Week 8. Inductive types
In-class problems

1. Let be given the inductive type of natural numbers nat : % with con-
structors 0 : nat and suc : nat — nat. Using its recursor, define the
function sub : nat — nat — nat of truncated subtraction (i.e., if the
difference would be negative, then the function has value zero.)

The type of the (non-dependent) recursor is:
rec : VA:x. A— (nat— A — A) — (nat — A)
We want to use this to get the recursive equations:

pred0 = 0
pred (n+1) = n

subm0 = m

subm(n+1) = pred(submn)
This is accomplished by taking:

pred := recnat0 (An: nat. A\r: nat.n)

sub := Am : nat.rec nat m (An : nat. \r : nat. pred r)

2. One version of the Ackermann function is recursively defined by the
equations:

A0,y) = y+1
Alx+1,0) = A(z,1)
Alz+1Ly+1) = Az, Alz+1,y))
Define this function as a term A : nat — nat — nat of Godel’s system

T. Also, to get an impression of this function, give explicit formulas for
A(l,y), A(2,y) and A(3,y) and calculate the value of A(4,2).



The formulas and value are:

A(lLy) = y+2
Al2,y) = 2y+3
A(Bay) = 2y+3_3

2

22
Ald,y) = 22 —3=2096_3-200352---56733 x 10'97%
This function can be defined using recursion on the type nat — nat:

A = rec(nat — nat)
suc
(Ax : nat. A\r : nat — nat.
rec nat (r (suc0)) (A\y : nat. As : nat.rs))

. Give the typing (formation, constructors, recursor) and reduction rules
for the type of lists of natural numbers. Give both types for a dependent
and a non-dependent recursor.

natlist : =
nil : natlist
cons : nat — natlist — natlist

natlist_rec : VA : .
A —
(nat — natlist = A — A) —
(natlist — A)
natlist_-rec : VA : (natlist — x).
Anil —
(Vn : nat. Vi : natlist. Al — A (consnl)) —
(V1 : natlist. Al)

natlist_.rec AM Fnil —, M
natlist rec AM F (consN L) —, F N L (natlist.rec AFL)



4. Give the typing (formation, constructors, recursor) and reduction rules
for the type of polymorphic vectors. Give both types for a dependent
and a non-dependent recursor.

polyvec : * — nat — %

polynil : VA : *. polyvec A0
polycons : VA :x.Vn:nat. A — polyvec An — polyvec A (sucn)

polyvecrec : VA :* VP : (nat — x).
P0O—
(Vn : nat.Vz : A. (polyvec An) —
Pn — P(sucn)) —
(Vn : nat. (polyvec An) — Pn)
polyvecrec : VA : % VP : (VYn: nat.polyvec An — x).
P 0 (polynil A) —
(Vn : nat.Va : A. VI : polyvec An.
Pnl— P (sucn) (polycons Anzl)) —
(Vn : nat. Vi : polyvec An. Pnl)

polyvec_rec AP M F N’ (polynil A") —, M
polyvec rec AP M F N' (polycons A" N X ) —, F N X L (polyvecrec APM F N L)

5. Show how to define an inductive predicate even : nat — x* that says
whether its argument is even. Give the typing (formation, constructors,
recursor) and reduction rules. Give both types for a dependent and a
non-dependent recursor. (Hint: it is generally easier to first determine
the type of the dependent recursor, as described in the lecture.)

even : nat — x
even.0 : evenO
even_step : Vn :nat.even n — even (suc(sucn))



even_rec : VP :(nat— x).
PO —
(Vn : nat.evenn —
Pn — P (suc(sucn))) —
(Vn : nat.evenn — Pn)
even_rec : VP :(Vn:nat.evenn — x).
P0even0—
(Vn : nat. VX : evenn.
PnX — P (suc(sucn)) (even_stepn X)) —
(Vn :nat.VX :evenn. Pn X)

even.rec PM F N'even 0 —, M
even_rec P M F N' (evenstep N X) —, F N X (even.rec PMFNX)

The way to read the dependent recursor is as an induction principle
saying: ‘if the predicate P on the type is conserved under all type
constructors, then it holds on the whole type’. The non-dependent
recursor then is obtained by removing the argument of the predicate
that is the element of the type (in this case the second argument: but
note that the first argument remains; and note that all quantifiers in
the step case remain as well!)

A way to read the non-dependent recursor is that the set of even num-
bers is the smallest set that is closed under the constructors. However,
with that interpretation it is not so easy to see what is the similarity
in structure to the recursors for the natural numbers and lists.

. Give the typing (formation, constructors, recursor) and reduction rules
for Leibniz equality. Give both types for a dependent and a non-
dependent recursor.

eq @ VA:x A— A— x
eqrefl : VA:xVr:AeqAxzx



eqrec @ VA:xVP:(A— A — x).
(Ve : A Pxzx)—
(Vx: AVy:Aeq Azy — Pxy)
eqrec @ VA:xVP:(Vx:AVy:AeqAzry — *).
(Vx: A. Pxx(eqrefl Az)) —
(Vx: AVy: AVX :eqAzy. PryX)

eqrec APF Ny Ny (eqreflA'N) —, FN

There is a subtlety here that should be explained. For each of the ar-
guments of the inductive type, we can choose whether we keep them
fixed or whether we allow them to change when applying the construc-
tors. This matters for the shape of the recursion principle and for the
reduction rules. What really happens when we decide to keep one or
more arguments fixed is that we define a family of inductive types, one
for each choice of those fixed arguments.

In fact we already did this in the rules for poly_vec: there we kept the
type A fixed. It is an interesting exercise to figure out what the recur-
sion principle for poly_vec becomes if one does not do that. Basically
one will get extra VA : %’ quantifiers in various places, instead of just
on the outside. To ask Coq for this recursion principle, execute:

Inductive polyvec : Type -> nat -> Type :=
| polynil : forall A, polyvec A O
| polycons : forall A n, A -> polyvec A n -> polyvec A (S n).

Check polyvec_rect.
In the rules for eq above, we kept the first argument A fixed and allowed

the second and third arguments x and y to vary. This corresponds to
the Coq definition:

Inductive eq (A : Type) : A -> A -> Type :=
| eq_refl : forall x : A, eq A x x.

However, in the actual definition of eq that is used in Coq also the
second argument is kept fixed! This corresponds with the definition:



Inductive eq (A : Type) (x : A) : A -> Type :=
| eq_refl : eq A x Xx.

With this definition we get the following rules for eq (note that the
formation and constructor types stay the same!):

eq @ VA:x A— A— %
eqrefl : VA:xVr:AeqAzxzx
eqrec : VA:x.Vr:AVP:(A— ).

Px—
(Vy:A.eq Azy — Py)
eqrec : VA:x.Vo:AVP:(Vy:AeqAzy — x).
Px (eq.refl Az) —
(Vy: AVX :eqAzy. PyX)

eqrec AXPFY (eqreflA'X') —, F

The non-dependent recursor states that if some property holds for some
x (‘Px’) and we know that z = y (‘eq Az y’), then the property also
holds for y (‘P y’). The philosopher Gottfried Wilhelm Leibniz defined
two objects to be equal precisely when they have exactly the same
properties, which explains the use of the name Leibniz equality.

. Give the type of the dependent recursor for the product type A x B,
and from that derive the type of a non-dependent recursor. Show how
the functions m; and m from MLW can be defined from this second
recursor. Also, show how this recursor can be defined in terms of
and 7.

We had
pair : VA:*%.VB:x.A— B — prodAB

and therefore the dependent recursion principle becomes (where we
consider the arguments A and B fixed):

prodrec : VA:x VB :% VP : (prod AB — x).
(Vx: A.Vy: B.P(pair ABxy)) —
(Vp : prod AB. Pp)

6



Le., if P ‘is conserved under’ the constructors (in this case: holds for
all objects constructed by the constructor pair), then it holds for all

objects in the type.

The non-dependent recursion principle that corresponds to this is:

prod_rec : VA :x.VB:*x VP : x.
(A—-B—P)—
(prod AB — P)

The way that prod_rec and the pair m; and 75 can be defined in terms
of each other is:

m = A% AB:x Ap:prod AB.
prodrec ABA (Az: A. My : B.x)p
my = AA:x. AB:x. \p:prod AB.

prod rec ABB (M\x: A \y: B.y)p

prodrec := AMA:x AB:x. AP:x.\f:A— B — P.
Ap : prod A B. f (1 p) (2 p)

8. Define the lists over a given type A as a W-type.
We first define a function
case : VA: %« VB:x. A+ B —2
by (remember that we defined A+ B := Xz :2. Ry ABx):
case = M :*x AB:xXz:(Xx:2.R; ABx).m2(M:2.R; ABx)z

We will label the nodes of the tree by elements of 1 + A, and the case
function will tell us whether the node represents a nil or a cons. Once
we have that, we can use a construction that is very similar to the one
of the natural numbers:

polylist := AA:*.Wz:(14+ A).R;01 (case 1 Ax)



9. Give the typing (formation, constructors, recursor) and reduction rules
of the W-trees. Give both types for a dependent and a non-dependent
recursor.

We can think hard about this ourselves, but we can also ask Coq to
show us the dependent recursor:

Inductive W (A : Type) (B : A -> Type) : Type :=
| sup : forall x : A, (Bx ->WAB) -> WA B.

Check W_rect.

(Note that we keep the types A and B fixed here.) Coq will then tell
us;

W_rect
: forall (A : Type) (B : A -> Type) (P : W A B -> Type),
(forall (x : A) (w : Bx > WA B),
(forall b : Bx, P (wb)) ->P (sup ABxw) —>
forall w : WAB, Pw

This means that the typings are:
W VA : % (A — %) — x
sup @ VA:x.VB:(A—x%).Vo: A (Bx —-WAB)—-WAB

Wirec : VA:%VB: (A — %).VP: x.
(Ve : A (Bx - WAB) —
(Bx — P)— P) —
(WAB — P)
Wirec : VA: % VB:(A—%).VP: (WAB — x).
(Vo : AVw: (Bx — WADB).
(Vb: Bx.P(wb)) — P (sup ABxw)) —
(Vw : WAB. Pw)

The way to understand the constructor is: given a node label x and a
function that gives you a W-tree for each edge label in Bz, you get a
new W-tree by hanging all those W-trees under that node.

8



The way to understand the dependent recursor is: given a property
P that is closed under this tree-building sup operation (i.e., whenever
each of the trees that you give for an edge label satisfies the property —
Vb : Bx.P(wb) — then the bigger tree you build from them satisfies
it too — ‘P (sup A Bz w)’), then the property holds for all the W-trees.

The reduction that goes with these recursors is:
Wrec ABPF(sup AB'XW) —, FXW (Ab:(BX).W.rec ABPF (Wb))

To make Coq agree that this is indeed the reduction rule that it uses,
you can type:

Lemma W_iota : forall ABP F X W,
W.rect ABPF (sup ABX W) =
FXW ((unb : BX=>Wuorect ABPF (Whb)).
Proof.
intros.
reflexivity.
Qed.

The reflexivity tactic only works when both sides of the equality are
convertible.

You might wonder why in the reduction rule we have A versus A’, while
in the Coq lemma they are the same variable. The reason is that for
the left hand side of the reduction rule to be well-typed A and A" have
to be convertible: however, they don’t have to be identical terms.



