Chapter 15

The Systems )\% and )\gT

Intersection types are syntactic objects forming a free algebra T, which is
generated from a set of atoms A, using the operators — and N. Postulating
axioms and rules an intersection type theory results, which characterizes a pre-
order <7 on T with N as set intersection, giving for two elements a greatest
lower bound (glb). The class of these theories is abbreviated! as TT.

Taking into account the intuitive meaning of — as function space constructor
one usually requires that the resulting equivalence relation =7 is a congruence.
Then we speak of a compatible type theory, having a corresponding type structure

(8,<,M,—) =(T/=7,<,N,—).

The collection of type structures is denoted by TS. Each type structure can
be seen as coming from a compatible type theory and compatible type theories
and type structures are basically the same. In the present Part III of this book
both these syntactic and semantic aspects will be exploited.

TT T is a subset of TT, the set of top type theories, where the set of atoms
A has a top element T. Similarly a top intersection type structure TS is of
the form (S, <,N,—, T).

The various type theories (and type structures) are introduced together in
order to give reasonably uniform proofs of their properties as well of those of
the corresponding type assignment systems and filter models.

Given a (top) type theory 7, one can define a corresponding type assignment
system. These type assignment systems will be studied extensively in later
chapters. We also introduce so-called filters, sets of types closed under intersection
N and preorder <. These play an important role in Chapter 17 to establish
equivalences of categories and in Chapter 18 to build A-models.

In Section 15.1 we define the notion of type theory and introduce 13 specific
examples, including basic lemmas for these. In Section 15.2 the type assignment
systems are defined. In Section 15.3 we discuss intersection type structures and
introduce specific categories of lattices and type structures to accommodate
these. Finally in Section 15.4 the filters are defined.

1Since all type theories in Part III of this book are using the intersection operator, we keep
this implicit and often simply speak about (top) type theories, leaving ‘intersection’ implicit.
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15.1. Type theories
As in Chapter 14 we will use as syntactic types T = 'IT‘% defined by
T=A|T->T|TNT

as abstract syntax. This time we will use various sets of atoms A. The letters
«, 3,7,... range over arbitrary atoms. If we need special atoms for a special
purpose, like for example T,w, ¢, then we can identify them with some of the

P, e, T =g, w =11, o =12

15.1.1. DEFINITION. (i) An intersection type theory over a set of type atoms A
is a set of judgements 7 of the form A < B (to be read: A is a subtype of B),
with A, B € 'IT‘%, satisfying the following axioms and rules.

(refl) A<A

(incly) ANB<A
(inclg) ANB<B

C<A C<B
(&lb) C<ANB
trans) ASB B<C
rans A S C

This means that e.g. (A< A)e7T and (A< B),(B<(C)eT = (A<(C)eT,
for all A, B,C.

(ii) A top intersection type theory is an intersection type theory with an
element T € T for which one can derive

(T) ALZT

(iii) The notion ‘(top) intersection type theory’ will be abbreviated as ‘(top)
type theory’, as the ‘intersection’ part is default.

(iv) TT stands for the set of type theories and TT " for that of top type
theories.

(v) If 7 € TT(T) over A, then we also write TZ for TA.

In this and the next section 7 ranges over elements of TT(T). Most of them
have some extra axioms or rules, the above set being the minimum requirement.
For example the theory BCD over A = Al defined in Chapter 14 is a TT T
and has the extra axioms (T—) and (—N) and rule (—).

15.1.2. NOTATION. Let 7 € TT. We write the following.
(i) A<rBortr A< Bfor (A< B)eT.
(ii) A=7 Bfor A<y B<sy A.
(iii) A<y Bfor A< B & A+#7 B.
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(iv) If there is little danger of confusion and 7 is clear from the context, then
we will write <, =, < for respectively <7 ,=7, <7.

(v) We write A = B for syntactic identity. E.g. AN B = AN B, but
ANB#BNA.

15.1.3. LEMMA. For any 7 one has AN B =7 BN A.
PROOF. By (incly), (inclg) and (glb). m

15.1.4. DEFINITION. 7 is called compatible iff the following rule holds.

 A—A B-B
) Gem=ew)

This means A =7 A" & B =7 B’ = (A—B) =7 (A'—B’). One way to insure
this is to adopt (—~) as rule determining 7.

15.1.5. REMARKS. (i) Let 7 be compatible. Then by Lemma 15.1.3 one has
(ANB)—C = (BNA)—C.

(ii) The rule (glb) implies that the following rule is admissible.

A<A B<PB
ANB<ANB

(mon)

A T €TT can be seen as a structure with a pre-order
T =(T,<,N,—).
This means that < is reflexive and transitive, but not necessarily anti-symmetric
A<rB& B<r A # A=r B.

If 7 is compatible one can go over to equivalence classes and obtain a type
structure

T/:T = (Tr/:']',ﬁ,ﬂ,—>>.

If moreover 7 € TT T, then 7 /=7 has top [T]. In this structure A N B is
inf{A, B}, the greatest lower bound of A and B. If 7 is also compatible, then
— can be properly defined on the equivalence classes. This will be done in
Section 15.3.
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Specific intersection type theories

Now we will construct several, in total thirteen, type theories that will play an
important role in later chapters, by introducing the following axiom schemes,
rule schemes and axioms. Only two of them are non-compatible, so we obtain
eleven type structures.

In the following ¢,w and T are distinct atoms differing from those in A..

15.1.6. NOTATION. We introduce names for axiom(scheme)s and rule(scheme)s
in Figure 15.1. Using these names a list of well-studied type structures can
be specified in Figure 15.2 as the set of judgements axiomatized by mentioned
rule(scheme)s and axiom(scheme)s.

Axioms

(Wscott) (Tow) =w
(Wpark) (w—w) =w
(wep) w< g
(p—w) (p—w) =w
(w—) (w—p) =
(1) (p—=p) N(wow) = ¢

Axiom schemes
(T) A<T
(T—) T<(4-T)
(Thazy) (A=B) < (T—T)
(—nN) (A—=B)N (A—-C) < A—BnC
(—N7) (A—-B)N(A—-C)=A—-BnC

Rule schemes

A<A B<LB

=) (A—B) < (A'—DB")
_ A=A B=DB

(=7) (A—B) = (A'—DB")

Figure 15.1: Possible Axioms and Rules concerning <.

15.1.7. DEFINITION. In Figure 15.2 a collection of TTs is defined. For each
name 7 a set of atoms A7 and a set of rules and axiom(scheme)s are given.
The type theory 7 is the smallest set of judgements of the form A < B
with A, BeT? = 'IT%T which is closed under the axiom(scheme)s and the
rule(scheme)s of Definition 15.1.1 and the corresponding ones in Figure 15.2.

15.1.8. REMARK. (i) Note that CDS and CD are non-compatible, while the
other eleven are compatible.
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T AT Rules | Axiom Schemes Axioms

Scott | {T,w} | (=) | (=N),(T),(T—=) | (wscott)

Park {T7 w} (_>) (—>ﬂ), (T)7 (T_>) (wpark)

CDZ | {T,p,w} | (=) | (=N),(T),(T—=) | (we), (p—w), (w—¢)
HR {To,wh | (=) | (=N),(T),(T=) | (we), (p—w), (1)
DHM {Tv ©s w} (—>) (—>ﬂ), (T)’ (T—>) (wgo), (w—><,0), (WSCott)
BCD | AL (=) | (=n), (M), (T—)

AO {T} (=) | (=n),(T) (Tazy)

Plotkin | {T,w} (—=) ] (T) —

Engeler | AL (=) | (=n7),(T),(T—) | =

CDS |[AL — (T) _

HL {o.w} | (=) [(=N) (W), (w—e), (p—w)
CDhV A (=) | (—=n) -

CD Ao — — _

Figure 15.2: Various type theories

(ii) The first ten type theories of Figure 15.2 belong clearly to TT . In
Lemma 15.1.14(i) we will see that also HL € TT " with ¢ as top. Instead CDS
and CD do not belong to TT ", as shown in Lemma 15.1.14(ii) and (iii).

In this list the given order is logical, rather than historical, and some of
the references define the models directly, others deal with the corresponding
filter models (see Sections 17 and 18): Scott [1972], Park [1976], Coppo et
al. [1987], Honsell and Ronchi Della Rocca [1992], Dezani-Ciancaglini et al.
[2005], Barendregt et al. [1983], Abramsky and Ong [1993], Plotkin [1993],
Engeler [1981], Coppo et al. [1979], Honsell and Lenisa [1999], Coppo et al.
[1981], Coppo and Dezani-Ciancaglini [1980]. These theories are denoted by
names (respectively acronymes) of the author(s) who have first considered the
A-model induced by such a theory.

The expressive power of intersection types is remarkable. This will become
apparent when we will use them as a tool for characterizing properties of A-terms
(see Sections 19.2 and 18.3), and for describing different A-models (see Section
18). Much of this expressive power comes from the fact that they are endowed
with a preorder relation, <, which induces, on the set of types modulo =, the
structure of a meet semi-lattice with respect to N. This appears natural when
we think of types as subsets of a domain of discourse D, which is endowed with a
(partial) application - : D x D— D), and interpret N as set-theoretic intersection,
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< as set inclusion, and give — the realizability interpretation.

[A] € D
A<B « [A]C[B]
[AnB] = [A]ln[B]
[A—B] = [A]=[B]l={deD|d-[A] < [B]}.

This semantics, due to Scott, will be studied in Section 19.1.

The type T—TT is the set of functions which applied to an arbitrary element
return again an arbitrary element. In that case axiom scheme (T—) expresses
the fact that all the objects in our domain of discourse are total functions, i.e.
that T is equal to A—T, hence A—T = B—T for all A, B (Barendregt et
al. [1983]). If now we want to capture only those terms which truly represent
functions, as we do for example in the lazy A-calculus, we cannot assume axiom
(T—). Onestill may postulate the weaker property (Tla,y) to make all functions
total (Abramsky and Ong [1993]). It simply says that an element which is a
function, because it maps A into B, maps also the whole universe into itself.

In Figure 15.3 below consider I—gT for the ten type theories above the
horizontal line and l—% for the other three. Define 77 C 75 as

VO,M,A. [TFA M : A = TR M : Al

If this is the case we have connected 77 with an edge towards the higher
positioned 75. In Exercise 16.3.21 we will show that the edges denote strict
inclusions.

DHM
CDZ HR Scott Park BCD
Plotkin CDS
HL \JDV
|

CD

Figure 15.3: Inclusion among some intersection type theories.

The intended interpretation of arrow types also motivates axiom (—n),
which implies that if a function maps A into B, and the same function maps
also A into C, then, actually, it maps the whole A into the intersection between
B and C (i.e. into BN C), see Barendregt et al. [1983].

Rule (—) is again very natural in view of the set-theoretic interpretation.
It implies that the arrow constructor is contravariant in the first argument and
covariant in the second one. It is clear that if a function maps A into B, and
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we take a subset A’ of A and a superset B’ of B, then this function will map
also A’ into B’, see Barendregt et al. [1983].

The rule (—N~) is similar to the rule (—N). It capture properties of the
graph models for the untyped lambda calculus, see Plotkin [1975] and Engeler
[1981], as we shall discuss in Section 19.3.

In order to capture aspects of the Al-calculus we introduce T'T's without an
explicit mention of a top.

The remaining axioms express peculiar properties of D.-like inverse limit
models, see Barendregt et al. [1983], Coppo et al. [1984], Coppo et al. [1987],
Honsell and Ronchi Della Rocca [1992], Honsell and Lenisa [1993], Alessi,
Dezani-Ciancaglini and Honsell [2004]. We shall discuss them in more detail in
Section 19.3.

Some classes of type theories

Now we will consider some classes of T'T. In order to do this, we list the relevant
defining properties.

15.1.9. DEFINITION. We define special subclasses of TT.

Class Defining axiom(-scheme)(s) or rule

graph | (—=7),(—=N7),(T)

lazy (—>)7 (—>ﬂ), (T), (T]azy)

natural | (=), (—nN),(T),(T—)

proper | (—),(—N)

15.1.10. NOoTATION. The sets of graph, lazy, natural and proper type theories
are denoted by respectively GTT', LTT" NTT'" and PTT.

15.1.11. REMARK. The type theories of Figure 15.2 are classified as follows.

non compatible | CD,CDS

GTTT Plotkin, Engeler

LTT" AO

NTTT Scott, Park, CDZ, HR, DHM, BCD
PTT CDV, HL

15.1.12. REMARK. One has NTT' CLTT' C GTT' C TT and
LTT" C PTT C TT. These inclusions are sharp.
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Some properties about specific TTs

Results about proper type theories

15.1.13. PROPOSITION. Let T be a proper type theory. Then we have
(i) (A—=B)Nn(A'=B") < (AnA")—(BnB');
(ii) (A1;—=B1)N...N(A,—B,) < (A1N...NA,)—=(B1N...N By);

(i) (A—=B1)N...N(A—=B,) =A—(B1N...B,).
Proor. (i) (A—=B)Nn(A'-=B) < ((AnA)—B)Nn(AnA)—B)
< (AnA)—(BnBHB),
by respectively (—) and (—nN).
(ii) Similarly (i.e. by induction on n>1, using (i) for the induction step).
(iii) By (ii) one has (A—B1)N...N(A—B,) < A—(B1N...By,). For > use
(—) to show that A—(B1N...NB,) < (A—B;), for all i. m

It follows that the mentioned equality and inequalities hold for Scott, Park, CDZ,
HR, DHM, BCD, AO, HL. and CDV.

Results about the type theories of Figure 15.2

15.1.14. LEMMA. (i) ¢ is the top and w the bottom element in HL.
(ii) CDV has no top element.
(iii) CD has no top element.

PROOF. (i) By induction on the generation of THY one shows that w < A < ¢
for all Ae THL,
(i) If v is a fixed atom and

By :=a|B,NB,

and A € B,, then one can show by induction on the generation of <cpy that
A <cpv B = AeB,. Hence if a <cpy B, then B € B,. Since B,, and B,,
are disjoint when «1 and o are two different atoms, we conclude that CDV
has no top element.

(iii) Similar to (ii). m

15.1.15. REMARK. By the above lemma ¢ turns out to be the top element in
HL. But we will not use this and therefore denote it by the name ¢ and not T.

In the following lemmas 15.1.16-15.1.20 we study the positions of the atoms
w, and ¢ in the compatible TTs introduced in Figure 15.2. The principal result
is that w < ¢ in HL and, as far as applicable,

w< < T,

in the theories Scott, Park, CDZ, HR, DHM and Plotkin.
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15.1.16. LEMMA. Let T € {Scott, Park, CDZ, HR, DHM, BCD, Engeler} be as de-
fined in Figure 15.2. Define inductively the following collection of types

B = T|T?=B|BnB

Then B={AcT?T | A= T}.

PrOOF. By induction on the generation of A <7 B one proves that B is closed
upwards. This gives T < A = AeB.
By induction on the definition of B one shows, using (T—) and (—), that
AeB = T <A
Therefore
A=7T & T<A & AcB.nm

15.1.17. LEMMA. For 7 € {AO, Plotkin} define inductively

B = T|BNB

Then B = {AG"ITT | A=7 T}, hence T—=T #7 T.
PROOF. Similar to the proof of 15.1.14, but easier. m

15.1.18. LEMMA. For T € {CDZ,HR,DHM} define by mutual induction

B = ¢o|T|TT=B|H-T? |BNB
H = w|B-H|HNT? | T?nH

Then

p<B = BekB,
A<w = AcH.

Proor. By induction on <7 one shows
A<B = (AeB = BeB) = (BEH = AcH).
From this the assertion follows immediately. m

15.1.19. LEMMA. We work with the theory HL.
(i) Define by mutual induction

B = ¢|H—-B|BnNB
H = w|B>H|HNT|TNH

Then
B

H

{AE-"—HL ‘ A =HL (,D};
{AE-"_HL | A =y, w}.

(il) w #nuL ¢ and hence w <gr, ¢.
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PRrROOF. (i) By induction on <7 one shows
A<B = (AeB = BeB)& (BeH = AcH).

This gives
(p<B = BeB)&(A<w = AcH).

By simultaneous induction on the generation of B and H one shows, using that
w is the bottom element of HL, by Lemma 15.1.14(i),

(BEB = B=p)& (AeH = A=w).

Now the assertion follows immediately.
(ii) By (i). m

15.1.20. PROPOSITION. In HL we have w < ¢ and as far as applicable we have
for the other systems of Figure 15.2

w<p< T,

More precisely,
(i) w<yandw # ¢ in HL.
In all other systems
(i) w<p,w<T,p<T;
(iil)) w#e, w#T,e#T.

PRrROOF. (i) By (w¢) and Lemma 15.1.19.

(ii) By (we) and (T).
(iii) By Lemmas 15.1.16-15.1.18. m

15.2. Type assignment

Assignment of types from type theories

In this subsection we define for a 7 in T'T a type assignment system )\%, that
assigns to untyped lambda terms a (possibly empty set of) types in T7Z. For a
7 in TT T we also define a type assignment system )\gT.

15.2.1. DEFINITION. (i) A 7-statement is of the form M : A with the subject
an untyped lambda term M € A and the predicate a type A€ 7.

(i1) A T-declaration is a T-statement of the form x : A.

(iii)) A 7-basis I is a finite set of 7-declarations, with all variables distinct.

(iv) A T -assertion is of the form I' = M : A, where M : A is a T-statement
and I' is a 7-basis.

15.2.2. DEFINITION. (i) The (basic) type assignment system \L derives T-as-
sertions by the following axioms and rules.
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(Ax) TFa:A if (x:Ael)
Ie:A-M:B

(—=I)

'kAXe.M:A—-B

'rM:A—-B I'EN:A

(—F) T MN:B

(ﬁI) I'-M:A T'-FM:B
TFM:ANB

« I'-M:A A<; B
I'-M:B

Figure 15.4: Basic type assignment system )\g.

(ii) If 7 has a top element T, then the T-type assignment system )%T is
defined by adding the extra axiom to the basic system

(T-universal) I' M : T

Figure 15.5: The extra axiom for the top assignment system )\ET

15.2.3. NOTATION. (i) We write I' I—gT M:AowTHFL M : AT FM:Ais
derivable in )\gT or AL respectively.
(ii) The assertion l—gT may also be written as 7, F~7 or simply F if by the

context there is little danger of confusion. Similarly, I—% may be written as -7,
Fror k.
(iii) )\gm may be denoted by A-(t).

15.2.4. EXAMPLE. Let T € TT | with A, B€ T7. Write W = (\z.zx).
(i) FEW:AN(A—B)—B.
I—gT WW . T, but WW does not have a type in /\Z.
(i) Let M = KI(WW). Then - M : (A—A) in A,

(iii) (van Bakel) Let M = Ayz.Kz(yz) and N = Ayz.z. Then M —g N. We
have F: N : B—A—A, l—gT M : B—A—A, but /4 M : B—A—A.

(iv) #SP1: (AN B)—C)—((BN A)—C).

In general the type assignment systems )\gT will be used for the the AK-
calculus and A7 for the Al-calculus.

15.2.5. DEFINITION. Define the rules (NE)

I'M:(ANB) T'+M:(ANB)
TFM:A I'FM:B

Notice that these rules are derived in A%, )‘ET for all 7.

15.2.6. LEMMA. In A\ one has the following.
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i) TFM:A = FV(M) C dom(I).
(i) TFM:A = (C[FV(M))F M : A.
(iii) If in T with top T one has T = T—T, then

FV(M) Cdom(I') = I'F M : T.

PROOF. (i), (ii) By induction on the derivation.
(iii) By induction on M. m

Notice that ' - M : A = FV(M) C dom(I') does not hold in )\gT, since by
axiom (T universal) we have 7 M : T for all 7 and all M.

15.2.7. REMARK. For the type theories of Figure 15.2 with T we have defined
the type assignment systems )\g. For those system having a top, there is
also the type assignment system )\gT. We will use for the type theories in
Figure 15.2 only one of the two possibilities. For the first ten systems, i.e.
Scott, Park, CDZ, HR, DHM, BCD, AO, Plotkin, Engeler and CDS, we only
consider )\gT. For the other 3 systems, i.e. HL,CDV and CD, we will only
consider \Z. In fact by Lemma 15.1.14(ii) and (iii) we know that CDV and CD
have no top at all. The system HL has a top, but we will not use it, as we do
not know interesting properties of )\EIT“ So, for example, F5°% will be always
I—?ﬁ’tt, whereas 1 will be always FEY. The reader will be reminded of this.
We do not know wether there exist TTs where the interplay of )\% and )\gT
yields results of interest.

Admissible rules

15.2.8. PROPOSITION. The following rules are admissible in )\gm.

(weakening) r-M:A ¢TI
wearening L,o:B-M:A '’

, Lo:BEM:A x¢ FV(M)
(strengthening) T M A ;
(cut) Ie:BFM:A T'EN: B

't (M[z:=N]):A
: : <
(<L) Fe:BEM: A C_TB;
e:CH-M: A
(L) yBrFM:A TTEN:C z¢T
— .
Iz:(C—B)F (M[y:=xN]): A’
Iz:A-M: B
(NL) Iz (ANC)+ M : B’

Figure 15.6: Various admissible rules.

PRrROOF. By induction on the structure of derivations. m
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Proofs later on in Part III will freely use the rules of the above proposition.
As we remarked earlier, there are various equivalent alternative presentations
of intersection type assignment systems. We have chosen a natural deduction
presentation, where 7-bases are additive. We could have taken, just as well,
a sequent style presentation and replace rule (—E) with the three rules (—L),
(ML) and (cut) occuring in Proposition 15.2.8, see Barbanera et al. [1995],
Barendregt and Ghilezan [n.d.]. Next to this we could have formulated the
rules so that 7-bases “multiply”. Notice that because of the presence of the
type constructor N, a special notion of multiplication of T -bases can be given.

15.2.9. DEFINITION (Multiplication of 7-bases).

rur’ {r:ANB|xz:A€Tl and 2: BeT'}
{x:A|z:AeT and = ¢ T}

{z:B|xz:Belandz ¢ T'}. m

ccl

Accordingly we define:
rer’ & rr.rwr” =1
For example, {x:A,y:B} W {2:C, 2:D} = {x:ANC,y:B, z:D}.

15.2.10. PROPOSITION. The following rules are admissible in all )\gm.

MEM:A
MwlhyFM: A

(multiple weakening)

IMtEFM:A— B I'h',yFN:A
Iwlyy-MN:B
M+EM:A Th+-M:B
Mwlytr M:ANB

(relevant —E)

(relevant NT)

PRrOOF. By induction on derivations. m

In Exercise 16.3.17, it will be shown that we can replace rule (<) with
other more perspicuous rules. This is possible as soon as we will have proved
appropriate “inversion” theorems for )\gm. For some very special theories, one
can even omit altogether rule (<), provided the remaining rules are reformulated
“multiplicatively” with respect to 7-bases, see e.g. Di Gianantonio and Honsell
[1993]. We shall not follow up this line of investigation.

In )\gm, assumptions are allowed to appear in the basis without any restric-
tion. Alternatively, we might introduce a relevant intersection type assignment
system, where only “minimal-base” judgements are derivable, (see Honsell and
Ronchi Della Rocca [1992]). Rules like (relevant —E) and (relevant N 1I),
which exploit the above notion of multiplication of bases, are essential for this
purpose. Relevant systems are necessary, for example, for giving finitary logical
descriptions of qualitative domains as defined in Girard et al. [1989]. We will
not follow up this line of research either. See Honsell and Ronchi Della Rocca
[1992].
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Special type assignment for call-by-value A-calculus

We will study later the type theory EHR with APHR = {1} and the extra rule
(—) and axioms (—nN) and

A—B <.
EHR
Ny

The type assignment system A is defined by the axiom and rules of )\g in

Figure 15.4 with the extra axiom

(v universal) 't (Az.M):v.

The type theory EHR has a top, namely v, so one could consider it as an element
of TT ". This will not be done. Axiom (v-universal) is different from (T-
universal) in Definition 15.2.2. This type assignment system has one particular
application and will be studied in some exercises.

15.3. Type structures

Intersection type structures

Remember that a type algebra A, see Definition ??, is of the form A = (| A, —),
i.e. just an arbitrary set |./A| with a binary operation — on it.

15.3.1. DEFINITION. (i) A meet semi-lattice is a structure
M = (M|, <,n),

such that M = (M|, <,N) is a partial order, for all A, B €| M| the element
AN B (meet) is the greatest lower bound of A and B. MSL is the set of meet
semi-lattices.

(i1) A top meet semi-lattice is a similar structure

M = <’M’7 S,Q,T%

such that M = (M|, <,N) is a MSL and T is the (unique) top of M. MSLT
is the set of top meet semi-lattices.

15.3.2. DEFINITION. (i) An (intersection) type structure is a type algebra with
the additional structure of a meet semi-lattice

S ={8],—,<,n).

TS is the set of type structures. The relation < and the operation — have a
priori no relation with each other, but in special structures this will be the case.
(il) A top type structure is a type algebra that is also a top meet semi-lattice

S={8],—,<,n,T).

TST is the set of top type structures.
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NOTATION. (i) As ‘intersection’ is everywhere in this Part III, we will omit this
word and only speak about a type structure.

(ii) Par abus de language we also use A, B, C, ... to denote arbitrary elements
of type structures and we write A€ S for A€ |S]|.

If 7 is a type theory that is not compatible, like CD and CDS, then —
cannot be defined on the equivalence classes. But if 7 is compatible, then one
can work on the equivalence classes and obtain a type structure in which < is
a partial order.

15.3.3. PROPOSITION. Let 7 be a compatible type theory. Then T induces a
type structure T /= defined as follows.

(M7 /=1, —,<,N),

by defining on the =1 -equivalence classes

[Al=[B] = [A=BJ
[A]n[B] = [ANB];
[A]<[B] < A<7B.

If moreover T has a top T, then T /= is a top type structure with [T] as top.

PrOOF. Here A, B,C range over 7. Having realized this the rest is easy.
Rule (—7) is needed to ensure that — is well-defined. m

The (top) type structure 7/ =, with 7 a type theory, is called a syntactical
(top) type structure. In Proposition 15.3.6 we show that every type structure
is isomorphic to a syntactical one.

Although essentially equivalent, type structures and type theories differ in
the following. In the theories the types are freely generated from a fixed set of
atoms and inequality can be controlled somewhat by choosing the right axioms
and rules (this will be exploited in Section 19.3). In type structures one has the
antisymmetric law A < B < A = A = B, which is in line with the common
theory of partial orders (this will be exploited in Chapter 17).

Now the notion of type assignment will also be defined for intersection type
structures. These structures arise naturally coming from algebraic lattices that
are used towards obtaining a semantics for untyped lambda calculus.

15.3.4. DEFINITION. (i) Now let S € TS. The notion of a S-statement M : A,
a S-declaration x : A, a S-basis and a S-assertion I' = M : A is as in Definition
15.2.1, now for A€ S an element of the type structure S.

(ii) The notion T' =2 M : A is defined by the same set of axioms and rules
as in Figure 15.4 where now <g is the inequality of the structure S. The
assignment system /\‘gT has (T-universal) as extra axiom.

2Here we misuse notation in a suggestive way, by using the same notation — for equivalence
classes as for types.
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The following result shows that for syntactic type structures type assignment
is essentially the same as the one coming from the corresponding lambda theory.

15.3.5. PROPOSITION. Let T € TTT) and let [T] = (T =7,<,0,—(, T)) its
corresponding (top) type structure. For a type A €T write its equivalence class
as [A]€[T]. For T' = {x1 : By,...,xy : Bp} a T-basis write [I'] = {x1 :
[Bi],...,xn : [Byn]}, a [T]-basis. Then

T M (A

PHIy M:A & [Tk 5 M

PROOF. (=) By induction on the derivation of ' F7 M : A. (<) Show by
induction on the derivation of [I'] FIZ! M : [A] that for all A’ €[A] and IV =
{z1:B},...,z, : B}, with B/ € [B;] for all 1 <i <mn, one has

'FT M A m

Using this result we could have defined type assignment first for type struc-
tures and then for compatible type theories via translation to the type assign-
ment for its corresponding syntactical type structure, essentially by turning the
previous result into a definition.

15.3.6. PROPOSITION. FEwvery type structure is isomorphic to a syntactical one.

PROOF. For a type structure S, define 7s as follows. Take A = {c | ce S}.
Define <7, on T = "IT‘% as follows. We make every element of T equal to an
element of A by requiring

(anbd) =75 anbd, & (a—b) =75 a—b.

This means of course (aNb) <75 aNb, (aNb) >75 aN b, etcetera. We moreover
require

a<ghbh
a<r b

As a consequence a <7, T if S is a top type structure. The axioms and rules
(refl), (trans), (—7), (incly), (inclg) and (glb) also hold automatically. Then
S = Ts/ =. This can be seen as follows. Define f : S—75/ = by f(a) = [a].
For the inverse, first define g : -"_%—MS by

g(ANB) = g(A)ng(B).

Then show A <7, B = g(A) < g(B). Finally set f~([A]) = g(A), which is
well defined. It is easy to show that f, f~! constitute an isomorphism. m

15.3.7. REMARK. Each of the eleven compatible type theories 7 in Figure 15.2
may be considered as the intersection type structure 7 /=, also denoted as 7.
For example Scott can be a name, a type theory or a type structure.
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Categories of meet-semi lattices and type structures

For use in Chapter 17 we will introduce some categories related to given classes
of type structures.

15.3.8. DEFINITION. (i) The category MSL has as objects at most countable
meet semi-lattices and as morphisms maps f : M—M/’, preserving <,N:
A<B = f(A) < f(B);
f(ANB) = A f(B),

(ii) The category MSLT is as MSL, but based on top meet semi-lattices.
So now also f(T) = T’ for morphisms.

The difference between MSL and MSL' is that, in the MSL case, the top
element is either missing or not relevant (not preserved by morphisms).

15.3.9. DEFINITION. (i) The category TS has as objects the at most countable
type structures and as morphisms maps f : S—&’, preserving <,N, —:
A<B = f(A) < f(B);
f(AnB) = f(AN f(B);
f(A=B) = [f(A)-'f(B).

(ii) The category TS is as TS, but based on top type structures. Now also
fm=T
for morphisms.

15.3.10. DEFINITION. We define four full subcategories of TS by specifying in
each case the objects.
(i) GTST with as objects the graph top type structures.
(ii) LTST with as objects the lazy top type structures.
(iii) NTST with as objects the natural top type structures.
(iv) PTS with as objects the proper type structures.

15.4. Filters
15.4.1. DEFINITION. (i) Let 7€ TT and X C TZ. Then X is a filter over T if
the following hold.
(1) X is non-empty;
(2) Ace X & A<B = BeX;
(3) A,BeX = ANBeX.
(ii) Write F7 = {X C T | X is a filter over T}.

We loosely say that filters are non-empty sets of types closed under < and N.

15.4.2. DEFINITION. Let 7 € TT.
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(i) For Ac T write |A={BeT? | A< B}.
(ii) For a non-empty X C T7 define 71X to be the least filter over T
containing X; it can be described explicitly by

1X={BeT? |3In>134,,....A,e X.A1N...NA, <B.
15.4.3. REMARK. C€ T{B; [i€T#0} & I Cy .U #0V& ;e B:i <CJ.

15.4.4. PROPOSITION. Let T € TT T.
(1) FT = (FT,C) is a complete lattice, with for X C FT the sup is

Hx = 1ux), ifX#0,
Hx = {7}, else.
(i) For Ac 7 one has 1A = 1{A} and 1Ac FT.
(iii) For A,BeT7 one has TALUTB = 1(AN B).
(iv) For X € FT one has

X = UpAalAexy
= L{rAa14c x}
= Y141 4exy
= Jra1ac xy.

(v) {TA| AcTT} is the set of finite elements of F7 .
ProOOF. Easy. m

15.4.5. DEFINITION. Let 7 € TT. Then FZ = F7 U {0} is the extension of F7
with the emptyset.

15.4.6. PROPOSITION. Let 7 € TT.
(1) FI = (FT,C) is a complete lattice, with for X C FS the sup is

_ ®7 ZfXZQOTX:{(D}y
Ux _{ T(UX), else .

(i) For Ac 7 one has 1A= 1{A} and 1Ac FI.
(iii) For A,BeT7 one has TALUTB = (AN B).
(iv) For X € FT one has

X = UfjA|Aex} = L{IA|1A<X)
— UQt4|4eX} = U{14]14C X},

(v) {TA| AcTT} U {0} is the set of finite elements of FI.

ProOOF. Immediate. m
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15.4.7. REMARK. The items 15.1.9-15.2.10 and 15.4.1-15.4.6 are about type the-
ories, but can be translated immediately to structures and if no — are involved
to meet-semi lattices. For example Proposition 15.1.13 also holds for a proper
type structure, hence it holds for Scott, Park, CDZ, HR, DHM, BCD, AO, HL
and CDV considered as type structures. Also 15.1.14-15.1.20 immediately yield
corresponding valid statements for the corresponding type structures, though
the proof for the type theories cannot be translated to proofs for the type
structures because they are by induction on the syntactic generation of T
or <. Also 15.2.4-15.2.10 hold for type structures, as follows immediately
from Propositions 15.3.5 and 15.3.6. Finally 15.4.1-15.4.6 can be translated
immediately to type structures and meet semi-lattices. Therefore in the follo-
wing chapters everywhere the type theories may be translated to type structures
(or if no — is involved to meet semi-lattices). In Chapter 17 we work directly
with meet semi-lattices and type structures and not with type theories, because
there a partial order is needed.

15.5. Exercises 31.10.2006:5s1

15.5.1. Show that I', z: T P—gT M:A =T I—gT M: A

15.5.2. The system K and the type assignment system A of Krivine [1990] are
CD and ASP, but with rule (<) replaced by

I'-M:AnB T'FM:ANB
'FM:A I'-M:B

(NE)

Similarly X" and AﬁTT are CDS and )\gTDS, with (<) replaced by (NE).
Show that

i) THM:4 & THPM:A
i) IF' M:A & TDFDS M A
15.5.3. (i) Show that Az.zzx and (Az.zx)l are typable in system K.
(ii) Show that all closed terms in normal forms are typable in system K.
15.5.4. Show the following:
(i) FEX2KI(z2) : (A—-B)NA—=C—C.
(i) HF Az Kl(2z) : T>C—C.
(iii) I—EQD AzKl(zz) : T=(A—-BNC)—A—B.
15.5.5. For T a type theory, M, N € A and x ¢ dom(T") show
OTHFAM:A = TS Mz:=N]: 4
i) TH, M:A = T+ Maz:=N]: A
15.5.6. Show that

M is a closed term = I—E":‘rrk M : w.

Later we will show the converse (Theorem 18.3.22).
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15.5.7. Prove that for all types A € TAC there is an n such that

T"—=T <a0 A.
15.5.8. Prove that if (wy), (¢ — w) and (w — @) are axioms in 7, then for all
M in normal form {z; : w,...,x, : w} FZ M : ¢, where {z1,...,2,} D
FV(M).

15.5.9. Let D = (D, -) be an applicative structure, i.e. a set with an arbitrary
binary operation on it. For X,Y C D define

X —->Y={deD|VecX.d-ecY}.

Consider (P(D),—,C,N, D), where P(D) is the power set of D, C and
N are the usual set theoretic notions and D is the top of P(D). Show

e (P(D),—,C,N) is a proper type structure.

e D=D—1D.

e (P(D),—,<,N,D) is a natural type structure.



