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Abstract

Ths thearstical peard is abouwt the cdised temn maodel of pure wmtyped lan bdasterms
meddubs Fe-oomvertibility. A cmsequence of one of the results is that for arbitrany distinet
combinaton {clssd hmbda terms) A, M N A ther is a combinator B such that

HM =HM # HN = HN'.

The gememal resubt, which comes fram Statman [1998), is that mikmmly re partitions
af the combinatars, such that each “Block” & clised nnder A comversion, are of the frm
{H = {M}}osesn- This is proved by making use of the idea behind the so-called Plotkin-
terms, ariginally devised to exchibit some glabal but non-uniform apphicative behavior. For
expastary reasons we present the proal hebw. The bllowing conseguences are derived: a
charactermation of morphizms and a commtermample to the perpendicular lines lemmna
for [F-comversion.

1. Introduction

We use notations from recursion theory and lambda caleulus, see Rogers [1987) and
Barendregt [1 984].

Norarion. (1) ¢, s the e-th partial recurslve Tmetion of one argument.

(1) W, = dom,) CIN s tle re set with ndex e

(i) A& the set of lambda-terms and A & the set of dosed-lambda terms [¢om-
himators).

(Iv) W, = {MeA® | #MeW,} CA¥: ore #M E the code of the term A,

LL DeFsrrion. (1) Inspived by Visser [1980] we define a Visser-partition (V-
partition) of A* 1o be a family { W, }aes such that
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(1) SCIN Eanre set
(2] VeeSWM N (MeW. &EN=M) = NcW..
(3 WanWe #8 = WM. =W

(1) A family {W,;}ees I8 a peeudo-V-partition if it satishes just 1 and 2.
L2, DeFiNrrioN. Let {W.lees be a V- partition.

L. The partition 1s sald to bhe eoverdng 1 I._.I_ER‘}"I.-'. = A¥

2. The partition Is zald to be inkabited If Yecl W, £
3. A Vepartition {W} }ees Is sald to be fertensionally) equivalent with {W. } I
these famililes define the same collection of nomrempiy sets, Le i

1.3 ExaspLE. Let H be spome given combinater. Define
Wons = {NeX | HN = HM},

Then {W, },eq,. with Sy = {e(M, H) | MeA®}, s an example of a covering ad
inhabited V-partition We denote this V-partition by {Woam byoe-

Ld. Proprosmon. (1) Every Vopartition iz gfectivdy apivalen! to an inhabiled
ET
(1} Every V-partiion can effecdively be endended lo a covering ome.

Proor. (1) Given {W,},cq defioe 8 = {28 | W, # 8}, Then {W,}.cq0 Is the
requdeed modiffed partithon.
(1) Given {W fues define

Woan = {N|N=Mv Jec5 M, NeW,}.
Then {W,, 4 }Mu&’ Is the reguired V-partition ®

The main thegrem eomes In two version. The seepnd more sharp version s meeded
for the construction of so called inevitably consktent equations, see Statman [1999).

L5 TuroreM (Main theorem). 1) Let {W.lies be o Vepartition. Then one can
conatruct effectively a combnator H such that for all M, NcA?

HM =HN & M=N v 3ecS M,NcW,. (%)

The construction of 1 s effective in the code of the underlping re sel 5.
() Let {Wileies be a pgeudo- Vepartition. Then one can construct effectively a
combinator H such that if {W, }ees is an actual Vepartition, then [*) holds.

The theorem will he proved In B2 It has several eomsequences. In order 1o state
these we have 1o lormulate the motion of morphism on 4 and the so-called perpen-
dicular limes lemma.

LG. DEFixrrion. Let o0 A 4" be a map. Then ¢ & a morphism if

L @M = Beg gan, lor some recursive Tunction f.
2 M=N = @glM) =N



Theoretical pearis 3

LT, Lessa. (1) Let F e o combinalor and define gu (M= HM. Then ¢gn i85 a
minrphiism.

() Let F.7 be combinators such that for all MeA® there exista a unigue NeAP
with FM = LGN, Then there i3 a map @ o such that FM = Gee o (M), for all
M, which i a morphism.

Proor., (1) For the coding ## ket app be the recursive lunctlon sech that $(P6))

= app(#F, 7). Deline fim) = app(#H,m). Then pu(M) = BEegapn. It 18
obvious that @ preserves Fequality.

(1) Let Rine,n) be an re. wlathon, The we ave Alm,n) & 3 Tim,n, ),
for some recursive T, Let < n, 2 = be a recursive palring with recursive lnverses
i, g=l=n<n s> 1=z Delime (pls the least number operator)

in J(im, 1) = (pp T i, 0, 0 1) 00,

Then FnelNE(m,q) = R, Rima)) In order 1o comstroct tle morphksm
P o, define

Fim) =1, FEey ) =G Eey).

By the assumption (exBtence) [ s total. Deline g po (M) = Ecjpgan. Now fif#M) =
i = F[Ee,)=&(Ee,). Therlore FM = Gpp (M), Tor all M. The condition

M=M = ¢roM)=qgralM')
hoplds by the assum pilon [poleiy). B

O may wonder whether dropplng the wniciy comditlon In lemma 17 (1) o
meay ohtain a morphism by making a dght unilfprmization This Is mot the case.

LA ProprosimoN. There exdsls combnators F 00 such Lhat WMAN FM = GN bul
withoul ang morphism salisfying WM FM = (N,

Proor. Let A = Y1 and define F= Aeiz, & 1) and &= A By, w24, ¢lh. Then,
see Statman [1984],

FM =GN & [N=j3e, VN =3) & EN =5 M. (1)

Any morphEm ¢ such that FM = Gl M) would solve the eonvertiblity problem
recurslvely: one has by (1)

M =M & ¢lM)=p(M), (2)
and sinee @ M), @ M) have nl's by (1), the RHS of (2) Is decidable. m
LA, Prorosimon. Not every morphism ig of the form @n .

Proor. Let F,G:E.'l.'i*" be sich that Fedy = | Then F, & determine a so-called inmner
modd | |=| ].'-.-e:' as lollows.

] = =
[FQ] FIPIIQ):

[Az.F] Gire. [P]).
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Uslng the condition on F, {0 It can he proved tlat
M=z N = [M]=|N].

Therelore defining ¢ M) = [M] we obtain a morphism.

Now take F = dpal, T' = Azy.pe. Then Indeed F e 7 = | and lor the resulilng
inner model one has [I] = Apgd and (1] = (Agylde =) Al Az 21x)).

Suppose towards a contradiction that the resulting ¢ Is of the orm @e. Then
Hl = Aip.ygl, 5o H s solvable and henoe has a hnf Az .. 2a. 5 My L M. Bt B =
A D As 2l 00 A e [ Az 212)), which I unsplwable. Thermlore the lead-varlahle &
I8z . But then H1} = Aeg .. e JEMT . O M7D which s not of the eorrect lorm. B

The lollowing 1s a corellary 1o the maln thesrem.
L1k CoroLtary. Evey morphism ¢ s of the Jorm ¢p o

Proor. Let ¢ be a given morphism, Defi
Waiy ={Z | IMEA® [p(M) = N & [Z = {eo, M} v Z = 1, N}]]}.
Then {W, a} s a V-partition. By the main theorem there exkts an 5 such that
Hico, M)y =Hijgi Ny & oo, M) = e, N} VN = ¢[M)
= N =gpM).

D fime

F = AnHleo, m);

&L = MHie, ).
Then FM =GN & N =@M). Theelore @ = @ro. B

Mote that lor a glven morphism ¢ one can define Ty
Wi nre = {NEN | o(M] = (N)}.

Thik k aninhablted ¥-partition. It & ot difflcult to show that that each ¥V-partitlon
Is equivalent to one of the form {W,, 4y o} Note that {W 't = {Waur o b
s lemma 1.7, The [ollow ing result shows that coverlng V- partltions are always of
this mom restrieted lorm.

L1L CoroLLary. If {WL} is a covering Vepartition, then {W,} iz equivalent to
IWaarn} saep Jor some H  effectively found from w.l.

Proor. Let H be the combinator constructed effectively from {W.}. We will show
that Woa gy = {N | HN = HM} Is equivalent to {W,}. Claim. For NeW, one
has .]".L,I. = ']-"I.-'_|MIH| . Iﬂlli'fli.
NeWw, & M=NV MNcW,
& HN=HM
o NeWemm).
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Therelore, moting that M eV m.,
[W, | Me W, # 8} C (W | W m # B Mef}

The eonverse Inclislon holds also, sinee every M helongs to some Ve and hemoee
W sy = W, for this e B

The [ollowing theorem states that I a comblsator, seen as Tunction of 0 arge
menis, B oonstant—mgd ule Bédhm-tree equality—on o perpendicular Ines, then it
s constant everywhens,

L12 Tupores (Perpendicular lses lomma). Let F be a combinalor. Suppose thal
for nelW there are combinalors My, 1 <4# § <0, and Ny 0 Ny such thal for
all terms ZEA one has (= denoles Bdbm-dree equalily, de M =N & BTIM) =
BT(N))

F .E' Hl.:]‘ P Hl.n— i Hlﬂ. 2 ..nl'“
F M:“_ .E." ad MJ“H.— i M_h.l_ = ..Hl':“
F My Mye ... Maaa £ 02 Na

Then for all B ,. .., PocA® one has
FF, .. P oo Nj= Ny, =N
Proor. This is proved in Barendregt [1984)], theorem 14.4.12. m

The perpendicular Ines lpmma also bolds for elosed terms (Le. the Z rangeover £2).
Thi is proved by Bethke [1999), who obsmved that Berry's sequentiality result, see
Barendregt [1984] theorem 14 4.8, remains valid if in definition 14 4.2 of the notion
“ig coused T the Implication

M=z = C[M|la# 1)
I8 replaced Ty

M/|B#1L = C[AH|a# 1).
A conjecture in Barendregt [1984] states that the perpendicular lines emma with
= replaced by =g Is correct lor open terms. We do believe that the can be prowed
ising sing a pesult of Diderk van Daalen In e edl exemclse 15.4.8.

The olkwing result shows that both changes (that 15, lor elsed terms modinlo
freomversion) make the perpendicular s lemma lnvalid.

L13 Proposrrros. If the perpendicular lines lemma @8 reslricled Lo dosed terma
and if 2 is replaced by =5, then the perpendicular Bnes lemma 8 false for ang
i1 1.

Proor [For i =1 the lemma is trivially true for =5.). Let 51 = 1. For notational
slmpliciiy we assume n = 2 and glve a eounter example. Define

W, = {NeA? | N=(535)}
We = {NeA® |3ZeA®[N = (L2} v N = (Z 1]}
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Then {Walieia o0 18 a Vopartition. Let H be the combinator obtalsed from ths
partition by the main theorem. Then for all ZeA®

HIS, 5y# H{l, &y =H{Z ).
Now define F = Az H(z, ). Then for all ZTeA®
F55 £ FIE = FZI.
Thi & Indeed a counterscample. B

2. Proof of the main theorem

In order to prove the maln theorem 1.5, let a V-panition determined by 5 he fxed
in this section. By proposition 14 1t may be assumeed that the partition & Inhahited.

2.1. Lemua. Let {W,lees be an inhabited V-partition.
(I There exsts a lolal recursice Junction [ = [z such that

WeEe S W, = {f[2e+ 1)2™) | neN |
(1) There exsts a combinator E¥ such that
WeeS W, = {E¥ iz, 03 | nElN |

Proor. (1) By eementary recurslon theory there exdsts a vegiursive lunetlon b such
that W, = Rangefgy ) amd @p Is total, for all e€5. Oserving that e 5 are
unlgueely determined by B = (2o + 1)2", define J by Jil) = 0, F{(2e + 1)23") =

Py ey (1)
(11} Take E¥ = E ¢ Fz, where Fz lambda defimes {7 and Begar = M lor all
MeA® m

2.2 DeEFErroN. (1) Define

add(l] = @
odd{[2e + 1)2") = 2Ze+ L

(1) Define M ~ NI M =N v M=E_,N =E, and odd[m) = odd[n), for
BN 1, Tl

Notlos that M o~ N T M =N or Jee 50, NeW.. Therelore we have to prowve that
there exizsis a combinator & spch that

HM =HN & M~N.
The proof comsists in onstructing a combinator = H7 sisch that

1. M~ N = HM =HN, proposition 24;
2 HM=HN = M ~ N, proposition 2.9,

The second part of the main theprem easily Iollows by Inspecting the prool.
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2.3 DeEFsrroy. (1) Define

T = Axpraplzy:z);
A = Mgryz fe{a(Ex))[[(STxiule(ST2))z];
B = Afge f(52)(alE(Tx))(g(572))(gz).

(11} By the douhble fived peint theorem there exkts terms F 07 such that

F s AFG,
& = BFCG.

T be explicit, write

D = [Azpuizey]);

Y = DD

G = Y{AuwB[¥ (Ao Aur))u):
F = YiksuwAud).

(111} Filnally define
H = bea Fey laz)[({Feyg).

NorarionN. Write

Fy = Feg;

Gy = Geg;

Ex = Eog

a, = ab;
Hy ] = Fy |Gy
O ] = Fungl] |G

Note that by comstruction
FiMN — Fag(Fa MG N
G 4 Feoandeaa G

By reducing F, respectively {7, 1t Tollows that

Hilpyl = FoapGe —# Ce[Hes o] (1)
Hilay] = FeaelGr —# Ci[Hee joa) (2)

24 ProrosimoN., M~ N = HM = HN.
Proor. By lemma 2.1 it sulflees to show HE, = HE,, lor all k.
HEk = .Jlﬂ:.Hl hk]

= Aﬂﬂdﬂ;l ‘4 Ek_l |Hklﬂk]]"]]l ].'I_'.r [l:||
= Aﬂ{?|_|{?;| ‘4 C-rk_l |Ek|Hk kt.l‘k]]]]L ].'I_'.I' [ﬂ:ll
HErJ-k = .Jlﬂ:.Hl h_;_h]

= Aﬂﬂdﬂ;l ‘4 Ek_l |Ek|HkhJ‘k]]]]]l ].'I_'.r [l:| [ |
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As a plece of art we exhihit In more detall the reduction How [oontirac ted
redees are underlined).

HE,
Ax Fia O
A Flﬂ: i [Ftibtﬂ[tﬂ'l :l

A Fyay (Fyag (FyapGyla i)

A Fyay (Faoy (Fyasl. . (FpaplGGe_y) .. )G )0) =

A Fyay [ Foog (Fyagl.. . (Feag Gy Cle_y) .. Mg )y )

Aa Fyay [ Fyoy (Faagl.. . (Frap(Froon G Ge i o) .. G ) )
And also

HEFJk —+ .. —H

Aa Fyay [ Fyay (Faagl.. . (Feap(FroonGea Ge e ) . G ) )

For the conwerss Im plication we need the fine structure of the redoe ton.

2.5 DEFiNrrioN. Define

DRM] = FlaM)=Y(luwduTic,(aM)

DyM] = (dyu(DDy))de.AuG ey ja M)

EIM] = (duAud) FilaM)

DiM] = AFGep(aM)

DiM] = [Ageys FelaEl)(For u(g(ST2))2))Ger(aM)
Di[M] = (Aeye FelBe)(For, iGseo2 ek (aM)
DEM] = (e Felabe)(Foro 0 Gsre, 2))(aM)
DL[M] = (A FilaEe)(Fate, (aM)Gs+e,2))

2006, Lesmsa, Led FilaM N head-reduce in 8p+ g steps to 0. Then
W

DI[M]N, ifp=0;
D[Es] ([ Huer [Ex]* ™ (Hesr [M]N)),  else.
Proor. Note that F (aM )N = DY[M|N. Moreover,
DI[M]N =, DFYMN, for g < T;
DI MIN =y DY[E.](Hew [M]N).

The rest B clear. At steps 16, 24 we obialn for example
DL[Ee](Hesa[MIN) =5 DRE[Ee]({ Hesr[Ee] ) Hisr [M]G)).
DL [Ex)([ Hest[Ee]) (Hesr [MGE)) —n  DREe]((Hist|Ee] P [ Hist [M)Fe)). m

Bemember that a standamd reductlon o.M —, N always comslsts of a lead
redisethon lollowed by an Internal redoetlom

M =y B = N
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MoTarion. Write M =,zq N Il there are standard eductons of kngth < n om M
mespectively & to a common reduet £, Similarly M =j=q N lor intemal standand
redisetions. Also the notation =, -n amd =;-q will he wsed.

2.7 Lewmua. (1) DYM]N =an .E‘f|.'k!"']."h"' = g=¢ &N =san N,

() DI[MIN =jcn DI M |IN' &g <T = M =pan M.

(i) D7 [MN =i<n O [ AN = Hp., [M]=, Zn Hy o[ M.
Proor. (1) Suppose D] [M|N =, .E'f|.'|-f"]."'n". Then By observing where the free
variahle a oceurs one can conclude hat g =g Blnee the redpcilons 10 8 oo mgn
reduct are internal, the positions of N, N* are not changed and hence N =, ., N

(1) Mwviows fom the definition of 0.
(1) In this case i lollows that

D [Ex]{ Hisr[M]2) =icn DF[E]( Hier [M]2).
The conclusion Hoo[M] =,2n Hieeo [M'] depends on the fact that there are the
free varlables & to mark the residuals. B
2.8, Lemma, Suppose Gy =, cn [Hisi[Ee] P (Heso[M]G,). Then
Hyoy [E(Te)] =p0n Hesa[M].

Proor. By nduction on d. T d= 0, then we have Gy =, o Hiyy [M]Gy. S0 there
are standard reductlons of these two terms to a common redpct. Observe that the
Iead- redue tlon starting with (g begins as lollows,
e = YViAw Y [ Ae Aivu) Juek

—+n [ARE(Y =) ) (A B Y D A ) e

—tn A BUY A Aira ) Ju)iT ek

—+n  BFifcg

—+x (Mg FISTE)a(E” (Tx)))(gS™ k) g2)Gex

—y (A FSTR) (a(E¥ (Te))(G(STR) (G lley

—+,  FISTE)(a(E%(Te,)) [ GISTE))Ge ).
The heads of these terms are not of order 0 eccept the last one. But H, ., [X] 1s
always of arder (). Therelore the mentloned standard redweton of 7, goes at least
te this last term Moo |[E%[Tep )G But then Hiso[E¥ [Ter)] =yan Hesa[M].

Od = 0, then start the same argument as above, but at the Intermediate conelise
slon

Hyon [E% (T )]Gy =ycn (Hea[Ee]) Heaa[M]G),
e preceeds by concluding that
G =pon Hop [Ee " Hea [M]G)
amd uses the Induction hypothesis. B

2.9. ProPOSIMoN. Hy M) =H N] = M ~N.
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Proor, By the standardization theorem it sulfices to show lor all 1 that
WheEIN|[H, [M] =yen HL.IN] = M ~N|.
Thi will be done by nduction on n. From H[M] =,2, He|[N] it Tollows that

Hklm] —Hy, H:'rlu' —H =
Hkl"rf] —Hy, H'rlall —H, .

Tor some Wy, By, 2.

Case 1. Wy, Wy are hoth reached alter < & steps. Then by lemma 26 Wy =
Dl M7 Wy = Df|."h‘]{}’1.. By lemma 2.7(1) it follows that g = . T g = T,
then by 2701) one has M = N eo M ~ N. [T g = T, then by Z7[11l) one has
H. Ll.'l-f] =yen Hk—Lla";] and '|.'|_',r the Indsetion ]'!l_',rj.'l:ﬂhl‘ﬁ.]ﬁ. e has 8 o~ N,

Case 2. Way s reached alter p > 8 steps amd Wy alier ¢ < 8 steps. Then p
Bd + g and, keeping in mind lemma 2.7(1), it follows that Wy, = DI MG, Wy
DBy R, G =,0n B, where B = (Hpyy [Ee])? " (Hpey [N]GL). Then as in case 1
it follows that M ~ E,. Moreover, by lemma 2.8 Hy [Esy] =, Hpoy| V], 50 by
the Indecthon hypotlssis Egp ~ N, S50 M ~ Ej ~ Egp ~ N

Case 3. Both W Wy are reached alter > & steps. Then

D[Ex]((His [Ex])? | Hesr [M]GR));
D [Ee]((Hiwn [Ea ¥ [ Hiesa [N] G-

o
W

Od=d", them by lemma 2.7
[ Hest[Ee] P Hest [M]GE) =sen (Heso[Ex] [ Hiso[N] G ),

=]
Hh_l_l.'if] =§5<n Hk—ll‘-n"]|

sinee Hy 1| X Is always of omder ). Therefore by the induction hypothesis M ~ N,
I on the otler hand, say, d < ', then [writing & =4 + )

Di:lEk][[Hh—llEk]:ld[Hh_ll.'llf] G."k :I:I,
DB ((Hysn [Ex])® [ Hisr [Ex] ((His s [E] " [ His [N]Gid) 1)

Ws
Wy

B
Hp[M] =,en HealEe]
Gr =ecn (Heoa[E])* ™" (Hia [N]G),
sinee Heo [X) Is always of order 0. Therelore by lemma 2.8
Hyoo[Exe] =pan Hen [N]
Therelpre iy tle Indpction hypothesis twiee we obiain M~ Eg ~ Bgg ~ N. B
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