
Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (β). The statement

(λx.x2 + 1)3 = 10

can be interpreted as ‘10 is the result of computing (λx.x2 + 1)3’, but not vice
versa. This computational aspect will be expressed by writing

(λx.x2 + 1)3 →→ 10

which reads ‘(λx.x2 + 1)3 reduces to 10’.

Apart from this conceptual aspect, reduction is also useful for an analysis
of convertibility. The Church-Rosser theorem says that if two terms are con-
vertible, then there is a term to which they both reduce. In many cases the
inconvertibility of two terms can be proved by showing that they do not reduce
to a common term.

4.1. Definition. (i) A binary relation R on Λ is called compatible (with the
operations) if

M R N ⇒ (ZM) R (ZN),

(MZ) R (NZ) and

(λx.M) R (λx.N).

(ii) A congruence relation on Λ is a compatible equivalence relation.

(iii) A reduction relation on Λ is a compatible, reflexive and transitive rela-
tion.

4.2. Definition. The binary relations →β, →→β and =β on Λ are defined in-
ductively as follows.

(i) 1. (λx.M)N →β M [x := N ];
2. M →β N ⇒ ZM →β ZN , MZ →β NZ and λx.M →β λx.N .

(ii) 1. M →→β M ;
2. M →β N ⇒ M →→β N ;
3. M →→β N,N →→β L ⇒ M →→β L.
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24 Introduction to Lambda Calculus

(iii) 1. M →→β N ⇒ M =β N ;
2. M =β N ⇒ N =β M ;
3. M =β N,N =β L ⇒ M =βL.

These relations are pronounced as follows.

M →→β N : Mβ-reduces to N ;

M →β N : Mβ-reduces to N in one step;

M =β N : M is β-convertible to N.

By definition →β is compatible, →→β is a reduction relation and =β is a con-
gruence relation.

4.3. Example. (i) Define

ω ≡ λx.xx,

Ω ≡ ωω.

Then Ω →β Ω.
(ii) KIΩ →→β I.

Intuitively, M =β N if M is connected to N via →β-arrows (disregarding
the directions of these). In a picture this looks as follows.
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4.4. Example. KIΩ =β II. This is demonstrated by the following reductions.

KIΩ

@
@R
(λy.I)Ω II

@
@R 	�

�

I

4.5. Proposition. M =β N ⇔ λ `M = N .

Proof. By an easy induction. �

4.6. Definition. (i) A β-redex is a term of the form (λx.M)N . In this case
M [x := N ] is its contractum.

(ii) A λ-term M is a β-normal form (β-nf) if it does not have a β-redex as
subexpression.

(iii) A term M has a β-normal form if M =β N and N is a β-nf, for some
N .
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4.7. Example. (λx.xx)y is not a β-nf, but has as β-nf the term yy.

An immediate property of nf’s is the following.

4.8. Lemma. Let M be a β-nf. Then

M →→β N ⇒ N ≡M.

Proof. This is true if →→β is replaced by →β. Then the result follows by
transitivity. �

4.9. Church-Rosser Theorem. If M →→β N1, M →→β N2, then for some N3

one has N1 →→β N3 and N2 →→β N3; in diagram
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The proof is postponed until 4.19.

4.10. Corollary. If M =β N , then there is an L such that M →→β L and
N →→β L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =β N , apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.
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This is made precise below.
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Proof. Induction on the generation of =β.
Case 1. M =β N because M →→β N . Take L ≡ N .
Case 2. M =β N because N =β M . By the IH there is a common β-reduct

L1 of N , M . Take L ≡ L1.
Case 3. M =β N because M =β N

′, N ′ =β N . Then
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4.11. Corollary. (i) If M has N as β-nf, then M →→β N .
(ii) A λ-term has at most one β-nf.

Proof. (i) Suppose M =β N with N in β-nf. By Corollary 4.10 M →→β L
and N →→β L for some L. But then N ≡ L, by Lemma 4.8, so M →→β N .

(ii) Suppose M has β-nf’s N1, N2. Then N1 =β N2 (=β M). By Corollary
4.10 N1 →→β L, N2 →→β L for some L. But then N1 ≡ L ≡ N2 by Lemma
4.8. �

4.12. Some consequences. (i) The λ-calculus is consistent, i.e. λ 6` true =
false. Otherwise true =β false by Proposition 4.5, which is impossible by
Corollary 4.11 since true and false are distinct β-nf’s. This is a syntactic
consistency proof.

(ii) Ω has no β-nf. Otherwise Ω →→β N with N in β-nf. But Ω only reduces
to itself and is not in β-nf.

(iii) In order to find the β-nf of a term M (if it exists), the various subex-
pressions of M may be reduced in different orders. By Corollary 4.11 (ii) the
β-nf is unique.

The proof of the Church-Rosser theorem occupies 4.13–4.19. The idea of
the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show
the Strip Lemma:
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In order to prove this lemma, let M →β N1 be a one step reduction resulting
from changing a redex R in M in its contractum R′ in N1. If one makes a
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bookkeeping of what happens with R during the reduction M →→β N2, then by
reducing all ‘residuals’ of R in N2 the term N3 can be found. In order to do the
necessary bookkeeping an extended set Λ ⊇ Λ and reduction β is introduced.
The underlining serves as a ‘tracing isotope’.

4.13. Definition (Underlining). (i) Λ is the set of terms defined inductively
as follows.

x ∈ V ⇒ x ∈ Λ,

M,N ∈ Λ ⇒ (MN) ∈ Λ,

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ,

M,N ∈ Λ, x ∈ V ⇒ ((λx.M)N) ∈ Λ.

(ii) The underlined reduction relations →β (one step) and →→β are defined
starting with the contraction rules

(λx.M)N →β M [x := N ],

(λx.M)N →β M [x := N ].

Then →β is extended in order to become a compatible relation (also with respect
to λ-abstraction). Moreover, →→β is the transitive reflexive closure of →β.

(iii) If M ∈ Λ, then |M | ∈ Λ is obtained from M by leaving out all underlin-
ings. E.g. |(λx.x)((λx.x)(λx.x))| ≡ I(II).

4.14. Definition. The map ϕ : Λ → Λ is defined inductively as follows.

ϕ(x) ≡ x,

ϕ(MN) ≡ ϕ(M)ϕ(N),

ϕ(λx.M) ≡ λx.ϕ(M),

ϕ((λx.M)N) ≡ ϕ(M)[x := ϕ(N)].

In other words, ϕ contracts all redexes that are underlined, from the inside to
the outside.

Notation. If |M | ≡ N or ϕ(M) ≡ N , then this will be denoted by

M
| |

- N or M
ϕ

- N.

4.15. Lemma.
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β
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| |
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| |

M
β

-- N

M ′, N ′ ∈ Λ,
M,N ∈ Λ.
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Proof. First suppose M →β N . Then N is obtained by contracting a redex
in M and N ′ can be obtained by contracting the corresponding redex in M ′.
The general statement follows by transitivity. �

4.16. Lemma. (i) Let M,N ∈ Λ. Then

ϕ(M [x := N ]) ≡ ϕ(M)[x := ϕ(N)].

(ii)
M

β

-- N

ϕ

? ?

ϕ

ϕ(M) ············ ·
β
·············-- ϕ(N)

M,N ∈ Λ.

Proof. (i) By induction on the structure of M , using the Substitution Lemma
(see Exercise 2.2) in case M ≡ (λy.P )Q. The condition of that lemma may be
assumed to hold by our convention about free variables.

(ii) By induction on the generation of →→β , using (i). �

4.17. Lemma.
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N, L ∈ Λ.

Proof. By induction on the structure of M. �

4.18. Strip lemma.
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M,N1, N2, N3 ∈ Λ.

Proof. Let N1 be the result of contracting the redex occurrence R ≡ (λx.P )Q
in M . Let M ′ ∈ Λ be obtained from M by replacing R by R′ ≡ (λx.P )Q. Then
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|M ′| ≡ M and ϕ(M ′) ≡ N1. By the lemmas 4.15, 4.16 and 4.17 we can erect
the diagram
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which proves the Strip Lemma. �

4.19. Proof of the Church-Rosser Theorem. If M →→β N1, then M ≡
M1 →β M2 →β · · · →β Mn ≡ N1. Hence the CR property follows from the
Strip Lemma and a simple diagram chase:
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4.20. Definition. For M ∈ Λ the reduction graph of M , notation Gβ(M), is
the directed multigraph with vertices {N |M →→β N} and directed by →β.
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4.21. Example. Gβ(I(Ix)) is

x

I x( )I

xI

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite
reduction path. Let Ω ≡ (λx.xx)(λx.xx). Then Ω → Ω → · · · so KIΩ →
KIΩ → · · ·, and KIΩ →→ I. Therefore a so called strategy is necessary in
order to find the normal form. We state the following theorem; for a proof see
Barendregt (1984), Theorem 13.2.2.

4.22. Normalization Theorem. If M has a normal form, then iterated con-
traction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is normalizing . This fact
can be used to find the normal form of a term, or to prove that a certain term
has no normal form.

4.23. Example. KΩI has an infinite leftmost reduction path, viz.

KΩI →β (λy.Ω)I →β Ω →β Ω →β · · · ,

and hence does not have a normal form.

The functional language (pure) Lisp uses an eager or applicative evaluation
strategy, i.e. whenever an expression of the form FA has to be evaluated, A is
reduced to normal form first, before ‘calling’ F . In the λ-calculus this strat-
egy is not normalizing as is shown by the two reduction paths for KIΩ above.
There is, however, a variant of the lambda calculus, called the λI-calculus, in
which the eager evaluation strategy is normalizing. In this λI-calculus terms
like K, ‘throwing away’ Ω in the reduction KIΩ →→ I do not exist. The ‘ordi-
nary’ λ-calculus is sometimes referred to as λK-calculus; see Barendregt (1984),
Chapter 9.

Remember the fixedpoint combinator Y. For each F ∈ Λ one has YF =β

F (YF ), but neither YF →→β F (YF ) nor F (YF ) →→β YF . In order to solve



Reduction 31

reduction equations one can work with A.M. Turing’s fixedpoint combinator,
which has a different reduction behaviour.

4.24. Definition. Turing’s fixedpoint combinator Θ is defined by setting

A ≡ λxy.y(xxy),

Θ ≡ AA.

4.25. Proposition. For all F ∈ Λ one has

ΘF →→β F (ΘF ).

Proof.

ΘF ≡ AAF

→β (λy.y(AAy))F

→β F (AAF )

≡ F (ΘF ). �

4.26. Example. ∃G ∀X GX →→ X(XG). Indeed,

∀X GX →→ X(XG) ⇐ G→→ λx.x(xG)

⇐ G→→ (λgx.x(xg))G

⇐ G ≡ Θ(λgx.x(xg)).

Also the Multiple Fixedpoint Theorem has a ‘reducing’ variant.

4.27. Theorem. Let F1, . . . , Fn be λ-terms. Then we can find X1, . . . , Xn such
that

X1 →→ F1X1 · · ·Xn,
...

Xn →→ FnX1 · · ·Xn.

Proof. As for the equational Multiple Fixedpoint Theorem 3.17, but now
using Θ. �

Exercises

4.1. Show ∀M ∃N [N in β-nf and N I →→β M ].

4.2. Construct four terms M with Gβ(M) respectively as follows.
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4.3. Show that there is no F ∈ Λ such that for all M,N ∈ Λ

F (MN) = M.

4.4.* Let M ≡ AAx with A ≡ λaxz.z(aax). Show that Gβ(M) contains as subgraphs
an n-dimensional cube for every n ∈ N.

4.5. (A. Visser)
(i) Show that there is only one redex R such that Gβ(R) is as follows.

(ii) Show that there is no M ∈ Λ with Gβ(M) is

[Hint. Consider the relative positions of redexes.]

4.6.* (C. Böhm) Examine Gβ(M) with M equal to
(i) HIH , H ≡ λxy.x(λz.yzy)x.
(ii) LLI, L ≡ λxy.x(yy)x.
(iii) QIQ, Q ≡ λxy.xyIxy.

4.7.* (J.W. Klop) Extend the λ-calculus with two constants δ, ε. The reduction
rules are extended to include δMM → ε. Show that the resulting system is
not Church-Rosser.
[Hint. Define terms C,D such that

Cx →→ δx(Cx)

D →→ CD

Then D →→ ε and D →→ Cε in the extended reduction system, but there is no
common reduct.]

4.8. Show that the term M ≡ AAx with A ≡ λaxz.z(aax) does not have a normal
form.

4.9. (i) Show λ 6`WWW = ω3ω3, with W ≡ λxy.xyy and ω3 ≡ λx.xxx.
(ii) Show λ 6` Bx = By with Bz ≡ AzAz and Az ≡ λp.ppz.

4.10. Draw Gβ(M) for M equal to:
(i) WWW , W ≡ λxy.xyy.
(ii) ωω, ω ≡ λx.xx.
(iii) ω3ω3, ω3 ≡ λx.xxx.
(iv) (λx.Ixx)(λx.Ixx).
(v) (λx.I(xx))(λx.I(xx)).
(vi) II(III).

4.11. The length of a term is its number of symbols times 0.5 cm. Write down a
λ-term of length < 30 cm with normal form > 1010

10

light year.
[Hint. Use Proposition 2.15 (ii). The speed of light is c = 3× 1010 cm/s.]


