Exercises week 3 Languages and Automata

May 10, 2012

3. Regular languages, Finite Automata

Let $\Sigma=\{a, b\}$.
3.1. 1. Construct a DFA M_{1} such that

$$
L(M)=L_{1}=\left\{w \in \Sigma^{*} \mid \#_{a}(w) \text { is divisable by } 3\right\} .
$$

2. Construct an M_{2} such that

$$
L(M)=L_{2}=\left\{w \in \Sigma^{*} \mid \#_{b}(w) \text { is divisable by } 2\right\} .
$$

3. Construct a $\mathrm{NFA}_{\lambda} M_{3}$ such that $L\left(M_{3}\right)=L_{1} \cup L_{2}$.
4. Construct a DFA M_{4} such that $L\left(M_{4}\right)=L_{1} \cup L_{2}$.
3.2. Construct a regular expression e such that

$$
L(e)=L=\left\{w \in \Sigma^{*} \mid \text { ' } a b b a^{\prime} \text { does not occur in } w\right\} .
$$

We do this in several steps

1. First find an $\mathrm{NFA}_{\lambda} M$ such that its language is \bar{L}.
2. Then construct a DFA M^{\prime} accepting the same language.
3. Modify M^{\prime} to obtain $M^{\prime \prime}$ accepting L.
4. Find e such that $L(e)=L\left(M^{\prime \prime}\right)$.]
