Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (). The statement
(Az.z? +1)3 =10

can be interpreted as ‘10 is the result of computing (Az.2z2 + 1)3’, but not vice
versa. This computational aspect will be expressed by writing

(A\z.2® +1)3 — 10

which reads ‘(Az.2? + 1)3 reduces to 10

Apart from this conceptual aspect, reduction is also useful for an analysis
of convertibility. The Church-Rosser theorem says that if two terms are con-
vertible, then there is a term to which they both reduce. In many cases the
inconvertibility of two terms can be proved by showing that they do not reduce
to a common term.

4.1. DEFINITION. (i) A binary relation R on A is called compatible (with the
operations) if

MRN = (ZM)R (ZN),
(MZ) R (NZ) and
(Az.M) R (Az.N).

(ii) A congruence relation on A is a compatible equivalence relation.
(iii) A reduction relation on A is a compatible, reflexive and transitive rela-
tion.

4.2. DEFINITION. The binary relations — g, —»3 and =g on A are defined in-
ductively as follows.
i) 1. (A.M)N —g Mz := NJ;
2. M —-gN = ZM —g ZN, MZ —3 NZ and Az.M —g Ax.N.
1. M —g M,
2. M—gN = M —»gN;
3. M —3gN,N-—gL = M—glL.

(i)
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24 Introduction to Lambda Calculus

(i) 1. M —3N = M=4N;
2. M:5N2>N:5M;
3. M:ﬁN,N:ﬁL = M:ﬁL.

These relations are pronounced as follows.

M —3 N : Mpg-reduces to N;
M —g N : Mp-reduces to Nin one step;
M =3 N : M is 3-convertible to N.

By definition — g is compatible, — 3 is a reduction relation and =g is a con-
gruence relation.

4.3. EXAMPLE. (i) Define

AT.xT,

€
|

Then Q —4 €.
(ii) KIQ —3 |

Intuitively, M =g N if M is connected to N via — g-arrows (disregarding
the directions of these). In a picture this looks as follows.

M

N . SN
NN NS
e

4.4. EXAMPLE. KIS =g Il. This is demonstrated by the following reductions.

KIQ2

(

)\y.l)ﬂ\\ | /n

4.5. PROPOSITION. M =g N & A M = N.
PROOF. By an easy induction. [J

4.6. DEFINITION. (i) A [-redex is a term of the form (Az.M)N. In this case
Mz := N] is its contractum.

(ii) A Aterm M is a B-normal form (B-nf) if it does not have a [-redex as
subexpression.

(ili) A term M has a [-normal form if M =g N and N is a $-nf, for some
N.
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4.7. EXAMPLE. (Az.zx)y is not a §-nf, but has as g-nf the term yy.
An immediate property of nf’s is the following.
4.8. LEMMA. Let M be a B-nf. Then

M —3N = N=M.

Proor. This is true if —3 is replaced by —z. Then the result follows by
transitivity. [

4.9. CHURCH-ROSSER THEOREM. If M —3 N1, M —g Ny, then for some N3
one has N1 —g N3 and Ny —g N3; in diagram

The proof is postponed until 4.19.

4.10. COROLLARY. If M =g N, then there is an L such that M —»g L and
N —p3 L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =3 N, apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.

N N,
SN NS
| \/

This is made precise below.
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PRrROOF. Induction on the generation of =g.

Case 1. M =5 N because M —»g N. Take L = N.

Case 2. M =g N because N =g M. By the IH there is a common S-reduct
Ly of N, M. Take L = L;.

Case 3. M =3 N because M =g N', N =5 N. Then

M N’ N
\\(IH) \\(IH)/
L . (CR) . Lo

L U

4.11. COROLLARY. (i) If M has N as 3-nf, then M —5 N.
(ii) A A-term has at most one (3-nf.

PROOF. (i) Suppose M =3 N with N in g-nf. By Corollary 4.10 M —»3 L
and N —»g L for some L. But then N = L, by Lemma 4.8, so M —3 N.

(ii) Suppose M has -nf’s Ny, Na. Then Ny =g Ny (=g M). By Corollary
410 N1 —g L, No —g L for some L. But then Ny = L = N, by Lemma
4.8. I

4.12. SOME CONSEQUENCES. (i) The A-calculus is consistent, i.e. A I/ true =
false. Otherwise true =3 false by Proposition 4.5, which is impossible by
Corollary 4.11 since true and false are distinct g-nf’s. This is a syntactic
consistency proof.

(ii) €2 has no f-nf. Otherwise £ — 3 N with N in S-nf. But £ only reduces
to itself and is not in G-nf.

(iii) In order to find the B-nf of a term M (if it exists), the various subex-
pressions of M may be reduced in different orders. By Corollary 4.11 (ii) the
G-nf is unique.

The proof of the Church-Rosser theorem occupies 4.13-4.19. The idea of
the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show

the Strip Lemma:
M

v

Ny B

In order to prove this lemma, let M —3 Ny be a one step reduction resulting
from changing a redex R in M in its contractum R’ in Nj. If one makes a
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bookkeeping of what happens with R during the reduction M —» 3 N3, then by
reducing all ‘residuals’ of R in Ns the term N3 can be found. In order to do the
necessary bookkeeping an extended set A O A and reduction § is introduced.
The underlining serves as a ‘tracing isotope’.

4.13. DEFINITION (Underlining). (i) A is the set of terms defined inductively
as follows.

reV = x€A,
M,NecA = (MN)ecA,
MeAxzeV = (Az.M)eA,
M,NelAzeV = ((Az.M)N)e€A.

(ii) The underlined reduction relations — 3 (one step) and —»g are defined

starting with the contraction rules B B
A.M)N — g M [x

Az M)N —3 Mx:

I,
]

Then — g is extended in order to become a compatible relation (also with respect
to M-abstraction). Moreover, —» 5 is the transitive reflexive closure of — g.

(iii) If M € A, then |M| € A is obtained from M by leaving out all underlin-
ings. E.g. |(A\z.z)((Az.z)(Az.z))| = I(I).

N
N

4.14. DEFINITION. The map ¢ : A — A is defined inductively as follows.

= uz,

)

) = ¢M)e(N),
oA M) = lz.p(M),

)

p(M)[z := o(N)].

In other words, ¢ contracts all redexes that are underlined, from the inside to
the outside.

NoOTATION. If |[M| = N or ¢(M) = N, then this will be denoted by

M ——>No M ——N.

] v
4.15. LEMMA.
M o - N’
g
| || M, N'eA,
M,N € A.
M N
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PRroOF. First suppose M —3 N. Then N is obtained by contracting a redex
in M and N’ can be obtained by contracting the corresponding redex in M'.
The general statement follows by transitivity. [

4.16. LEMMA. (i) Let M,N € A. Then

(i)

M N
B
¥ Y M, NeA
QM) vevveenieeiieeiis - o(N)
B

PROOF. (i) By induction on the structure of M, using the Substitution Lemma
(see Exercise 2.2) in case M = (Ay.P)Q. The condition of that lemma may be
assumed to hold by our convention about free variables.

(ii) By induction on the generation of —» 4 , using (i). O

4.17. LEMMA.

PRrROOF. By induction on the structure of M. [J

4.18. STRIP LEMMA.

M
4
Ny
8

M, Ny, Ny, N3 € A.

Ny

PROOF. Let Nj be the result of contracting the redex occurrence R = (Az.P)Q
in M. Let M’ € A be obtained from M by replacing R by R’ = (Az.P)Q. Then
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IM'| = M and ¢(M’) = N;. By the lemmas 4.15, 4.16 and 4.17 we can erect
the diagram

which proves the Strip Lemma. [J

4.19. PROOF OF THE CHURCH-ROSSER THEOREM. If M —» g Ny, then M =
My —g My —g --- —g M, = N;. Hence the CR property follows from the
Strip Lemma and a simple diagram chase:

M

N Ny

. g

4.20. DEFINITION. For M € A the reduction graph of M, notation Gz(M), is
the directed multigraph with vertices {N | M — 3 N} and directed by — .
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4.21. ExaMpLE. Gg(I(lz)) is

(1)

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite
reduction path. Let @ = (Az.zz)(Az.zx). Then @ — Q — --- so KIQ —
KIQ — ... and KIQ — |. Therefore a so called strategy is necessary in

order to find the normal form. We state the following theorem; for a proof see
Barendregt (1984), Theorem 13.2.2.

4.22. NORMALIZATION THEOREM. If M has a normal form, then iterated con-
traction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is normalizing. This fact
can be used to find the normal form of a term, or to prove that a certain term
has no normal form.

4.23. EXxaAMPLE. Kl has an infinite leftmost reduction path, viz.
KQl -5 Ay Q)1 =3 Q =5 Q —5---,
and hence does not have a normal form.

The functional language (pure) Lisp uses an eager or applicative evaluation
strategy, i.e. whenever an expression of the form F'A has to be evaluated, A is
reduced to normal form first, before ‘calling’” F. In the A-calculus this strat-
egy is not normalizing as is shown by the two reduction paths for KI€2 above.
There is, however, a variant of the lambda calculus, called the Al-calculus, in
which the eager evaluation strategy is normalizing. In this Al-calculus terms
like K, ‘throwing away’ €2 in the reduction KI€2 — | do not exist. The ‘ordi-
nary’ A-calculus is sometimes referred to as AK-calculus; see Barendregt (1984),
Chapter 9.

Remember the fixedpoint combinator Y. For each F' € A one has YF =g
F(YF), but neither YF' —3 F(YF) nor F(YF) —3 YF. In order to solve
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reduction equations one can work with A.M. Turing’s fixedpoint combinator,
which has a different reduction behaviour.

4.24. DEFINITION. Turing’s fixedpoint combinator ® is defined by setting
A = dryy(zay),
® = AA
4.25. PROPOSITION. For all F € A one has
OF —3 F(OF).
PROOF.

OF = AAF
—5  (A\y.y(AAy))F
—3 F(AAF)
—  F(OF). O
4.26. EXAMPLE. 3G VX GX — X(XG). Indeed,

VX GX - X(XG) < G — \.a(zQ)
< G — (A\gz.x(xg))G
< G =0(\gzr.x(xg)).

Also the Multiple Fixedpoint Theorem has a ‘reducing’ variant.

4.27. THEOREM. Let Fy, ..., F, be A-terms. Then we can find X1, ..., X, such
that

X1 — XX,

X, — FE,X; X,

PROOF. As for the equational Multiple Fixedpoint Theorem 3.17, but now
using ©. [

Exercises

4.1.  Show VM 3N [N in f-nf and NI —4 M].
4.2.  Construct four terms M with Gg(M) respectively as follows.

()
. <©>© \\7
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4.3.

4.4.%

4.5.

4.6.*

4.7.%

4.8.

4.9.

4.10.

Introduction to Lambda Calculus

Show that there is no F' € A such that for all M, N € A
F(MN) = M.
Let M = AAzx with A = Aazz.z(aax). Show that Gg(M) contains as subgraphs

an n-dimensional cube for every n € N.

(A. Visser)
(i) Show that there is only one redex R such that Gg(R) is as follows.

(ii) Show that there is no M € A with Gg(M) is
[Hint. Consider the relative positions of redexes.]
(C. Bohm) Examine Gg(M) with M equal to
(i) HIH, H =MXzy.x(Az.yzy)z.
(ii) LLl, L =Mvy.z(yy)z.
(iii) QIQ, Q = lzy.zylzy.
(J.W. Klop) Extend the A-calculus with two constants §, e. The reduction
rules are extended to include MM — e. Show that the resulting system is

not Church-Rosser.
[Hint. Define terms C, D such that

Cx — dz(Cx)
D — CD

Then D — € and D — Ce in the extended reduction system, but there is no
common reduct.]

Show that the term M = AAx with A = Aazz.z(aaz) does not have a normal
form.

(i) Show A/ WWW = wsws, with W = \ay.ayy and ws = Az.xzz.
(ii) Show A By = B, with B, = A, A, and A, = Ap.pp=.

Draw Gg(M) for M equal to:
(i) WWWwW, W =xy.xyy.
(il) ww, w=\z.a.

(ill) waws, ws= Az.xaT.
(iv) (Az.dzx)Ax.lzz).

(v) Qzd(zz))Azd(zx)).

(vi) H(H).

The length of a term is its number of symbols tinlloes 0.5 cm. Write down a
A-term of length < 30 cm with normal form > 100" light year.

[Hint. Use Proposition 2.15 (ii). The speed of light is ¢ = 3 x 10! ¢cm/s.]



