1. Let $\mathcal{D}=<\mathcal{D}$, $\sqsubseteq>$ be an ω-algebraic lattice.

Let $\mathcal{K}(\mathcal{D})=\{a \in \mathcal{D} \mid a$ compact $\}$. Define the relation \leq on $\mathcal{K}(\mathcal{D})$ by

$$
a \leq b \quad \Leftrightarrow \quad b \sqsubseteq a .
$$

(i) Show that $(\mathcal{K}(\mathcal{D}), \leq)$ is a partial order such that for two elements $a, b \in \mathcal{K}(\mathcal{D})$ the glb $a \cap b$ exists.
(ii) Show that there is a greatest element T in $(\mathcal{K}(\mathcal{D}), \leq)$.
2. Give a direct derivation of the statement

$$
\vdash_{\Pi^{\top}}^{B C D}((\lambda x . x x x) \mathbf{I}): A \rightarrow A
$$

where $A \in \mathbb{T}_{\cap}^{B C D}$. You may not use (β-exp).
3. Show that the rule $(\rightarrow L)$ is admissible in $\lambda_{\cap^{\top}}^{B C D}$, that is, give a proof of If $\quad \Gamma, y: C \vdash P: D \& \Gamma \vdash N: E \& z \notin \operatorname{Dom}(\Gamma)$ then $\quad \Gamma, z: E \rightarrow C \vdash P[y:=z N]: D$.

