Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (β). The statement

$$(\lambda x \cdot x^2 + 1)3 = 10$$

can be interpreted as '10 is the result of computing $(\lambda x.x^2 + 1)3$ ', but not vice versa. This computational aspect will be expressed by writing

$$(\lambda x.x^2 + 1)3 \rightarrow 10$$

which reads $(\lambda x.x^2 + 1)3$ reduces to 10'.

Apart from this conceptual aspect, reduction is also useful for an analysis of convertibility. The Church-Rosser theorem says that if two terms are convertible, then there is a term to which they both reduce. In many cases the inconvertibility of two terms can be proved by showing that they do not reduce to a common term.

4.1. DEFINITION. (i) A binary relation R on Λ is called *compatible* (with the operations) if

$$M R N \Rightarrow (ZM) R (ZN),$$

 $(MZ) R (NZ)$ and
 $(\lambda x.M) R (\lambda x.N).$

(ii) A congruence relation on Λ is a compatible equivalence relation.

(iii) A reduction relation on Λ is a compatible, reflexive and transitive relation.

4.2. DEFINITION. The binary relations \rightarrow_{β} , $\twoheadrightarrow_{\beta}$ and $=_{\beta}$ on Λ are defined inductively as follows.

- (i) 1. $(\lambda x.M)N \rightarrow_{\beta} M[x := N];$ 2. $M \rightarrow_{\beta} N \Rightarrow ZM \rightarrow_{\beta} ZN, MZ \rightarrow_{\beta} NZ \text{ and } \lambda x.M \rightarrow_{\beta} \lambda x.N.$ (ii) 1. $M \twoheadrightarrow_{\beta} M;$ 2. $M \rightarrow_{\beta} N \Rightarrow M \twoheadrightarrow_{\beta} N;$
 - 3. $M \twoheadrightarrow_{\beta} N, N \twoheadrightarrow_{\beta} L \Rightarrow M \twoheadrightarrow_{\beta} L.$

(iii) 1.
$$M \twoheadrightarrow_{\beta} N \Rightarrow M =_{\beta} N;$$

2. $M =_{\beta} N \Rightarrow N =_{\beta} M;$
3. $M =_{\beta} N, N =_{\beta} L \Rightarrow M =_{\beta} L$

These relations are pronounced as follows.

$$\begin{array}{lll} M \twoheadrightarrow_{\beta} N & : & M\beta \text{-reduces to } N; \\ M \to_{\beta} N & : & M\beta \text{-reduces to } N \text{ in one step}; \\ M =_{\beta} N & : & M \text{ is } \beta \text{-convertible to } N. \end{array}$$

By definition \rightarrow_{β} is compatible, $\twoheadrightarrow_{\beta}$ is a reduction relation and $=_{\beta}$ is a congruence relation.

4.3. EXAMPLE. (i) Define

$$\omega \equiv \lambda x.xx,$$

 $\Omega \equiv \omega \omega.$

Then $\Omega \rightarrow_{\beta} \Omega$. (ii) $\mathsf{KI}\Omega \twoheadrightarrow_{\beta} \mathsf{I}$.

Intuitively, $M =_{\beta} N$ if M is connected to N via \rightarrow_{β} -arrows (disregarding the directions of these). In a picture this looks as follows.

4.4. EXAMPLE. $\mathbf{KI}\Omega =_{\beta} \mathbf{II}$. This is demonstrated by the following reductions.

4.5. PROPOSITION. $M =_{\beta} N \Leftrightarrow \boldsymbol{\lambda} \vdash M = N$.

Proof. By an easy induction. \Box

4.6. DEFINITION. (i) A β -redex is a term of the form $(\lambda x.M)N$. In this case M[x := N] is its contractum.

(ii) A λ -term M is a β -normal form (β -nf) if it does not have a β -redex as subexpression.

(iii) A term *M* has a β -normal form if $M =_{\beta} N$ and *N* is a β -nf, for some *N*.

4.7. EXAMPLE. $(\lambda x.xx)y$ is not a β -nf, but has as β -nf the term yy.

An immediate property of nf's is the following.

4.8. LEMMA. Let M be a β -nf. Then

$$M \twoheadrightarrow_{\beta} N \Rightarrow N \equiv M.$$

PROOF. This is true if $\twoheadrightarrow_{\beta}$ is replaced by \rightarrow_{β} . Then the result follows by transitivity. \Box

4.9. CHURCH-ROSSER THEOREM. If $M \twoheadrightarrow_{\beta} N_1$, $M \twoheadrightarrow_{\beta} N_2$, then for some N_3 one has $N_1 \twoheadrightarrow_{\beta} N_3$ and $N_2 \twoheadrightarrow_{\beta} N_3$; in diagram

The proof is postponed until 4.19.

4.10. COROLLARY. If $M =_{\beta} N$, then there is an L such that $M \twoheadrightarrow_{\beta} L$ and $N \twoheadrightarrow_{\beta} L$.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow path showing $M =_{\beta} N$, apply the Church-Rosser property repeatedly in order to find a common reduct. For the example given above this looks as follows.

This is made precise below.

PROOF. Induction on the generation of $=_{\beta}$.

Case 1. $M =_{\beta} N$ because $M \twoheadrightarrow_{\beta} N$. Take $L \equiv N$.

Case 2. $M =_{\beta} N$ because $N =_{\beta} M$. By the IH there is a common β -reduct L_1 of N, M. Take $L \equiv L_1$.

Case 3. $M =_{\beta} N$ because $M =_{\beta} N'$, $N' =_{\beta} N$. Then

4.11. COROLLARY. (i) If M has N as β-nf, then M→_β N.
(ii) A λ-term has at most one β-nf.

PROOF. (i) Suppose $M =_{\beta} N$ with N in β -nf. By Corollary 4.10 $M \twoheadrightarrow_{\beta} L$ and $N \twoheadrightarrow_{\beta} L$ for some L. But then $N \equiv L$, by Lemma 4.8, so $M \twoheadrightarrow_{\beta} N$.

(ii) Suppose M has β -nf's N_1 , N_2 . Then $N_1 =_{\beta} N_2 (=_{\beta} M)$. By Corollary 4.10 $N_1 \twoheadrightarrow_{\beta} L$, $N_2 \twoheadrightarrow_{\beta} L$ for some L. But then $N_1 \equiv L \equiv N_2$ by Lemma 4.8. \Box

4.12. SOME CONSEQUENCES. (i) The λ -calculus is consistent, i.e. $\lambda \not\vdash \text{true} = \text{false.}$ Otherwise true $=_{\beta}$ false by Proposition 4.5, which is impossible by Corollary 4.11 since true and false are distinct β -nf's. This is a syntactic consistency proof.

(ii) Ω has no β -nf. Otherwise $\Omega \twoheadrightarrow_{\beta} N$ with N in β -nf. But Ω only reduces to itself and is not in β -nf.

(iii) In order to find the β -nf of a term M (if it exists), the various subexpressions of M may be reduced in different orders. By Corollary 4.11 (ii) the β -nf is unique.

The proof of the Church-Rosser theorem occupies 4.13–4.19. The idea of the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show the Strip Lemma:

In order to prove this lemma, let $M \to_{\beta} N_1$ be a one step reduction resulting from changing a redex R in M in its contractum R' in N_1 . If one makes a bookkeeping of what happens with R during the reduction $M \twoheadrightarrow_{\beta} N_2$, then by reducing all 'residuals' of R in N_2 the term N_3 can be found. In order to do the necessary bookkeeping an extended set $\underline{\Lambda} \supseteq \Lambda$ and reduction $\underline{\beta}$ is introduced. The underlining serves as a 'tracing isotope'.

4.13. DEFINITION (Underlining). (i) $\underline{\Lambda}$ is the set of terms defined inductively as follows.

$$\begin{aligned} x \in V &\Rightarrow x \in \underline{\Lambda}, \\ M, N \in \underline{\Lambda} &\Rightarrow (MN) \in \underline{\Lambda}, \\ M \in \underline{\Lambda}, x \in V &\Rightarrow (\lambda x.M) \in \underline{\Lambda}, \\ M, N \in \Lambda, x \in V &\Rightarrow ((\lambda x.M)N) \in \Lambda. \end{aligned}$$

(ii) The underlined reduction relations $\rightarrow_{\underline{\beta}}$ (one step) and $\twoheadrightarrow_{\underline{\beta}}$ are defined starting with the contraction rules

$$\begin{array}{ll} (\lambda x.M)N & \rightarrow_{\underline{\beta}} & M[x:=N],\\ (\underline{\lambda}x.M)N & \rightarrow_{\beta} & M[x:=N]. \end{array}$$

Then $\rightarrow_{\underline{\beta}}$ is extended in order to become a compatible relation (also with respect to $\underline{\lambda}$ -abstraction). Moreover, $\twoheadrightarrow_{\beta}$ is the transitive reflexive closure of \rightarrow_{β} .

(iii) If $M \in \underline{\Lambda}$, then $|M| \in \Lambda$ is obtained from M by leaving out all underlinings. E.g. $|(\lambda x.x)((\underline{\lambda} x.x)(\lambda x.x))| \equiv I(II)$.

4.14. DEFINITION. The map $\varphi : \underline{\Lambda} \to \Lambda$ is defined inductively as follows.

$$\begin{array}{rcl} \varphi(x) &\equiv& x, \\ \varphi(MN) &\equiv& \varphi(M)\varphi(N), \\ \varphi(\lambda x.M) &\equiv& \lambda x.\varphi(M), \\ \varphi((\underline{\lambda} x.M)N) &\equiv& \varphi(M)[x := \varphi(N)]. \end{array}$$

In other words, φ contracts all redexes that are underlined, from the inside to the outside.

NOTATION. If $|M| \equiv N$ or $\varphi(M) \equiv N$, then this will be denoted by

$$M \longrightarrow N \text{ or } M \longrightarrow N.$$

4.15. LEMMA.

PROOF. First suppose $M \to_{\beta} N$. Then N is obtained by contracting a redex in M and N' can be obtained by contracting the corresponding redex in M'. The general statement follows by transitivity. \Box

4.16. LEMMA. (i) Let $M, N \in \underline{\Lambda}$. Then

$$\varphi(M[x := N]) \equiv \varphi(M)[x := \varphi(N)].$$

(ii)

PROOF. (i) By induction on the structure of M, using the Substitution Lemma (see Exercise 2.2) in case $M \equiv (\underline{\lambda}y.P)Q$. The condition of that lemma may be assumed to hold by our convention about free variables.

(ii) By induction on the generation of $\twoheadrightarrow_{\underline{\beta}}$, using (i). \Box

4.17. LEMMA.

PROOF. By induction on the structure of M. \Box

4.18. Strip Lemma.

PROOF. Let N_1 be the result of contracting the redex occurrence $R \equiv (\lambda x.P)Q$ in M. Let $M' \in \underline{\Lambda}$ be obtained from M by replacing R by $R' \equiv (\underline{\lambda} x.P)Q$. Then

 $|M'| \equiv M$ and $\varphi(M') \equiv N_1$. By the lemmas 4.15, 4.16 and 4.17 we can erect the diagram

which proves the Strip Lemma. \Box

4.19. PROOF OF THE CHURCH-ROSSER THEOREM. If $M \twoheadrightarrow_{\beta} N_1$, then $M \equiv M_1 \rightarrow_{\beta} M_2 \rightarrow_{\beta} \cdots \rightarrow_{\beta} M_n \equiv N_1$. Hence the CR property follows from the Strip Lemma and a simple diagram chase:

4.20. DEFINITION. For $M \in \Lambda$ the reduction graph of M, notation $G_{\beta}(M)$, is the directed multigraph with vertices $\{N \mid M \twoheadrightarrow_{\beta} N\}$ and directed by \rightarrow_{β} .

4.21. EXAMPLE. $G_{\beta}(\mathbf{I}(\mathbf{I}x))$ is

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite reduction path. Let $\Omega \equiv (\lambda x.xx)(\lambda x.xx)$. Then $\Omega \to \Omega \to \cdots$ so $\mathsf{KI}\Omega \to$ $\mathsf{KI}\Omega \to \cdots$, and $\mathsf{KI}\Omega \twoheadrightarrow \mathsf{I}$. Therefore a so called *strategy* is necessary in order to find the normal form. We state the following theorem; for a proof see Barendregt (1984), Theorem 13.2.2.

4.22. NORMALIZATION THEOREM. If M has a normal form, then iterated contraction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is *normalizing*. This fact can be used to find the normal form of a term, or to prove that a certain term has no normal form.

4.23. EXAMPLE. $K\Omega I$ has an infinite leftmost reduction path, viz.

$$\mathbf{K}\mathbf{\Omega}\mathbf{I} \rightarrow_{\beta} (\lambda y.\mathbf{\Omega})\mathbf{I} \rightarrow_{\beta} \mathbf{\Omega} \rightarrow_{\beta} \mathbf{\Omega} \rightarrow_{\beta} \cdots,$$

and hence does not have a normal form.

The functional language (pure) Lisp uses an eager or applicative evaluation strategy, i.e. whenever an expression of the form FA has to be evaluated, A is reduced to normal form first, before 'calling' F. In the λ -calculus this strategy is not normalizing as is shown by the two reduction paths for $\mathsf{KI}\Omega$ above. There is, however, a variant of the lambda calculus, called the λI -calculus, in which the eager evaluation strategy is normalizing. In this λI -calculus terms like K, 'throwing away' Ω in the reduction $\mathsf{KI}\Omega \twoheadrightarrow \mathsf{I}$ do not exist. The 'ordinary' λ -calculus is sometimes referred to as λK -calculus; see Barendregt (1984), Chapter 9.

Remember the fixed point combinator **Y**. For each $F \in \Lambda$ one has $\mathbf{Y}F =_{\beta}$ $F(\mathbf{Y}F)$, but neither $\mathbf{Y}F \twoheadrightarrow_{\beta} F(\mathbf{Y}F)$ nor $F(\mathbf{Y}F) \twoheadrightarrow_{\beta} \mathbf{Y}F$. In order to solve *reduction* equations one can work with A.M. Turing's fixedpoint combinator, which has a different reduction behaviour.

4.24. DEFINITION. Turing's fixed point combinator Θ is defined by setting

$$A \equiv \lambda xy.y(xxy),$$

$$\Theta \equiv AA.$$

4.25. Proposition. For all $F \in \Lambda$ one has

$$\boldsymbol{\Theta} F \twoheadrightarrow_{\beta} F(\boldsymbol{\Theta} F).$$

Proof.

$$\begin{split} \boldsymbol{\Theta} F &\equiv AAF \\ & \rightarrow_{\beta} (\lambda y.y(AAy))F \\ & \rightarrow_{\beta} F(AAF) \\ & \equiv F(\boldsymbol{\Theta} F). \ \Box \\ \end{split}$$

4.26. EXAMPLE. $\exists G \forall X GX \twoheadrightarrow X(XG)$. Indeed,

$$\begin{array}{lll} \forall X \; GX \twoheadrightarrow X(XG) & \Leftarrow & G \twoheadrightarrow \lambda x.x(xG) \\ & \Leftarrow & G \twoheadrightarrow (\lambda gx.x(xg))G \\ & \Leftarrow & G \equiv \Theta(\lambda gx.x(xg)). \end{array}$$

Also the Multiple Fixedpoint Theorem has a 'reducing' variant.

4.27. THEOREM. Let F_1, \ldots, F_n be λ -terms. Then we can find X_1, \ldots, X_n such that

$$\begin{array}{rccc} X_1 & \twoheadrightarrow & F_1 X_1 \cdots X_n, \\ & \vdots \\ & X_n & \twoheadrightarrow & F_n X_1 \cdots X_n. \end{array}$$

PROOF. As for the equational Multiple Fixed point Theorem 3.17, but now using $\Theta.\ \Box$

Exercises

- 4.1. Show $\forall M \exists N [N \text{ in } \beta \text{-nf and } N | \twoheadrightarrow_{\beta} M]$.
- 4.2. Construct four terms M with $G_{\beta}(M)$ respectively as follows.

4.3. Show that there is no $F \in \Lambda$ such that for all $M, N \in \Lambda$

F(MN) = M.

- 4.4.* Let $M \equiv AAx$ with $A \equiv \lambda axz.z(aax)$. Show that $G_{\beta}(M)$ contains as subgraphs an *n*-dimensional cube for every $n \in \mathbb{N}$.
- 4.5. (A. Visser)
 - (i) Show that there is only one redex R such that $G_{\beta}(R)$ is as follows.

(ii) Show that there is no $M \in \Lambda$ with $G_{\beta}(M)$ is

[*Hint.* Consider the relative positions of redexes.]

- 4.6.* (C. Böhm) Examine $G_{\beta}(M)$ with M equal to
 - (i) HIH, $H \equiv \lambda xy.x(\lambda z.yzy)x$.
 - (ii) LLI, $L \equiv \lambda xy.x(yy)x$.
 - (iii) QIQ, $Q \equiv \lambda xy.xyIxy$.
- 4.7.* (J.W. Klop) Extend the λ -calculus with two constants δ , ε . The reduction rules are extended to include $\delta MM \to \varepsilon$. Show that the resulting system is not Church-Rosser.

[*Hint.* Define terms C, D such that

$$\begin{array}{cccc} Cx & \twoheadrightarrow & \pmb{\delta}x(Cx) \\ D & \twoheadrightarrow & CD \end{array}$$

Then $D \twoheadrightarrow \varepsilon$ and $D \twoheadrightarrow C\varepsilon$ in the extended reduction system, but there is no common reduct.]

- 4.8. Show that the term $M \equiv AAx$ with $A \equiv \lambda axz.z(aax)$ does not have a normal form.
- (i) Show λ ∀ WWW = ω₃ω₃, with W ≡ λxy.xyy and ω₃ ≡ λx.xxx.
 (ii) Show λ ∀ B_x = B_y with B_z ≡ A_zA_z and A_z ≡ λp.ppz.
- 4.10. Draw $G_{\beta}(M)$ for M equal to:
 - (i) WWW, $W \equiv \lambda xy.xyy$.
 - (ii) $\omega \omega$, $\omega \equiv \lambda x.xx$.
 - (iii) $\boldsymbol{\omega}_3 \boldsymbol{\omega}_3$, $\boldsymbol{\omega}_3 \equiv \lambda x.xxx$.
 - (iv) $(\lambda x. \mathbf{I} x x) (\lambda x. \mathbf{I} x x)$.
 - (v) $(\lambda x.\mathbf{I}(xx))(\lambda x.\mathbf{I}(xx)).$
 - (vi) **II**(**III**).
- 4.11. The *length* of a term is its number of symbols times 0.5 cm. Write down a λ -term of length < 30 cm with normal form > $10^{10^{10}}$ light year. [*Hint.* Use Proposition 2.15 (ii). The speed of light is $c = 3 \times 10^{10}$ cm/s.]