1.2. NORMAL INHABITANTS 21

The second variant of A" is the de Bruijn version of A2, denoted by)\ﬁdB or A4B. Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

FB L Az Az): A-A (1g)
yA FB (A\x:(A—B).ay): (A—>B)—A—B (24B)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. NOTATION. Terms like (Afz.f(fz)) € A?(1—0—0) will often be written

Al f(fz)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A€ M. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. DEFINITION. Let A = A1— ... A,—«a and suppose I' - M : A.

(i) Then M is in long-nf, notation Inf, if M =)\a;‘fh .z aM, ... M, and each M,
is in Inf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a Infif M =g, N and N is a Inf.

In Exercise 1.5.16 it is proved that if M has a @-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique Inf and will be its unique 8n~! nf. Here
n~! is the notion of reduction that is the converse of 7.

1.2.2. ExampLES. (i) Note that Af'.f =g, Af'Az°.fz and that Afl.f is a Bn-nf but
not a Inf.

(i) Af'Az°.fx is a Inf, but not a Bn-nf.

(iii) Az:o.x is both in Bn-nf and Inf.

(iv) The B-nf AF:2o\f:1.F f(A\z:0.fx) is neither in Bn-nf nor Inf.

(v) A variable of atomic type « is a Inf, but of type A— B not.

(vi) A variable f:1—1 has as Inf A\g' \z°. f(\y°.gy)x.

1.2.3. PROPOSITION. Every B-nf M has a Inf M* such that M* —»n M.

22 CHAPTER 1. THE SYSTEMS A_,

PROOF. Define M! by induction on the depth of the type of the closure of M as follows.
M= (\ZyM; ... M,)" = \£ZyM{ .. MEZE
Then M* does the job. m

Now we will define a 2-level grammar for obtaining the collection of all Inf’s of a
given type A.

1.2.4. DEFINITION. Let N = {L(A;T") | A€ T4;T" a context of A_}. Let ¥ be the
alphabet of the terms of the A", Define the following two-level grammar, see van
Wijngaarden et al. [1976], as a notion of reduction over words over N UX. The elements
of N are the non-terminals (unlike in a context-free language there are now infinitely
many of them).

L(;T) = zL(B;;T)...L(By;T), if (z:B—a)el;
L(A-B;T) = M .L(B;T,z:A).

Typical productions of this grammar are the following.

L(3;0) AF2.L(o; F?)
AF2.FL(1; F?)
AF2. F(A\z°.L(o; F?,z°))

AFZF(\az°.x).

Gl

But one has also

L(o; F?,2°) = FL(1;F? x°)
= F(\x$.L(o; F?,2°,29))
= F(A\z{.z1).

Hence (= denotes the transitive reflexive closure of =)

L(3;0) = AF2.F(\ax’.F(\x.x1)).

In fact, L(3;0) reduces to all possible closed Inf’s of type 3. Like in abstract syntax we
do not produce parentheses from the L(A;T"), but write them when needed.

1.2.5. PROPOSITION. Let I', M, A be given. Then
LAT)= M < T'EM: A& M is in Inf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all 3-nf’s.

1.2. NORMAL INHABITANTS 23

1.2.6. DEFINITION. The 2-level grammar N is defined as follows.

N(A;T) = aN(By;T)...N(ByT), if (;:B—A)€T;
N(A—B;T) = Xt .N(B;T,z:A).
Now the 3-nf’s are being produced. As an example we make the following production.
Remember that 1 = o—o.

L(l—o—0;0) = Mf'.L(o—0; f:0—0)
= MLf

1.2.7. PROPOSITION. Let I', M, A be given. Then

NAT)= M < I'FM: A& M is in B-nf.

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine M 4 producing

the set of closed terms of that type. If one is interested in terms containing variables
3:‘141, e ,:L"f", then one can also find these terms by considering the machine for the type

Ai—...—A,—A and look at the subproduction at node A.

1.2.8. EXAMPLES. (i) A =0—0—0. Then My is

Az Ay°

0—0—0 [0] T
Yy

This shows that the type 15 has two closed inhabitants: Axy.z and Axy.y. We see that

the two arrows leaving [o] represent a choice.
(ii)) A= a—((o—B)—a)—B—a. Then My is

‘ a—((0—pB)—a)—B—« ‘

lAaQAf(OHﬂ)HOZAbﬂ
[a] a
f

Rl — b

Again there are only two inhabitants, but now the production of them is rather different:
Aafb.a and Aafb.f(Az°.b).

24 CHAPTER 1. THE SYSTEMS A_,

(iii) A= ((a—B)—a)—a. Then My is

[((a—pB)—a)—a|

)\F(a—)ﬁ)ﬂa

(@) ————[a=p]-=~[4]

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A= 1—0—o0. Then My is

This is the type Nat having the Church’s numerals Af'z°.f"z as inhabitants.
(v) A=1—1—0—0. Then My is

l)\fl)\gl)\xo
f C?D g

T
Inhabitants of this type represent words over the alphabet ¥ = {f, g}, for example
Algta®.fgf fafgge,

where we have to insert parentheses associating to the right.
(vi) A= (a—B—~)—B—a—~y. Then My is

[(a—=p—7)—B—a—]

lx BT NB N

a~—Ia] b

giving as term AfeB77\bBa®. fab. Note the way an interpretation should be given
to paths going through f: the outgoing arcs (to [a]and @) should be completed both
separately in order to give f its two arguments.

1.2. NORMAL INHABITANTS 25

(vil) A=3. Then My is

[2]

AF?2

-

F
— [

Ax®

s

This type 3 has inhabitants having more and more binders:
AP FOWSF (- (\af).

The novel phenomenon that the binder Ax® may go round and round forces us to give new
incarnations Az{, Az{,... each time we do this (we need a counter to ensure freshness of
the bound variables). The ‘terminal’ variable = can take the shape of any of the produced
incarnations zp. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.

(viii)) A =3—0—0. Then M, is

3—o0—0

A@SAcol
P

e

This type, called the monster M, does have a potential infinite amount of binding,
having as terms e.g.

NO3 2 DAfL. fLONfS fof1® .. ANfL fo ... fafic,

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f! in this case) becomes necessary, as the f going from [o]to itself needs
to be one that has already been incarnated.

(ix) A= 1y—0—o0. Then My is

Apl2 Ae?
7

)

p

This is the type of binary trees, having as elements, e.g. A\p'2¢®.c and Ap'2¢®.pe(pee).
Again, as in example (vi) the outgoing arcs from p (to [o]) should be completed both
separately in order to give p its two arguments.

26 CHAPTER 1. THE SYSTEMS A_,

(x) A=19—2—0. Then M, is

This is the type L corresponding to untyped lambda terms. For example the untyped
terms w = Az.zx and Q = (A\z.zz)(\z.22) can be translated to (w)! = AF'2G2.G(\x°. Fax)

wnd Q) = AF2G2F(G(\x°.Fxz))(G(A\x°.Frx))

=5 AG.F((w)'FG)((w)'FG)

=B (w)t ‘L (w)t7
where for M, N €L one defines M - N = AFG.F(MFG)(NFG). All features of
producing terms inhabiting types (bookkeeping bound variables, multiple paths) are
present here.

Following the 2-level grammar N one can make inhabitation machines for @-nf M 5 .

1.2.9. ExAMPLE. We show how the production machine for 8-nf’s differs from the one
for Inf’s. Let A = 1—0—0. Then Af'.f is the (unique) B-nf of type A that is not a Inf.

It will come out from the following machine M 5 .

b
[o=0)——f

l)\x"

f (o

So in order to obtain the B-nf’s, one has to allow output at types that are not atomic.

1.3. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in A%,. We start with several examples: Booleans, the natural numbers, the free monoid
over n generators (words over a finite alphabet with n elements) and trees with at the
leafs labels from a type A. The following definitions depend on a given type A. So in
fact Bool = Bool 4 etcetera. Often one takes A = o.

