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(Un)typed lambda calculus
——————————————————————————————————–

Untyped terms

term ::= var | ter ter | λvar ter

var ::= x | var′

Types

type ::= atom | type→type

atom ::= α | atom′

Type-assignment to terms λ→ (Curry [1934])

x:A∈Γ

Γ ` x : A

Γ `M : A→B Γ ` N : A

Γ `MN : B

Γ, x:A `M : B

Γ ` λx.M : A→B
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Recursive types λ=
——————————————————————————————————–

The λ→ types are freely generated from the atoms

The recursive types λ= equate certain of these types

The equation A = A→B has as consequence

` λx.xx : A

` (λx.xx)(λx.xx) : B

There are many ways to make identifications 7−→ type algebras

T = 〈T,→〉
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Intersection types λ∩
——————————————————————————————————–

Type-assignment to terms λ∩

x:A∈Γ

Γ ` x : A

Γ `M : A→B Γ ` N : A

Γ `MN : B

Γ, x:A `M : B

Γ ` λx.M : A→B

Γ `M : A1 ∩A2

Γ `M : Ai

Γ `M : A1 Γ `M : A2

Γ `M : A1 ∩A2

Γ `M : A A ≤ B

Γ `M : B

Γ `M : Ω
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Intersection Type Structures
——————————————————————————————————–

Now we work with intersection type structures

T = 〈T,→,≤,∩,Ω〉

` λx.xx : (A ∩ (A→B))→B

` (λx.xx)(λx.xx) : Ω
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Subject Reduction
——————————————————————————————————–

In λ→ one has

Γ `M : A
M →→β N

}

⇒ Γ ` N : A

This also holds for λ∩, for many intersection type structures T

The converse, subject expansion, does not hold for λ→

Γ ` N : A
M →→β N

}

6⇒ Γ `M : A

` λxy.y : A→B→B and SK →→β λxy.y

but 6` SK : A→B→B

In fact one ‘only’ has
` SK : (B→C)→B→B
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Subject expansion for λ∩
——————————————————————————————————–

Suppose
` P [x := Q] : A

where P ≡ . . . x . . . x . . . x . . .

so . . . Q . . . Q . . . Q . . . : A

Each of these occurrences of Q may need another type B1, B2, B3

But then we can give λx.P the type B1 ∩B2 ∩B3→A

Hence the β-expansion (λx.P )Q also the type A

If the number of occurrences of x in P is 0,

then we may give to λx.P the type Ω→A

which is consistent as the empty intersection

again
` (λx.P )Q : A
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Undecidablity of inhabitation Urzyczyn [1994]
——————————————————————————————————–

For several T one has

∃M∈Λø `T M : A is undecidable,

as a predicate in A.
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Special Intersection Type Structures
——————————————————————————————————–

Let T = 〈T,→,≤,∩,Ω〉 be an intersection type structure

T is natural iff

A ≤ Ω (Ω)

Ω ≤ (Ω→Ω) (Ωη)

(A→B) ∩ (A→C) ≤ A→B ∩ C (→∩)

A′ ≤ A & B ≤ B′ ⇒ (A→B) ≤ (A′→B′) (η)

T is β-sound iff

for all k ≥ 1 and all A1, . . . , Ak, B1, . . . , Bk, C,D∈T one has

(A1→B1) ∩ . . . ∩ (Ak→Bk) ≤ (C→D) ⇒ C ≤ Ai1 ∩ . . . ∩Aip &Bi1 ∩ . . . ∩Bip ≤ D,

for some p ≥ 0 and 1 ≤ i1, . . . , ip ≤ k

β-soundness of T implies that subject reduction holds in λ∩T

(Coppo, Dezani, Honsell, Longo [1984])



——————————————————————————————————–
HB Intersection Types Paris, November 12, 2003

A model for λβ (Barendregt, Coppo, Dezani [1983])
——————————————————————————————————–
Therefore

Γ `M : A
M =β N

}

⇒ Γ ` N : A

so (for closed M)
XM = {A | `M : A}

looks like a λ-model. Indeed, such a set is a filter of types. A,B∈X ⇒ (A ∩ B)∈X
B ≥ A∈X ⇒ B∈X

For filters X,Y one can define application

XY = {B | ∃A∈Y (A→B)∈X}

is well defined and one has (for many intersection type structures)

XMXN = XMN

Given an intersection type structure T , then FT = {X ⊆ T | X is a filter}

is the filter structure over T . If T is β-sound it is a λ-model.
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Extensionality
——————————————————————————————————–

FT is extensional iff

for all A∈T there are ~B, ~C, ~D, ~E, with ~C = C1, . . . , Ck, k > 0 not the top, and

(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩ (Bk+1→Ω) ∩ . . . ∩ (Bn→Ω) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1

→E1m1
) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

It is enough that every type A one has

A ∼ (B1→C1) ∩ . . . ∩ (Bk→Ck) or A ≥ (B1→Ω) ∩ . . . ∩ (Bn→Ω)
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Filter models
——————————————————————————————————–

For these models one has

FT |=M = N ⇔ ∀A∈T [`M : A ⇔ ` N : A]

Several known models D∞ can be written as D∞ = FT for some simple T

New models can be constructed in this way, obtaining wanted properties
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Meet semi lattices: MSL and Algebraic lattices: ALG

——————————————————————————————————–

A meet semi lattice is a structure with top S = 〈S,≤,∩,Ω〉.

An algebraic lattice is a complete lattice D = 〈D,v,t,>〉,

with countably many compact elements

such that every element is the supremum of capacta below it.

The categories MSL and ALG are equivalent.

MSL ALG

S → FS

K(D) ← D

K(D) = 〈{d∈D|d is compact},≤〉 with d ≤ e ⇔ e v d

FS = 〈{X ⊆ S | X is a filter},⊆,∪〉. One has

D ∼= FK(D)

S ∼= K(FS)
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Details
——————————————————————————————————–

Let S,S ′ be meet semi-lattices with top

A relation µ ⊆ S × S ′ is an approximable mapping between S and S ′ iff

for all s, t∈S and s′, t′, t′1, t
′
2∈S

′

(a) Ω µ Ω′

(b) t ≤ s µ s′ ≤ t′ ⇒ t µ t′

(c) s µ t′1 & s µ t′2 ⇒ s µ (t′1 ∩ t′2)

M(S,S ′) = {µ | µ is an appoximable mapping between S and S ′}

This makes MSL into a category

On ALG one considers Scott continuous maps as morphisms
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Natural Type Structures NTS and Natural Lambda Structures NLS

——————————————————————————————————–

Both categories are being strengthened: An MSL S = 〈S,≤,∩,Ω〉 enriched with
an arrow, becomes a intersection type structure

S = 〈S,;,≤,∩,Ω〉

If we require naturality we obtain the category NTS.

A NLS is an D∈ALG enriched with operators

F : D→D→D
G : [D→D]→D

such that F ◦G w 1D→D
G ◦ F v 1D

As before, NTS and NLS are equivalent: D ∼= FK(D) and S ∼= K(FS), where

K(D) = 〈{d|d is compact},;,≤〉 with d ; e = G(d⇒ e)
FS = 〈{X ⊆ S | X is a filter},⊆,∪, F,G〉, with

F (X)(Y ) = XY ,

G(f) = ↑{a→b∈S | b∈f(↑a)}.
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Classical models
——————————————————————————————————–

D∞ depends on D0 and the pair i0 : D0→D0→D0, j0 : [D0→D0].

Scott took
D0 = {0 v 1} i0(d)(e) = d j0(f) = f(0)

For the resulting D∞ one has

D∞ = FScott

with type structure Scott obtained by atoms {1 ≤ 0 = Ω} with 0 ; 1 = 1.

——————————————————————————————————–
Park took

D0 = {0 v 1} i0(d)(e) = (1⇒ d)(e) j0(f) = f(1)

For the resulting D∞ one has

D∞ = FPark

with type structure Park obtained by atoms {1 ≤ 0 = Ω} with 1 ; 1 = 1.
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New models
——————————————————————————————————–

Coppo, Dezani and Zacchi [1987]

{0 ≤ 1 ≤ Ω} with 1 ; 0 = 0, 0 ; 1 = 1 gives a model D = FCDZ with

M has a nf ⇔ [[M ]]
D
⊇ ↑1

This model D also can be described in a traditional way

D0 = {Ω v 1 v 0}

i0(1) = 0⇒ 1
i0(0) = 1⇒ 0

j0(f) = t{d∈D0 | i0(d) v f}

and one has
M has a nf ⇔ [[M ]]

D∞ w 1
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F∇M |= (λx.xx)(λx.xx) = M (Fabio Alessi [1991])
——————————————————————————————————–

Define
1. CC∇0 = {Ω, ω}

2. ∇0 = (A→B) ∩ (A→C) ≤ (A→(B ∩ C))
(A ≤ Ω)
Ω ∼ (Ω→Ω)
Ω→ω ∼ ω

A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

3. CC∇n+1 = CC∇n ∪ {ξ〈n,m〉 | m∈N}

4. ∇n+1 = ∇n ∪ {ξ〈n,m〉 ∼ (ξ〈n,m〉 →W〈n,m〉)}

where 〈W〈n,m〉〉m∈N is any enumeration of the set

{A | `∇n M : A}.

Finally set ∇M as follows:

CC∇M =
⋃

n∈N

CC∇n ; ∇M =
⋃

n∈N

∇n.
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The strict story: λI-models
——————————————————————————————————–

ALG
s same objects as ALG but strict maps as morphisms: f(⊥) = ⊥.

NLS
s elements of ALG extended with F : [D→s[D→sD]], G : [[D→sD]→sD].

MSL
s consisting of S = 〈S,≤,∩〉 not necessarily with a top.

NTS
s elements of NTS

s extended with ; s.t. it is restricted natural

(A→B) ∩ (A→C) ≤ A→B ∩ C (→-∩)

A′ ≤ A & B ≤ B′ ⇒ (A→B) ≤ (A′→B′) (η)

FSs = {X ⊆ S | X is a strict filter over S} (allowing the empty filter)

Ks(D) = K(D)/⊥

As before, NTS
s and NLS

s are equivalent

D ∼= FKs(D)
s and S ∼= Ks(F

S
s )

In this way models of the λI-calculus can be obtained.
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A proper λI-model (Honsell, Lenisa [1999])
——————————————————————————————————–

Define the intersection type structure

S = 〈TT({ϕ, ω})/ ∼,≤,∩,→〉

with ω ≤ ϕ and (ϕ→ω) ∼ ω, (ω→ϕ) ∼ ϕ.

Then
FSs is a λI-model.

One has
Th(FSs ) is the unique maximal sensible λI-theory.

It is extensional and equates all terms without nf.


