
1.2. NORMAL INHABITANTS 21

The second variant of λCu
→

is the de Bruijn version of λA
→

, denoted by λA
→dB

or λdB
→

. Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

⊢dB

λ→

(λx : A.x) : A→A (1dB)

y:A ⊢dB

λ→

(λx : (A→B).xy) : (A→B)→A→B (2dB)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. Notation. Terms like (λfx.f(fx))∈Λø(1→o→o) will often be written

λf1x0.f(fx)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. Definition. Let A = A1→ . . . An→α and suppose Γ ⊢ M : A.

(i) Then M is in long-nf, notation lnf, if M ≡ λxA1
1

. . . xAn

n .xM1 . . . Mn and each Mi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1.5.16 it is proved that if M has a β-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique lnf and will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1.2.2. Examples. (i) Note that λf1.f =βη λf1λxo.fx and that λf1.f is a βη-nf but
not a lnf.

(ii) λf1λxo.fx is a lnf, but not a βη-nf.

(iii) λx:o.x is both in βη-nf and lnf.

(iv) The β-nf λF :22λf :1.Ff(λx:o.fx) is neither in βη-nf nor lnf.

(v) A variable of atomic type α is a lnf, but of type A→B not.

(vi) A variable f : 1→1 has as lnf λg1λxo.f(λyo.gy)x.

1.2.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ →→η M .

22 CHAPTER 1. THE SYSTEMS λ→

Proof. Define M ℓ by induction on the depth of the type of the closure of M as follows.

M ℓ ≡ (λ~x.yM1 . . . Mn)ℓ = λ~x~z.yM ℓ
1 . . . M ℓ

n~zℓ.

Then M ℓ does the job.

Now we will define a 2-level grammar for obtaining the collection of all lnf’s of a
given type A.

1.2.4. Definition. Let N = {L(A; Γ) | A∈TTA; Γ a context of λ→}. Let Σ be the
alphabet of the terms of the λCh

→
. Define the following two-level grammar, see van

Wijngaarden et al. [1976], as a notion of reduction over words over N ∪Σ. The elements
of N are the non-terminals (unlike in a context-free language there are now infinitely
many of them).

L(α; Γ) ⇒ xL(B1; Γ) . . . L(Bn; Γ), if (x: ~B→α)∈Γ;

L(A→B; Γ) ⇒ λxA.L(B; Γ, x:A).

Typical productions of this grammar are the following.

L(3; ∅) ⇒ λF 2.L(o;F 2)

⇒ λF 2.FL(1;F 2)

⇒ λF 2.F (λxo.L(o;F 2, xo))

⇒ λF 2.F (λxo.x).

But one has also

L(o;F 2, xo) ⇒ FL(1;F 2, xo)

⇒ F (λxo
1.L(o;F 2, xo, xo

1))

⇒ F (λxo
1.x1).

Hence (⇒⇒ denotes the transitive reflexive closure of ⇒)

L(3; ∅) ⇒⇒ λF 2.F (λxo.F (λxo
1.x1)).

In fact, L(3; ∅) reduces to all possible closed lnf’s of type 3. Like in abstract syntax we
do not produce parentheses from the L(A; Γ), but write them when needed.

1.2.5. Proposition. Let Γ,M,A be given. Then

L(A,Γ) ⇒⇒ M ⇐⇒ Γ ⊢ M : A & M is in lnf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all β-nf’s.

1.2. NORMAL INHABITANTS 23

1.2.6. Definition. The 2-level grammar N is defined as follows.

N(A; Γ) ⇒ xN(B1; Γ) . . . N(Bn; Γ), if (x: ~B→A)∈Γ;

N(A→B; Γ) ⇒ λxA.N(B; Γ, x:A).

Now the β-nf’s are being produced. As an example we make the following production.
Remember that 1 = o→o.

L(1→o→o; ∅) ⇒ λf1.L(o→o; f :o→o)

⇒ λf1.f.

1.2.7. Proposition. Let Γ,M,A be given. Then

N(A,Γ) ⇒⇒ M ⇐⇒ Γ ⊢ M : A & M is in β-nf.

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine MA producing
the set of closed terms of that type. If one is interested in terms containing variables
xA1

1
, . . . , xAn

n , then one can also find these terms by considering the machine for the type
A1→ . . .→An→A and look at the subproduction at node A.

1.2.8. Examples. (i) A = o→o→o. Then MA is

o→o→o
λxoλyo

// o // x

y
��

This shows that the type 12 has two closed inhabitants: λxy.x and λxy.y. We see that
the two arrows leaving o represent a choice.

(ii) A = α→((o→β)→α)→β→α. Then MA is

α→((o→β)→α)→β→α

λaαλf(o→β)→αλbβ

��
α

f
��

// a

o→β
λyo

// β // b

Again there are only two inhabitants, but now the production of them is rather different:
λafb.a and λafb.f(λxo.b).

24 CHAPTER 1. THE SYSTEMS λ→

(iii) A = ((α→β)→α)→α. Then MA is

((α→β)→α)→α

λF (α→β)→α

��
α

F // α→β
λxα

// β

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A = 1→o→o. Then MA is

1→o→o

λf1λxo

��
f o@GAFBE // x

This is the type Nat having the Church’s numerals λf1xo.fnx as inhabitants.
(v) A = 1→1→o→o. Then MA is

1→1→o→o

λf1λg1λxo

��
f o g@GAFBE AFBECD

��
x

Inhabitants of this type represent words over the alphabet Σ = {f, g}, for example

λf1g1xo.fgffgfggx,

where we have to insert parentheses associating to the right.
(vi) A = (α→β→γ)→β→α→γ. Then MA is

(α→β→γ)→β→α→γ

λfα→β→γλbβλaα

��
γ

��
a αoo oo f // β // b

giving as term λfα→β→γλbβλaα.fab. Note the way an interpretation should be given
to paths going through f : the outgoing arcs (to α and β) should be completed both
separately in order to give f its two arguments.

1.2. NORMAL INHABITANTS 25

(vii) A = 3. Then MA is

3

λF 2

��
o

��

F **
1

λxo

jj

x

This type 3 has inhabitants having more and more binders:

λF 2.F (λxo
0.F (λxo

1.F (· · · (λxo
n.xi)))).

The novel phenomenon that the binder λxo may go round and round forces us to give new
incarnations λxo

0, λxo
1, . . . each time we do this (we need a counter to ensure freshness of

the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations xk. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.
(viii) A = 3→o→o. Then MA is

3→o→o

λΦ3λco

��
f o@GAFBE

Φ
**

��

2
λf1

jj

c

This type, called the monster M, does have a potential infinite amount of binding,
having as terms e.g.

λΦ3co.Φλf1
1 .f1Φλf1

2 .f2f1Φ . . . λf1
n.fn . . . f2f1c,

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f1 in this case) becomes necessary, as the f going from o to itself needs
to be one that has already been incarnated.

(ix) A = 12→o→o. Then MA is

12→o→o
λp12λco

// o

��

// c

p

JJ TT

This is the type of binary trees, having as elements, e.g. λp12co.c and λp12co.pc(pcc).
Again, as in example (vi) the outgoing arcs from p (to o) should be completed both
separately in order to give p its two arguments.

26 CHAPTER 1. THE SYSTEMS λ→

(x) A = 12→2→o. Then MA is

1

λxo

12→2→o

λF 12λG2
// o

G

JJ

��

// x

F

II UU

This is the type L corresponding to untyped lambda terms. For example the untyped
terms ω ≡ λx.xx and Ω ≡ (λx.xx)(λx.xx) can be translated to (ω)t ≡ λF 12G2.G(λxo.Fxx)
and

(Ω)t ≡ λF 12G2.F (G(λxo.Fxx))(G(λxo.Fxx))
=β λFG.F ((ω)tFG)((ω)tFG)
=β (ω)t ·L (ω)t,

where for M,N ∈L one defines M ·L N = λFG.F (MFG)(NFG). All features of
producing terms inhabiting types (bookkeeping bound variables, multiple paths) are
present here.

Following the 2-level grammar N one can make inhabitation machines for β-nf M
β
A .

1.2.9. Example. We show how the production machine for β-nf’s differs from the one
for lnf’s. Let A = 1→o→o. Then λf1.f is the (unique) β-nf of type A that is not a lnf.

It will come out from the following machine M
β
A .

1→o→o

λf1

��
o→o //

λxo

��

f

f o@GAFBE // x

So in order to obtain the β-nf’s, one has to allow output at types that are not atomic.

1.3. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in λo

→
. We start with several examples: Booleans, the natural numbers, the free monoid

over n generators (words over a finite alphabet with n elements) and trees with at the
leafs labels from a type A. The following definitions depend on a given type A. So in
fact Bool = BoolA etcetera. Often one takes A = o.

