Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (β). The statement

$$
\left(\lambda x \cdot x^{2}+1\right) 3=10
$$

can be interpreted as ' 10 is the result of computing $\left(\lambda x \cdot x^{2}+1\right) 3$ ', but not vice versa. This computational aspect will be expressed by writing

$$
\left(\lambda x \cdot x^{2}+1\right) 3 \rightarrow 10
$$

which reads ' $\left(\lambda x . x^{2}+1\right) 3$ reduces to 10 '.
Apart from this conceptual aspect, reduction is also useful for an analysis of convertibility. The Church-Rosser theorem says that if two terms are convertible, then there is a term to which they both reduce. In many cases the inconvertibility of two terms can be proved by showing that they do not reduce to a common term.
4.1. Definition. (i) A binary relation R on Λ is called compatible (with the operations) if

$$
\begin{aligned}
M R N \Rightarrow & (Z M) R(Z N) \\
& (M Z) R(N Z) \text { and } \\
& (\lambda x . M) R(\lambda x . N)
\end{aligned}
$$

(ii) A congruence relation on Λ is a compatible equivalence relation.
(iii) A reduction relation on Λ is a compatible, reflexive and transitive relation.
4.2. Definition. The binary relations $\rightarrow_{\beta}, \rightarrow_{\beta}$ and $=_{\beta}$ on Λ are defined inductively as follows.
(i) 1. $(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$;
2. $M \rightarrow_{\beta} N \Rightarrow Z M \rightarrow_{\beta} Z N, M Z \rightarrow_{\beta} N Z$ and $\lambda x . M \rightarrow_{\beta} \lambda x . N$.
(ii) 1. $M \rightarrow{ }_{\beta} M$;
2. $M \rightarrow_{\beta} N \Rightarrow M \rightarrow_{\beta} N$;
3. $M \rightarrow_{\beta} N, N \rightarrow_{\beta} L \Rightarrow M \rightarrow{ }_{\beta} L$.
(iii) 1. $M \rightarrow{ }_{\beta} N \Rightarrow M={ }_{\beta} N$;
2. $M={ }_{\beta} N \Rightarrow N={ }_{\beta} M$;
3. $M={ }_{\beta} N, N={ }_{\beta} L \Rightarrow M={ }_{\beta} \mathrm{L}$.

These relations are pronounced as follows.

$$
\begin{aligned}
M \rightarrow{ }_{\beta} N & : M \beta \text {-reduces to } N \\
M \rightarrow_{\beta} N & : M \beta \text {-reduces to } N \text { in one step } ; \\
M={ }_{\beta} N & : M \text { is } \beta \text {-convertible to } N .
\end{aligned}
$$

By definition \rightarrow_{β} is compatible, \rightarrow_{β} is a reduction relation and $=\beta$ is a congruence relation.
4.3. Example. (i) Define

$$
\begin{aligned}
\omega & \equiv \lambda x . x x \\
\boldsymbol{\Omega} & \equiv \omega \omega
\end{aligned}
$$

Then $\boldsymbol{\Omega} \rightarrow_{\beta} \boldsymbol{\Omega}$.
(ii) $\mathrm{KI} \Omega \rightarrow_{\beta} \mathrm{I}$.

Intuitively, $M={ }_{\beta} N$ if M is connected to N via \rightarrow_{β}-arrows (disregarding the directions of these). In a picture this looks as follows.

4.4. Example. $\mathrm{KI} \boldsymbol{\Omega}={ }_{\beta} \mathbf{I I}$. This is demonstrated by the following reductions.

4.5. Proposition. $M={ }_{\beta} N \Leftrightarrow \boldsymbol{\lambda} \vdash M=N$.

Proof. By an easy induction.
4.6. Definition. (i) A β-redex is a term of the form $(\lambda x . M) N$. In this case $M[x:=N]$ is its contractum.
(ii) A λ-term M is a β-normal form $(\beta$-nf $)$ if it does not have a β-redex as subexpression.
(iii) A term M has a β-normal form if $M={ }_{\beta} N$ and N is a β-nf, for some N.
4.7. Example. ($\lambda x . x x) y$ is not a β-nf, but has as β-nf the term $y y$.

An immediate property of nf's is the following.
4.8. Lemma. Let M be a β-nf. Then

$$
M \rightarrow \beta \text { } N \Rightarrow N \equiv M .
$$

Proof. This is true if \rightarrow_{β} is replaced by \rightarrow_{β}. Then the result follows by transitivity.
4.9. Church-Rosser Theorem. If $M \rightarrow \beta N_{1}, M \rightarrow \beta N_{2}$, then for some N_{3} one has $N_{1} \rightarrow{ }_{\beta} N_{3}$ and $N_{2} \rightarrow_{\beta} N_{3}$; in diagram

The proof is postponed until 4.19.
4.10. Corollary. If $M={ }_{\beta} N$, then there is an L such that $M \rightarrow{ }_{\beta} L$ and $N \rightarrow \beta$ L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow path showing $M={ }_{\beta} N$, apply the Church-Rosser property repeatedly in order to find a common reduct. For the example given above this looks as follows.

This is made precise below.

Proof. Induction on the generation of $=_{\beta}$.
Case 1. $M={ }_{\beta} N$ because $M \rightarrow_{\beta} N$. Take $L \equiv N$.
Case $2 . M={ }_{\beta} N$ because $N={ }_{\beta} M$. By the IH there is a common β-reduct L_{1} of N, M. Take $L \equiv L_{1}$.

Case 3. $M={ }_{\beta} N$ because $M={ }_{\beta} N^{\prime}, N^{\prime}={ }_{\beta} N$. Then

4.11. Corollary. (i) If M has N as β-nf, then $M \rightarrow \beta N$.
(ii) $A \lambda$-term has at most one β-nf.

Proof. (i) Suppose $M={ }_{\beta} N$ with N in β-nf. By Corollary $4.10 M \rightarrow \beta L$ and $N \rightarrow_{\beta} L$ for some L. But then $N \equiv L$, by Lemma 4.8 , so $M \rightarrow_{\beta} N$.
(ii) Suppose M has β-nf's N_{1}, N_{2}. Then $N_{1}={ }_{\beta} N_{2}\left(=_{\beta} M\right)$. By Corollary $4.10 N_{1} \rightarrow_{\beta} L, N_{2} \rightarrow_{\beta} L$ for some L. But then $N_{1} \equiv L \equiv N_{2}$ by Lemma 4.8 .
4.12. Some consequences. (i) The λ-calculus is consistent, i.e. $\boldsymbol{\lambda} \nvdash$ true $=$ false. Otherwise true $={ }_{\beta}$ false by Proposition 4.5, which is impossible by Corollary 4.11 since true and false are distinct β-nf's. This is a syntactic consistency proof.
(ii) $\boldsymbol{\Omega}$ has no β-nf. Otherwise $\boldsymbol{\Omega} \rightarrow{ }_{\beta} N$ with N in β-nf. But $\boldsymbol{\Omega}$ only reduces to itself and is not in β-nf.
(iii) In order to find the β-nf of a term M (if it exists), the various subexpressions of M may be reduced in different orders. By Corollary 4.11 (ii) the β-nf is unique.

The proof of the Church-Rosser theorem occupies 4.13-4.19. The idea of the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show the Strip Lemma:

In order to prove this lemma, let $M \rightarrow_{\beta} N_{1}$ be a one step reduction resulting from changing a redex R in M in its contractum R^{\prime} in N_{1}. If one makes a
bookkeeping of what happens with R during the reduction $M \rightarrow{ }_{\beta} N_{2}$, then by reducing all 'residuals' of R in N_{2} the term N_{3} can be found. In order to do the necessary bookkeeping an extended set $\underline{\Lambda} \supseteq \Lambda$ and reduction β is introduced. The underlining serves as a 'tracing isotope'.
4.13. Definition (Underlining). (i) $\underline{\Lambda}$ is the set of terms defined inductively as follows.

$$
\begin{aligned}
x \in V & \Rightarrow x \in \underline{\Lambda}, \\
M, N \in \underline{\Lambda} & \Rightarrow(M N) \in \underline{\Lambda} \\
M \in \underline{\Lambda}, x \in V & \Rightarrow(\lambda x \cdot M) \in \underline{\Lambda} \\
M, N \in \underline{\Lambda}, x \in V & \Rightarrow((\underline{\lambda} x \cdot M) N) \in \underline{\Lambda} .
\end{aligned}
$$

(ii) The underlined reduction relations $\rightarrow_{\underline{\beta}}$ (one step) and $\rightarrow_{\underline{\beta}}$ are defined starting with the contraction rules

$$
\begin{array}{lll}
(\lambda x \cdot M) N & \rightarrow_{\underline{\beta}} & M[x:=N], \\
(\underline{\lambda} x \cdot M) N & \rightarrow \underline{\beta} & M[x:=N] .
\end{array}
$$

Then $\rightarrow_{\underline{\beta}}$ is extended in order to become a compatible relation (also with respect to $\underline{\lambda}$-abstraction). Moreover, \rightarrow_{β} is the transitive reflexive closure of \rightarrow_{β}.
(iii) If $M \in \underline{\Lambda}$, then $|M| \in \Lambda$ is obtained from M by leaving out all un $\bar{d} e r l i n-$ ings. E.g. $|(\lambda x \cdot x)((\underline{\lambda} x \cdot x)(\lambda x . x))| \equiv \mathbf{I}(\mathbf{I I})$.
4.14. Definition. The map $\varphi: \underline{\Lambda} \rightarrow \Lambda$ is defined inductively as follows.

$$
\begin{aligned}
\varphi(x) & \equiv x \\
\varphi(M N) & \equiv \varphi(M) \varphi(N), \\
\varphi(\lambda x \cdot M) & \equiv \lambda x \cdot \varphi(M), \\
\varphi((\underline{\lambda} x \cdot M) N) & \equiv \varphi(M)[x:=\varphi(N)] .
\end{aligned}
$$

In other words, φ contracts all redexes that are underlined, from the inside to the outside.

Notation. If $|M| \equiv N$ or $\varphi(M) \equiv N$, then this will be denoted by

$$
M \underset{|\mid}{\longrightarrow} N \text { or } M \underset{\varphi}{\longrightarrow} N
$$

4.15. LEMMA.

Proof. First suppose $M \rightarrow_{\beta} N$. Then N is obtained by contracting a redex in M and N^{\prime} can be obtained by contracting the corresponding redex in M^{\prime}. The general statement follows by transitivity.
4.16. Lemma. (i) Let $M, N \in \underline{\Lambda}$. Then

$$
\varphi(M[x:=N]) \equiv \varphi(M)[x:=\varphi(N)] .
$$

(ii)

Proof. (i) By induction on the structure of M, using the Substitution Lemma (see Exercise 2.2) in case $M \equiv(\underline{\lambda} y . P) Q$. The condition of that lemma may be assumed to hold by our convention about free variables.
(ii) By induction on the generation of $\rightarrow \underline{\beta}$, using (i).
4.17. Lemma.

Proof. By induction on the structure of M.
4.18. Strip lemma.

Proof. Let N_{1} be the result of contracting the redex occurrence $R \equiv(\lambda x . P) Q$ in M. Let $M^{\prime} \in \underline{\Lambda}$ be obtained from M by replacing R by $R^{\prime} \equiv(\underline{\lambda} x . P) Q$. Then
$\left|M^{\prime}\right| \equiv M$ and $\varphi\left(M^{\prime}\right) \equiv N_{1}$. By the lemmas 4.15, 4.16 and 4.17 we can erect the diagram

which proves the Strip Lemma.
4.19. Proof of the Church-Rosser Theorem. If $M \rightarrow \beta{ }_{1}$, then $M \equiv$ $M_{1} \rightarrow_{\beta} M_{2} \rightarrow_{\beta} \cdots \rightarrow_{\beta} M_{n} \equiv N_{1}$. Hence the CR property follows from the Strip Lemma and a simple diagram chase:

4.20. Definition. For $M \in \Lambda$ the reduction graph of M, notation $G_{\beta}(M)$, is the directed multigraph with vertices $\left\{N \mid M \rightarrow_{\beta} N\right\}$ and directed by \rightarrow_{β}.
4.21. Example. $G_{\beta}(\mathbf{l}(\mathbf{I} x))$ is

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite reduction path. Let $\boldsymbol{\Omega} \equiv(\lambda x . x x)(\lambda x . x x)$. Then $\boldsymbol{\Omega} \rightarrow \boldsymbol{\Omega} \rightarrow \cdots$ so $\mathbf{K} \mathbf{I} \boldsymbol{\Omega} \rightarrow$ $\mathbf{K I} \Omega \rightarrow \cdots$, and $\mathbf{K I \Omega} \rightarrow \mathbf{I}$. Therefore a so called strategy is necessary in order to find the normal form. We state the following theorem; for a proof see Barendregt (1984), Theorem 13.2.2.
4.22. Normalization Theorem. If M has a normal form, then iterated contraction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is normalizing. This fact can be used to find the normal form of a term, or to prove that a certain term has no normal form.
4.23. Example. K $\boldsymbol{\Omega} \mathbf{I}$ has an infinite leftmost reduction path, viz.

$$
\mathbf{K} \boldsymbol{\Omega} \mathbf{I} \rightarrow_{\beta}(\lambda y . \boldsymbol{\Omega}) \mathbf{I} \rightarrow_{\beta} \boldsymbol{\Omega} \rightarrow_{\beta} \boldsymbol{\Omega} \rightarrow_{\beta} \cdots,
$$

and hence does not have a normal form.
The functional language (pure) Lisp uses an eager or applicative evaluation strategy, i.e. whenever an expression of the form $F A$ has to be evaluated, A is reduced to normal form first, before 'calling' F. In the λ-calculus this strategy is not normalizing as is shown by the two reduction paths for $\mathbf{K I \Omega}$ above. There is, however, a variant of the lambda calculus, called the λI-calculus, in which the eager evaluation strategy is normalizing. In this λI-calculus terms like \mathbf{K}, 'throwing away' $\boldsymbol{\Omega}$ in the reduction $\mathbf{K I \Omega} \rightarrow \mathbf{I}$ do not exist. The 'ordinary' λ-calculus is sometimes referred to as λK-calculus; see Barendregt (1984), Chapter 9.

Remember the fixedpoint combinator \mathbf{Y}. For each $F \in \Lambda$ one has $\mathbf{Y} F={ }_{\beta}$ $F(\mathbf{Y} F)$, but neither $\mathbf{Y} F \rightarrow_{\beta} F(\mathbf{Y} F)$ nor $F(\mathbf{Y} F) \rightarrow_{\beta} \mathbf{Y} F$. In order to solve
reduction equations one can work with A.M. Turing's fixedpoint combinator, which has a different reduction behaviour.
4.24. Definition. Turing's fixedpoint combinator $\boldsymbol{\Theta}$ is defined by setting

$$
\begin{aligned}
A & \equiv \lambda x y \cdot y(x x y) \\
\Theta & \equiv A A .
\end{aligned}
$$

4.25. Proposition. For all $F \in \Lambda$ one has

$$
\boldsymbol{\Theta} F \rightarrow{ }_{\beta} F(\boldsymbol{\Theta} F) .
$$

Proof.

$$
\begin{aligned}
\Theta F & \equiv A A F \\
& \rightarrow_{\beta} \\
& (\lambda y \cdot y(A A y)) F \\
& \rightarrow_{\beta} \\
& \equiv F(A A F) \\
& F(\boldsymbol{\Theta} F) .
\end{aligned}
$$

4.26. Example. $\exists G \forall X G X \rightarrow X(X G)$. Indeed,

$$
\begin{aligned}
\forall X G X \rightarrow X(X G) & \Leftarrow G \rightarrow \lambda x \cdot x(x G) \\
& \Leftarrow G \rightarrow(\lambda g x \cdot x(x g)) G \\
& \Leftarrow G \equiv \mathbf{\Theta}(\lambda g x \cdot x(x g)) .
\end{aligned}
$$

Also the Multiple Fixedpoint Theorem has a 'reducing' variant.
4.27. Theorem. Let F_{1}, \ldots, F_{n} be λ-terms. Then we can find X_{1}, \ldots, X_{n} such that

$$
\begin{array}{rll}
X_{1} & \rightarrow & F_{1} X_{1} \cdots X_{n} \\
& \vdots & \\
X_{n} & \rightarrow & F_{n} X_{1} \cdots X_{n} .
\end{array}
$$

Proof. As for the equational Multiple Fixedpoint Theorem 3.17, but now using Θ.

Exercises

4.1. \quad Show $\forall M \exists N\left[N\right.$ in β-nf and $\left.N \mathbf{I} \rightarrow_{\beta} M\right]$.
4.2. Construct four terms M with $G_{\beta}(M)$ respectively as follows.

4.3. Show that there is no $F \in \Lambda$ such that for all $M, N \in \Lambda$

$$
F(M N)=M
$$

4.4.* Let $M \equiv A A x$ with $A \equiv \lambda a x z . z(a a x)$. Show that $G_{\beta}(M)$ contains as subgraphs an n-dimensional cube for every $n \in \mathbb{N}$.
4.5. (A. Visser)
(i) Show that there is only one redex R such that $G_{\beta}(R)$ is as follows.

(ii) Show that there is no $M \in \Lambda$ with $G_{\beta}(M)$ is

[Hint. Consider the relative positions of redexes.]
4.6.* (C. Böhm) Examine $G_{\beta}(M)$ with M equal to
(i) $H \mathbf{I} H, \quad H \equiv \lambda x y \cdot x(\lambda z . y z y) x$.
(ii) $L L \mathbf{I}, \quad L \equiv \lambda x y \cdot x(y y) x$.
(iii) $Q \backslash Q, \quad Q \equiv \lambda x y . x y \mathbf{l} x y$.
4.7.* (J.W. Klop) Extend the λ-calculus with two constants $\boldsymbol{\delta}, \boldsymbol{\varepsilon}$. The reduction rules are extended to include $\boldsymbol{\delta} M M \rightarrow \boldsymbol{\varepsilon}$. Show that the resulting system is not Church-Rosser.
[Hint. Define terms C, D such that

$$
\begin{aligned}
C x & \rightarrow \delta x(C x) \\
D & \rightarrow C D
\end{aligned}
$$

Then $D \rightarrow \varepsilon$ and $D \rightarrow C \varepsilon$ in the extended reduction system, but there is no common reduct.]
4.8. \quad Show that the term $M \equiv A A x$ with $A \equiv \operatorname{\lambda axz.z(aax)}$ does not have a normal form.
4.9. (i) Show $\boldsymbol{\lambda} \nvdash W W W=\boldsymbol{\omega}_{3} \boldsymbol{\omega}_{3}$, with $W \equiv \lambda x y$. $x y y$ and $\boldsymbol{\omega}_{3} \equiv \lambda x . x x x$.
(ii) Show $\boldsymbol{\lambda} \nvdash B_{x}=B_{y}$ with $B_{z} \equiv A_{z} A_{z}$ and $A_{z} \equiv \lambda p . p p z$.
4.10. Draw $G_{\beta}(M)$ for M equal to:
(i) $W W W, \quad W \equiv \lambda x y \cdot x y y$.
(ii) $\boldsymbol{\omega} \boldsymbol{\omega}, \quad \boldsymbol{\omega} \equiv \lambda x \cdot x x$.
(iii) $\boldsymbol{\omega}_{3} \boldsymbol{\omega}_{3}, \quad \boldsymbol{\omega}_{3} \equiv \lambda x . x x x$.
(iv) $(\lambda x . \mathbf{I} x x)(\lambda x . \mathbf{I} x x)$.
(v) $(\lambda x . \mathbf{I}(x x))(\lambda x . \mathbf{I}(x x))$.
(vi) II(III).
4.11. The length of a term is its number of symbols times 0.5 cm . Write down a λ-term of length $<30 \mathrm{~cm}$ with normal form $>10^{10^{10}}$ light year.
[Hint. Use Proposition 2.15 (ii). The speed of light is $c=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$.]

