B→(ϕ1 ∩ ϕ3) and Γ ⊢T

∩⊤ y : B. See Exercise ??.
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16.1.12. Remark. In general

Γ ⊢T (λx.M) : A 6⇒ ∃B,C.A = (B→C) & Γ, x:B ⊢T M : C.

A counterexample is ⊢BCD I : (α1→α1) ∩ (α2→α2), with α1, α2 atomic.

16.1.13. Proposition. For T ∈ {Scott, Park, CDZ, HR, DHM, BCD, AO} the
properties (i), (ii) and (iii) of Theorem 16.1.10 hold for ⊢T

∩⊤, provided that in
(ii) A 6= ⊤ for T = AO. For T ∈ {HL,CDV} the properties hold unconditionally
for ⊢T∩ .

Proof. For these T Theorem 16.1.10 applies since they are proper and β-sound
(by Theorem 16.1.8). Moreover, by axiom (→⊤) we have Γ ⊢T

∩⊤ M : ⊤ → ⊤ for
all Γ,M , hence we do not need to assumeA 6= ⊤ for T ∈ {Scott, Park, CDZ, HR,
DHM, BCD}.

16.2. Subject reduction and expansion

Various subject reduction and expansion properties are proved, for the classical
β, βI and η notions of reduction. Other results can be found in Alessi et al.
[2003], Alessi et al. [2006]. We consider the following rules.

(R-red)
M →R N Γ ⊢M : A

Γ ⊢ N : A

(R-exp)
MR← N Γ ⊢M : A

Γ ⊢ N : A

where R is a notion of reduction, notably β-, βI, or η-reduction. If one of these
rules holds in λT

∩(⊤) , we write λT
∩(⊤) |= (R-{exp, red}), respectively. If both hold

we write λT
∩(⊤) |= (R-cnv). These properties will be crucial in Chapters 17, 18

and 19, where we will discuss (untyped) λ-models induced by these systems.
Recall that (λx.M)N is a βI-redex if x∈FV(M), Curry and Feys [1958].

β-conversion

We first investigate when λT
∩(⊤) |= (β(I)-red).

16.2.1. Proposition. (i) λT
∩(⊤) |= (βI-red) ⇔

[Γ ⊢T (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T M : A].

(ii) λT
∩(⊤) |= (β-red) ⇔ [Γ ⊢T (λx.M) : (B→A) ⇒ Γ, x:B ⊢T M : A].

Proof. (i) (⇒) Assume Γ ⊢ λx.M : B→A & x∈FV(M), which implies
Γ, y:B ⊢ (λx.M)y : A, by weakening and rule (→E) for a fresh y. Now rule
(βI-red) gives us Γ, y:B ⊢M [x:=y] : A. Hence Γ, x:B ⊢M : A.

(⇐) Suppose Γ ⊢ (λx.M)N : A & x∈FV(M), in order to show that
Γ ⊢ M [x:=N ] : A. We may assume A 6= ⊤. Then Theorem 16.1.1(ii)
implies Γ ⊢ λx.M : Bi→Ci, Γ ⊢ N : Bi and C1 ∩ . . . ∩ Ck ≤ A, for some
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B1, . . . ,Bk, C1, . . . ,Ck. By assumption Γ, x:Bi ⊢ M : Ci. Hence by rule (cut),
Proposition 15.2.8, one has Γ ⊢ M [x:=N ] : Ci. Therefore Γ ⊢ M [x:=N ] : A,
using rules (∩I) and (≤).

(ii) Similarly.

16.2.2. Corollary. Let T be β-sound. Then λT
∩(⊤) |= (β-red).

Proof. Using Theorem 16.1.10(iii).

16.2.3. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-red).

(ii) Let T ∈ {HL,CD,CDV}. Then λT∩ |= (β-red).

Proof. By Corollary 16.2.2 and Theorem 16.1.8.

In Definition 18.2.22 we will introduce a type theory that is not β-sound,
but nevertheless induces a type assignment system satisfying (β-red).
Now we investigate when λT

∩(⊤) |= (β-exp). As a warm-up, suppose that Γ ⊢
M [x:=N ] : A. Then we would like to conclude that N has a type, as it seems to
be a subformula, and therefore Γ ⊢ (λx.M)N : A. There are two problems: N
may occur several times in M [x:=N ], so that it has (should have) in fact several
types. In the system λ→ this problem causes the failure of rule (β-exp). But in
the intersection type theories one has N : B1 ∩ . . . ∩ Bk if N : B1, . . . , N : Bk.
Therefore (λx.M)N has a type if M [x:=N ] has one. The second problem arises
if N does not occur at all in M [x:=N ], i.e. if the redex is a λK-redex. We would
like to assign as type to N the intersection over an empty sequence, i.e. the top
⊤. This makes (β-exp) invalid in λT∩ , but valid in systems λT

∩⊤ .

16.2.4. Proposition. (i) Suppose Γ ⊢T M [x:=N ] : A. Then

Γ ⊢T (λx.M)N : A ⇔ N is typable in context Γ.

(ii) λT
∩(⊤) |= (β-exp) ⇔ ∀Γ,M,N,A

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

(iii) λT
∩(⊤) |= (βI-exp) ⇔ ∀Γ,M,N,A with x∈FV(M)

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

Proof. (i) (⇒) By Theorem 16.1.1(ii). (⇐) Let Γ ⊢ M [x:=N ] : A and
suppose N is typable in context Γ. By proposition 16.1.3 for some B and a
fresh y one has Γ ⊢ N : B & Γ, y:B ⊢ M [x: = y] : A. Then Γ ⊢ λx.M : (B→A)
and hence Γ ⊢ (λx.M)N : A.

(ii) (⇒) Assume Γ ⊢ M [x:=N ] : A. Then Γ ⊢ (λx.M)N : A, by (β-exp),
hence by (i) we are done. (⇐) Assume Γ ⊢ L′ : A, with L→β L

′. By induction
on the generation of L→β L

′ we get Γ ⊢ L : A from (i) and Theorem 16.1.1.
(iii) Similar to (ii).
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16.2.5. Corollary. (i) λT
∩⊤ |= (β-exp).

(ii) λT∩ |= (βI-exp).

Proof. (i) Trivial, since every term has type ⊤.
(ii) By the subformula property (Corollary 16.1.2).

Now we can harvest results towards closure under β-conversion.

16.2.6. Theorem. Let T ∈TT be β-sound.
(i) Let T ∈TT ⊤. Then λT

∩⊤ |= (β-cnv).

(ii) λT∩ |= (βI-cnv).

Proof. (i) By Corollaries 16.2.2 and 16.2.5(i).
(ii) By Corollaries 16.2.2 and 16.2.5(ii).

16.2.7. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-cnv).

(ii) Let T ∈ {HL,CDV,CD}. Then λT∩ |= (βI-cnv).

Proof. (i) By Theorem 16.2.6(i).
(ii) By Theorem 16.2.6(ii).

η-conversion

First we give necessary and sufficient conditions for a system λT
∩(⊤) to satisfy

the rule (η-red).

16.2.8. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-red) ⇔ T is natural.

(ii) Let T ∈TT. Then

λT∩ |= (η-red) ⇔ T is proper.

Proof. (i) (⇒) Assume λT
∩⊤ |= (η-red) towards (→∩), (→) and (⊤→).

As to (→∩), one has

x:(A→B) ∩ (A→C), y:A ⊢ xy : B ∩ C,

hence by (→I) it follows that x:(A→B) ∩ (A→C) ⊢ λy.xy : A→(B ∩ C).
Therefore x:(A→B) ∩ (A→C) ⊢ x : A→(B ∩ C), by (η-red). By Theorem
16.1.10(i) one can conclude (A→B) ∩ (A→C) ≤ A→(B ∩ C).

As to (→), suppose that A ≤ B and C ≤ D, in order to show B→C ≤
A→D. One has x:B→C, y:A ⊢ xy : C ≤ D, so x:B→C ⊢ λy.xy : A→D.
Therefore by (η-red) it follows that x:B→C ⊢ x : A→D and we are done as
before.

As to ⊤ ≤ ⊤→⊤, notice that x:⊤, y:⊤ ⊢ xy : ⊤, so we have x:⊤ ⊢ λy.xy :
⊤→⊤. Therefore x:⊤ ⊢ x : ⊤→⊤ and again we are done.
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(⇐) Let T be natural. Assume that Γ ⊢ λx.Mx : A, with x /∈ FV(M), in
order to show Γ ⊢M : A. If A = ⊤, we are done. Otherwise,

Γ ⊢ λx.Mx : A ⇒ Γ, x:Bi ⊢Mx : Ci, 1 ≤ i ≤ k, &

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A,
for some B1, . . . ,Bk, C1, . . . ,Ck,

by Theorem 16.1.1(iii). By Lemma 16.1.5 we omit the i such that Ci = ⊤. There
is at least one Ci 6= ⊤, since otherwise A ≥ (B1→⊤)∩ . . .∩ (Bk→⊤) = ⊤, again
by Lemma 16.1.5, and we would have A = ⊤. Hence by Theorem 16.1.10(ii)

⇒ Γ, x:Bi ⊢M : Di→Ci and

Γ, x:Bi ⊢ x : Di, for some D1, . . . ,Dk,

⇒ Bi ≤ Di, by Theorem 16.1.10(i),

⇒ Γ ⊢M : (Bi→Ci), by (≤-L) and (→),

⇒ Γ ⊢M : ((B1→C1) ∩ . . . ∩ (Bk→Ck)) ≤ A.

(ii) Similarly, but simpler.

16.2.9. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD}.
Then λT

∩⊤ |= (η-red).

(ii) Let T ∈ {HL,CDV}. Then λT∩ |= (η-red).

In order to characterize the admissibility of rule (η-exp), we need to introduce
a further condition on type theories. This condition is necessary and sufficient
to derive from the basis x:A the same type A for λy.xy, as we will show in the
proof of Theorem 16.2.11.

16.2.10. Definition. Let T ∈TT.

(i) T is called η-sound iff for all A there are k ≥ 1, m1, . . . ,mk ≥ 1 and
B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with
(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

(ii) Let T ∈TT ⊤. Then T is called η⊤-sound iff for all A 6= ⊤ at least one
of the following two conditions holds.

(1) There are types B1, . . . ,Bn with (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A;
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(2) There are k ≥ 1, m1, . . . ,mk ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with

(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩
∩ (Bk+1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

This definition immediately translates to type structures. The validity of η-
expansion can be given as follows.

16.2.11. Theorem (Characterization of η-exp).

(i) λT∩ |= (η-exp) ⇔ T is η-sound.

(ii) λT
∩⊤ |= (η-exp) ⇔ T is η⊤-sound.

Proof. (i) (⇒) Assume λT∩ |= (η-exp). As x:A ⊢ x : A, by assumption we
have x:A ⊢ λy.xy : A. From Theorem 16.1.1(iii) it follows that x:A, y:Bi ⊢ xy :
Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. By Theorem 16.1.1(ii)
for each i there exist Dij , Eij , such that for each j one has x:A, y:Bi ⊢ x :
(Dij→Eij), x:A, y:Bi ⊢ y : Dij and Ei1 ∩ . . . ∩ Eimi

≤ Ci. Hence by Theorem
16.1.1(i) we have A ≤ (Dij→Eij) and Bi ≤ Dij for all i and j. Therefore we
obtain the condition of 16.2.10(i).

(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
By assumption A satisfies the condition of Definition 16.2.10(i).

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

By rule (≤) for all i, j we have Γ ⊢ M : Dij→Eij and so Γ, x:Dij ⊢ Mx : Eij

by rule (→E). From (≤ L), (∩I) and (≤) we get Γ, x:Bi ⊢ Mx : Ci and this
implies Γ ⊢ λx.Mx : Bi→Ci, using rule (→I). So we can conclude by (∩I) and
(≤) that Γ ⊢ λx.Mx : A.

(ii) The proof is nearly the same as for (i). (⇒) Again we get x:A, y:Bi ⊢
xy : Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. If all Ci = ⊤, then
A satisfies the first condition of Definition 16.2.10(ii). Otherwise, consider the
i such that Ci 6= ⊤ and reason as in the proof of (⇒) for (i).
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(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
If A satisfies the first condition of Definition 16.2.10(ii), that is (B1→⊤) ∩
. . . ∩ (Bn→⊤) ≤ A, then by rule (⊤) it follows that Γ, x:Bi ⊢ Mx : ⊤, hence
Γ ⊢ λx.Mx : (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A. Now let A satisfy the second
condition. Then the proof is similar to that for (⇐) in (i).

For most intersection type theories of interest the condition of η(⊤)-soundness
is deduced from the following proposition.

16.2.12. Proposition. Let T ∈TT with atoms A be proper.

(i) T is η-sound ⇔ ∀A∈A∃B1, . . . ,Bk, C1, . . . ,Ck ∃n ≥ 1
A = (B1→C1) ∩ . . . ∩ (Bk→Ck).

(ii) Let T ∈TT ⊤. Then

T is η⊤-sound ⇔ ∀A∈A[⊤→⊤ ≤ A ∨ ∃B1, . . . ,Bk, C1, . . . ,Ck

∃k≥1 [(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩ (⊤→⊤) ≤ A
& A ≤ (B1→C1) ∩ . . . ∩ (Bk→Ck)]].

(iii) Let T ∈NTT⊤. Then

T is η⊤-sound ⇔ T is η-sound.

Proof. (i) (⇒) Suppose T is η-sound. Let A∈A. Then A satisfies the
condition of Definition 16.2.10(i), for some B1, . . . ,Bk, C1, . . . ,Ck,
D11, . . . , D1m1 , . . . , Dk1, . . . , Dkm1 , E11, . . . , E1m1 , . . . , Ek1, . . . , Ekmk

. By (→∩)
and (→), using Proposition 15.1.13, it follows that

A ≤ (D11 ∩ . . . ∩D1m1→E11 ∩ . . . ∩ E1m1) ∩ . . . ∩
(Dk1 ∩ . . . ∩Dkmk

→Ek1 ∩ . . . ∩ Ekmk
)

≤ (B1→C1) ∩ . . . ∩ (Bk→Ck),

hence A =T (B1→C1) ∩ . . . ∩ (Bk→Ck).
(⇐) By induction on the generation of A one can show that A satisfies the

condition of η-soundness. The case A1→A2 is trivial and the case A ≡ A1 ∩A2

follows by the induction hypothesis and Rule (mon).

(ii) Similarly. Note that (⊤→⊤) ≤ (B→⊤) for all B.

(iii) Immediately by (ii) using rule (⊤→).

16.2.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then T
is η⊤-sound.

(ii) HL is η-sound.

Proof. Easy. For AO in (i) one applies (ii) of the Proposition.

16.2.14. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then

λT∩⊤ |= (η-exp).
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(ii) Let T = HL, then
λT∩ |= (η-exp).

Proof. By the previous Corollary and Theorem 16.2.11.

Exercise 16.3.15 shows that the remaining systems of Figure 15.2 do not
satisfy (η-exp).

Now we can harvest results towards closure under η-conversion.

T β-red βI-red β-exp βI-exp η-red η-exp

Scott
√ √ √ √ √ √

Park
√ √ √ √ √ √

CDZ
√ √ √ √ √ √

HR
√ √ √ √ √ √

DHM
√ √ √ √ √ √

BCD
√ √ √ √ √

.

AO
√ √ √ √

.
√

Plotkin
√ √ √ √

. .

Engeler
√ √ √ √

. .

CDS
√ √ √ √

. .

HL
√ √

.
√ √ √

CDV
√ √

.
√ √

.

CD
√ √

.
√

. .

Figure 16.1: Type theories versus reduction and expansion

16.2.15. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-cnv) ⇔ T is natural and η⊤-sound.

(ii) Let T ∈TT. Then

λT∩ |= (η-cnv) ⇔ T is proper and η-sound.

Proof. (i) By Theorems 16.2.11(ii) and 16.2.8(i).
(ii) By Theorems 16.2.11(i) and 16.2.8(ii).

16.2.16. Theorem. (i) For T ∈ {Scott,Park,CDZ,HR,DHM} one has

λT∩⊤ |= (η-cnv).

(ii) For T = HL one has

λT∩ |= (η-cnv).

Proof. (i) By Corollaries 16.2.9(i) and 16.2.14(i).
(ii) By Corollaries 16.2.9(ii) and 16.2.14(ii).

Figure 16.1 summarises the results of this section and of the exercises in the
following section for the type theories of Figure 15.2. The symbol ‘

√
’ stands

for “the property holds” and ‘.’ for “the property fails”.
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16.3. Exercises

16.3.1. Show that for each number n∈N there is a type An ∈TTCD such that for
the Church numerals cn one has Γ ⊢CD

∩ cn+1 : An, but Γ 0
CD
∩ cn : An.

16.3.2. Show that S(KI)(II) and (λx.xxx)S are typable in ⊢CD
∩ .

16.3.3. Derive ⊢CDZ
∩⊤ (λx.xxx)S : ϕ and y:ω, z:ω ⊢CDZ

∩⊤ (λx.xxx)(Syz) : ω.

16.3.4. Find the relation between the following three types w.r.t. ≤CDZ.

(ω→(ϕ→ϕ)→ω) ∩ ((ϕ→ϕ)→ϕ), (ω→ω)→ω and ϕ→(ω→ω)→ϕ.

16.3.5. Using the Inversion Theorems show the following.

(i) 6⊢CD
∩ 1 : α→α, where α is any constant.

(ii) 6⊢HL
∩ K : ω.

(iii) 6⊢Scott
∩⊤ I : ω.

(iv) 6⊢Plotkin
∩⊤ Ix : ω.

16.3.6. We say that M and M ′ have the same types in Γ, notation M ∼Γ M
′ if

∀A [Γ ⊢M : A ⇔ Γ ⊢M ′ : A].

Prove that M ∼Γ M
′ ⇒ M ~N ∼Γ M

′ ~N .

16.3.7. Show that T = Plotkin is β-sound by checking that it satisfies the
following stronger condition.

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.8. Show that T = Engeler is β-sound by checking that it satisfies the
following stronger condition:

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D&D 6= ⊤ ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.9. Let A
T = {⊤, ω} and T be defined by the axioms and rules of the

theories Scott and Park together. Show that T is not β-sound [Hint:
show that ⊤ 6= ω].

16.3.10. Prove that Theorem 16.1.10(ii) still holds if the condition of properness
is replaced by the following two conditions

A ≤T B ⇒ C→A ≤T C→B

(A→B) ∩ (C→D) ≤T A ∩ C→B ∩D.
16.3.11. Show that the following condition

A→ B =T ⊤ → ⊤ ⇒ B =T ⊤

is necessary for the admissibility of rule (β-red) in λT∩ . [Hint: Use
Proposition 16.2.1(ii).]
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16.3.12. Remember that the systems λK∩ and λK
⊤

∩⊤ are defined in Exercise 15.5.2.

(i) Show that rules (β-red) and (βI-exp) are admissible in λK∩, while
(β-exp) is not admissible.

(ii) Show that rules (β-red) and (β-exp) are admissible in λK
⊤

∩⊤ .

16.3.13. (i) Show that for T ∈ {AO,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-red).

(ii) Show that for T = CD one has

λT∩ 6|= (η-red).

16.3.14. Verify the following.

(i) η-soundness implies η⊤-soundness.

(ii) Let T ∈ {BCD,Plotkin,Engeler,CDS}. Then T is not η⊤-sound.

(iii) Let T ∈ {AO,CDV,CD}. Then T is not η-sound.

Notice that AO is η⊤-sound (Corollary 16.2.13). Comment: it is very
interesting that AO is η⊤-sound but not η-sound, why do you propose
to erase it?

16.3.15. (i) Show that for T ∈ {BCD,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-exp).

(ii) Show that for T ∈ {CDV,CD} one has

λT∩ 6|= (η-exp).

16.3.16. Show that rules (η-red) and (η-exp) are not admissible in the systems

λK∩ and λK
⊤

∩⊤ as defined in Exercises 15.5.2.

16.3.17. Let ⊢ denote derivability in the system obtained from the system λCDV
∩

by replacing rule (≤) by the rules (∩E), see Definition 15.2.5, and adding
the rule

(Rη)
Γ ⊢ λx.Mx : A

Γ ⊢M : A
if x /∈ FV(M).

Show that Γ ⊢CDV
∩ M : A ⇔ Γ ⊢M : A.

16.3.18. (Barendregt et al. [1983]) Let ⊢ denote derivability in the system
obtained from λBCD

∩⊤ by replacing rule (≤) by the rules (∩E) and adding
(Rη) as defined in Exercise 16.3.17. Verify that

Γ ⊢BCD
∩⊤ M : A ⇔ Γ ⊢M : A.

16.3.19. Let ∆ be a basis that is allowed to be infinite. We define ∆ ⊢ M : A
iff there exists a finite basis Γ ⊆ ∆ such that Γ ⊢M : A.

(i) Show that all the typability rules are derivable except possibly for
(→I).
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(ii) Suppose dom(∆) is the set of all the variables. Show that the rule
(→I) is derivable if it is reformulated as

∆x, x:A ⊢M : B ⇒ ∆ ⊢ (λx.M) : (A→ B),

with ∆x the result of removing any x:C from ∆.
(iii) Reformulate and prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1

and 16.1.10 for infinite bases.

16.3.20. A multi-basis Γ is a set of declarations, in which the requirement that

x:A, y:B ∈Γ ⇒ x ≡ y ⇒ A ≡ B

is dropped. Let ∆ be a (possibly infinite) multi-basis. We define ∆ ⊢
M : A iff there exists a singled (only one declaration per variable) basis
Γ ⊆ ∆ such that Γ ⊢M : A.
(i) Show that x : α1, x : α2 6⊢CD x : α1 ∩ α2.
(ii) Show that x : α1 → α2, x : α1 6⊢CD xx : α2.
(iii) Consider ∆ = {x : α1 ∩ α2, x : α1};

A = α2;
B = (α1 → α2 → α3)→ α3;
M = λy.yxx.

Show that ∆, x : A ⊢CD M : B, but ∆ 6⊢CD (λx.M) : (A→ B).
(iv) We say that a multi-basis is closed under ∩ if for all x∈dom(∆) the

set X = ∆(x) is closed under ∩, i.e. A,B ∈X ⇒ A ∩B ∈X , up to
equality of types in the TT under consideration.
Show that all the typability rules of Figures 15.4 and 15.6, except
for (→I), are derivable for (possibly infinite) multi-bases that are
closed under ∩.

(v) Let ∆ be closed under ∩. We define

∆[x := X] = {y : ∆(y) | y 6= x} ∪ {x : A | A∈X}.

Prove that the following reformulation of (→I) using principal filters
is derivable

∆[x :=↑ B] ⊢ N : C

∆ ⊢ λx.N : B → C
.

(vi) Prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1 and 16.1.10 for
(possible infinite) multi-bases reformulating the statements when-
ever it is necessary.

(vii)Prove that if ∆(x)’s are filters then {A | ∆ ⊢ x : A} = ∆(x).

16.3.21. Show that the inclusions suggested in 15.3 are strict.
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NTS⊤
∼=

rr
NZS

∼=
uuu

NLS
uuu

LTS⊤
∼=

llll
LZS

∼=
mmmmm LLS

mmmmm

TS⊤
∼=

ZS LS

PTS
∼=

kkkkk PZSs
∼=

kkkk PLSs

kkkk

TS
∼=

ZSs LSs

type
structures

zip
structures

lambda
structures

Figure 17.3: Equivalences proved in Sections 17.3 and 17.4

17.1. Meet semi-lattices and algebraic lattices

Categories of meet semi-lattices

Remember the following notions, see Definitions 15.3.8-15.3.10. The category
MSL has as objects at most countable meet semi-lattices and as morphisms
maps preserving ≤ and ∩.

The category MSL⊤ is as MSL, but based on top meet semi-lattices. So
now morphisms also should preserve the top.

The category TS has as objects the at most countable type structures and
as morphisms maps f : S→S ′, preserving ≤,∩,→

The category TS⊤ is as TS, but based on top type structures. Now also
morphisms should preserve the top.

In Definition 15.3.10 we defined four full subcategories of TS by specifying
in each case the objects: GTS⊤ with as objects the graph top type structures;
LTS⊤ with as objects the lazy top type structures; NTS⊤ with as objects the
natural top type structures; PTS with as objects the proper type structures.

Categories of algebraic lattices

Comment:

• indexes are denoted either by I or by I, you must choose to give some
meaning to this notational difference (I finite and I possibly infinite?),
state and respect it, or use the same notation.

The following has already been given in Definition 14.2.1, but now we treat in
in greater detail.

17.1.1. Definition. (i) A complete lattice is a poset D = (D,⊑) such that for
arbitrary X ⊆ D the supremum X ∈ D exists. Then one has also a top element
⊤D = D, a bottom element ⊥D = ∅, arbitrary infima

X = {z | ∀x∈X.z ⊑ x}
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and the sup and inf of two elements

x ⊔ y = {x, y}, x ⊓ y = {x, y}.

(ii) A subset Z ⊆ D is called directed if Z is non-empty and

∀x, y ∈Z ∃z ∈Z.x ⊑ z & y ⊑ z.

(iii) An element d∈ D is called compact (also sometimes called finite in the
literature) if for every directed Z ⊆ D one has

d ⊑ Z ⇒ ∃z ∈Z.d ⊑ z.

Note that if d, e are compact, then so is d ⊔ e3.
(iv) K(D) = {d∈ D | d is compact}.
(v) Ks(D) = K(D)− {⊥D}.
(vi) D is called an algebraic lattice if

∀x∈ D.x = {e∈K(D) | e ⊑ x}.

D is called an ω-algebraic lattice if moreover K(D) is countable (finite or
countably infinite).

Instead of d∈ D or X ⊆ D we often write d∈D or X ⊆ D, respectively. When
useful we will decorate ⊑, , , ⊥,⊤, ⊔ and ⊓ with D, e.g. ⊑D etcetera.

The following connects the notion of a compact element to the notion of
compact subset of a topological space.

17.1.2. Lemma. Let D be a complete lattice. Then d∈D is compact iff

∀Z ⊆ D.[d ⊑ Z ⇒ ∃Z0 ⊆ Z.[Z0 is finite & d ⊑ Z0]].

Proof. (⇒) Suppose d∈D is compact. Given Z ⊆ D, let

Z+ = { Z0 | Z0 ⊆ Z & Z0 finite}.

Then Z ⊆ Z+, Z0 = Z and Z+ is directed. Hence

d ⊑ Z ⇒ d ⊑ Z+

⇒ ∃z+ ∈Z+.d ⊑ z+

⇒ ∃Z0 ⊆ Z.d ⊑ Z0 & Z0 is finite.

(⇐) Suppose d ⊑ Z with Z ⊆ D directed. By the condition d ⊑ Z0 for
some finite Z0 ⊆ Z. If Z0 is non-empty, then by the directedness of Z there
exists a z ∈Z such that z ⊒ Z0 ⊒ d. If Z0 is empty, then d = ⊥ and we can
take an arbitrary element z in the non-empty Z satisfying d ⊑ z.

3In general it is not true that if d ⊑ e∈K(D), then d∈K(D); take for example ω + 1 in
the ordinal ω + ω = {0, 1, 2, . . . ω, ω + 1, ω + 2, . . .}. It is compact, but ω (⊑ ω + 1) is not.
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17.1.3. Notation. Let D be an ω-algebraic lattice. For x∈D, write

K(x) = {d∈K(D) | d ⊑ x}.

In this Chapter a, b, c, d . . . always denote compact elements in lattices. Generic
elements are denoted by x, y, z . . . . Comment: I do not agree to cancel this, it
helps the reader! Henk: But we are not consistent: in 17.1.9 a′ is not compact.
Also not in 17.1.7(ii).

17.1.4. Definition. Let D, E be complete lattices and f : D→E .
(i) f is called (Scott) continuous iff for all directed X ⊆ D one has

f( X) = f(X) (= {f(x) | x∈X}).

(ii) [D→E ] = {f : D→E | f is Scott continuous functions}.
(iii) f is called strict iff f(⊥) = ⊥.
(iv) Write [D→sE ] for the collection of continuous strict maps.

17.1.5. Proposition. Let D, E be algebraic lattices.
(i) Let f ∈ [D→E ]. Then for x∈D

f(x) = {f(e) | e ⊑ x & e∈K(D)}.

(ii) Let f, g ∈ [D→E ]. Suppose f ↾ K(D) = g ↾ K(D). Then f = g.

Proof. (i) Use that x = {e | e ⊑ x} is a directed sup and that f is
continuous.

(ii) By (i).

17.1.6. Definition. The category ALG has as objects the ω-algebraic complete
lattices and as morphisms the continuous maps.

17.1.7. Definition. (i) [D→D′] is partially ordered pointwise as follows.

f ⊑ g ⇔ ∀x∈D.f(x) ⊑ g(x).

(ii) If a∈D, a′ ∈D′, then a7→a′ is the step function defined by

(a7→a′)(d) = a′, if a ⊑ d;
= ⊥D′ , else.

17.1.8. Lemma. [D→D′] is a complete lattice with

(
f ∈X

f)(d) =
f ∈X

f(d).

17.1.9. Lemma. For a, b∈D, a′, b′ ∈D′ and f ∈ [D→D′] one has
(i) a compact ⇒ a7→a′ is continuous.
(ii) a7→a′ is continuous and a′ 6= ⊥ ⇒ a is compact.
(iii) a′ compact ⇔ a7→a′ compact.
(iv) a′ ⊑ f(a) ⇔ (a7→a′) ⊑ f.



60 CHAPTER 17. TYPE AND LAMBDA STRUCTURES

(v) b ⊑ a & a′ ⊑ b′ ⇒ (a7→a′) ⊑ (b7→b′).
(vi) (a7→a′) ⊔ (b7→b′) ⊑ (a ⊓ b)7→(a′ ⊔ b′).

Proof. Easy.

17.1.10. Lemma. For all b, a1, . . . , an ∈D, b′, a′1, . . . , a
′
n ∈D′, and f ∈ [D→D′]

(b7→b′) ⊑ (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n) ⇔
⇔ ∃I⊆{1, . . . , n} [⊔i∈ Iai ⊑ b & b′ ⊑ ⊔i∈ Ia

′
i].

Clearly in (⇒) we have I 6= ∅ if d 6= ⊥D.

Proof. Easy.

17.1.11. Proposition. Let D,D′ ∈ALG.
(i) For f ∈ [D→D′] one has f = {a⇒ a′ | a′ ⊑ f(a), a∈K(D), a′ ∈K(D′)}.
(ii) Let D∈ALG and let f : [D→D′] be compact. Then

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n),

for some a1, . . . ,an ∈K(D), a′1, . . . ,a
′
n ∈K(D′).

(iii) [D→D′]∈ALG.

Proof. (i) It suffices to show that RHS and LHS are equal when applied to
an arbitrary element d∈D.

f(d) = f( {a | a ⊑ d & a∈K(D)})
= {f(a) | a ⊑ d & a∈K(D)}
= {a′ | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}
= ( {(a7→a′) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)(d)}.

(ii) For f compact one has f = {a7→a′ | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)},
by (i). Hence by Lemma 17.1.2 for some a1, . . . ,an ∈K(D), a′1, . . . ,a

′
n ∈K(D′)

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n). (17.1)

(iii) It remains to show that there are only countably many compact elements
in [D→D]. Since K(D) is countable, there are only countably many expressions
in the RHS of (17.1). (The cardinality is ≤ Σnn.ℵ2

0 = ℵ0.) Therefore there are
countable many compact f ∈ [D→D]. (There may be more expressions on the
RHS for one f , but this results in less compact elements.)

17.1.12. Definition. (i) The category ALGa has the same objects as ALG
and as morphisms ALGa(D,D′) maps f : D→D′ that satisfy the properties
‘compactness preserving’ and ‘additive’:

(cmp-pres) ∀a∈K(D).f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X).
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In this Chapter filter models, the main tool of Part III on the intersection types,
will be introduced. A filter is a collection of types closed under intersection (∩)
and expansion (≤). It turns out that there is a natural way to define application
on such filters. This depends on the order ≤ on types and it will be shown for
which of the type theories introduced in Chapter 15 the filters will turn out to
be models of the untyped lambda calculus.

In Section 18.2 the filter models will be introduced as an applicative structures.
Also it will be shown that the value of an untyped lambda term M in this
structure is the collection of types that can be assigned to M . In Section 18.3
the approximation theorem will be shown, i.e. the interpretation of a lambda
term is the supremum of those of its approximations.

18.1. Lambda models

Given a lambda structure DF,G = 〈D, F,G〉, i.e. a D∈ALG with continuous
F : D→D→D and G : [D→D]→D, it is well known how one can interprete
(untyped) lambda-terms in it. For lambda structures of the form D = FT

this interpretation turns out to have a simple form: the interpretation of a
lambda term equals the set (actually a filter) of its possible types (in TTT ).
This will help us to determine for what T the corresponding filter structure is
a lambda-model. This characterization can also be given for the λI-calculus.

18.1.1. Definition. (i) Let D be a set and Var the set of variables of the
untyped lambda calculus. An environment in D is a total map

ρ : Var→D.

The set of environments in D is denoted by EnvD.
(ii) If ρ∈EnvD and d∈D, then ρ[x := d] is the ρ′ ∈EnvD defined by

ρ′(x) = d;

ρ′(y) = ρ(y), if y 6= x.

The definition of a syntactic lambda-models was given in Barendregt [1984]
(Definition 5.3.1) or Hindley and Longo [1980]. We simply call these λ-models.

99
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We introduce also applicative structures (Definition 5.1.1 of Barendregt [1984])
and quasi λ-models.

18.1.2. Definition. (i) An applicative structure is a pair 〈D, ·〉, where D is a set
and · : D× D→D is a binary operation on D.

(ii) A quasi λ-model is of the form

D =〈D, ·, [[ ]]D〉,

where 〈D, ·〉 is an applicative structure and [[ ]]D : Λ × EnvD→D satisfies the
following.

(1) [[x]]Dρ = ρ(x)

(2) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ
(3) [[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ (α),

provided y /∈ FV(M),

(4) ∀d∈D.[[M ]]Dρ[x:=d] = [[N ]]Dρ[x:=d] ⇒ [[λx.M ]]Dρ = [[λx.N ]]Dρ (ξ)

(5) ρ ↾ FV(M) = ρ′ ↾ FV(N) ⇒ [[M ]]Dρ = [[M ]]Dρ′ .

(iii) A λ-model is a quasi λ-model which safisfies:

(6) [[λx.M ]]Dρ · d = [[M ]]Dρ[x:=d] (β)

(iv) A (quasi) λI-model is defined similarly but replacing Λ by ΛI, the set
of λI-terms that require for each abstraction term λx.M that x∈FV(M). The
corresponding clauses are denoted by (αI), (βI) and (ξI).

We will write simply [[ ]]ρ instead of [[ ]]Dρ when there is no danger of confusion.

We have the following implications.

D λ-model

��

=⇒ D λI-model

��
D quasi λ-model =⇒ D quasi λI-model

18.1.3. Definition. Let D = 〈D, ·, [[ ]]〉 be a (quasi) λ(I)-model.
(i) The statement M = N , for M,N untyped lambda terms, is true in D,

notation D |= M = N iff

∀ρ∈EnvD.[[M ]]ρ = [[N ]]ρ.

(ii) As usual one defines D |= χ, where χ is any statement built up using
first order predicate logic from equations between untyped lambda terms.

(iii) A λ(I)-model D is called extensional iff

D |= (∀x.Mx = Nx) ⇒ M = N.

(iv) A λ(I)-model D is called an η-model iff

D |= λx.Mx = M for x /∈ FV(M) (η)
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18.1.4. Definition. (i) Let DF,G = 〈D, F,G〉 be a lambda structure, Definition
17.4.1(i). Then DF,G induces a quasi λ-model 〈D, ·, [[ ]]F,G〉 as follows.

• First we obtain an applicative structure by setting for d, e∈ D

d · e = F (d)(e).

• Then the map [[ ]]F,G : Λ× EnvD → D as defined as follows.

[[x]]F,G
ρ = ρ(x);

[[MN ]]F,G
ρ = F ([[M ]]F,G

ρ )([[N ]]F,G
ρ );

[[λx.M ]]F,G
ρ = G(λλd∈D.[[M ]]F,G

ρ[x:=d]).

Notice that the function λλd∈D.[[M ]]ρ[x:=d] used for [[λx.M ]]ρ is continuous.

(ii) Now let DF,G = 〈D, F,G〉 be a strict lambda structure, see Definition
17.4.1(ii). Then DF,G induces a quasi λI-model as above above, changing the

clause for [[λx.M ]]F,G
ρ into

[[λx.M ]]F,G
ρ = G(λλd∈D. if d = ⊥D then ⊥D else [[M ]]F,G

ρ[x:=d]).

18.1.5. Proposition. (i) Let 〈D, F,G〉 be a lambda structure. Then
〈D, ·, [[ ]]F,G〉 is a λ-model.

(ii) Let 〈D, F,G〉 be a strict lambda structure. Then 〈D, ·, [[ ]]F,G〉 is a λI-model.

Proof. Easy.

The only requirement that a (strict) lambda structure misses to be a λ(I)-
model is the axiom (β(I)).

18.1.6. Proposition. (i) Let 〈D, F,G〉 with D∈ALG be a lambda structure.
Then the following statements are equivalent.

(1) D |= (λx.M)N = M [x: = N ], for all M,N ∈Λ;

(2) [[λx.M ]]ρ.d = [[M ]]ρ(x:=d), for all M ∈Λ and d∈D;

(3) D is a λ-model;

(4) D |= {M = N | λβ ⊢M = N}.
(ii) Let 〈D, F,G〉 with D∈ALG be a strict lambda structure. Then the

following statements are equivalent.

(1) D |= (λx.M)N = M [x: = N ], for all M,N ∈Λ with x∈FV(M);

(2) [[λx.M ]]ρ.d = [[M ]]ρ(x:=d), for all M ∈Λ, with with x∈FV(M), and d∈D;

(3) D is a λI-model;

(4) D |= {M = N | λβI ⊢M = N}.
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Proof. (i) (1)⇒(2). By (1) one has [[(λx.M)N ]]ρ = [[M [x: = N ]]]ρ. Taking
N ≡ x and ρ′ = ρ(x: = d) one obtains

[[(λx.M)x]]ρ′ = [[M ]]ρ′ ,

hence

[[λx.M ]]ρ · d = [[M ]]ρ′ ,

as ρ ↾ FV(λx.M) = ρ′ ↾ FV(λx.M).
(2)⇒(3). By (ii), Definition 18.1.4 and Proposition 18.1.5 all conditions to

be a λ-model, see Definition 18.1.2, are fulfilled.
(3)⇒(4). By Theorem 5.3.4 in Barendregt [1984].
(4)⇒(1). Trivial.

(ii) Similarly.

18.1.7. Corollary. Let DF,G = 〈D, F,G〉 be a (strict) lambda structure and a
λ(I)-model. Then

D is a λ(I)η-model ⇔ D is an extensional λ(I)-model.

Proof. (⇒) Suppose that for some ρ one has for all d∈D

[[Mx]]ρ[x:=d] = [[Nx]]ρ[x:=d].

Then by (η) and Proposition 18.1.5(ii) one has

[[M ]]ρ = [[λx.Mx]]ρ = [[λx.Nx]]ρ = [[N ]]ρ.

(⇐) Note that by (β(I)) one has D |= (λx.Mx)y = My, where x is fresh.
Hence by extensionality one has D |= λx.Mx = M.

Isomorphisms of λ-models

18.1.8. Definition. Let DF,G be a lambda structure.

(i) DF,G is called reflexive if F ◦G = Id [D→D].
(ii) DF,G is called extensional if G ◦ F = IdD.

18.1.9. Proposition. Let DF,G be a lambda structure.

(i) If DF,G is reflexive, then it is a λ-model.
(ii) If DF,G is moreover extensional, then it is an extensional λ-model.

Proof. This is Theorem 5.4.4 of Barendregt [1984].

18.1.10. Definition. (i) An isomorphism between two reflexive structures
〈D, F,G〉 and 〈D′, F ′, G′〉 is a bijective mapping m such that

(1) m(G(f)) = G′(m ◦ f ◦m−1)

(2) m(F (d)(e)) = F ′(m(d))(m(e))
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If we write fm = m ◦ f ◦m−1 then we can write these conditions as

m(G(f)) = G′(fm)

m(d ·F e) = m(d) ·F ′ m(e).

18.1.11. Proposition. (i) If D and D′ are isomorphic λ-models via m then for
all λ-terms M and environments ρ:

m([[M ]]Dρ ) = [[M ]]D
′

m◦ρ

(ii) If two λ-models are isomorphic then they equal the same terms, i.e.
D |= M = N iff D′ |= M = N .

Proof. (i) By induction on M .

(ii) By (i).

18.2. Filter models

Now we introduce the fundamental notion of filter structure, which will be
used extensively in this Section. It is of paramount importance, and one can
say that all the preceding sections in this Chapter are a build-up to it. Since
the seminal paper Barendregt et al. [1983], this notion has played a major role
in the study of the mathematical semantics of lambda calculus.

Remember Definition 15.4.2(ii) where for T ∈TT ⊤ and X a non-empty
subset of T one defines the filter generated by X

↑X = {x∈T | ∃n ≥ 1∃x1 . . . xn ∈X.x1 ∩ . . . ∩ xn ≤ x}, if X 6= ∅;
↑∅ = {⊤}, else.

Now we extend this notion as follows.

18.2.1. Definition. (i) Let T ∈TT. Then we define ↑s X ∈FS
s by

↑s X = ↑X, if X 6= ∅;
↑s ∅ = ∅.

18.2.2. Definition. (i) Let T ∈TT⊤. Define

F T : [FT→[FT→FT ]], and

GT : [[FT→FT ]→FT ]

as follows.

F T (X)(Y ) = ↑{B ∈TTT | ∃A∈Y.(A→B)∈X};
GT (f) = ↑{A→B | B ∈ f(↑A)}.
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(ii) Let T ∈TT. Define

F T
s : [FT

s →s[FT
s →sFT

s ]], and

GT
s : [[FT

s →sFT
s ]→sFT

s ]

as follows.

F T
s (X)(Y ) = ↑s {B ∈TTT | ∃A∈Y.(A→B)∈X};
GT

s (f) = ↑s {A→B | B ∈ f(↑A)}.

18.2.3. Lemma. (i) Let TT ∈TT ⊤. Then 〈FT , F T , GT 〉 is a lambda structure.

(ii) Let T ∈TT. Then FT
s = 〈FT

s , F
T
s , G

T
s 〉 is a strict lambda structure.

Proof. (i) It is easy to verify that F T , GT are continuous.

(ii) Similarly.

18.2.4. Definition. (i) Let T ∈TT ⊤. Then FT = 〈FT , F T , GT 〉 is called the
filter lambda structure over T .

(ii) Let T ∈TT. Then FT
s = 〈FT

s , F
T
s , G

T
s 〉 is called the strict filter lambda

structure over T .

Recall that by Proposition 15.3.3 a compatible element of TT ⊤ induces a
type structure in TS⊤. We can take advantage in this case of the equivalencies
between type and zip structures (Theorems 17.3.17 and 17.3.37).

18.2.5. Lemma. (i) If S ∈TS⊤, then FS = FZS and GS = GZS , where FZS

and GZS are defined in Definitions 17.3.10 and 17.4.12.

(ii) If S ∈TS, then FS
s = FZS

s
and GS

s = GZS
s
, where FZS

s
and GZS

s
are

defined in Definitions 17.3.26 and 17.4.32

Proof. (i) Taking the suprema in FS one has

FS(X)(Y ) = ↑{↑A | ∃B ∈Y.(B→A)∈X}
= {↑A | ∃B ∈Y.↑(B→A) ⊆ X}
= {↑A | ∃↑B ⊆ Y.ZS(↑B, ↑A) ⊆ X}
= X ·ZS Y.

Moreover,

GS(f) = ↑{B→A | A∈ f(↑B)}
= {↑(B→A) | A∈ f(↑B)}
= {Z(↑B, ↑A) | ↑A ⊆ f(↑B)}.

(ii) Now the suprema are taken in FS
s and ∅ = ∅, the bottom of FS

s .

Now we work towards the characterization of those type theories T such that
FT is a λ(I)-model, a so-called filter λ-model. This happens in 18.2.6-18.2.14.
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The following type-semantics theorem is important. It has as consequence that
for a closed untyped lambda term M and a T ∈TT⊤ one has

[[M ]]F
T

= {A | ⊢T∩⊤ M : A},

i.e. the semantical meaning of M in the filter λ-model corresponding to a
T ∈TT ⊤ is the collection of its types. For a T ∈TT one has

[[M ]]F
T
s = {A | ⊢T∩ M : A}.

18.2.6. Definition. A context Γ agrees with an environment ρ∈Env
(s)

FT

(s)

, notation

Γ |= ρ, if

(x : A)∈Γ ⇒ A∈ ρ(x).

18.2.7. Proposition. (i) Γ |= ρ & Γ′ |= ρ ⇒ Γ ⊎ Γ′ |= ρ.

(ii) Γ |= ρ[x :=↑(s) A] ⇒ Γ\x |= ρ.

Proof. Immediate.

18.2.8. Theorem (Type-semantics Theorem). (i) Let T ∈TT⊤ and FT its cor-
responding filter structure. Then, for any lambda-term M and ρ∈EnvFT ,

[[M ]]F
T

ρ = {A | Γ ⊢T∩⊤ M : A for some Γ |= ρ}.

(ii) Let T ∈TT and FT
s its corresponding strict filter structure. Then, for

any lambda-term M and ρ∈Envs
FT

s
,

[[M ]]F
T
s

ρ = {A | Γ ⊢T∩ M : A for some Γ |= ρ}.

Proof. (i) By induction on the structure of M .
If M ≡ x, then

[[x]]F
T

ρ = ρ(x)

= {A | A∈ ρ(x)}
= {A | A∈ ρ(x) & x : A ⊢T∩⊤ x : A}
= {A | Γ ⊢T∩⊤ x : A for some Γ |= ρ}, by Definition 18.2.6 and the

Inversion Theorem 16.1.1(i).

If M ≡ NL, then
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[[NL]]Tρ = [[N ]]Tρ · [[L]]Tρ

= ↑{A | ∃B ∈ [[L]]Tρ .(B → A)∈ [[N ]]Tρ }

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck.

[ (Bi→Ci)∈ [[N ]]Tρ & Bi ∈ [[L]]Tρ & (
⋂

1≤i≤k Ci) ≤ A]} ∪ ↑{⊤},
by definition of ↑,

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck,∃Γ1i,Γ2i

[Γ1i,Γ2i |= ρ & Γ1i ⊢T∩⊤ N : (Bi→Ci)

& Γ2i ⊢T∩⊤ L : Bi & C1 ∩ . . . ∩ Ck ≤ A]} ∪ ↑{⊤},
by the induction hypothesis,

= {A | Γ ⊢T
∩⊤ NL : A for some Γ |= ρ},

taking Γ = Γ11 ⊎ . . . ⊎ Γ1k ⊎ . . . ⊎ Γ21 ⊎ . . . ⊎ Γ2k,

by Theorem 16.1.1(ii) and Proposition 18.2.7(i).

If M ≡ λx.N , then

[[λx.N ]]Tρ = GT (λλX ∈FT .[[N ]]Tρ[x:=X])

= ↑ {(B→C) | C ∈ [[N ]]Tρ[x:=↑B]}

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck.∃Γi[Γi |= ρ[x: = ↑Bi] &

Γi, x:Bi ⊢T∩⊤ N : Ci & (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A],

by the induction hypothesis,

= {A | Γ ⊢T∩⊤ λx.N : A for some Γ |= ρ},

taking Γ = (Γ1 ⊎ . . . ⊎ Γk)\x, by Theorem 16.1.1(iii), rule (≤)

and Proposition 18.2.7(ii).

(ii) Similarly, with ↑ replaced by ↑s. Note that in the case M = NL we drop

‘∪↑{⊤}’ both times. In case M = λx.N , using Definition 18.1.4, it follows that

[[λx.N ]]Tρ =↑s {(B→C) | C ∈ [[N ]]T }ρ[x:=↑B] holds, because ↑B 6= ∅.

18.2.9. Corollary. (i) Let T ∈TT ⊤. Then

FT is a λ-model ⇔ [Γ ⊢T∩⊤ (λx.M) : (B→A) ⇒ Γ, x:B ⊢T∩⊤ M : A].

(ii) Let T ∈TT. Then

FT
s is a λI-model ⇔

[Γ ⊢T∩ (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T∩ M : A].
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Proof. (i) By Propositions 18.1.6(i), 16.2.1(ii) and Corollary 16.2.5(i).

(ii) By Propositions 18.1.6(ii), 16.2.1(i) and Corollary 16.2.5(ii).

18.2.10. Corollary. (i) Let T ∈TT ⊤. Then

T is β-sound ⇒ FT is a λ-model.

(ii) Let T ∈TT. Then

T is β-sound ⇒ FT
s is a λI-model.

Proof. By the Corollary above and Theorem 16.1.10(iii).

18.2.11. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then

FT is a λ-model.

(ii) Let T ∈ {HL,CDV,CD}. Then

FT
s is a λI-model.

Proof. (i) By (i) of the previous Corollary and Theorem 16.1.8.

(ii) By (ii) of the Corollary, using Theorem 16.1.8.

18.2.12. Proposition. (i) Let T ∈TT ⊤. Then

T is natural and β- and η⊤-sound ⇒ FT is an extensional λ-model.

(ii) Let T ∈TT. Then

T is proper and β- and η-sound ⇒ FT
s is an extensional λI-model.

Proof. (i) and (ii). FT (FT
s ) is a λ(I)-model by Corollary 18.2.10(i)((ii)). For

extensionality by Corollary 18.1.9 one needs to verify for x /∈ FV(M)

[[λx.Mx]]ρ = [[M ]]ρ. (η)

This follows from Theorems 18.2.8(i), and 16.2.15(i).

18.2.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM}. Then

FT is an extensional λ-model.

(ii) Let T = HL. Then

FT
s is an extensional λI-model.

Proof. (i) and (ii) By Corollary 16.2.13.
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3.3.37. Example. Let M be a typed structure. Let ∆ ⊆ M. Write ∆(A) = ∆∩M(A).
Assume that ∆(A) 6= ∅ for all A∈ and

d∈∆(A→B), e∈∆(A) ⇒ de∈∆(B).

Then ∆ may fail to be a typed structure because it is not extensional. Equality as
binary relation Eo on ∆(o) × ∆(o) induces a binary logical relation E on ∆ × ∆. Let
∆E = {d∈∆ | E(d, d)}. Then the restriction of E to ∆E is an applicative congruence
and the equivalence classes form a structure. In particular, if M is a model, then write

∆+ = {d∈M | ∃MΛø
o∃d1 . . . dn [[M ]]d1 . . . dn = d}

for the applicative closure of ∆. The Gandy hull of ∆ in M is the set ∆+E. From the
fundamental theorem for logical relations it can be derived that

M∆ = ∆+E/E

is a model. This model will be also called the Gandy hull of ∆ in M.

3.4. Type reducibility

Remember that a type A is reducible to type B, notation A ≤βη B if for some closed
term Φ:A→B one has for all closed M1,M2:A

M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2.

3.4.1. Definition. Write A ∼βη B iff A ≤βη B & B ≤βη A.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of TT(λ→) can be reduced. At first this may seem impossible. Indeed, in a full
typed structure M the cardinality of the sets of higher type increase arbitrarily. So one
cannot always have an injection MA→MB . But reducibility means that one restricts
oneself to definable elements (modulo =βη) and then the injections are possible. The
proof will occupy 3.4.2-3.4.7. There are four main steps. In order to show that ΦM1 =βη

ΦM2 ⇒ M1 =βη M2 in all cases a (pseudo) inverse Φ−1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes Φ−1 is definable, but the property Φ−1(ΦM) = M only holds in an extension
of the theory; because the extension will be conservative over =βη the reducibility follows.
Next the type hierarchy theorem, also due to Statman [1980a], will be given. Rather
unexpectedly it turns out that under ≤βη types form a well-ordering of length ω + 3.
Finally some consequences of the reducibility theorem will be given, including the 1-
section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank ≤ 3. The proof is rather syntactic. In order to show that the
definable function Φ is 1-1, a non-definable inverse is needed. A warmup exercise for
this is 3.6.4.
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3.4.2. Proposition. For every type A there is a type B such that rank(B) ≤ 3 and
A ≤βη B.

Proof. [The intuition behind the construction of the the term Φ responsible for the
reducibility is as follows. If M is a term with Böhmtree (see Barendregt [1984])

λx1:A1 . . . xa:Aa.xi
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Now let UM be a term with “Böhmtree” of the form

λx1:o . . . xa:o.uxi
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where all the typed variables are pushed down to type o and the variables u (each
occurrence possibly different) takes care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank ≤ 1.
Also that M can be reconstructed from UM so that U is injective. ΦM is just UM with
the auxiliary variables bound. This makes it of type with rank ≤ 3. What is less clear
is that U and hence Φ are lambda-definable.]

Define inductively for any type A the types A♯ and A♭.

o♯ = o;

o♭ = o;

(A1→ . . .→Aa→o)♯ = o→A♭
1→ . . .→A♭

a→o;

(A1→ . . .→Aa→o)♭ = (oa→o).

Notice that rank(A♯) ≤ 2.

In the potentially infinite context

{uA:A♯ |A∈TT}
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define inductively for any type A terms VA : o→A,UA : A→A♭.

Uo = λx:o.x;

Vo = λx:o.x;

UA1→...→Aa→o = λz:Aλx1, . . . , xa:o.z(VA1
x1) . . . (VAaxa);

VA1→...→Aa→o = λx:oλy1:A1 . . . ya:Aa.uAx(UA1
y1) . . . (UAaya),

where A = A1→ . . .→Aa→o. Write Ai = Ai1→ . . .→Ain→o.
Remark that for C = A1→ . . .→Aa→B one has

UC = λz:Cλx1, . . . , xa:o.UB(z(VA1
x1) . . . (VAaxa)). (1)

Indeed, both sides are equal to

λz:Cλx1, . . . , xa, y1, . . . , yb:o.z(VA1
x1) . . . (VAaxa)(VB1

y1) . . . (VBb
yb),

with B = B1→ . . .→Bb→o.
Notice that for a closed term M of type A = A1→ . . .→Aa→o one can write

M =β λy1:A1 . . . ya:Aa.yi(M1y1 . . . ya) . . . (Mny1 . . . ya),

with the M1, . . . ,Mn closed. Now verify that

UAM = λx1, . . . , xa:o.M(VA1
x1) . . . (VAaxa)

= λ~x.(VAi
xi)(M1(VA1

x1) . . . (VAaxa)) . . . (Mn(VA1
x1) . . . (VAaxa))

= λ~x.uAi
xi(UAi1

(M1(VA1
x1) . . . (VAaxa))) . . . (UAin

(Mn(VA1
x1) . . . (VAaxa)))

= λ~x.uAi
xi(UB1

M1~x) . . . (UBnMn~x),

using (1), where Bj = A1→ . . .→Aa→Aij for 1 ≤ j ≤ n is the type of Mj . Hence we
have that if UAM =βη UAN , then for 1 ≤ j ≤ n

UBj
Mj =βη UBj

Nj.

Therefore it follows by induction on the complexity of M that if UAM =βη UAN , then
M =βη N .

Now take as term for the reducibility Φ ≡ λm:AλuB1
. . . uBk

.UAm, where the ~u are
all the ones occurring in the construction of UA. It follows that

A ≤βη B♯
1→ . . .→B♯

k→A♭.

Since rank(B♯
1→ . . .→B♯

k→A♯) ≤ 3, we are done.

For an alternative proof, see Exercise 3.6.9.
In the following proposition it will be proved that we can further reduce types to

one particular type of rank 3. First do exercise 3.6.5 to get some intuition. We need the
following notation.
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3.4.3. Notation. (i) For k ≥ 0 write

1k = ok→o,

where in general A0→o = o and Ak+1→o = A→(Ak→o).
(ii) For k1, . . . , kn ≥ 0 write

(k1, . . . , kn) = 1k1
→ . . .→1kn

→o.

(iii) For k11, . . . , k1n1
, . . . , km1, . . . , kmnm ≥ 0 write









k11 . . . k1n1

. .

. .
km1 . . . kmnm









= (k11, . . . , k1n1
)→ . . .→(km1, . . . , kmnm)→o.

Note the “matrix” has a dented right side (the ni are unequal in general).

3.4.4. Proposition. Every type A of rank ≤ 3 is reducible to

12→1→1→2→o.

Proof. Let A be a type of rank ≤ 3. It is not difficult to see that A is of the form

A =









k11 . . . k1n1

. .

. .
km1 . . . kmnm









We will first reduce A to type 3 = 2→o using a term Φ containing free variables of type
12, 1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12, p1:1, p2:1}.

Consider the notion of reduction p defined by the contraction rules

pi(pM1M2)→pM1.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with ♣ and jump to those starting with ♠.]

♣ This notion of reduction satisfies the subject reduction property. Moreover βηp
is Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extending
the notion of reduction by adding

p(p1M)(p2M)→sM

preserves the CR property. In the untyped calculus this is not the case, see Klop [1980]
or Barendregt [1984], ch. 14.] Goto ♠.
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♠ Given the pairing p, p1, p2 one can extend it as follows. Write

p1 = λx:o.x;

pk+1 = λx1 . . . xnxn+1:o.p(pkx1 . . . xn)xn+1;

p1
1 = λx:o.x;

pk+1
k+1 = p2;

pk+1
i = λz:o.pk

i (p1z), for i ≤ k;

P k = λf1 . . . fk:1λz:o.pk(f1z) . . . (fkz);

P k
i = λg:1λz:o.pk

i (gz), for i ≤ k.

We have that pk acts as a coding for k-tuples of elements of type o with projections pk
i .

The P k, P k
i do the same for type 1. In context containing {f :1k, g:1} write

fk→1 = λz:o.f(pk
1z) . . . (pk

kz);

g1→k = λz1 . . . zk:o.g(pkz1 . . . zk).

Then fk→1 is f moved to type 1 and g1→k is g moved to type 1k.
Using βηp-convertibility one can show

pk
i (p

kz1 . . . zk) = zi;

P k
i (P kf1 . . . fk) = fi;

fk→1,1→k = f.

For g1→k,k→1 = g one needs s, the surjectivity of the pairing.

In order to define the term required for the reducibility start with the term Ψ:A→3
(containing p, p1, p2 as only free variables). We need an auxiliary term Ψ−1, acting as
an inverse for Ψ in the presence of a “true pairing”.

Ψ ≡ λMλF :2.M

[λf11:1k11
. . . f1n1

:1k1n1
.p1(F (Pn1fk11→1

11 . . . f
k1n1

→1

1n1
)] . . .

[λfm1:1km1
. . . fmnm :1kmnm

.pm(F (Pnmfkm1→1
m1 . . . fkmnm→1

mnm
)];

Ψ−1 ≡ λN :(2→o)λK1:(k11, . . . , k1n1
) . . . λKm:(km1, . . . , kmnm).

N(λf :1.pm[K1(P
n1

1 f)1→k11 . . . (Pn1

n1
f)1→k1n1 ] . . .

[Km(Pnm

1 f)1→km1 . . . (Pnm
nm

f)1→k1nm ]).

Claim. For closed terms M1,M2 of type A we have

M1 =βη M2 ⇐⇒ ΨM1 =βη ΨM2.

It then follows that for the reduction A ≤βη 12→1→1→3 we can take

Φ = λM :A.λp:12λp1, p2:1.ΨM.
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It remains to show the claim. The only interesting direction is (⇐). This follows in
two ways. We first show that

Ψ−1(ΨM) =βηp M. (1)

We will write down the computation for the “matrix”
(

k11

k21 k22

)

which is perfectly general.

ΨM =β λF :2.M [λf11:1k11
.p1(F (P 1fk11→1

11 ))]

[λf21:1k21
λf22:1k22

.p2(F (P 2fk21→1
21 fk22→1

22 ))];
Ψ−1(ΨM) =β λK1:(k11)λK2:(k21, k22).

ΨM(λf :1.p1[K1(P
1
1 f)1→k11 ][K2(P

2
1 f)1→k21(P 2

2 f)1→k22 ])
≡ λK1:(k11)λK2:(k21, k22).ΨMH, say,

=β λK1K2.M [λf11.p1(H(P 1fk11→1
11 ))]

[λf21λf22.p2(H(P 2fk21→1
21 fk22→1

22 ))];
=βp λK1K2.M [λf11.p1(p

2[K1f11][..‘junk’..])]
[λf21λf22.p2(p

2[..‘junk’..][K2f21f22])];
=p λK1K2.M(λf11.K1f11)(λf21f22.K2f21f22)
=η λK1K2.MK1K2

=η M,

since

H(P 1f11) =βp p2[K1f11][..‘junk’..]

H(P 2fk21→1
21 fk22→1

22 ) =βp p2[..‘junk’..][K2f21f22].

The argument now can be finished in a model theoretic or syntactic way.
♣ If ΨM1 =βη ΨM2, then Ψ−1(ΨM1) =βη Ψ−1(ΨM2). But then by (1) M1 =βηp

M2. It follows from the Church-Rosser theorem for βηp that M1 =βη M2, since these
terms do not contain p. Goto .

♠ If ΨM1 =βη ΨM2, then

λp:12λp1p2:1.Ψ
−1(ΨM1) =βη λp:12λp1p2:1.Ψ

−1(ΨM2).

Hence
M(ω) |= λp:12λp1p2:1.Ψ

−1Ψ(M1) = λp:12λp1p2:1.Ψ
−1(ΨM2).

Let q be an actual pairing on ω with projections q1,q2. Then in M(ω)

(λp:12λp1p2:1.Ψ
−1(ΨM1))qq1q2 = λp:12λp1p2:1.Ψ

−1(ΨM2)qq1q2.

Since (M(ω),q,q1,q2) is a model of βηp conversion it follows from (1) that

M(ω) |= M1 = M2.

But then M1 =βη M2, by a result of Friedman [1975].
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We will see below, corollary 3.4.23 (i), that Friedman’s result will follow from the
reducibility theorem. Therefore the syntactic approach is preferable.

The proof of the next proposition is again syntactic. A warmup is exercise 3.6.7.

3.4.5. Proposition. Let A be a type of rank ≤ 2. Then

2→A ≤βη 1→1→o→A.

Proof. Let A ≡ (1k1 , . . . , 1kn) = 1k1
→ . . . 1kn

→o. The term that will perform the
reduction is relatively simple

Φ ≡ λM :(2→A)λf, g:1λz:oλb1:1k1
. . . λbn:1kn

.M(λh:1.f(h(g(hz)))).

In order to show that for all M1,M2:2→A one has

ΦM1 =βη ΦM2 ⇒ M1 =βη M2,

we may assume w.l.o.g. that A = 12→o. A typical element of 2→12→o is

M ≡ λF :2λb:12.F (λx.F (λy.byx)).

Note that its translation has the following long βη-nf

ΦM = λf, g:1λz:oλb:12.f(Nx[x: = g(Nx[x: = z]])),

where Nx ≡ f(b(g(bzx))x),

≡ λf, g:1λz:oλb:12.f(f(b(g(bz[g(f(b(g(bzz))z))]))[g(f(b(g(bzz))z))]).

This term M and its translation have the following trees.

BT(M) λFb.F

λx.

F

λy.

b

JJJJJJJJJJJJ

tttttttttttt

y x
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and

BT(ΦM) λfgzb.f

f

b

pppppppppppppppppppppppp

WWWWWWWWWWWWWWWWWWWWWW

g

bound by

hh

g

bound by

66

f

b

>>
>>

>>

��
��

��
b

>>
>>

>>

��
��

��

z g g z

f b

<<
<<

<<

��
��

��

b

>>
>>

>>

��
��

��
z z

g z

b

??
??

??

��
��

�

z z

Note that if we can ‘read back’ M from its translation ΦM , then we are done. Let
Cutg→z be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cutg→z(ΦM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the term M , by reading f as F (λ⊙. The
remaining problem is how to reconstruct the binding effect of each occurrence of the λ⊙.
Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is accomplished
by a realizing that the occurrence z coming from g(P ) should be bound at the position
f just above where Cutg→z(P ) matches in Cutg→z(ΦM) above that z. For a precise
inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise 3.6.10.

The following simple proposition brings almost to an end the chain of reducibility of
types.
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3.4.6. Proposition.
14→12→o→o ≤βη 12→o→o.

Proof. As it is equally simple, let us prove instead

1→12→o→o ≤βη 12→o→o.

Define Φ : (1→12→o→o)→12→o→o by

Φ ≡ λM :(1→12→o→o)λb:12λc:o.λf :1λb:12λc:o.M(f+)(b+)c,

where

f+ = λt:o.b(#f)t;

b+ = λt1, t2:o.b(#b)(bt1t2);

#f = bcc;

#b = bc(bcc).

The terms #f,#b serve as recognizers (“Gödel numbers”). Notice that M of type
1→12→o→o has a closed long βη-nf of the form

Mnf ≡ λf :1λb:12λc:o.t

with t an element of the set T generated by the grammar

T :: = c | fT | b T T.

Then for such M one has ΦM =βη Φ(Mnf) ≡ M+ with

M+ ≡ λf :1λb:12λc:o.t+,

where t+ is inductively defined by

c+ = c;

(ft)+ = b(#f)t+;

(bt1t2)
+ = b(#b)(bt+1 t+2 ).

It is clear that Mnf can be constructed back from M+. Therefore

ΦM1 =βη ΦM2 ⇒ M+
1 =βη M+

2

⇒ M+
1 ≡ M+

2

⇒ Mnf
1 ≡ Mnf

2

⇒ M1 =βη M2.

By the same method one can show that any type of rank ≤ 2 is reducible to ⊤, do
exercise 3.6.12

Combining propositions 3.4.2-3.4.6 we can complete the proof of the reducibility
theorem.
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3.4.7. Theorem (Reducibility theorem, Statman [1980a]). Let

⊤ = 12→o→o.

Then
∀A∈TT A ≤βη ⊤.

Proof. Let A be any type. Harvesting the results we obtain

A ≤βη B, with rank(B) ≤ 3, by 3.4.2,

≤βη 12→12→2→o, by 3.4.4,

≤βη 2→12→12→o, by simply permuting arguments,

≤βη 12→o→12→12→o, by 3.4.5,

≤βη 12→o→o, by an other permutation and 3.4.6

Now we turn attention to the type hierarchy, Statman [1980a].

3.4.8. Definition. For the ordinals α ≤ ω + 3 define the type Aα ∈TT(λo
→) as follows.

A0 = o;

A1 = o→o;

. . .

Ak = ok→o;

. . .

Aω = 1→o→o;

Aω+1 = 1→1→o→o;

Aω+2 = 3→o→o;

Aω+3 = 12→o→o.

3.4.9. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.

Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 ≡ λm:Akλzx1 . . . xk:o.mx1 . . . xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω ≡ λm:Akλf :1λx:o.m(c1fx) . . . (ckfx).

Then Aω ≤βη Aω+1 via

Φω, ω+1 ≡ λm:Aωλf, g:1λx:o.mfx.
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Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 ≡ λm:Aω+1λH:3λx:o.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤ because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term Φω+2, ω+3.

3.4.10. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. This will be proved in 3.5.32.

3.4.11. Corollary. For α,β ≤ ω + 3 one has

Aα ≤βη Aβ ⇐⇒ α ≤ β.

For a proof that these types {Aα}α≤ω+3 are a good representation of the reducibility
classes we need some syntactic notions.

3.4.12. Definition. A type A∈TT(λo
→) is called large if it has a negative subterm

occurrence of the form B1→ . . .→Bn→o, with n ≥ 2; A is small otherwise.

3.4.13. Example. 12→o→o is large; (12→o)→o and 3→o→o are small.

Now we will partition the types TT = TT(λo
→) in the following classes.

3.4.14. Definition. Define the following sets of types.

TT−1 = {A | A has no closed inhabitant};
TT0 = {o→o};
TT1 = {ok→o | k > 1};
TT2 = {1→oq→o | q > 0} ∪ {(1p→o)→oq→o | p > 0, q ≥ 0};
TT3 = {A | A is small, rank(A)∈{2, 3} and A /∈ TT2};
TT4 = {A | A is small and rank(A) > 3};
TT5 = {A | A is large}.

It is clear that the TTi form a partition of TT. A typical element of TT−1 is o. This class
we will not consider much.

3.4.15. Theorem (Hierarchy theorem, Statman [1980a]).

A∈TT5 ⇐⇒ A ∼βη 12→o→o;
A∈TT4 ⇐⇒ A ∼βη 3→o→o;
A∈TT3 ⇐⇒ A ∼βη 1→1→o→o;
A∈TT2 ⇐⇒ A ∼βη 1→o→o;
A∈TT1 ⇐⇒ A ∼βη ok→o, for some k > 1;
A∈TT0 ⇐⇒ A ∼βη o→o;
A∈TT−1 ⇐⇒ A ∼βη o.
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Proof. Since the TTi form a partition, it is sufficient to show just the ⇒’s.

As to TT5, it is enough to show that 12→o→o ≤βη A, for every large type A, since
we know already the converse. For this see Statman [1980a], lemma 7. As a warmup
exercise do 3.6.20.

As to TT4, it is shown in Statman [1980a], proposition 2, that if A is small, then
A ≤βη 3→o→o. It remains to show that for any small type A of rank > 3 one has
3→o→o ≤βη A. Do exercise 3.6.27.

As to TT3, the implication is shown in Statman [1980a], lemma 12. The condition
about the type in that lemma is equivalent to belonging to TT3.

As to TT2, do exercise 3.6.22(ii).

As to TTi, with i = 1, 0,−1, notice that Λø(ok→o) contains exactly k closed terms for
k ≥ 0. This is sufficient.

For an application in the next section we need a refinement of the hierarchy theorem.

3.4.16. Definition. Let A,B be types.

(i) A is head-redicible to B, notation A ≤h B, iff for some closed term Φ∈Λø(A→B)
one has

∀M1,M2:A [M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2],

and moreover Φ is of the form

Φ = λm:Aλx1 . . . xb:B.mP1 . . . Pa, (+)

with m /∈ FV(P1, . . . , Pa).

(ii) A is multi head-reducible to B, notation A ≤h+ B, iff there are closed terms
Φ1, . . . ,Φm ∈Λø(A→B) each of the form (+) such that

∀M1,M2:A [M1 =βη M2 ⇐⇒ Φ1M1 =βη Φ1M2 & . . . & ΦmM1 =βη ΦmM2.

(iii) Write A ∼h B iff A ≤h B ≤h A and similarly
A ∼h+ B iff A ≤h+ B ≤h+ A.

3.4.17. Proposition. (i) A ≤h B ⇒ A ≤βη B.

(ii) Let A,B ∈TTi, with i 6= 2. Then A ∼h B.

(iii) Let A,B ∈TT2. Then A ∼h+ B.

(iv) A ≤βη B ⇒ A ≤h+ B.

Proof. (i) Trivial.

(ii) Suppose A ≤βη B. By inspection of the proof of the hierarchy theorem in all
cases except for A∈TT2 one obtains A ≤h B. Do exercise 3.6.24.

(iii) In the exceptional case one obtains A ≤h+ B, see exercise 3.6.23.

(iv) By (ii) and (iii), using the hierarchy theorem.



3.4. TYPE REDUCIBILITY 125

3.4.18. Corollary (Hierarchy theorem (revisited), Statman [1980b]).

A∈TT5 ⇐⇒ A ∼h 12→o→o;
A∈TT4 ⇐⇒ A ∼h 3→o→o;
A∈TT3 ⇐⇒ A ∼h 1→1→o→o;
A∈TT2 ⇐⇒ A ∼h+ 1→o→o;
A∈TT1 ⇐⇒ A ∼h+ o2→o;
A∈TT0 ⇐⇒ A ∼h o→o;
A∈TT−1 ⇐⇒ A ∼h o.

Proof. The only extra fact to verify is that ok→o ≤h+ o2→o.

Applications of the reducibility theorem

The reducibility theorem has several consequences.

3.4.19. Definition. Let C be a class of λ→ models. C is called complete iff

∀M,N ∈Λø[C |= M = N ⇐⇒ M =βη N ].

3.4.20. Definition. (i) T = Tb,c is the algebraic structure of trees inductively defined
as follows.

T = c | b T T

(ii) For a λ→ model M we say that T can be embedded into M, notation T →֒ M ,
iff there exist b0 ∈M(o→o→o), c0 ∈M(o) such that

∀t, s∈T [t 6= s ⇒ M |= tclb0c0 6= sclb0c0],

where ucl = λb:o→o→oλc:o.u, is the closure of u∈T .

The elements of T are binary trees with c on the leaves and b on the connecting nodes.
Typical examples are c, bcc, bc(bcc) and b(bcc)c. The existence of an embeding using
b0, c0 implies for example that b0c0(b0c0c0), b0c0c0 and c0 are mutually different in M.

Note that T 6֒→ M(2). To see this, write gx = bxx. One has g2(c) 6= g4(c), but
M(2) |= ∀g:o→o∀c:o.g2(c) = g4(c), do exercise 3.6.13.

3.4.21. Lemma. (i) Πi∈ IMi |= M = N ⇐⇒ ∀i∈ I.Mi |= M = N.
(ii) M ∈Λø(⊤) ⇐⇒ ∃s∈T .M =βη scl.

Proof. (i) Since [[M ]]Πi∈ IMi = λλi∈ I.[[M ]]Mi .
(ii) By an analysis of the possible shape of the normal forms of terms of type ⊤ =

12→o→o.

3.4.22. Theorem (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {Mi}i∈ I of structurs in C such that

T →֒ Πi∈ IMi.
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Proof. (⇒) Suppose C is complete. Let t, s∈T . Then

t 6= s ⇒ tcl 6=βη scl

⇒ C 6|= tcl = scl, by completeness,

⇒ Mts |= tcl 6= scl, for some Mst ∈C,

⇒ Mts |= tclbtscts 6= sclbtscts,

for some bts ∈M(o→o→o), cts ∈M(o) by extensionality. Note that in the third implication
the axiom of (countable) choice is used.

It now follows by lemma 3.4.21(i) that

Πt6=sMts |= tcl 6= scl,

since they differ on the pair b0c0 with b0(ts) = bts and similarly for c0.

(⇐) Suppose T →֒ Πi∈ IMi with Mi ∈C. Let M,N be closed terms of some type
A. By soundness one has

M =βη N ⇒ C |= M = N.

For the converse, let by the reducibility theorem F : A→⊤ be such that

M =βη N ⇐⇒ FM =βη FN,

for all M,N ∈Λø. Then

C |= M = N ⇒ Πi∈ IMi |= M = N, by the lemma,

⇒ Πi∈ IMi |= FM = FN,

⇒ Πi∈ IMi |= tcl = scl,

where t, s are such that

FM =βη tcl, FN =βη scl, (∗)

noting that every closed term of type ⊤ is βη-convertible to some ucl with u∈T . Now
the chain of arguments continues as follows

⇒ t ≡ s, by the embedding property,

⇒ FM =βη FN, by (*),

⇒ M =βη N, by reducibility.

3.4.23. Corollary. (i) [Friedman [1975]] {MN} is complete.

(ii) [Plotkin [1985?]] {Mn}n∈N is complete.

(iii) {MN⊥
} is complete.

(iv) {MD}D a finite cpo, is complete.

Proof. Immediate from the theorem.
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The completeness of the collection {Mn}n∈N essentially states that for every pair of
terms M,N of a given type A there is a number n = nM,N such that Mn |= M = N ⇒
M =βη N . Actually one can do better, by showing that n only depends on M .

3.4.24. Proposition (Finite completeness theorem, Statman [1982]). For every type A
in TT(λo

→) and every M ∈Λø(A) there is a number n = nM such that for all N ∈Λø(A)

Mn |= M = N ⇐⇒ M =βη N.

Proof. By the reduction theorem 3.4.7 it suffices to show this for A = ⊤. Let M a
closed term of type ⊤ be given. Each closed term N of type ⊤ has as long βη-nf

N = λb:12λc:o.sN ,

where sN ∈T . Let p : N→N→N be an injective pairing on the integers such that
p(k1, k2) > ki. Take

nM = [[M ]]Mωp 0 + 1.

Define p′:X2
n+1→Xn+1, where Xn+1 = {0, . . . , n + 1}, by

p′(k1, k2) = p(k1, k2), if k1, k2 ≤ np(k1, k2) ≤ n;

= n + 1 else.

Suppose Mn |= M = N . Then [[M ]]Mnp′ 0 = [[N ]]Mnp′ 0. By the choice of n it follows
that [[M ]]Mnp 0 = [[N ]]Mnp 0 and hence sM = sN . Therefore M =βη N .

3.5. The five canonical term-models

The open terms of λo
→ form an extensional model, the term-model MΛo . One may

wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type o. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on Λø

o[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type o coincides with
=βη, can be obtained in this way. From now on D will range over sets of constants such
that there are closed terms for every type A (i.e. in Λø

o[D](A)).

3.5.1. Definition. Let M,N ∈Λø
o[D](A) with A = A1→ . . .→Aa→o.

(i) M is D-extensionally equivalent with N , notation M ≈ext

D N , iff

∀t1 ∈Λø
o[D](A1) . . . ta ∈Λø

o[D](Aa).M~t =βη N~t.

[If a = 0, then M,N ∈Λø
o[D](o); in this case M ≈ext

D N ⇐⇒ M =βη N .]


