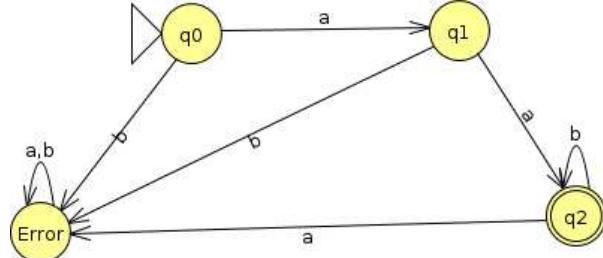


Test + Answers

May 25, 2012

4. Test (4.1 and 4.2) and a new problem (4.3)

Every item can give you 1 point. Let $\Sigma = \{a, b\}$.

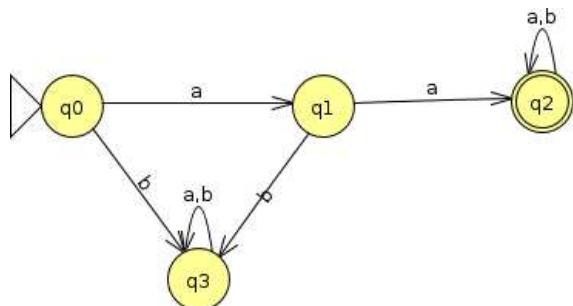

4.1. 1. Let $L_1 = L(a(ab^*)^*)$.

(a) Write down two words in Σ^* belonging to L and two that do not belong to L .

Answer. $aa, aabb \in L_1$; $b, ab \notin L_1$.

(b) Construct a DFA that accepts L .

Let M_1 be

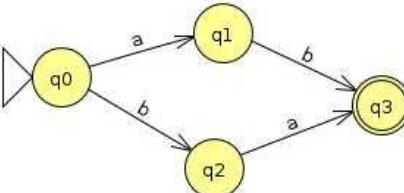


Then $L(M_1) = L_1$.

2. Idem for $L_2 = L(a(ab^*)^*) = L(a((ab^*)^*))$.

Answer. $aaa, aabab \in L_2$; $b, ab \notin L_2$.

Let M_2 be

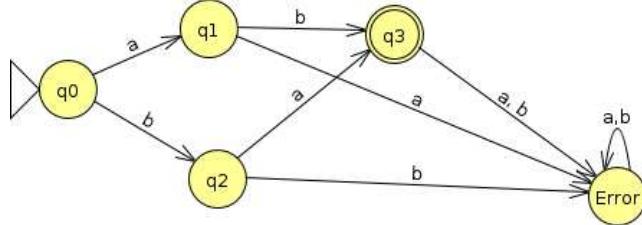


Then $L(M_2) = L_2$.

4.2. 1. Given is a PFA M_1 by the following table and $q_0 = 0, F = \{3\}$.

δ	a	b
0	1	2
1		3
2	3	
3		

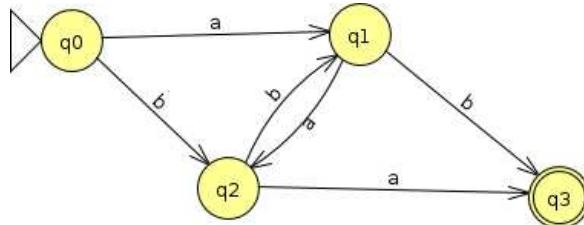
(a) Make a drawing of M_1 .



This is

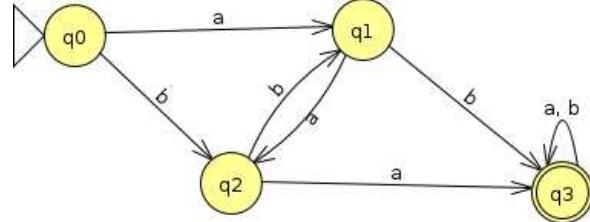
Give a regular expression for $L(M_1)$.

$$L(ab \cup ba) = L(M_1).$$


(b) Change M_1 into the DFA M'_1 accepting the same language.

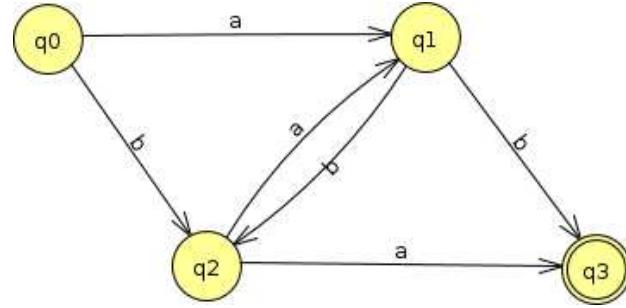
2. Given is the PFA M_2 by the following table and $q_0 = 0, F = \{3\}$.

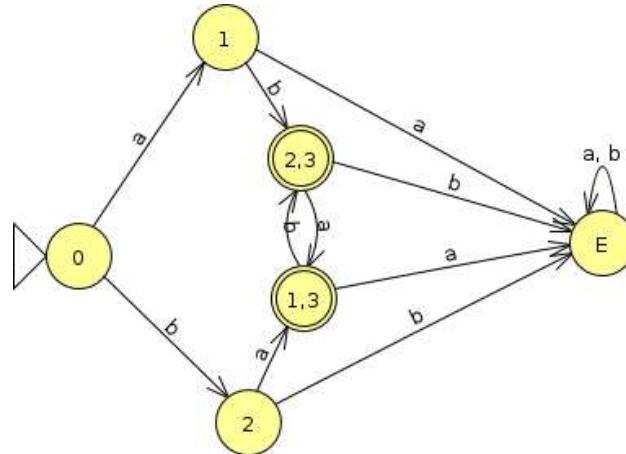
δ	a	b
0	1	2
1	2	3
2	3	1
3		


(a) Make a drawing of M_2 .

Give a regular expression for $L(M_2)$.

$$\text{Answer. } a(ab)^*b \cup b(ba)^*a \cup aa(ab)^*a \cup bb(ab)^*b.$$


(b) Change M_2 into the DFA M'_2 accepting the same language.


3. Given is the NFA M_3 by the following table and $q_0 = 0, F = \{3\}$.

δ	a	b
0	1	2
1		2, 3
2	1, 3	
3		

(a) Make a drawing of M_3 .

(b) Change M_3 into the DFA M'_3 accepting the same language.

4.3. Show that the $L(M_1), L(M_2), L(M_3)$ all satisfy the pumping lemma.