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3.3.37. Example. Let M be a typed structure. Let ∆ ⊆ M. Write ∆(A) = ∆∩M(A).
Assume that ∆(A) 6= ∅ for all A∈ and

d∈∆(A→B), e∈∆(A) ⇒ de∈∆(B).

Then ∆ may fail to be a typed structure because it is not extensional. Equality as
binary relation Eo on ∆(o) × ∆(o) induces a binary logical relation E on ∆ × ∆. Let
∆E = {d∈∆ | E(d, d)}. Then the restriction of E to ∆E is an applicative congruence
and the equivalence classes form a structure. In particular, if M is a model, then write

∆+ = {d∈M | ∃MΛø
o∃d1 . . . dn [[M ]]d1 . . . dn = d}

for the applicative closure of ∆. The Gandy hull of ∆ in M is the set ∆+E. From the
fundamental theorem for logical relations it can be derived that

M∆ = ∆+E/E

is a model. This model will be also called the Gandy hull of ∆ in M.

3.4. Type reducibility

Remember that a type A is reducible to type B, notation A ≤βη B if for some closed
term Φ:A→B one has for all closed M1,M2:A

M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2.

3.4.1. Definition. Write A ∼βη B iff A ≤βη B & B ≤βη A.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of TT(λ→) can be reduced. At first this may seem impossible. Indeed, in a full
typed structure M the cardinality of the sets of higher type increase arbitrarily. So one
cannot always have an injection MA→MB . But reducibility means that one restricts
oneself to definable elements (modulo =βη) and then the injections are possible. The
proof will occupy 3.4.2-3.4.7. There are four main steps. In order to show that ΦM1 =βη

ΦM2 ⇒ M1 =βη M2 in all cases a (pseudo) inverse Φ−1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes Φ−1 is definable, but the property Φ−1(ΦM) = M only holds in an extension
of the theory; because the extension will be conservative over =βη the reducibility follows.
Next the type hierarchy theorem, also due to Statman [1980a], will be given. Rather
unexpectedly it turns out that under ≤βη types form a well-ordering of length ω + 3.
Finally some consequences of the reducibility theorem will be given, including the 1-
section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank ≤ 3. The proof is rather syntactic. In order to show that the
definable function Φ is 1-1, a non-definable inverse is needed. A warmup exercise for
this is 3.6.4.
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3.4.2. Proposition. For every type A there is a type B such that rank(B) ≤ 3 and
A ≤βη B.

Proof. [The intuition behind the construction of the the term Φ responsible for the
reducibility is as follows. If M is a term with Böhmtree (see Barendregt [1984])

λx1:A1 . . . xa:Aa.xi
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Now let UM be a term with “Böhmtree” of the form

λx1:o . . . xa:o.uxi
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where all the typed variables are pushed down to type o and the variables u (each
occurrence possibly different) takes care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank ≤ 1.
Also that M can be reconstructed from UM so that U is injective. ΦM is just UM with
the auxiliary variables bound. This makes it of type with rank ≤ 3. What is less clear
is that U and hence Φ are lambda-definable.]

Define inductively for any type A the types A♯ and A♭.

o♯ = o;

o♭ = o;

(A1→ . . .→Aa→o)♯ = o→A♭
1→ . . .→A♭

a→o;

(A1→ . . .→Aa→o)♭ = (oa→o).

Notice that rank(A♯) ≤ 2.

In the potentially infinite context

{uA:A♯ |A∈TT}
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define inductively for any type A terms VA : o→A,UA : A→A♭.

Uo = λx:o.x;

Vo = λx:o.x;

UA1→...→Aa→o = λz:Aλx1, . . . , xa:o.z(VA1
x1) . . . (VAaxa);

VA1→...→Aa→o = λx:oλy1:A1 . . . ya:Aa.uAx(UA1
y1) . . . (UAaya),

where A = A1→ . . .→Aa→o. Write Ai = Ai1→ . . .→Ain→o.
Remark that for C = A1→ . . .→Aa→B one has

UC = λz:Cλx1, . . . , xa:o.UB(z(VA1
x1) . . . (VAaxa)). (1)

Indeed, both sides are equal to

λz:Aλx1, . . . , xa, y1, . . . , yb:o.z(VA1
x1) . . . (VAaxa)(VB1

y1) . . . (VBb
yb),

with B = B1→ . . .→Bb→o.
Notice that for a closed term M of type A = A1→ . . .→Aa→o one can write

M = λy1:A1 . . . ya:Aa.yi(M1y1 . . . ya) . . . (Mny1 . . . ya).

Now verify that

UAM = λx1, . . . , xa:o.M(VA1
x1) . . . (VAaxa)

= λ~x.(VAi
xi)(M1(VA1

x1) . . . (VAaxa)) . . . (Mn(VA1
x1) . . . (VAaxa))

= λ~x.uAi
xi(UAi1

(M1(VA1
x1) . . . (VAaxa))) . . . (UAin

(Mn(VA1
x1) . . . (VAaxa)))

= λ~x.uAi
xi(UB1

M1~x) . . . (UBnMn~x),

using (1), where Bj = A1→ . . .→Aa→Aij for 1 ≤ j ≤ n is the type of Mj . Hence we
have that if UAM =βη UAN , then for 1 ≤ j ≤ n

UBj
Mj =βη UBj

Nj.

Therefore it follows by induction on the complexity of M that if UAM =βη UAN , then
M =βη N .

Now take as term for the reducibility Φ ≡ λm:AλuB1
. . . uBk

.UAm, where the ~u are
all the ones occurring in the construction of UA. It follows that

A ≤βη B♯
1→ . . .→B♯

k→A♭.

Since rank(B♯
1→ . . .→B♯

k→A♯) ≤ 3, we are done.

For an alternative proof, see Exercise 3.6.9.
In the following proposition it will be proved that we can further reduce types to

one particular type of rank 3. First do exercise 3.6.5 to get some intuition. We need the
following notation.
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3.4.3. Notation. (i) For k ≥ 0 write

1k = ok→o,

where in general A0→o = o and Ak+1→o = A→(Ak→o).
(ii) For k1, . . . , kn ≥ 0 write

(k1, . . . , kn) = 1k1
→ . . .→1kn

→o.

(iii) For k11, . . . , k1n1
, . . . , km1, . . . , kmnm ≥ 0 write









k11 . . . k1n1

. .

. .
km1 . . . kmnm









= (k11, . . . , k1n1
)→ . . .→(km1, . . . , kmnm)→o.

Note the “matrix” has a dented right side (the ni are unequal in general).

3.4.4. Proposition. Every type A of rank ≤ 3 is reducible to

12→1→1→2→o.

Proof. Let A be a type of rank ≤ 3. It is not difficult to see that A is of the form

A =









k11 . . . k1n1

. .

. .
km1 . . . kmnm









We will first reduce A to type 3 = 2→o using a term Φ containing free variables of type
12, 1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12, p1:1, p2:1}.

Consider the notion of reduction p defined by the contraction rules

pi(pM1M2)→pM1.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with ♣ and jump to those starting with ♠.]

♣ This notion of reduction satisfies the subject reduction property. Moreover βηp
is Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extending
the notion of reduction by adding

p(p1M)(p2M)→sM

preserves the CR property. In the untyped calculus this is not the case, see Klop [1980]
or Barendregt [1984], ch. 14.] Goto ♠.
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♠ Given the pairing p, p1, p2 one can extend it as follows. Write

p1 = λx:o.x;

pk+1 = λx1 . . . xnxn+1:o.p(pkx1 . . . xn)xn+1;

p1
1 = λx:o.x;

pk+1
k+1 = p2;

pk+1
i = λz:o.pk

i (p1z), for i ≤ k;

P k = λf1 . . . fk:1λz:o.pk(f1z) . . . (fkz);

P k
i = λg:1λz:o.pk

i (gz), for i ≤ k.

We have that pk acts as a coding for k-tuples of elements of type o with projections pk
i .

The P k, P k
i do the same for type 1. In context containing {f :1k, g:1} write

fk→1 = λz:o.f(pk
1z) . . . (pk

kz);

g1→k = λz1 . . . zk:o.f(pkz1 . . . zk).

Then fk→1 is f moved to type 1 and g1→k is g moved to type 1k.
Using βηp-convertibility one can show

pk
i (p

kz1 . . . zk) = zi;

P k
i (P kf1 . . . fk) = fi;

fk→1,1→k = f.

For g1→k,k→1 = g one needs s, the surjectivity of the pairing.

In order to define the term required for the reducibility start with the term Ψ:A→3
(containing p, p1, p2 as only free variables). We need an auxiliary term Ψ−1, acting as
an inverse for Ψ in the presence of a “true pairing”.

Ψ ≡ λMλF :2.M

[λf11:1k11
. . . f1n1

:1k1n1
.p1(F (Pn1fk11→1

11 . . . f
k1n1

→1

1n1
)] . . .

[λfm1:1km1
. . . fmnm :1kmnm

.pm(F (Pnmfkm1→1
m1 . . . fkmnm→1

mnm
)];

Ψ−1 ≡ λN :(2→o)λK1:(k11, . . . , k1n1
) . . . λKm:(km1, . . . , kmnm).

N(λf :1.pm[K1(P
n1

1 f)1→k11 . . . (Pn1

n1
f)1→k1n1 ] . . .

[Km(Pnm

1 f)1→km1 . . . (Pnm
nm

f)1→k1nm ]).

Claim. For closed terms M1,M2 of type A we have

M1 =βη M2 ⇐⇒ ΨM1 =βη ΨM2.

It then follows that for the reduction A ≤βη 12→1→1→3 we can take

Φ = λM :A.λp:12λp1, p2:1.ΨM.
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It remains to show the claim. The only interesting direction is (⇐). This follows in
two ways. We first show that

Ψ−1(ΨM) =βηp M. (1)

We will write down the computation for the “matrix”
(

k11

k21 k22

)

which is perfectly general.

ΨM =β λF :2.M [λf11:1k11
.p1(F (P 1fk11→1

11 ))]

[λf21:1k21
λf22:1k22

.p2(F (P 2fk21→1
21 fk22→1

22 ))];
Ψ−1(ΨM) =β λK1:(k11)λK2:(k21, k22).

ΨM(λf :1.p1[K1(P
1
1 f)1→k11 [K2(P

2
1 f)1→k21(P 2

2 f)1→k22 ])
≡ λK1:(k11)λK2:(k21, k22).ΨMH, say,

=β λK1K2.M [λf11.p1(H(P 1fk11→1
11 ))]

[λf21λf22.p2(H(P 2fk21→1
21 fk22→1

22 ))];
=βp λK1K2.M [λf11.p1(p

2[K1f11][..‘junk’..])]
[λf21λf22.p2(p

2[..‘junk’..][K2f21f22])];
=p λK1K2.M(λf11.K1f11)(λf21f22.K2f21f22)
=η λK1K2.MK1K2

=η M,

since

H(P 1f11) =βp p2[K1f11][..‘junk’..]

H(P 2fk21→1
21 fk22→1

22 ) =βp p2[..‘junk’..][K2f21f22].

The argument now can be finished in a model theoretic or syntactic way.
♣ If ΨM1 =βη ΨM2, then Ψ−1(ΨM1) =βη Ψ−1(ΨM2). But then by (1) M1 =βηp

M2. It follows from the Church-Rosser theorem for βηp that M1 =βη M2, since these
terms do not contain p. Goto .

♠ If ΨM1 =βη ΨM2, then

λp:12λp1p2:1.Ψ
−1(ΨM1) =βη λp:12λp1p2:1.Ψ

−1(ΨM2).

Hence
M(ω) |= λp:12λp1p2:1.Ψ

−1Ψ(M1) = λp:12λp1p2:1.Ψ
−1(ΨM2).

Let q be an actual pairing on ω with projections q1,q2. Then in M(ω)

(λp:12λp1p2:1.Ψ
−1(ΨM1))qq1q2 = λp:12λp1p2:1.Ψ

−1(ΨM2)qq1q2.

Since (M(ω),q,q1,q2) is a model of βηp conversion it follows from (1) that

M(ω) |= M1 = M2.

But then M1 =βη M2, by a result of Friedman [1975].
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We will see below, corollary 3.4.23 (i), that Friedman’s result will follow from the
reducibility theorem. Therefore the syntactic approach is preferable.

The proof of the next proposition is again syntactic. A warmup is exercise 3.6.7.

3.4.5. Proposition. Let A be a type of rank ≤ 2. Then

2→A ≤βη 1→1→o→A.

Proof. Let A ≡ (1k1 , . . . , 1kn) = 1k1
→ . . . 1kn

→o. The term that will perform the
reduction is relatively simple

Φ ≡ λM :(2→A)λf, g:1λz:oλb1:1k1
. . . λbn:1kn

.M(λh:1.f(h(g(hz)))).

In order to show that for all M1,M2:2→A one has

ΦM1 =βη ΦM2 ⇒ M1 =βη M2,

we may assume w.l.o.g. that A = 12→o. A typical element of 2→12→o is

M ≡ λF :2λb:12.F (λx.F (λy.byx)).

Note that its translation has the following long βη-nf

ΦM = λf, g:1λz:oλb:12.f(Nx[x: = g(Nx[x: = z]])),

where Nx ≡ f(b(g(bzx))x),

≡ λf, g:1λz:oλb:12.f(f(b(g(bz[g(f(b(g(bzz))z))]))[g(f(b(g(bzz))z))]).

This term M and its translation have the following trees.

BT(M) λFb.F

λx.

F

λy.

b

JJJJJJJJJJJJ

tttttttttttt

y x
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and

BT(ΦM) λfgzb.f
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Note that if we can ‘read back’ M from its translation ΦM , then we are done. Let
Cutg→z be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cutg→z(ΦM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the term M , by reading f as F (λ⊙. The
remaining problem is how to reconstruct the binding effect of each occurrence of the λ⊙.
Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is accomplished
by a realizing that the occurrence z coming from g(P ) should be bound at the position
f just above where Cutg→z(P ) matches in Cutg→z(ΦM) above that z. For a precise
inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise 3.6.10.

The following simple proposition brings almost to an end the chain of reducibility of
types.
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3.4.6. Proposition.
14→12→o→o ≤βη 12→o→o.

Proof. As it is equally simple, let us prove instead

1→12→o→o ≤βη 12→o→o.

Define Φ : (1→12→o→o)→12→o→o by

Φ ≡ λM :(1→12→o→o)λb:12λc:o.λf :1λb:12λc:o.M(f+)(b+)c,

where

f+ = λt:o.b(#f)t;

b+ = λt1, t2:o.b(#b)(bt1t2);

#f = bcc;

#b = bc(bcc).

The terms #f,#b serve as recognizers (“Gödel numbers”). Notice that M of type
1→12→o→o has a closed long βη-nf of the form

Mnf ≡ λf :1λb:12λc:o.t

with t an element of the set T generated by the grammar

T :: = c | fT | b T T.

Then for such M one has ΦM =βη Φ(Mnf) ≡ M+ with

M+ ≡ λf :1λb:12λc:o.t+,

where t+ is inductively defined by

c+ = c;

(ft)+ = b(#f)t+;

(bt1t2)
+ = b(#b)(bt+1 t+2 ).

It is clear that Mnf can be constructed back from M+. Therefore

ΦM1 =βη ΦM2 ⇒ M+
1 =βη M+

2

⇒ M+
1 ≡ M+

2

⇒ Mnf
1 ≡ Mnf

2

⇒ M1 =βη M2.

By the same method one can show that any type of rank ≤ 2 is reducible to ⊤, do
exercise 3.6.12

Combining propositions 3.4.2-3.4.6 we can complete the proof of the reducibility
theorem.
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3.4.7. Theorem (Reducibility theorem, Statman [1980a]). Let

⊤ = 12→o→o.

Then
∀A∈TT A ≤βη ⊤.

Proof. Let A be any type. Harvesting the results we obtain

A ≤βη B, with rank(B) ≤ 3, by 3.4.2,

≤βη 12→12→2→o, by 3.4.4,

≤βη 2→12→12→o, by simply permuting arguments,

≤βη 12→o→12→12→o, by 3.4.5,

≤βη 12→o→o, by an other permutation and 3.4.6

Now we turn attention to the type hierarchy, Statman [1980a].

3.4.8. Definition. For the ordinals α ≤ ω + 3 define the type Aα ∈TT(λo
→) as follows.

A0 = o;

A1 = o→o;

. . .

Ak = ok→o;

. . .

Aω = 1→o→o;

Aω+1 = 1→1→o→o;

Aω+2 = 3→o→o;

Aω+3 = 12→o→o.

3.4.9. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.

Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 ≡ λm:Akλzx1 . . . xk:o.mx1 . . . xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω ≡ λm:Akλf :1λx:o.m(c1fx) . . . (ckfx).

Then Aω ≤βη Aω+1 via

Φω, ω+1 ≡ λm:Aωλf, g:1λx:o.mfx.
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Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 ≡ λm:Aω+1λH:3λx:o.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤ because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term Φω+2, ω+3.

3.4.10. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. This will be proved in 3.5.32.

3.4.11. Corollary. For α,β ≤ ω + 3 one has

Aα ≤βη Aβ ⇐⇒ α ≤ β.

For a proof that these types {Aα}α≤ω+3 are a good representation of the reducibility
classes we need some syntactic notions.

3.4.12. Definition. A type A∈TT(λo
→) is called large if it has a negative subterm

occurrence of the form B1→ . . .→Bn→o, with n ≥ 2; A is small otherwise.

3.4.13. Example. 12→o→o is large; (12→o)→o and 3→o→o are small.

Now we will partition the types TT = TT(λo
→) in the following classes.

3.4.14. Definition. Define the following sets of types.

TT−1 = {A | A has no closed inhabitant};
TT0 = {o→o};
TT1 = {ok→o | k > 1};
TT2 = {1→oq→o | q > 0} ∪ {(1p→o)→oq→o | p > 0, q ≥ 0};
TT3 = {A | A is small, rank(A)∈{2, 3} and A /∈ TT2};
TT4 = {A | A is small and rank(A) > 3};
TT5 = {A | A is large}.

It is clear that the TTi form a partition of TT. A typical element of TT−1 is o. This class
we will not consider much.

3.4.15. Theorem (Hierarchy theorem, Statman [1980a]).

A∈TT5 ⇐⇒ A ∼βη 12→o→o;
A∈TT4 ⇐⇒ A ∼βη 3→o→o;
A∈TT3 ⇐⇒ A ∼βη 1→1→o→o;
A∈TT2 ⇐⇒ A ∼βη 1→o→o;
A∈TT1 ⇐⇒ A ∼βη ok→o, for some k > 1;
A∈TT0 ⇐⇒ A ∼βη o→o;
A∈TT−1 ⇐⇒ A ∼βη o.



124 CHAPTER 3. TOOLS

Proof. Since the TTi form a partition, it is sufficient to show just the ⇒’s.

As to TT5, it is enough to show that 12→o→o ≤βη A, for every large type A, since
we know already the converse. For this see Statman [1980a], lemma 7. As a warmup
exercise do 3.6.20.

As to TT4, it is shown in Statman [1980a], proposition 2, that if A is small, then
A ≤βη 3→o→o. It remains to show that for any small type A of rank > 3 one has
3→o→o ≤βη A. Do exercise 3.6.27.

As to TT3, the implication is shown in Statman [1980a], lemma 12. The condition
about the type in that lemma is equivalent to belonging to TT3.

As to TT2, do exercise 3.6.22(ii).

As to TTi, with i = 1, 0,−1, notice that Λø(ok→o) contains exactly k closed terms for
k ≥ 0. This is sufficient.

For an application in the next section we need a refinement of the hierarchy theorem.

3.4.16. Definition. Let A,B be types.

(i) A is head-redicible to B, notation A ≤h B, iff for some closed term Φ∈Λø(A→B)
one has

∀M1,M2:A [M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2],

and moreover Φ is of the form

Φ = λm:Aλx1 . . . xb:B.mP1 . . . Pa, (+)

with m /∈ FV(P1, . . . , Pa).

(ii) A is multi head-reducible to B, notation A ≤h+ B, iff there are closed terms
Φ1, . . . ,Φm ∈Λø(A→B) each of the form (+) such that

∀M1,M2:A [M1 =βη M2 ⇐⇒ Φ1M1 =βη Φ1M2 & . . . & ΦmM1 =βη ΦmM2.

(iii) Write A ∼h B iff A ≤h B ≤h A and similarly
A ∼h+ B iff A ≤h+ B ≤h+ A.

3.4.17. Proposition. (i) A ≤h B ⇒ A ≤βη B.

(ii) Let A,B ∈TTi, with i 6= 2. Then A ∼h B.

(iii) Let A,B ∈TT2. Then A ∼h+ B.

(iv) A ≤βη B ⇒ A ≤h+ B.

Proof. (i) Trivial.

(ii) Suppose A ≤βη B. By inspection of the proof of the hierarchy theorem in all
cases except for A∈TT2 one obtains A ≤h B. Do exercise 3.6.24.

(iii) In the exceptional case one obtains A ≤h+ B, see exercise 3.6.23.

(iv) By (ii) and (iii), using the hierarchy theorem.
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3.4.18. Corollary (Hierarchy theorem (revisited), Statman [1980b]).

A∈TT5 ⇐⇒ A ∼h 12→o→o;
A∈TT4 ⇐⇒ A ∼h 3→o→o;
A∈TT3 ⇐⇒ A ∼h 1→1→o→o;
A∈TT2 ⇐⇒ A ∼h+ 1→o→o;
A∈TT1 ⇐⇒ A ∼h+ o2→o;
A∈TT0 ⇐⇒ A ∼h o→o;
A∈TT−1 ⇐⇒ A ∼h o.

Proof. The only extra fact to verify is that ok→o ≤h+ o2→o.

Applications of the reducibility theorem

The reducibility theorem has several consequences.

3.4.19. Definition. Let C be a class of λ→ models. C is called complete iff

∀M,N ∈Λø[C |= M = N ⇐⇒ M =βη N ].

3.4.20. Definition. (i) T = Tb,c is the algebraic structure of trees inductively defined
as follows.

T = c | b T T

(ii) For a λ→ model M we say that T can be embedded into M, notation T →֒ M ,
iff there exist b0 ∈M(o→o→o), c0 ∈M(o) such that

∀t, s∈T [t 6= s ⇒ M |= tclb0c0 6= sclb0c0],

where ucl = λb:o→o→oλc:o.u, is the closure of u∈T .

The elements of T are binary trees with c on the leaves and b on the connecting nodes.
Typical examples are c, bcc, bc(bcc) and b(bcc)c. The existence of an embeding using
b0, c0 implies for example that b0c0(b0c0c0), b0c0c0 and c0 are mutually different in M.

Note that T 6֒→ M(2). To see this, write gx = bxx. One has g2(c) 6= g4(c), but
M(2) |= ∀g:o→o∀c:o.g2(c) = g4(c), do exercise 3.6.13.

3.4.21. Lemma. (i) Πi∈ IMi |= M = N ⇐⇒ ∀i∈ I.Mi |= M = N.
(ii) M ∈Λø(⊤) ⇐⇒ ∃s∈T .M =βη scl.

Proof. (i) Since [[M ]]Πi∈ IMi = λλi∈ I.[[M ]]Mi .
(ii) By an analysis of the possible shape of the normal forms of terms of type ⊤ =

12→o→o.

3.4.22. Theorem (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {Mi}i∈ I of structurs in C such that

T →֒ Πi∈ IMi.
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Proof. (⇒) Suppose C is complete. Let t, s∈T . Then

t 6= s ⇒ tcl 6=βη scl

⇒ C 6|= tcl = scl, by completeness,

⇒ Mts |= tcl 6= scl, for some Mst ∈C,

⇒ Mts |= tclbtscts 6= sclbtscts,

for some bts ∈M(o→o→o), cts ∈M(o) by extensionality. Note that in the third implication
the axiom of (countable) choice is used.

It now follows by lemma 3.4.21(i) that

Πt6=sMts |= tcl 6= scl,

since they differ on the pair b0c0 with b0(ts) = bts and similarly for c0.

(⇐) Suppose T →֒ Πi∈ IMi with Mi ∈C. Let M,N be closed terms of some type
A. By soundness one has

M =βη N ⇒ C |= M = N.

For the converse, let by the reducibility theorem F : A→⊤ be such that

M =βη N ⇐⇒ FM =βη FN,

for all M,N ∈Λø. Then

C |= M = N ⇒ Πi∈ IMi |= M = N, by the lemma,

⇒ Πi∈ IMi |= FM = FN,

⇒ Πi∈ IMi |= tcl = scl,

where t, s are such that

FM =βη tcl, FN =βη scl, (∗)

noting that every closed term of type ⊤ is βη-convertible to some ucl with u∈T . Now
the chain of arguments continues as follows

⇒ t ≡ s, by the embedding property,

⇒ FM =βη FN, by (*),

⇒ M =βη N, by reducibility.

3.4.23. Corollary. (i) [Friedman [1975]] {MN} is complete.

(ii) [Plotkin [1985?]] {Mn}n∈N is complete.

(iii) {MN⊥
} is complete.

(iv) {MD}D a finite cpo, is complete.

Proof. Immediate from the theorem.
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The completeness of the collection {Mn}n∈N essentially states that for every pair of
terms M,N of a given type A there is a number n = nM,N such that Mn |= M = N ⇒
M =βη N . Actually one can do better, by showing that n only depends on M .

3.4.24. Proposition (Finite completeness theorem, Statman [1982]). For every type A∈TT(λo
→)

and every closed term M of type A there is a number n = nM such that for all closed
terms N of type A one has

Mn |= M = N ⇐⇒ M =βη N.

Proof. By the reduction theorem 3.4.7 it suffices to show this for A = ⊤. Let M a
closed term of type ⊤ be given. Each closed term N of type ⊤ has as long βη-nf

N = λb:12λc:o.sN ,

where sN ∈T . Let p : N→N→N be an injective pairing on the integers such that
p(k1, k2) > ki. Take

nM = [[M ]]Mωp 0 + 1.

Define p′:X2
n+1→Xn+1, where Xn+1 = {0, . . . , n + 1}, by

p′(k1, k2) = p(k1, k2), if k1, k2 ≤ np(k1, k2) ≤ n;

= n + 1 else.

Suppose Mn |= M = N . Then [[M ]]Mnp′ 0 = [[N ]]Mnp′ 0. By the choice of n it follows
that [[M ]]Mnp 0 = [[N ]]Mnp 0 and hence sM = sN . Therefore M =βη N .

3.4.25. Definition (Reducibility Hierarchy, Statman [1980a]). For the ordinals α ≤ ω+
3 define the type Aα ∈TT(λo

→) as follows.

A0 = o;

A1 = o→o;

. . .

Ak = ok→o;

. . .

Aω = 1→o→o;

Aω+1 = 1→1→o;

Aω+2 = 3→o→o;

Aω+3 = 12→o→o.

3.4.26. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.
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Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 ≡ λm:Akλzx1 . . . xk:o.mx1 . . . xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω ≡ λm:Akλf :1λx:o.m(c1fx) . . . (ckfx).

Then Aω ≤βη Aω+1 via

Φω, ω+1 ≡ λm:Aωλf, g:1λx:o.mfx.

Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 ≡ λm:Aω+1λH:3λx:o.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤ because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term Φω+2, ω+3.

3.4.27. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. This will be proved in 3.5.32.

3.4.28. Corollary. For α,β ≤ ω + 3 one has

Aα ≤βη Aβ ⇐⇒ α ≤ β.

3.5. The five canonical term-models

The open terms of λo
→ form an extensional model, the term-model MΛo . One may

wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type o. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on Λø

o[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type o coincides with
=βη, can be obtained in this way. From now on D will range over sets of constants such
that there are closed terms for every type A (i.e. in Λø

o[D](A)).

3.5.1. Definition. Let M,N ∈Λø
o[D](A) with A = A1→ . . .→Aa→o.


