
Chapter 14

An Exemplary System 31.10.2006:581

There are several systems that assign intersection types to untyped lambda
terms. These will be collectively denoted by λ∩. In this section we consider
one particular system of this family, λBCD

∩ in order to outline the concepts and
related properties. Definitions and the statement of theorems will be given, but
no proofs. These can be found in the next chapters of Part III.

One motivation for the system presented comes from trying to modify the
system λ→ in such a way that not only subject reduction, but also subject
expansion holds. The problem of subject expansion is the following. Suppose
⊢λ→

M : A and that M ′ →→βη M . Does one have ⊢λ→
M ′ : A? Let us focus on

one β-step. So let M ≡ (λx.P)Q be a redex and suppose

⊢λ→
P [x := Q] : A. (1)

Do we have ⊢λ→
(λx.P)Q : A? It is tempting to reason as follows. By

assumption (1) also Q must have a type, say B. Then (λx.P) has a type
B→A and therefore ⊢λ→

(λx.P)Q : A. The mistake is that in (1) there may be
several occurrences of Q, say Q1 ≡ Q2 ≡ . . . ≡ Qn, having as types respectively
B1, . . . ,Bn. It may be impossible to find a single type for all the occurrences of
Q and this prevents us from finding a type for the redex. For example

⊢λ→
(λx.I(Kx)(Ix)) : A→A,

6⊢λ→
(λxy.x(Ky)(xy))I : A→A.

The system introduced in this chapter with intersection types assigned to
untyped lambda terms remedies the situation. The idea is that if the several
occurrences of Q have to have different types B1, . . . ,Bn, we give them all of
these types:

⊢ Q : B1 ∩ . . . ∩Bn,

implying that for all i one has Q : Bi. Then we have

⊢ (λx.P) : B1 ∩ . . . ∩Bn→A and

⊢ ((λx.P)Q) : A.

There is, however, a second problem. In the λK-calculus, with its terms
λx.P such that x /∈ FV(P) there is the extra problem that Q may not be

9

10 CHAPTER 14. AN EXEMPLARY SYSTEM 31.10.2006:581

typable at all, as it may not occur in P [x := Q]! This is remedied by allowing
B1 ∩ . . .∩Bn also for n = 0 and writing this type as ⊤, to be considered as the
universal type, i.e. assigned to all terms. Then in case x /∈ FV(P) one has

⊢ (λx.P) : ⊤→A and

⊢ ((λx.P)Q) : A.

This is the motivation to introduce a ≤ relation on types with largest
element ⊤ and intersections such that A∩B ≤ A,A∩B ≤ B and the extension of
the type assignment by the sub-sumption rule Γ ⊢M : A, A ≤ B ⇒ Γ ⊢M :
B. It has as consequence that terms like λx.xx get as type ((A→B) ∩ A)→B,
while (λx.xx)(λx.xx) only gets ⊤ as type. Also we have subject conversion

Γ ⊢M : A & M =β N ⇒ Γ ⊢ N : A.

This has as consequence that one can create a lambda model in which the
meaning of a closed term consists of the collection of types it gets. In this way
new lambda models will be obtained and new ways to study classical models
as well.

The type assignement system λBCD
∩ will be introduced in Section 14.1 and

the correspondig filter model in 14.2.

14.1. The system of type assignment λ
BCD
∩

A typical member of the family of intersection type assignment systems is λBCD
∩ .

This system is introduced in Barendregt et al. [1983] as an extension of the
initial system in Coppo and Dezani-Ciancaglini [1980].

14.1.1. Definition. Let A be a set of type atoms.
(i) The intersection type language over A, denoted by TT = TT

A

∩ is defined by
the following abstract syntax.

TT = A | TT→TT | TT ∩ TT

(ii) Write

A∞ = {ψ0, ψ1, ψ2, . . .}

A
⊤
∞ = A∞ ∪ {⊤},

where the type atom ⊤ /∈A∞ is considered as a constant.

Notation. (i) A,B,C,D,E range over arbitrary types. When writing intersection
types we shall use the following convention: the constructor ∩ takes precedence
over the constructor → and it associates to the right. For example

(A→B→C) ∩A→B→C ≡ ((A→(B→C)) ∩A)→(B→C).

(ii) α, β, . . . range over A.

14.1. THE SYSTEM OF TYPE ASSIGNMENT λBCD
∩ 11

14.1.2. Remark. In Part III the set of syntactic types will be formed as above;
for many of these systems the set A will be finite. In this Chapter, however, we
take A = A

⊤
∞.

The following deductive system has as intention to introduce an appropriate
pre-order on TT, compatible with the operator →, such that A∩B is a greatest
lower bound of A and B, for each A,B.

14.1.3. Definition (Intersection type preorder). On TT = TT
A
⊤
∞

∩ a binary rela-
tion ≤ ‘is subtype of ’ is defined by the following axioms and rules.

(refl) A ≤ A

(inclL) A ∩B ≤ A

(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B

C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

(⊤) A ≤ ⊤

(⊤→) ⊤ ≤ ⊤→⊤

(→∩) (A→B) ∩ (A→C) ≤ A→(B ∩ C)

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

14.1.4. Definition. The intersection type theory BCD is the set of all judge-
ments A ≤ B derivable from the axioms and rules in Definition 14.1.3. For
(A ≤ B)∈BCD we write A ≤BCD B or ⊢BCD A ≤ B (or often just A ≤ B).

14.1.5. Remark. All systems in Part III have the first five axioms and rules
of Definition 14.1.3. They differ in the extra axioms and rules and the set of
constants.

14.1.6. Definition. Write A=BCDB (or A = B) for A ≤BCD B & B ≤BCD A.
In BCD we usually work with TT modulo =BCD. By rule (→) one has

A = A′ & B = B′ ⇒ (A→B) = (A′→B′).

Moreover, A ∩B becomes the glb of A,B.

14.1.7. Definition. (i) A basis is a finite set of statements of the shape x:B,
where B ∈TT, with all variables distinct.

(ii) The type assignment system λBCD
∩ for deriving statements of the form

Γ ⊢M : A with Γ a basis, M ∈Λ (the set of untyped lambda terms) and A∈TT

12 CHAPTER 14. AN EXEMPLARY SYSTEM 31.10.2006:581

is defined by the following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A)∈Γ

(→I)
Γ, x:A ⊢M : B

Γ ⊢ (λx.M) : (A→B)

(→E)
Γ ⊢M : (A→ B) Γ ⊢ N : A

Γ ⊢ (MN) : B

(∩I)
Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : (A ∩B)

(≤)
Γ ⊢M : A

Γ ⊢M : B
if A ≤BCD B

(⊤-universal) Γ ⊢M : ⊤

(iii) We say that a term M is typable from a given basis Γ, if there is a type
A∈TT such that the judgement Γ ⊢M : A is derivable in λBCD

∩ . In this case we
write Γ ⊢BCD

∩⊤ M : A or just Γ ⊢M : A, if there is little danger of confusion.

14.1.8. Remark. All systems of type assignment in Part III have the first five
axioms and rules of Definition 14.1.7.

In the following Proposition we need the notions of admissible and derived
rule. Let us first informally define these notions for the simple logical theory of
propositional logic.

14.1.9. Definition. Let ⊢ denote provability in propositional logic. Consider
the rule

Γ ⊢ A
(R)

Γ ⊢ B

(i) R is called admissible if one has

Γ ⊢ A ⇒ Γ ⊢ B

(ii) R is called derived if one has

Γ ⊢ A→B

For example we have that
Γ ⊢ A→A→B

Γ ⊢ A→B

is derived. Also that for propositional variables ϑ, ̺

⊢ ϑ

⊢ ̺

14.1. THE SYSTEM OF TYPE ASSIGNMENT λBCD
∩ 13

is admissible, simply because ⊢ ϑ does not hold, but not derived. A derived rule
is always admissible and the example shows that the converse does not hold. If

Γ ⊢ A

Γ ⊢ B

is a derived rule, then for all Γ′ ⊇ Γ one has that

Γ′ ⊢ A

Γ′ ⊢ B

is also derived. Hence derived rules are closed under theory extension.
We will only be concerned with admissible and derived rules for theories of

type assignment.

14.1.10. Proposition. (i) Notice that the rules (∩E)

Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

are derived in λBCD
∩ .

(ii) The following rules are admissible in the intersection type assignment
system λBCD

∩ .

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N]) : A

(≤-L)
Γ, x:B ⊢M : A C ≤ B

Γ, x:C ⊢M : A

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ

Γ, x:(C→B) ⊢ (M [y := xN]) : A

(∩L)
Γ, x:A ⊢M : B

Γ, x:(A ∩C) ⊢M : B

14.1.11. Theorem. In (i) assume A 6= ⊤. Then

(i) Γ ⊢ x : A ⇔ ∃B ∈TT.[(x:B ∈Γ & B ≤ A].
(ii) Γ ⊢ (MN) : A ⇔ ∃B ∈TT.[Γ ⊢M : (B→A) & Γ ⊢ N : B].

(iii) Γ ⊢ λx.M : A ⇔ ∃n>0∃B1, . . . ,Bn, C1, . . . ,Cn ∈TT

∀i∈{1, . . . , n}.[Γ, x:Bi ⊢M : Ci &
(B1→C1) ∩ . . . ∩ (Bn→Cn) ≤ A].

(iv) Γ ⊢ λx.M : B→C ⇔ Γ, x:B ⊢M : C.

14 CHAPTER 14. AN EXEMPLARY SYSTEM 31.10.2006:581

14.1.12. Definition. LetR be a notion of reduction. We introduce the following
rules:

(R-red)
Γ ⊢M : A M →R N

Γ ⊢ N : A

(R-exp)
Γ ⊢M : A M ←R N

Γ ⊢ N : A

14.1.13. Proposition. The rules (β-red), (β-exp) and (η-red) are admissible
in λBCD

∩ . The rule (η-exp) is not.

The following result characterizes notions related to normalization in terms
of type assignment in the system λBCD

∩ . The notation ⊤ /∈ A means that ⊤
does not occur in A.

14.1.14. Theorem. Let M ∈Λø.

(i) M has a head normal form ⇔ ∃A∈TT.[A 6=BCD ⊤ & ⊢M : A].

(ii) M has a normal form ⇔ ∃A∈TT.[⊤ /∈ A & ⊢M : A].

LetM be a lambda term. For the notion ‘approximant ofM ’, see Barendregt
[1984]. These are roughly obtained from the Böhm tree BT(M) of M by cutting
of branches and replacing these by a new symbol ⊥. The set of approximants
of M is denoted by A(M). We have e.g. for the fixed-point combinator Y

A(Y) = {⊥} ∪ {λf.fn⊥ | n>0}.

Approximants are being typed by letting the typing rules be valid for ap-
proximants. For example one has

⊢ ⊥ : ⊤

⊢ λf.f⊥ : (⊤→A1)→A1

⊢ λf.f(f⊥) : (⊤→A1) ∩ (A1→A2)→A2

. . .

⊢ λf.fn⊥ : (⊤→A1) ∩ (A1→A2) ∩ . . . ∩ (An−1→An)→An

. . .

The set of types of a term M coincides with the union of the sets of types of
its approximants P ∈A(M). This will give an Approximation Theorem for the
filter model of next section.

14.1.15. Theorem. Γ ⊢M : A ⇔ ∃P ∈A(M).Γ ⊢ P : A.

For example since for all n λf.fn⊥ is an approximant of Y we have that all
types of the shape (⊤→A1) ∩ . . . ∩ (An−1→An)→An can be derived for Y.

Finally the question whether an intersection type is inhabited is undecidable.

14.1.16. Theorem. The set {A∈TT | ∃M ∈Λø ⊢M : A} is undecidable.

14.2. THE FILTER MODEL 15

14.2. The filter model

14.2.1. Definition. (i) A complete lattice (D,⊑) is a partial order which has
arbitrary least upper bounds (sup’s) (and hence has arbitrary inf’s).

(ii) A subset Z ⊆ D is directed if Z 6= ∅ and

∀x, y ∈Z∃z∈Z.x, y ⊑ z.

(iii) An element c∈D is compact (in the literature also called finite) if for
each directed Z ⊆ D one has

c ⊑ Z ⇒ ∃z ∈Z.c ⊑ z.

Let K(D) denote the set of compact elements of D.

(iv) A complete lattice is ω-algebraic if K(D) is countable, and for each d∈D,
the set K(d) = {c∈K(D) | c ⊑ d} is directed and d = K(d).

(v) Let (D,⊑) be an ω-algebraic complete lattice. The Scott topology on D
contains as open sets the U ⊆ D such that

(1) d∈U & d ⊑ e ⇒ e∈U ;

(2) if Z ⊆ D is directed then Z ∈U ⇒ ∃z ∈Z.z ∈U.

(vi) If D, E are ω-algebraic complete lattices, then [D→E] denotes the set of
continuous maps from D to E . This set can be ordered pointwise

f ⊑ g ⇔ ∀d∈D.f(d) ⊑ g(d)

and 〈[D→E],⊑〉 is again an ω-algebraic lattice.

(vii) The category ALG is the category whose objects are the ω-algebraic
complete lattices and whose morphisms are the (Scott) continuous functions.

14.2.2. Definition. (i) A filter over TT = TT
A
⊤
∞

∩ is a non-empty set X ⊆ TT such
that

(1) A∈X & A ≤ B ⇒ B ∈X;

(2) A,B ∈X ⇒ (A ∩B)∈X.

(ii) F denotes the set of filters over TT.

14.2.3. Definition. (i) If X ⊆ TT is non-empty, then the filter generated by X,
notation ↑X, is the least filter containing X. Note that

↑X = {A | ∃n≥1∃B1 . . . Bn ∈X.B1 ∩ . . . ∩Bn ≤ A}.

(ii) A principal filter is of the form ↑{A} for some A∈TT. We shall denote
this simply by ↑A. Note that ↑A = {B | A ≤ B}.

14.2.4. Proposition. (i) F = 〈F ,⊆〉 is an ω-algebraic complete lattice.

(ii) F has as bottom element ↑⊤ and as top element TT.

(iii) The compact elements of F are exactly the principal filters.

16 CHAPTER 14. AN EXEMPLARY SYSTEM 31.10.2006:581

14.2.5. Definition. Let D be an ω-algebraic lattice and let

F : D→[D→D]

G : [D→D]→D

be Scott continuous. D is called a reflexive via F,G if F ◦G = id[D→D].

A reflexive element of ALG is also a λ-model in which the term interpretation
is naturally defined as follows (see Barendregt [1984], Section 5.4).

14.2.6. Definition (Interpretation of terms). LetD be reflexive via F,G.
(i) A term environment in D is a map ρ : Var→D.
(ii) If ρ is a term environment and d∈D, then ρ(x := d) is the term

environment ρ′ defined by

ρ′(y) = ρ(y) if y 6≡ x;

ρ′(x) = d.

(iii) Given a term environment ρ, the interpretation [[]]ρ : Λ→D is defined as
follows.

[[x]]Dρ = ρ(x);

[[MN]]Dρ = F [[M]]Dρ [[N]]Dρ ;

[[λx.M]]Dρ = G(λλd∈D.[[M]]Dρ(x:=d)).

(iv) The statement M = N , for M,N untyped lambda terms, is true in D,
notation D |= M = N iff

∀ρ∈EnvD.[[M]]Dρ = [[N]]Dρ .

14.2.7. Theorem. Let D be reflexive via F,G. Then D is a λ-model, in particular
for all M,N ∈Λ

D |= (λx.M)N = M [x: = N].

14.2.8. Proposition. Define maps F : F→[F→F] and G : [F→F]→F by

F (X)(Y) = ↑{B | ∃A∈Y.(A→B)∈X}

G(f) = ↑{A→B | B ∈ f(↑A)}.

Then F is reflexive via F,G. Therefore F is a λ-model.

An important property of the λ-model F is that the meaning of a term is
the set of types which are deducible for it.

14.2.9. Theorem. For all λ-terms M one has

[[M]]Fρ = {A | ∃Γ |= ρ.Γ ⊢M : A},

where Γ |= ρ iff for all (x:B)∈Γ one has B ∈ ρ(x).

14.3. COMPLETENESS OF TYPE ASSIGNMENT 17

Lastly we notice that all continous functions are representable.

14.2.10. Theorem.

[F→F] = {f : F→F | f is representable},

where f ∈F→F is called representable iff for some X ∈F one has

∀Y ∈F .f(Y) = F (X)(Y).

14.3. Completeness of type assignment

14.3.1. Definition (Interpretation of types). Let D be reflexive via F,G and
hence a λ-model. For F (d)(e) we also write (as usual) d · e.

(i) A type environment in D is a map ξ : A∞→P(D).
(ii) For X,Y ∈P(D) define

X→Y = {d∈D | d ·X ⊆ Y } = {d∈D | ∀x∈X.d · x∈Y }.

(iii) Given a type environment ξ, the interpretation [[]]ξ : TT→P(D) is defined
as follows.

[[⊤]]Dξ = D;

[[α]]Dξ = ξ(α), for α∈A∞;

[[A→B]]Dξ = [[A]]Dξ →[[B]]Dξ ;

[[A ∩B]]Dξ = [[A]]Dξ ∩ [[B]]Dξ .

14.3.2. Definition (Satisfaction). (i) Given a λ-model D, a term environment
ρ and a type environment ξ one defines the following.

D, ρ, ξ |= M : A ⇔ [[M]]Dρ ∈ [[A]]Dξ .

D, ρ, ξ |= Γ ⇔ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii) Γ |= M : A ⇔ ∀D, ρ, ξ.[D, ρ, ξ |= Γ ⇒ ρ, ξ |= M : A].

14.3.3. Theorem (Soundness).

Γ ⊢M : A ⇒ Γ |= M : A.

14.3.4. Theorem (Completeness).

Γ |= M : A ⇒ Γ ⊢M : A.

The completeness proof is an application of the λ-model F , see Barendregt et
al. [1983].

