

Intersection Types

Henk Barendregt

Nijmegen University

From “Typed lambda calculus” with Dekkers and Statman co-authors

Part III: “Intersection types” with Dezani, Honsell, Alessi co-authors

(Un)typed lambda calculus

Untyped terms

term $::=$ var | ter ter | λ var ter
var $::=$ x | var'

Types

type $::=$ atom | type \rightarrow type
atom $::=$ α | atom'

Type-assignment to terms $\lambda \rightarrow$ (Curry [1934])

$\frac{x:A \in \Gamma}{\Gamma \vdash x : A}$
$\frac{\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A \quad \Gamma, x:A \vdash M : B}{\Gamma \vdash MN : B}$ $\frac{}{\Gamma \vdash \lambda x.M : A \rightarrow B}$

Recursive types $\lambda =$

The $\lambda \rightarrow$ types are freely generated from the atoms

The recursive types $\lambda =$ equate certain of these types

The equation $A = A \rightarrow B$ has as consequence

$\vdash \lambda x. xx : A$

$\vdash (\lambda x. xx)(\lambda x. xx) : B$

There are many ways to make identifications \longmapsto *type algebras*

$$\mathcal{T} = \langle T, \rightarrow \rangle$$

Intersection types $\lambda\cap$

Type-assignment to terms $\lambda\cap$

$\frac{x:A \in \Gamma}{\Gamma \vdash x : A}$
$\frac{\Gamma \vdash M : A \rightarrow B \quad \Gamma \vdash N : A \quad \Gamma, x:A \vdash M : B}{\Gamma \vdash MN : B} \quad \frac{\Gamma, x:A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B}$
$\frac{\Gamma \vdash M : A_1 \cap A_2}{\Gamma \vdash M : A_i} \quad \frac{\Gamma \vdash M : A_1 \quad \Gamma \vdash M : A_2}{\Gamma \vdash M : A_1 \cap A_2}$
$\frac{\Gamma \vdash M : A \quad A \leq B}{\Gamma \vdash M : B}$
$\frac{}{\Gamma \vdash M : \Omega}$

Intersection Type Structures

Now we work with *intersection type structures*

$$\mathcal{T} = \langle T, \rightarrow, \leq, \cap, \Omega \rangle$$

$\vdash \lambda x.xx : (A \cap (A \rightarrow B)) \rightarrow B$

$\vdash (\lambda x.xx)(\lambda x.xx) : \Omega$

Subject Reduction

In $\lambda\rightarrow$ one has

$$\left. \begin{array}{c} \Gamma \vdash M : A \\ M \twoheadrightarrow_{\beta} N \end{array} \right\} \Rightarrow \Gamma \vdash N : A$$

This also holds for $\lambda\cap$, for many intersection type structures \mathcal{T}

The converse, *subject expansion*, does not hold for $\lambda\rightarrow$

$$\left. \begin{array}{c} \Gamma \vdash N : A \\ M \twoheadrightarrow_{\beta} N \end{array} \right\} \not\Rightarrow \Gamma \vdash M : A$$

$\vdash \lambda xy.y : A \rightarrow B \rightarrow B$ and $\text{SK} \twoheadrightarrow_{\beta} \lambda xy.y$

but $\nvdash \text{SK} : A \rightarrow B \rightarrow B$

In fact one ‘only’ has

$$\vdash \text{SK} : (B \rightarrow C) \rightarrow B \rightarrow B$$

Subject expansion for $\lambda \cap$

Suppose

$$\vdash P[x := Q] : A$$

where $P \equiv \dots x \dots x \dots x \dots$

so $\dots Q \dots Q \dots Q \dots : A$

Each of these occurrences of Q may need another type B_1, B_2, B_3

But then we can give $\lambda x.P$ the type $B_1 \cap B_2 \cap B_3 \rightarrow A$

Hence the β -expansion $(\lambda x.P)Q$ also the type A

If the number of occurrences of x in P is 0,

then we may give to $\lambda x.P$ the type $\Omega \rightarrow A$

which is consistent as the *empty* intersection

again

$$\vdash (\lambda x.P)Q : A$$

Undecidability of inhabitation Urzyczyn [1994]

For several \mathcal{T} one has

$$\exists M \in \Lambda^\emptyset \vdash^{\mathcal{T}} M : A \text{ is undecidable,}$$

as a predicate in A .

Special Intersection Type Structures

Let $\mathcal{T} = \langle T, \rightarrow, \leq, \cap, \Omega \rangle$ be an intersection type structure

\mathcal{T} is *natural* iff

$A \leq \Omega$	(Ω)
$\Omega \leq (\Omega \rightarrow \Omega)$	($\Omega\eta$)
$(A \rightarrow B) \cap (A \rightarrow C) \leq A \rightarrow B \cap C$	($\rightarrow \cap$)
$A' \leq A \ \& \ B \leq B' \Rightarrow (A \rightarrow B) \leq (A' \rightarrow B')$	(η)

\mathcal{T} is β -sound iff

for all $k \geq 1$ and all $A_1, \dots, A_k, B_1, \dots, B_k, C, D \in \mathcal{T}$ one has

$$(A_1 \rightarrow B_1) \cap \dots \cap (A_k \rightarrow B_k) \leq (C \rightarrow D) \Rightarrow C \leq A_{i_1} \cap \dots \cap A_{i_p} \ \& \ B_{i_1} \cap \dots \cap B_{i_p} \leq D,$$

for some $p \geq 0$ and $1 \leq i_1, \dots, i_p \leq k$

β -soundness of \mathcal{T} implies that subject reduction holds in $\lambda \cap^{\mathcal{T}}$
(Coppo, Dezani, Honsell, Longo [1984])

A model for $\lambda\beta$ (Barendregt, Coppo, Dezani [1983])

Therefore

$$\left. \begin{array}{c} \Gamma \vdash M : A \\ M =_{\beta} N \end{array} \right\} \Rightarrow \Gamma \vdash N : A$$

so (for closed M)

$$X_M = \{A \mid \vdash M : A\}$$

looks like a λ -model. Indeed, such a set is a *filter* of types. $\mid \begin{array}{l} A, B \in X \Rightarrow (A \cap B) \in X \\ B \geq A \in X \Rightarrow B \in X \end{array}$

For filters X, Y one can define application

$$XY = \{B \mid \exists A \in Y (A \rightarrow B) \in X\}$$

is well defined and one has (for many intersection type structures)

$$X_M X_N = X_{MN}$$

Given an intersection type structure \mathcal{T} , then $\mathcal{F}^{\mathcal{T}} = \{X \subseteq \mathcal{T} \mid X \text{ is a filter}\}$

is the filter structure over \mathcal{T} . If \mathcal{T} is β -sound it is a λ -model.

Extensionality

$\mathcal{F}^{\mathcal{T}}$ is extensional iff

for all $A \in \mathcal{T}$ there are $\vec{B}, \vec{C}, \vec{D}, \vec{E}$, with $\vec{C} = C_1, \dots, C_k$, $k > 0$ not the top, and

$$(B_1 \rightarrow C_1) \cap \dots \cap (B_k \rightarrow C_k) \cap (B_{k+1} \rightarrow \Omega) \cap \dots \cap (B_n \rightarrow \Omega) \leq A$$

$$\& A \leq (D_{11} \rightarrow E_{11}) \cap \dots \cap (D_{1m_1} \rightarrow E_{1m_1}) \cap$$

...

$$(D_{k1} \rightarrow E_{k1}) \cap \dots \cap (D_{km_k} \rightarrow E_{km_k})$$

$$\& B_i \leq D_{i1} \cap \dots \cap D_{im_i} \& E_{i1} \cap \dots \cap E_{im_i} \leq C_i,$$

for $1 \leq i \leq k$.

It is enough that every type A one has

$$A \sim (B_1 \rightarrow C_1) \cap \dots \cap (B_k \rightarrow C_k) \text{ or } A \geq (B_1 \rightarrow \Omega) \cap \dots \cap (B_n \rightarrow \Omega)$$

Filter models

For these models one has

$$\mathcal{F}^{\mathcal{T}} \models M = N \Leftrightarrow \forall A \in \mathcal{T} [\vdash M : A \Leftrightarrow \vdash N : A]$$

Several known models D_∞ can be written as $D_\infty = \mathcal{F}^{\mathcal{T}}$ for some simple \mathcal{T}

New models can be constructed in this way, obtaining wanted properties

Meet semi lattices: **MSL** and Algebraic lattices: **ALG**

A meet semi lattice is a structure with top $\mathcal{S} = \langle \mathcal{S}, \leq, \cap, \Omega \rangle$.

An algebraic lattice is a complete lattice $\mathcal{D} = \langle \mathcal{D}, \sqsubseteq, \sqcup, \top \rangle$,

with countably many compact elements

such that every element is the supremum of compacta below it.

The categories **MSL** and **ALG** are equivalent.

$$\begin{array}{ccc}
 \text{MSL} & & \text{ALG} \\
 \hline
 \mathcal{S} & \rightarrow & \mathcal{F}^{\mathcal{S}} \\
 \mathcal{K}(\mathcal{D}) & \leftarrow & \mathcal{D}
 \end{array}$$

$\mathcal{K}(\mathcal{D}) = \langle \{d \in \mathcal{D} \mid d \text{ is compact}\}, \leq \rangle$ with $d \leq e \Leftrightarrow e \sqsubseteq d$

$\mathcal{F}^{\mathcal{S}} = \langle \{X \subseteq \mathcal{S} \mid X \text{ is a filter}\}, \subseteq, \cup \rangle$. One has

$$\begin{array}{ccc}
 \mathcal{D} & \cong & \mathcal{F}^{\mathcal{K}(\mathcal{D})} \\
 \mathcal{S} & \cong & \mathcal{K}(\mathcal{F}^{\mathcal{S}})
 \end{array}$$

Details

Let $\mathcal{S}, \mathcal{S}'$ be meet semi-lattices with top

A relation $\mu \subseteq \mathcal{S} \times \mathcal{S}'$ is an *approximable mapping* between \mathcal{S} and \mathcal{S}' iff for all $s, t \in \mathcal{S}$ and $s', t', t'_1, t'_2 \in \mathcal{S}'$

- (a) $\Omega \mu \Omega'$
- (b) $t \leq s \mu s' \leq t' \Rightarrow t \mu t'$
- (c) $s \mu t'_1 \& s \mu t'_2 \Rightarrow s \mu (t'_1 \cap t'_2)$

$$\mathcal{M}(\mathcal{S}, \mathcal{S}') = \{\mu \mid \mu \text{ is an approximable mapping between } \mathcal{S} \text{ and } \mathcal{S}'\}$$

This makes **MSL** into a category

On **ALG** one considers Scott continuous maps as morphisms

Natural Type Structures **NTS** and Natural Lambda Structures **NLS**

Both categories are being strengthened: An **MSL** $\mathcal{S} = \langle \mathcal{S}, \leq, \cap, \Omega \rangle$ enriched with an arrow, becomes a intersection type structure

$$\mathcal{S} = \langle \mathcal{S}, \rightsquigarrow, \leq, \cap, \Omega \rangle$$

If we require naturality we obtain the category **NTS**.

A **NLS** is an $\mathcal{D} \in \text{ALG}$ enriched with operators

$$\begin{aligned} F : & \mathcal{D} \rightarrow \mathcal{D} \rightarrow \mathcal{D} \\ G : & [\mathcal{D} \rightarrow \mathcal{D}] \rightarrow \mathcal{D} \end{aligned}$$

such that $\begin{aligned} F \circ G &\sqsupseteq 1_{\mathcal{D} \rightarrow \mathcal{D}} \\ G \circ F &\sqsubseteq 1_{\mathcal{D}} \end{aligned}$

As before, **NTS** and **NLS** are equivalent: $\mathcal{D} \cong \mathcal{F}^{\mathcal{K}(\mathcal{D})}$ and $\mathcal{S} \cong \mathcal{K}(\mathcal{F}^{\mathcal{S}})$, where

$$\begin{aligned} \mathcal{K}(\mathcal{D}) &= \langle \{d \mid d \text{ is compact}\}, \rightsquigarrow, \leq \rangle \text{ with } d \rightsquigarrow e = G(d \Rightarrow e) \\ \mathcal{F}^{\mathcal{S}} &= \langle \{X \subseteq \mathcal{S} \mid X \text{ is a filter}\}, \subseteq, \cup, F, G \rangle, \text{ with} \end{aligned}$$

$$\begin{aligned} F(X)(Y) &= XY, \\ G(f) &= \uparrow \{a \rightarrow b \in \mathcal{S} \mid b \in f(\uparrow a)\}. \end{aligned}$$

Classical models

D_∞ depends on D_0 and the pair $i_0 : D_0 \rightarrow D_0 \rightarrow D_0, j_0 : [D_0 \rightarrow D_0]$.

Scott took

$$D_0 = \{0 \sqsubseteq 1\} \quad i_0(d)(e) = d \quad j_0(f) = f(0)$$

For the resulting D_∞ one has

$$D_\infty = \mathcal{F}^{\text{Scott}}$$

with type structure **Scott** obtained by atoms $\{1 \leq 0 = \Omega\}$ with $0 \rightsquigarrow 1 = 1$.

Park took

$$D_0 = \{0 \sqsubseteq 1\} \quad i_0(d)(e) = (1 \Rightarrow d)(e) \quad j_0(f) = f(1)$$

For the resulting D_∞ one has

$$D_\infty = \mathcal{F}^{\text{Park}}$$

with type structure **Park** obtained by atoms $\{1 \leq 0 = \Omega\}$ with $1 \rightsquigarrow 1 = 1$.

New models

Coppo, Dezani and Zacchi [1987]

$\{0 \leq 1 \leq \Omega\}$ with $1 \rightsquigarrow 0 = 0$, $0 \rightsquigarrow 1 = 1$ gives a model $\mathcal{D} = \mathcal{F}^{\text{CDZ}}$ with

$$\textcolor{red}{M} \text{ has a nf} \Leftrightarrow \llbracket \textcolor{red}{M} \rrbracket^{\mathcal{D}} \supseteq \uparrow 1$$

This model \mathcal{D} also can be described in a traditional way

$$D_0 = \{\Omega \sqsubseteq 1 \sqsubseteq 0\}$$

$$i_0(1) = 0 \Rightarrow 1$$

$$i_0(0) = 1 \Rightarrow 0$$

$$j_0(f) = \sqcup \{d \in D_0 \mid i_0(d) \sqsubseteq f\}$$

and one has

$$\textcolor{red}{M} \text{ has a nf} \Leftrightarrow \llbracket \textcolor{red}{M} \rrbracket^{D_\infty} \sqsupseteq 1$$

$$\mathcal{F}^{\nabla_M} \models (\lambda x.xx)(\lambda x.xx) = M \text{ (Fabio Alessi [1991])}$$

Define

1. $\mathbb{C}^{\nabla_0} = \{\Omega, \omega\}$
2. $\nabla_0 = (A \rightarrow B) \cap (A \rightarrow C) \leq (A \rightarrow (B \cap C))$
 $(A \leq \Omega)$
 $\Omega \sim (\Omega \rightarrow \Omega)$
 $\Omega \rightarrow \omega \sim \omega$
3.
$$\frac{A' \leq A \quad B \leq B'}{(A \rightarrow B) \leq (A' \rightarrow B')}$$
4. $\mathbb{C}^{\nabla_{n+1}} = \mathbb{C}^{\nabla_n} \cup \{\xi_{\langle n, m \rangle} \mid m \in \mathbb{N}\}$
5. $\nabla_{n+1} = \nabla_n \cup \{\xi_{\langle n, m \rangle} \sim (\xi_{\langle n, m \rangle} \rightarrow W_{\langle n, m \rangle})\}$

where $\langle W_{\langle n, m \rangle} \rangle_{m \in \mathbb{N}}$ is any enumeration of the set

$$\{A \mid \vdash^{\nabla_n} M : A\}.$$

Finally set ∇_M as follows:

$$\mathbb{C}^{\nabla_M} = \bigcup_{n \in \mathbb{N}} \mathbb{C}^{\nabla_n}; \quad \nabla_M = \bigcup_{n \in \mathbb{N}} \nabla_n.$$

The strict story: λI -models

ALG^s same objects as **ALG** but strict maps as morphisms: $f(\perp) = \perp$.

NLS^s elements of **ALG** extended with $F : [\mathcal{D} \rightarrow_s [\mathcal{D} \rightarrow_s \mathcal{D}]]$, $G : [[\mathcal{D} \rightarrow_s \mathcal{D}] \rightarrow_s \mathcal{D}]$.

MSL^s consisting of $\mathcal{S} = \langle S, \leq, \cap \rangle$ not necessarily with a top.

NTS^s elements of **NTS**^s extended with \rightsquigarrow s.t. it is *restricted natural*

$$(A \rightarrow B) \cap (A \rightarrow C) \leq A \rightarrow B \cap C \quad (\rightarrow \cap)$$

$$A' \leq A \ \& \ B \leq B' \Rightarrow (A \rightarrow B) \leq (A' \rightarrow B') \quad (\eta)$$

$$\mathcal{F}_s^{\mathcal{S}} = \{X \subseteq \mathcal{S} \mid X \text{ is a } \textit{strict} \text{ filter over } \mathcal{S}\} \quad (\text{allowing the empty filter})$$

$$\mathcal{K}^s(\mathcal{D}) = \mathcal{K}(\mathcal{D})/\perp$$

As before, **NTS**^s and **NLS**^s are equivalent

$$\mathcal{D} \cong \mathcal{F}_s^{\mathcal{K}^s(\mathcal{D})} \text{ and } \mathcal{S} \cong \mathcal{K}_s(\mathcal{F}_s^{\mathcal{S}})$$

In this way models of the λI -calculus can be obtained.

A proper λI -model (Honsell, Lenisa [1999])

Define the intersection type structure

$$\mathcal{S} = \langle \mathbb{T}(\{\varphi, \omega\}) / \sim, \leq, \cap, \rightarrow \rangle$$

with $\omega \leq \varphi$ and $(\varphi \rightarrow \omega) \sim \omega$, $(\omega \rightarrow \varphi) \sim \varphi$.

Then

$\mathcal{F}_s^{\mathcal{S}}$ is a λI -model.

One has

$\text{Th}(\mathcal{F}_s^{\mathcal{S}})$ is the unique maximal sensible λI -theory.

It is extensional and equates all terms without nf.