
Chapter 16

Basic Properties 31.10.2006:581

This Chapter is on type theories but, by Remark 15.4.7, applies as well to type
structures. That is, everywhere T , TT and TT ⊤ may be replaced by S, TS
and TS⊤, respectively.

Let T be a type theory. We derive properties of ⊢T , where ⊢T stands for
⊢T∩ or ⊢T

∩⊤ . Whenever we need to require extra properties about T , this will be
stated explicitly. Often T will be one of the theories from Figure 15.2.

The properties that will be studied are inversion theorems that will make it
possible to predict when statements

Γ ⊢T M : A (1)

are derivable, in particular from what other statments. This will be done in
Section 16.1. Building upon this, in Section 16.2 conditions are given when
type assignment statements remain valid after reducing or expanding the M
according to β or η-rules.

16.1. Inversion theorems

In the style of Coppo et al. [1984] and Alessi et al. [2003], [2005] we shall
isolate special properties which allow to ‘reverse’ some of the rules of the
type assignment system ⊢T∩ , thereby achieving some form of ‘generation’ and
‘inversion’ properties. These state necessary and sufficient conditions when an
assertion Γ ⊢T M : A holds depending on the form of M and A, see Theorems
16.1.1 and 16.1.10.

16.1.1. Theorem (Inversion Theorem I). If ⊢ is ⊢T∩ , then the following statements
hold unconditionally; if it is ⊢T

∩⊤, then they hold under the assumption that
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A 6= ⊤ in (i) and (ii).

(i) Γ ⊢ x : A ⇔ Γ(x) ≤ A.
(ii) Γ ⊢MN : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[C1 ∩ . . . ∩ Ck ≤ A & ∀i∈{1, . . . , k}
Γ ⊢M : Bi→Ci & Γ ⊢ N : Bi].

(iii) Γ ⊢ λx.M : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& ∀i∈{1, . . . , k}.Γ, x:Bi ⊢M : Ci].

Proof. We only treat (⇒) in (i)-(iii), as (⇐) is trivial. Let first ⊢ be ⊢T∩ .
(i) By induction on derivations. We reason according which axiom or rule

has been used in the last step. Only axiom (Ax), and rules (∩I), (≤) could have
been applied. In the first case one has Γ(x) ≡ A. In the other two cases the
induction hypothesis applies.

(ii) By induction on derivations. By assumption on A and the shape of the
term the last applied step has to be rule (→E), (≤) or (∩I). In the first case
the last applied rule is

(→E)
Γ ⊢M : D→A Γ ⊢ N : D

.
Γ ⊢MN : A

We can take k = 1 and C1 ≡ A and B1 ≡ D. In the second case the last rule
applied is

(≤)
Γ ⊢MN : B B ≤ A

Γ ⊢MN : A
and the induction hypothesis applies. In the last case A ≡ A1∩A2 and the last
applied rule is

(∩I)
Γ ⊢MN : A1 Γ ⊢MN : A2

Γ ⊢MN : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej , with 1 ≤ i ≤ k, 1 ≤ j ≤ k′,
such that

Γ ⊢M : Bi→Ci, Γ ⊢ N : Bi,
Γ ⊢M : Dj→Ej , Γ ⊢ N : Dj ,
C1 ∩ . . . ∩ Ck ≤ A1, E1 ∩ . . . ∩ Ek′ ≤ A2.

Hence we are done, as C1 ∩ . . . ∩ Ck ∩ E1 ∩ . . . ∩ Ek′ ≤ A.
(iii) Again by induction on derivations. We only treat the case A ≡ A1 ∩A2

and the last applied rule is (∩I):

(∩I)
Γ ⊢ λx.M : A1 Γ ⊢ λx.M : A2

Γ ⊢ λx.M : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej with 1 ≤ i ≤ k, 1 ≤ j ≤ k′
such that

Γ, x:Bi ⊢M : Ci, (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A1,
Γ, x:Dj ⊢M : Ej , (D1→E1) ∩ . . . ∩ (Dk′→Ek′) ≤ A2.

We are done, since (B1→C1)∩. . .∩(Bk→Ck)∩(D1→E1)∩. . .∩(Dk′→Ek′) ≤ A.

Now we prove (⇒) in (i)-(iii) for λT
∩⊤ .
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(i) The condition A 6= ⊤ implies that axiom (⊤ universal) cannot have been
used in the last step. Hence the reasoning above suffices.

(ii), (iii) The only interesting rule is (∩I). Condition A 6= ⊤ implies that we
cannot have A1 = A2 = ⊤. In case A1 6= ⊤ and A2 6= ⊤ the result follows as
above. The other cases are more easy.

Notice that as a consequence of this theorem the subformula property holds
for all λT

∩(⊤) .

16.1.2. Corollary (Subformula property). Assume Γ ⊢T
∩(⊤) M : A and let N

be a subterm of M . Then N is typable in an extension Γ+ = Γ, x1:B1, . . . , xn:Bn

in which also the variables {x1, . . . ,xn} = FV(N)−FV(M) get a type assigned.

Proof. If we have rule (⊤-universal) the statement is trivial. Otherwise if N
is a subterm of M , then we can write M ≡ C[N ]. The statement is proved by
induction on the structure of C[ ].

16.1.3. Proposition. We have for fresh y ( /∈dom(Γ)) the following.

∃B [Γ ⊢ N : B & Γ ⊢M [x: = N ] : A] ⇒
∃B [Γ ⊢ N : B & Γ, y:B ⊢M [x: = y] : A].

Proof. By induction on the structure of M .

Under some conditions (that will hold for many TTs, notably the ones
introduced in Section 15.1), the Inversion Theorem can be restated in a more
memorable form. This will be done in Theorem 16.1.10.

16.1.4. Definition. T is called β-sound if

∀k≥1∀A1, . . . ,Ak, B1, . . . ,Bk, C,D.

(A1→B1) ∩ . . . ∩ (Ak→Bk) ≤ (C→D) & D 6= ⊤ ⇒
C ≤ Ai1 ∩ . . . ∩Aip & Bi1 ∩ . . . ∩Bip ≤ D,
for some p ≥ 1 and 1 ≤ i1, . . . ,ip ≤ k.







(∗)

This definition immediately translates to type structures. The notion of β-
soundness is introduced to prove invertibility of the rule (→I), which is important
for the next section.

16.1.5. Lemma. Let T satisfy (⊤) and (⊤→). Suppose moreover that T is β-
sound. Then for all A,B

A→B = ⊤ ⇔ B = ⊤.

Proof. (⇒) ⊤→⊤ ≤ ⊤ = A→B, by assumption; hence ⊤ ≤ B (≤ ⊤), by
β-soundness. (⇐) By rule (⊤→).

Let T be β-sound. Then A→B ≤ A′→B′ ⇒ A′ ≤ A & B ≤ B′ if B′ is
not the top element (but not in general).

In 16.1.6-16.1.8 we will show that all T ’s of Figures 15.2 are β-sound.
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16.1.6. Remark. Note that in a TT every type A can be written uniquely,
apart from the order, as

A ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck) (+),

i.e. an intersection of atoms (αi ∈A) and arrow types.

For some of our T the shape (+) in Remark 16.1.6 can be simplified.

16.1.7. Definition. For the type theories T of Figure 15.2 we define for each
A∈TTT its canonical form, notation cf(A), as follows.

(i) If T ∈ {BCD,AO,Plotkin,Engeler,CDS,CDV,CD}, then

cf(A) ≡ A.

(ii) If T ∈ {Scott,Park,CDZ,HR,DHM,HL} then the definition is by induction
on A. For an atom α the canonical form cf(α) depends on the type theory in
question; moreover the mapping cf preserves →,∩ and ⊤.

System T A cf(A)

Scott ω ⊤→ω
Park ω ω→ω
CDZ,HL ω ϕ→ω

ϕ ω→ϕ
HR ω ϕ→ω

ϕ (ω→ω) ∩ (ϕ→ϕ)
DHM ϕ ω→ϕ

ω ⊤→ϕ
All systems ⊤ ⊤
except HL

All systems B→C B→C
All systems B ∩ C cf(B) ∩ cf(C)

16.1.8. Theorem. All theories T of Figure 15.2 are β-sound.

Proof. We prove the following stronger statement (induction loading). Let

A ≤ A′,

cf(A) ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck),

cf(A′) ≡ α′
1 ∩ . . . ∩ α′

n′ ∩ (B′
1→C ′

1) ∩ . . . ∩ (B′
k′→C ′

k′).

Then

∀j ∈{1, k′}.[Cj′ 6= ⊤ ⇒
∃p≥1∃i1, . . . ip ∈{1, k}.[B′

j ≤ Bi1 ∩ . . . ∩Bip & Ci1 ∩ . . . ∩ Cip ≤ C ′
j ]].

The proof of the statement is by induction on the generation of A ≤ A′. From
it β-soundness follows easily.
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16.1.9. Remark. From the Theorem it follows immediately that for the compatible
theories of Fig. 15.2 the corresponding type structures are β-sound.

16.1.10. Theorem (Inversion Theorem II). Of the following properties (i) holds
in general, (ii) provided that T is proper and A 6= ⊤ if ⊢ is ⊢T

∩⊤ and (iii)
provided that T is β-sound.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. The proof of each (⇐) is easy. So we only treat (⇒).

(i) If B 6= ⊤, then the conclusion follows from Theorem 16.1.1(i). If B = ⊤,
then the conclusion holds trivially.

(ii) Suppose Γ ⊢MN : A. Then by Theorem 16.1.1(ii) there are B1, . . . ,Bk,
C1, . . . ,Ck, with k ≥ 1, such that C1 ∩ . . . ∩ Ck ≤ A, Γ ⊢ M : Bi→Ci and
Γ ⊢ N : Bi for 1 ≤ i ≤ k. Hence Γ ⊢ N : B1 ∩ . . . ∩Bk and

Γ ⊢M : (B1→C1) ∩ . . . ∩ (Bk→Ck)
≤ (B1 ∩ . . . ∩Bk)→(C1 ∩ . . . ∩ Ck)
≤ (B1 ∩ . . . ∩Bk)→A,

by Lemma 15.1.13. So we can take B ≡ (B1 ∩ . . . ∩Bk).

(iii) Suppose Γ ⊢ (λx.M) : (B→C). Then Theorem 16.1.1(iii) applies and
we have for some k ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ B→C,
Γ, x:Bi ⊢M : Ci for all i.

If C = ⊤, then the assertion holds trivially, so let C 6= ⊤. Then by β-soundness
there are 1 ≤ i1, . . . ,ip ≤ k, p ≥ 1 such that

B ≤ Bi1 ∩ . . . ∩Bip ,

Ci1 ∩ . . . ∩ Cip ≤ C.

Applying (≤-L) we get

Γ, x:B ⊢M : Cij , 1 ≤ j ≤ p,
Γ, x:B ⊢M : Ci1 ∩ . . . ∩ Cip ≤ C.

We give a simple example which shows that in general rule (→E) cannot be
reversed, i.e. that if Γ ⊢MN : B, then it is not always true that there exists A
such that Γ ⊢M : A→B and Γ ⊢ N : A.

16.1.11. Example. Let T = Engeler, one of the intersection type theories of
Figure 15.2. Let Γ = {x:(ϕ0→ϕ1) ∩ (ϕ2→ϕ3), y:(ϕ0 ∩ ϕ2)}. Then one has
Γ ⊢T

∩⊤ xy : ϕ1 ∩ ϕ3. Nevertheless, it is not possible to find a type B such that

Γ ⊢T
∩⊤ x : B→(ϕ1 ∩ ϕ3) and Γ ⊢T

∩⊤ y : B. See Exercise ??.



44 CHAPTER 16. BASIC PROPERTIES 31.10.2006:581

16.1.12. Remark. In general

Γ ⊢T (λx.M) : A 6⇒ ∃B,C.A = (B→C) & Γ, x:B ⊢T M : C.

A counterexample is ⊢BCD I : (α1→α1) ∩ (α2→α2), with α1, α2 atomic.

16.1.13. Proposition. For T ∈ {Scott, Park, CDZ, HR, DHM, BCD, AO} the
properties (i), (ii) and (iii) of Theorem 16.1.10 hold for ⊢T

∩⊤, provided that in
(ii) A 6= ⊤ for T = AO. For T ∈ {HL,CDV} the properties hold unconditionally
for ⊢T∩ .

Proof. For these T Theorem 16.1.10 applies since they are proper and β-sound
(by Theorem 16.1.8). Moreover, by axiom (→⊤) we have Γ ⊢T

∩⊤ M : ⊤ → ⊤ for
all Γ,M , hence we do not need to assumeA 6= ⊤ for T ∈ {Scott, Park, CDZ, HR,
DHM, BCD}.

16.2. Subject reduction and expansion

Various subject reduction and expansion properties are proved, for the classical
β, βI and η notions of reduction. Other results can be found in Alessi et al.
[2003], Alessi et al. [2006]. We consider the following rules.

(R-red)
M →R N Γ ⊢M : A

Γ ⊢ N : A

(R-exp)
MR← N Γ ⊢M : A

Γ ⊢ N : A

where R is a notion of reduction, notably β-, βI, or η-reduction. If one of these
rules holds in λT

∩(⊤) , we write λT
∩(⊤) |= (R-{exp, red}), respectively. If both hold

we write λT
∩(⊤) |= (R-cnv). These properties will be crucial in Chapters 17, 18

and 19, where we will discuss (untyped) λ-models induced by these systems.
Recall that (λx.M)N is a βI-redex if x∈FV(M), Curry and Feys [1958].

β-conversion

We first investigate when λT
∩(⊤) |= (β(I)-red).

16.2.1. Proposition. (i) λT
∩(⊤) |= (βI-red) ⇔

[Γ ⊢T (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T M : A].

(ii) λT
∩(⊤) |= (β-red) ⇔ [Γ ⊢T (λx.M) : (B→A) ⇒ Γ, x:B ⊢T M : A].

Proof. (i) (⇒) Assume Γ ⊢ λx.M : B→A & x∈FV(M), which implies
Γ, y:B ⊢ (λx.M)y : A, by weakening and rule (→E) for a fresh y. Now rule
(βI-red) gives us Γ, y:B ⊢M [x:=y] : A. Hence Γ, x:B ⊢M : A.

(⇐) Suppose Γ ⊢ (λx.M)N : A & x∈FV(M), in order to show that
Γ ⊢ M [x:=N ] : A. We may assume A 6= ⊤. Then Theorem 16.1.1(ii)
implies Γ ⊢ λx.M : Bi→Ci, Γ ⊢ N : Bi and C1 ∩ . . . ∩ Ck ≤ A, for some
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B1, . . . ,Bk, C1, . . . ,Ck. By assumption Γ, x:Bi ⊢ M : Ci. Hence by rule (cut),
Proposition 15.2.8, one has Γ ⊢ M [x:=N ] : Ci. Therefore Γ ⊢ M [x:=N ] : A,
using rules (∩I) and (≤).

(ii) Similarly.

16.2.2. Corollary. Let T be β-sound. Then λT
∩(⊤) |= (β-red).

Proof. Using Theorem 16.1.10(iii).

16.2.3. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-red).

(ii) Let T ∈ {HL,CD,CDV}. Then λT∩ |= (β-red).

Proof. By Corollary 16.2.2 and Theorem 16.1.8.

In Definition 18.2.22 we will introduce a type theory that is not β-sound,
but nevertheless induces a type assignment system satisfying (β-red).
Now we investigate when λT

∩(⊤) |= (β-exp). As a warm-up, suppose that Γ ⊢
M [x:=N ] : A. Then we would like to conclude that N has a type, as it seems to
be a subformula, and therefore Γ ⊢ (λx.M)N : A. There are two problems: N
may occur several times in M [x:=N ], so that it has (should have) in fact several
types. In the system λ→ this problem causes the failure of rule (β-exp). But in
the intersection type theories one has N : B1 ∩ . . . ∩ Bk if N : B1, . . . , N : Bk.
Therefore (λx.M)N has a type if M [x:=N ] has one. The second problem arises
if N does not occur at all in M [x:=N ], i.e. if the redex is a λK-redex. We would
like to assign as type to N the intersection over an empty sequence, i.e. the top
⊤. This makes (β-exp) invalid in λT∩ , but valid in systems λT

∩⊤ .

16.2.4. Proposition. (i) Suppose Γ ⊢T M [x:=N ] : A. Then

Γ ⊢T (λx.M)N : A ⇔ N is typable in context Γ.

(ii) λT
∩(⊤) |= (β-exp) ⇔ ∀Γ,M,N,A

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

(iii) λT
∩(⊤) |= (βI-exp) ⇔ ∀Γ,M,N,A with x∈FV(M)

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

Proof. (i) (⇒) By Theorem 16.1.1(ii). (⇐) Let Γ ⊢ M [x:=N ] : A and
suppose N is typable in context Γ. By proposition 16.1.3 for some B and a
fresh y one has Γ ⊢ N : B & Γ, y:B ⊢ M [x: = y] : A. Then Γ ⊢ λx.M : (B→A)
and hence Γ ⊢ (λx.M)N : A.

(ii) (⇒) Assume Γ ⊢ M [x:=N ] : A. Then Γ ⊢ (λx.M)N : A, by (β-exp),
hence by (i) we are done. (⇐) Assume Γ ⊢ L′ : A, with L→β L

′. By induction
on the generation of L→β L

′ we get Γ ⊢ L : A from (i) and Theorem 16.1.1.
(iii) Similar to (ii).
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16.2.5. Corollary. (i) λT
∩⊤ |= (β-exp).

(ii) λT∩ |= (βI-exp).

Proof. (i) Trivial, since every term has type ⊤.
(ii) By the subformula property (Corollary 16.1.2).

Now we can harvest results towards closure under β-conversion.

16.2.6. Theorem. Let T ∈TT be β-sound.
(i) Let T ∈TT ⊤. Then λT

∩⊤ |= (β-cnv).

(ii) λT∩ |= (βI-cnv).

Proof. (i) By Corollaries 16.2.2 and 16.2.5(i).
(ii) By Corollaries 16.2.2 and 16.2.5(ii).

16.2.7. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-cnv).

(ii) Let T ∈ {HL,CDV,CD}. Then λT∩ |= (βI-cnv).

Proof. (i) By Theorem 16.2.6(i).
(ii) By Theorem 16.2.6(ii).

η-conversion

First we give necessary and sufficient conditions for a system λT
∩(⊤) to satisfy

the rule (η-red).

16.2.8. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-red) ⇔ T is natural.

(ii) Let T ∈TT. Then

λT∩ |= (η-red) ⇔ T is proper.

Proof. (i) (⇒) Assume λT
∩⊤ |= (η-red) towards (→∩), (→) and (⊤→).

As to (→∩), one has

x:(A→B) ∩ (A→C), y:A ⊢ xy : B ∩ C,

hence by (→I) it follows that x:(A→B) ∩ (A→C) ⊢ λy.xy : A→(B ∩ C).
Therefore x:(A→B) ∩ (A→C) ⊢ x : A→(B ∩ C), by (η-red). By Theorem
16.1.10(i) one can conclude (A→B) ∩ (A→C) ≤ A→(B ∩ C).

As to (→), suppose that A ≤ B and C ≤ D, in order to show B→C ≤
A→D. One has x:B→C, y:A ⊢ xy : C ≤ D, so x:B→C ⊢ λy.xy : A→D.
Therefore by (η-red) it follows that x:B→C ⊢ x : A→D and we are done as
before.

As to ⊤ ≤ ⊤→⊤, notice that x:⊤, y:⊤ ⊢ xy : ⊤, so we have x:⊤ ⊢ λy.xy :
⊤→⊤. Therefore x:⊤ ⊢ x : ⊤→⊤ and again we are done.
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(⇐) Let T be natural. Assume that Γ ⊢ λx.Mx : A, with x /∈ FV(M), in
order to show Γ ⊢M : A. If A = ⊤, we are done. Otherwise,

Γ ⊢ λx.Mx : A ⇒ Γ, x:Bi ⊢Mx : Ci, 1 ≤ i ≤ k, &

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A,
for some B1, . . . ,Bk, C1, . . . ,Ck,

by Theorem 16.1.1(iii). By Lemma 16.1.5 we omit the i such that Ci = ⊤. There
is at least one Ci 6= ⊤, since otherwise A ≥ (B1→⊤)∩ . . .∩ (Bk→⊤) = ⊤, again
by Lemma 16.1.5, and we would have A = ⊤. Hence by Theorem 16.1.10(ii)

⇒ Γ, x:Bi ⊢M : Di→Ci and

Γ, x:Bi ⊢ x : Di, for some D1, . . . ,Dk,

⇒ Bi ≤ Di, by Theorem 16.1.10(i),

⇒ Γ ⊢M : (Bi→Ci), by (≤-L) and (→),

⇒ Γ ⊢M : ((B1→C1) ∩ . . . ∩ (Bk→Ck)) ≤ A.

(ii) Similarly, but simpler.

16.2.9. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD}.
Then λT

∩⊤ |= (η-red).

(ii) Let T ∈ {HL,CDV}. Then λT∩ |= (η-red).

In order to characterize the admissibility of rule (η-exp), we need to introduce
a further condition on type theories. This condition is necessary and sufficient
to derive from the basis x:A the same type A for λy.xy, as we will show in the
proof of Theorem 16.2.11.

16.2.10. Definition. Let T ∈TT.

(i) T is called η-sound iff for all A there are k ≥ 1, m1, . . . ,mk ≥ 1 and
B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with
(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

(ii) Let T ∈TT ⊤. Then T is called η⊤-sound iff for all A 6= ⊤ at least one
of the following two conditions holds.

(1) There are types B1, . . . ,Bn with (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A;
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(2) There are k ≥ 1, m1, . . . ,mk ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with

(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩
∩ (Bk+1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

This definition immediately translates to type structures. The validity of η-
expansion can be given as follows.

16.2.11. Theorem (Characterization of η-exp).

(i) λT∩ |= (η-exp) ⇔ T is η-sound.

(ii) λT
∩⊤ |= (η-exp) ⇔ T is η⊤-sound.

Proof. (i) (⇒) Assume λT∩ |= (η-exp). As x:A ⊢ x : A, by assumption we
have x:A ⊢ λy.xy : A. From Theorem 16.1.1(iii) it follows that x:A, y:Bi ⊢ xy :
Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. By Theorem 16.1.1(ii)
for each i there exist Dij , Eij , such that for each j one has x:A, y:Bi ⊢ x :
(Dij→Eij), x:A, y:Bi ⊢ y : Dij and Ei1 ∩ . . . ∩ Eimi

≤ Ci. Hence by Theorem
16.1.1(i) we have A ≤ (Dij→Eij) and Bi ≤ Dij for all i and j. Therefore we
obtain the condition of 16.2.10(i).

(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
By assumption A satisfies the condition of Definition 16.2.10(i).

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

By rule (≤) for all i, j we have Γ ⊢ M : Dij→Eij and so Γ, x:Dij ⊢ Mx : Eij

by rule (→E). From (≤ L), (∩I) and (≤) we get Γ, x:Bi ⊢ Mx : Ci and this
implies Γ ⊢ λx.Mx : Bi→Ci, using rule (→I). So we can conclude by (∩I) and
(≤) that Γ ⊢ λx.Mx : A.

(ii) The proof is nearly the same as for (i). (⇒) Again we get x:A, y:Bi ⊢
xy : Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. If all Ci = ⊤, then
A satisfies the first condition of Definition 16.2.10(ii). Otherwise, consider the
i such that Ci 6= ⊤ and reason as in the proof of (⇒) for (i).
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(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
If A satisfies the first condition of Definition 16.2.10(ii), that is (B1→⊤) ∩
. . . ∩ (Bn→⊤) ≤ A, then by rule (⊤) it follows that Γ, x:Bi ⊢ Mx : ⊤, hence
Γ ⊢ λx.Mx : (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A. Now let A satisfy the second
condition. Then the proof is similar to that for (⇐) in (i).

For most intersection type theories of interest the condition of η(⊤)-soundness
is deduced from the following proposition.

16.2.12. Proposition. Let T ∈TT with atoms A be proper.

(i) T is η-sound ⇔ ∀A∈A∃B1, . . . ,Bk, C1, . . . ,Ck ∃n ≥ 1
A = (B1→C1) ∩ . . . ∩ (Bk→Ck).

(ii) Let T ∈TT ⊤. Then

T is η⊤-sound ⇔ ∀A∈A[⊤→⊤ ≤ A ∨ ∃B1, . . . ,Bk, C1, . . . ,Ck

∃k≥1 [(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩ (⊤→⊤) ≤ A
& A ≤ (B1→C1) ∩ . . . ∩ (Bk→Ck)]].

(iii) Let T ∈NTT⊤. Then

T is η⊤-sound ⇔ T is η-sound.

Proof. (i) (⇒) Suppose T is η-sound. Let A∈A. Then A satisfies the
condition of Definition 16.2.10(i), for some B1, . . . ,Bk, C1, . . . ,Ck,
D11, . . . , D1m1 , . . . , Dk1, . . . , Dkm1 , E11, . . . , E1m1 , . . . , Ek1, . . . , Ekmk

. By (→∩)
and (→), using Proposition 15.1.13, it follows that

A ≤ (D11 ∩ . . . ∩D1m1→E11 ∩ . . . ∩ E1m1) ∩ . . . ∩
(Dk1 ∩ . . . ∩Dkmk

→Ek1 ∩ . . . ∩ Ekmk
)

≤ (B1→C1) ∩ . . . ∩ (Bk→Ck),

hence A =T (B1→C1) ∩ . . . ∩ (Bk→Ck).
(⇐) By induction on the generation of A one can show that A satisfies the

condition of η-soundness. The case A1→A2 is trivial and the case A ≡ A1 ∩A2

follows by the induction hypothesis and Rule (mon).

(ii) Similarly. Note that (⊤→⊤) ≤ (B→⊤) for all B.

(iii) Immediately by (ii) using rule (⊤→).

16.2.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then T
is η⊤-sound.

(ii) HL is η-sound.

Proof. Easy. For AO in (i) one applies (ii) of the Proposition.

16.2.14. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then

λT∩⊤ |= (η-exp).
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(ii) Let T = HL, then
λT∩ |= (η-exp).

Proof. By the previous Corollary and Theorem 16.2.11.

Exercise 16.3.15 shows that the remaining systems of Figure 15.2 do not
satisfy (η-exp).

Now we can harvest results towards closure under η-conversion.

T β-red βI-red β-exp βI-exp η-red η-exp

Scott
√ √ √ √ √ √

Park
√ √ √ √ √ √

CDZ
√ √ √ √ √ √

HR
√ √ √ √ √ √

DHM
√ √ √ √ √ √

BCD
√ √ √ √ √

.

AO
√ √ √ √

.
√

Plotkin
√ √ √ √

. .

Engeler
√ √ √ √

. .

CDS
√ √ √ √

. .

HL
√ √

.
√ √ √

CDV
√ √

.
√ √

.

CD
√ √

.
√

. .

Figure 16.1: Type theories versus reduction and expansion

16.2.15. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-cnv) ⇔ T is natural and η⊤-sound.

(ii) Let T ∈TT. Then

λT∩ |= (η-cnv) ⇔ T is proper and η-sound.

Proof. (i) By Theorems 16.2.11(ii) and 16.2.8(i).
(ii) By Theorems 16.2.11(i) and 16.2.8(ii).

16.2.16. Theorem. (i) For T ∈ {Scott,Park,CDZ,HR,DHM} one has

λT∩⊤ |= (η-cnv).

(ii) For T = HL one has

λT∩ |= (η-cnv).

Proof. (i) By Corollaries 16.2.9(i) and 16.2.14(i).
(ii) By Corollaries 16.2.9(ii) and 16.2.14(ii).

Figure 16.1 summarises the results of this section and of the exercises in the
following section for the type theories of Figure 15.2. The symbol ‘

√
’ stands

for “the property holds” and ‘.’ for “the property fails”.
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16.3. Exercises

16.3.1. Show that for each number n∈N there is a type An ∈TTCD such that for
the Church numerals cn one has Γ ⊢CD

∩ cn+1 : An, but Γ 0
CD
∩ cn : An.

16.3.2. Show that S(KI)(II) and (λx.xxx)S are typable in ⊢CD
∩ .

16.3.3. Derive ⊢CDZ
∩⊤ (λx.xxx)S : ϕ and y:ω, z:ω ⊢CDZ

∩⊤ (λx.xxx)(Syz) : ω.

16.3.4. Find the relation between the following three types w.r.t. ≤CDZ.

(ω→(ϕ→ϕ)→ω) ∩ ((ϕ→ϕ)→ϕ), (ω→ω)→ω and ϕ→(ω→ω)→ϕ.

16.3.5. Using the Inversion Theorems show the following.

(i) 6⊢CD
∩ 1 : α→α, where α is any constant.

(ii) 6⊢HL
∩ K : ω.

(iii) 6⊢Scott
∩⊤ I : ω.

(iv) 6⊢Plotkin
∩⊤ Ix : ω.

16.3.6. We say that M and M ′ have the same types in Γ, notation M ∼Γ M
′ if

∀A [Γ ⊢M : A ⇔ Γ ⊢M ′ : A].

Prove that M ∼Γ M
′ ⇒ M ~N ∼Γ M

′ ~N .

16.3.7. Show that T = Plotkin is β-sound by checking that it satisfies the
following stronger condition.

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.8. Show that T = Engeler is β-sound by checking that it satisfies the
following stronger condition:

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D&D 6= ⊤ ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.9. Let A
T = {⊤, ω} and T be defined by the axioms and rules of the

theories Scott and Park together. Show that T is not β-sound [Hint:
show that ⊤ 6= ω].

16.3.10. Prove that Theorem 16.1.10(ii) still holds if the condition of properness
is replaced by the following two conditions

A ≤T B ⇒ C→A ≤T C→B

(A→B) ∩ (C→D) ≤T A ∩ C→B ∩D.
16.3.11. Show that the following condition

A→ B =T ⊤ → ⊤ ⇒ B =T ⊤

is necessary for the admissibility of rule (β-red) in λT∩ . [Hint: Use
Proposition 16.2.1(ii).]
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16.3.12. Remember that the systems λK∩ and λK
⊤

∩⊤ are defined in Exercise 15.5.2.

(i) Show that rules (β-red) and (βI-exp) are admissible in λK∩, while
(β-exp) is not admissible.

(ii) Show that rules (β-red) and (β-exp) are admissible in λK
⊤

∩⊤ .

16.3.13. (i) Show that for T ∈ {AO,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-red).

(ii) Show that for T = CD one has

λT∩ 6|= (η-red).

16.3.14. Verify the following.

(i) η-soundness implies η⊤-soundness.

(ii) Let T ∈ {BCD,Plotkin,Engeler,CDS}. Then T is not η⊤-sound.

(iii) Let T ∈ {AO,CDV,CD}. Then T is not η-sound.

Notice that AO is η⊤-sound (Corollary 16.2.13). Comment: it is very
interesting that AO is η⊤-sound but not η-sound, why do you propose
to erase it?

16.3.15. (i) Show that for T ∈ {BCD,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-exp).

(ii) Show that for T ∈ {CDV,CD} one has

λT∩ 6|= (η-exp).

16.3.16. Show that rules (η-red) and (η-exp) are not admissible in the systems

λK∩ and λK
⊤

∩⊤ as defined in Exercises 15.5.2.

16.3.17. Let ⊢ denote derivability in the system obtained from the system λCDV
∩

by replacing rule (≤) by the rules (∩E), see Definition 15.2.5, and adding
the rule

(Rη)
Γ ⊢ λx.Mx : A

Γ ⊢M : A
if x /∈ FV(M).

Show that Γ ⊢CDV
∩ M : A ⇔ Γ ⊢M : A.

16.3.18. (Barendregt et al. [1983]) Let ⊢ denote derivability in the system
obtained from λBCD

∩⊤ by replacing rule (≤) by the rules (∩E) and adding
(Rη) as defined in Exercise 16.3.17. Verify that

Γ ⊢BCD
∩⊤ M : A ⇔ Γ ⊢M : A.

16.3.19. Let ∆ be a basis that is allowed to be infinite. We define ∆ ⊢ M : A
iff there exists a finite basis Γ ⊆ ∆ such that Γ ⊢M : A.

(i) Show that all the typability rules are derivable except possibly for
(→I).
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(ii) Suppose dom(∆) is the set of all the variables. Show that the rule
(→I) is derivable if it is reformulated as

∆x, x:A ⊢M : B ⇒ ∆ ⊢ (λx.M) : (A→ B),

with ∆x the result of removing any x:C from ∆.
(iii) Reformulate and prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1

and 16.1.10 for infinite bases.

16.3.20. A multi-basis Γ is a set of declarations, in which the requirement that

x:A, y:B ∈Γ ⇒ x ≡ y ⇒ A ≡ B

is dropped. Let ∆ be a (possibly infinite) multi-basis. We define ∆ ⊢
M : A iff there exists a singled (only one declaration per variable) basis
Γ ⊆ ∆ such that Γ ⊢M : A.
(i) Show that x : α1, x : α2 6⊢CD x : α1 ∩ α2.
(ii) Show that x : α1 → α2, x : α1 6⊢CD xx : α2.
(iii) Consider ∆ = {x : α1 ∩ α2, x : α1};

A = α2;
B = (α1 → α2 → α3)→ α3;
M = λy.yxx.

Show that ∆, x : A ⊢CD M : B, but ∆ 6⊢CD (λx.M) : (A→ B).
(iv) We say that a multi-basis is closed under ∩ if for all x∈dom(∆) the

set X = ∆(x) is closed under ∩, i.e. A,B ∈X ⇒ A ∩B ∈X , up to
equality of types in the TT under consideration.
Show that all the typability rules of Figures 15.4 and 15.6, except
for (→I), are derivable for (possibly infinite) multi-bases that are
closed under ∩.

(v) Let ∆ be closed under ∩. We define

∆[x := X] = {y : ∆(y) | y 6= x} ∪ {x : A | A∈X}.

Prove that the following reformulation of (→I) using principal filters
is derivable

∆[x :=↑ B] ⊢ N : C

∆ ⊢ λx.N : B → C
.

(vi) Prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1 and 16.1.10 for
(possible infinite) multi-bases reformulating the statements when-
ever it is necessary.

(vii)Prove that if ∆(x)’s are filters then {A | ∆ ⊢ x : A} = ∆(x).

16.3.21. Show that the inclusions suggested in 15.3 are strict.


