62 CHAPTER 2. PROPERTIES

(ix) If M has the A\K™ property then M [3-reduces to only finitely many N. This follows
by (vii) and (viii).

(x) If M has the AK™ property then M is strongly -normalizable. By (i), (iii) and
(ix).

(xi) If M has the AK™ property then M is strongly fn-normalizable. By (v) and (x).

(xii) For each M there is an N with the AK™ property such that N — g, M. First
expand M by n expansion so that every subterm of M beginning with a lambda is a
lambda prefix followed by a matrix of type 0. Let a : o and f : 0—(0—0) be new
variables. For each type T' = Th'— ... =Ty—a with T; = T;1— ... =T}, —a; for i =
1,...,t define terms Uy : T recursively by

U = a
UT ==)\!El ---xt-f(xlUTl,l "'UTl,k1)
(f('ivt—lUthl,l ce Uthth,l)(thTtJ s UTt,kt))“)‘

Now recursively replace each dummy Ax occurring AzAy ... Az.X with : T and X : 0
by AxXy ... Az2. KX (xUr, ...Ur,). Clearly the resulting N satisfies N —g, M and the
AK™ property, since all dummy lambdas appear in K : 1.

(xiii) Ewery typable term is strongly Gn normalizable. By (xi) and (xii). m

Still another proof is to be found in de Vrijer [1987] in which for a typed term M a
computation is given of the langest reduction path to 3-nf.

2.3. Checking and finding types

There are several natural problems concerning type systems.

2.3.1. DEFINITION. (i) The problem of type checking consists of determining, given basis
I', term M and type A whether I' - M : A.

(ii) The problem of typeability consists of given a term M determining whether M
has some type with respect to some I'.

(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible
types A and bases I that type a given M.

(iv) The inhabitation problem consists of finding out whether a given type A is inhabited
by some term M in a given basis I'.

(v) The enumeration problem consists of determining for a given type A and a given
context I all possible terms M such that I' = M : A.

The five problems may be summarized stylistically as follows.

' by, M:A? type checking;
JATT bFy, M:A? typeability;
7 by, M:? type reconstruction;
dM [T by, M:A]? inhabitation;
I' B\, 7:A4A enumeration.

2.3. CHECKING AND FINDING TYPES 63

In another notation this is the following.

M € Al;(A) ? type checking;
JA,T M e AL (4)? typeability;

M e A?_)(?) type reconstruction;
AU (A) £ 07 inhabitation;
7 € AL (4) enumeration.

In this section we will treat the problems of type checking, typeability and type
reconstruction for the three versions of A_,. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for A°? and A4B than for A", The
problems of inhabitation and enumeration will be treated in the next section.

One may wonder what is the role of the context I' in these questions. The problem

AT - M : A.
can be reduced to one without a context. Indeed, for I' = {z1:A44, ..., z,: Ay}
F'FM:A & FAzi(GAY) . Aep((A4y) M) (AL — ... — A, — A).
Therefore
d3ATHM: Al < 3IB[F \2.M : B].
On the other hand the question
JC3M [T M : A]?

is trivial: take I' = {z:A} and M = z. So we do not consider this question.
The solution of the problems like type checking for a fixed context will have important
applications for the treatment of constants.

Checking and finding types for \4® and \°P

We will see again that the systems A" and A9B are essentially equivalent. For these
systems the solutions to the problems of type checking, typeability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2.3.2. PROPOSITION (Type checking for A4B). Let T' be a basis of \B. Then there is a
computable function typep : Ay — T U {error} such that

M € A o (A) < typep(M) = A.
PROOF. Define
typer(z) = TI'(x);
typer(MN) B, if typer(M) = typer(N)—B,
error, else;

A_ytypefu{:c:A} (M)7 if typeFU{x:A} (M) 7& error,
= error, else.

typep(Az:A.M)

64 CHAPTER 2. PROPERTIES

Then the statement follows by induction on the structure of M. m

2.3.3. COROLLARY. Typeability and type reconstruction for X8 are computable. In fact
one has the following.

(i) M € Al ;5 < typep(M) # error.

(ii) Each M € AL 5 (typer) has a unique type; in particular

M e AL jp(typer(M)).
ProoF. By the proposition. m

For A! things are essentially the same, except that there are no bases needed, since
variables come with their own types.

2.3.4. PROPOSITION (Type checking for AP). There is a computable function type :
A_cn — T U{error} such that

M € A_>Ch(A) <~ type(M) = A.
PROOF. Define

type(z?) = 4

type(MN) = B, if type(M) = type(N)—B,
= error, else;
type(Az?.M) = A—type(M), if type(M) # error,
= error, else.

Then the statement follows again by induction on the structure of M. m

2.3.5. COROLLARY. Typeability and type reconstruction for X" are computable. In fact
one has the following.

(i) M € A_cn < type(M) # error.

(ii) Each M € A_,cy has a unique type; in particular M € A_cp(type(M)).

Proor. By the proposition. m

Checking and finding types for A"

We now will show the computability of the three questions for A°. This occupies 2.3.6
- 2.3.16 and in these items F stands for I—j\rj"cu.

Let us first make the easy observation that in A" types are not unique. For example
| = A\z.x has as possible type a—«, but also (3—3)—(8—) and (a—B—0)—(a—B—71).
Of these types a—« is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in a.

2.3. CHECKING AND FINDING TYPES 65

2.3.6. DEFINITION. (i) A substitutor is an operation % : T — T such that
*(A — B) = x(A) — =(B).

(ii) We write A* for x(A).
(iii) Usually a substitution * has a finite support, that is, for all but finitely many
type variables v one has o = « (the support of * being

sup(x) = {a [a” # a}).

In that case we write

x(A) = Alag :=af,...,qn =],
where {aq,...,a,} D sup(x). We also write
= [ag == af,...,qn = ay]
and
* =]

for the identity substitution.

2.3.7. DEFINITION. (i) Let A, BeT. A unifier for A and B is a substitutor * such that
A* = B*.

(ii) The substitutor x is a most general unifier for A and B if

e A*=D*

e A" = B* = dxg .%] = %9 0%,

(iii) Let E = {A1 = By,..., A, = By} be a finite set of equations between types.
The equations do not need to be wvalid. A unifier for E is a substitutor x such that

1=Bf & -+ & Ay, = B}:. In that case one writes x |= E. Similarly one defines the
notion of a most general unifier for E.

2.3.8. ExaMPLES. The types 8 — (o — () and (y —) — J have a unifier. For
example * = [=7 — 7, § :=a = (y =] orx =[:=7 =17, a:=¢c ¢
0:=¢e— e — (7 —7)]. The unifier * is most general, *; is not.

2.3.9. DEFINITION. A is a variant of B if for some %1 and *9 one has
A= B" and B = A*.
2.3.10. EXAMPLE. o« — (3 — (3 is a variant of v — § — § but not of « — — «a.

Note that if x; and %o are both most general unifiers of say A and B, then A** and
A*2 are variants of each other and similarly for B.

The following result due to Robinson (1965) states that unifiers can be constructed
effectively.

66 CHAPTER 2. PROPERTIES

2.3.11. THEOREM (Unification theorem). (i) There is a recursive function U having (after
coding) as input a pair of types and as output either a substitutor or fail such that

A and B have a unifier = U(A, B) is a most general unifier
for A and B;
A and B have no unifier = U(A, B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of
equations between types and as output either a substitutor or fail such that

E has a unifier = U(E) is a most general unifier for E;
E has no unifier = U(FE) = fail.

PROOF. Note that A1— Ay = B;—Bs holds iff Ay = By and Ay = B hold.
(i) Define U(A, B) by the following recursive loop, using case distinction.

Ulw,B) = [a:=B], ifa ¢ FV(B),
=[], if B=aq,

= fail, else;

U(A1—>A2,Oé) = U(a,A1—>A2);
U(A1—Az, Bi—By) = U(AYWP2) pUA2B2)y o 74y, By),

where this last expression is considered to be fail if one of its parts is. Let #,4.(A, B) =‘the
number of variables in A — B’ and #_,(A, B)="‘the number of arrows in A — B’.
By induction on (#y4-(A, B),# (A, B)) ordered lexicographically one can show that
U(A, B) is always defined. Moreover U satisfies the specification.

(ii) If £ = {A; = By,..., A, = By}, then define U(FE) = U(A, B), where A =
Ai—---—A,and B=B|—---—B,. ®m

See [?777] for more on unification. The following result due to Parikh [1973] for
propositional logic (interpreted by the propositions-as-types interpretation) and Wand
[1987] simplifies the proof of the decidability of type checking and typeability for A_..

2.3.12. PROPOSITION. For every basis I', term M €A and A€ such that FV (M) C
dom(T") there is a finite set of equations E = E(I", M, A) such that for all substitutors
one has

«+ = BE@,M,A) = T*FM:A* (1)
IM"FM:A" = x EEI,M,A), (2)
for some x1 such that x and %1 have the same

effect on the type variables in I' and A.

2.3. CHECKING AND FINDING TYPES 67

PRrROOF. Define E(T', M, A) by induction on the structure of M:

El,z,A) = {A=T(z)}
ET,MN,A) = EI,M,a—A) U E(I',N,a),
where « is a fresh variable;
ET e.M,A) = ETU{z:a},M,5) U {a—p= A},

where «, 3 are fresh.

By induction on M one can show (using the generation lemma (2.1.3)) that (1) and (2)
hold. m

2.3.13. DEFINITION. (i) Let M € A. Then (T', A) is a principal pair (pp) for M if
(1) THM: A
2 TVEFM:A = [[*CIV & A*= A
Here {x1:Aq,...}* = {x1:A4],.. .}
(ii) Let M € A be closed. Then A is a principal type (pt) for M if
() FM:A
(2) FM: A = Jx [A*=A).

Note that if (T', A) is a pp for M, then every variant (I, A") of (T, A), in the obvious
sense, is also a pp for M. Conversely if (', A) and (I, A") are pp’s for M, then (I, A)
is a variant of (I', A). Similarly for closed terms and pt’s. Moreover, if (I, A) is a pp for
M, then FV(M) = dom(T").

The following result is independently due to Curry (1969), Hindley (1969) and Milner
(1978). It shows that for A_, the problems of type checking and typeability are decidable.

2.3.14. THEOREM (Principal type theorem for A°%). (i) There exists a computable function
pp such that one has

M has a type = pp(M) = (T, A), where (I', A) is a pp for M;
M has no type = pp(M) = fail.

(ii) There exists a computable function pt such that for closed terms M one has

M has a type = pt(M) = A, where A is a pt for M;
M has no type = pt(M) = fail.

Proor. (i) Let FV(M) = {z1,...,z,} and set Ty = {z1:001, ..., 2p:,} and Ay = [.
Note that

M hasatype = dJIdATFM:A
= dx I'gFM: A
= dx x l:E(PQ,M,A()).

68 CHAPTER 2. PROPERTIES

Define
pp(M) = (Ig,Ap), i U(E(To, M, Ag)) = *;
— fail, if U(E(To, M, Ap)) = fail.
Then pp(M) satisfies the requirements. Indeed, if M has a type, then
U(E(Ty, M, Ay)) = x*

is defined and I'fj = M : Af by (1) in proposition 2.3.12. To show that (I'§, Af) is a pp,
suppose that also I" = M : A’ Let T = I [FV(M); write T = T and A’ = A°. Then
also I'p® B M : Ay°. Hence by (2) in proposition 2.3.12 for some *; (acting the same as
xg on Iy, Ag) one has x; = E(T'g, M, Ap). Since * is a most general unifier (proposition
2.3.11) one has %; = %5 o * for some *9. Now indeed

(I§)2 =T3 =T" =T C T’

and
(A5)™ = Aal = ASO =A.

If M has no type, then =3 % x |= E(Ty, M, Ag) hence
U(F07 Mv AO) = fail = pp(M)
(ii) Let M be closed and pp(M) = (I, A). Then I" = () and we can put pt(M) = A. m

2.3.15. COROLLARY. Type checking and typeability for _, are decidable.

PROOF. As to type checking, let M and A be given. Then
EFM:A << Ix[A=pt(M)"].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2.3.11).

As to the question of typeability, let M be given. Then M has a type iff pt(M) #
fail. m

The following result is due to Hindley [1969].

2.3.16. THEOREM (Second principal type theorem for A°%). (i) For every type A€ T one
has

FM:A = 3IM'[M —g, M & pt(M') = Al.

(ii) For every type A€ T there exists a basis I' and term M € A such that (I', A) is a
pp for M.

2.3. CHECKING AND FINDING TYPES 69

PROOF. (i) We present a proof by examples. We choose three situations in which we
have to construct an M’ that are representative for the general case. Do exercise 77 for
the general proof.

Case M = \zx.z and A = (a—B)—a—B. Then pt(M) = a—a. Take M' = \zy.zy.
The n-expansion of A\z.x to Axy.xy makes subtypes of A correspond to unique subterms
of M'.

Case M = Axy.y and A = (a—v)—B—0. Then pt(M) = a—pB—8. Take M' =
Azy. Ky(Az.zz). The B-expansion forces x to have a functional type.

Case M = Mry.x and A = a—a—a. Then pt(M) = a—B—a. Take M' =
Axy.Kz(Af.[fz, fy]). The B-expansion forces z and y to have the same types.

(i) Let A be given. We know that k- | : A—A. Therfore by (i) there exists an I —g,, |
such that pt(l') = A—A. Then take M = I'z. We have pp(I'z) = ({z:A}, A). m

Complexity

The space and time complexity of finding a type for a typable term is exponential, see
exercise 2.5.18.
In order to decide whether for two typed terms M, N € A_,(A) one has

M =g, N,

one can normalize both terms and see whether the results are syntactically equal (up to
a-conversion). In exercise 2.5.17 it will be shown that the time and space costs of doing
this is at least hyper-exponential (in the size of M N). The reason is that the type-free
application of Church numerals

CnCmy = Cpn

can be typed, even when applied iteratively

CniCny - - - Cpy -
In exercise 2.5.16 it is shown that the costs are also at most hyper-exponential. The
reason is that Turing’s proof of normalization for terms in A_, uses a succesive development
of redexes of ‘highest’ type. Now the length of each such development depends exponentially
on the length of the term, whereas the length of a term increases at most quadratically
at each reduction step. The result even holds for typable terms M, N € A_ ¢, (A4), as the
cost of finding types only ads a simple exponential to the cost.

One may wonder whether there is not a more efficient way to decide M =g, N, for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem
for terms of some type in A°,. A shorter proof of this result can be found in Mairson
[1992].

