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3.3.37. EXAMPLE. Let M be a typed structure. Let A C M. Write A(A4A) = ANM(A).
Assume that A(A) # ) for all A€ and

de A(A—B),ec A(A) = deec A(B).

Then A may fail to be a typed structure because it is not extensional. Equality as
binary relation E, on A(o) x A(o) induces a binary logical relation £ on A x A. Let
AF ={de A | E(d,d)}. Then the restriction of E to A¥ is an applicative congruence
and the equivalence classes form a structure. In particular, if M is a model, then write

At ={deM |3IMAN3d; ...d, [M]d; ...d, = d}

for the applicative closure of A. The Gandy hull of A in M is the set AT#. From the
fundamental theorem for logical relations it can be derived that

MA:A+E/E

is a model. This model will be also called the Gandy hull of A in M.

3.4. Type reducibility

Remember that a type A is reducible to type B, notation A <g, B if for some closed
term ®:A— B one has for all closed M7, My:A

M1 =pn M2 <~ (I)Ml =pn (I)Mg.
3.4.1. DEFINITION. Write A ~g,, B iff A <, B & B <g, A.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of M(A_) can be reduced. At first this may seem impossible. Indeed, in a full
typed structure M the cardinality of the sets of higher type increase arbitrarily. So one
cannot always have an injection My —Mp. But reducibility means that one restricts
oneself to definable elements (modulo =g,) and then the injections are possible. The
proof will occupy 3.4.2-3.4.7. There are four main steps. In order to show that ®M; =g,
®M, = My =g, M in all cases a (pseudo) inverse &1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes ® ! is definable, but the property ®~!(®M) = M only holds in an extension
of the theory; because the extension will be conservative over =g, the reducibility follows.
Next the type hierarchy theorem, also due to Statman [1980a], will be given. Rather
unexpectedly it turns out that under <g, types form a well-ordering of length w + 3.
Finally some consequences of the reducibility theorem will be given, including the 1-
section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank < 3. The proof is rather syntactic. In order to show that the
definable function ® is 1-1, a non-definable inverse is needed. A warmup exercise for
this is 3.6.4.
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3.4.2. PROPOSITION. For every type A there is a type B such that rank(B) < 3 and
A <g, B.

PRrROOF. [The intuition behind the construction of the the term & responsible for the
reducibility is as follows. If M is a term with Béhmtree (see Barendregt [1984])

Ax1:A . xgi Ay

)\gjl.zl )\gjn.zn

/ N\ / N\

Now let UM be a term with “Bohmtree” of the form

AL1:0 . .. Xg:0.UT;

AYY . uzy AYD uzp,

/ N\ / N\

where all the typed variables are pushed down to type o and the variables u (each
occurrence possibly different) takes care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank < 1.
Also that M can be reconstructed from UM so that U is injective. ®M is just UM with
the auxiliary variables bound. This makes it of type with rank < 3. What is less clear
is that U and hence ® are lambda-definable.]

Define inductively for any type A the types Af and A°.

o = o

o = o
(A= ... —A,—0)F = o0—A— .. —A—o;
(A1— ... —A,—0) = (0"—o0).

Notice that rank(Af) < 2.
In the potentially infinite context

{ua:A* | AT}
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define inductively for any type A terms V4 : 0—A, Uy : A— AP,

U, = Azn:o.z;

V, = Az:o.z;
Udj—. —Ay—0o = Az2tAXx1, ... 2q:0.2(Va,21) ... (Va,x4a);
ViAo Ao = A:0Ay1AL . YarAguaz(Uayyr) - . (Ua,Ya),

where A = A1— ... —>A,—o0. Write A; = Aj1— ... —A;p—o.
Remark that for C' = A1— ... —-A,—B one has

Uo = z:CAxy,y. .., 2q:0.U(2(Va, 1) ... (Va,xa)). (1)
Indeed, both sides are equal to

A'2:14>\$17 ey Las Y1y e ,beO.Z(VAlﬂjl) s (VAaxa)(VBlyl) cee (VBbyb)7

with B = B1— ... —By—o.
Notice that for a closed term M of type A = A;— ... —A,—o0 one can write

M = y1: Ay .y A yi(Mayr - ya) oo (Mpyr . ya).
Now verify that

UaM = Xxy,...,z00.M(Va,x1)...(Va,xa)
= ANE.(Va,x)(My(Va,x1) ... (Va,za)) .. (M (Va,x1) ... (Va,zq))
= ANua,x;(Ua,, (Mi(Va,21) ... (Va,xa))) .. (Ua,, (Mp(Vayz1) ... (Va,za)))
= Mua,x;(Up, MiZ)... (U, M,%),

using (1), where B; = A;— ... —A,—A;; for 1 < j < n is the type of M;. Hence we
have that if UsM =g, UsN, then for 1 <j <n

UBij =pBn UBJ.N]'.

Therefore it follows by induction on the complexity of M that if UsM =g, UsN, then
M =g, N.

Now take as term for the reducibility ® = Am:AAup, ... up, .Usm, where the « are
all the ones occurring in the construction of U4. It follows that

A <g, Bii—> . —>B£—>Ab.
Since rank(B§—> . —>B£—>Aﬁ) < 3, we are done. m

For an alternative proof, see Exercise 3.6.9.

In the following proposition it will be proved that we can further reduce types to
one particular type of rank 3. First do exercise 3.6.5 to get some intuition. We need the
following notation.
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3.4.3. NOTATION. (i) For k > 0 write

1, = ok—>0,

where in general A°—o0 = 0 and A" 0 = A—(A*—0).
(ii) For ky,...,ky, > 0 write

(k1,... kn) = 1jy— ... =1, —o0.
(iii) For ki1,... king,s -y kmi, -, kmn,, > 0 write
kin ... ki,
= (k11,-- -, kiny )= .- —=(km1, - - -, kmn,, ) —0.
Emi oo kmn,,

Note the “matrix” has a dented right side (the n; are unequal in general).
3.4.4. PROPOSITION. Every type A of rank < 3 is reducible to
1y—1—1—2—0.
PrROOF. Let A be a type of rank < 3. It is not difficult to see that A is of the form

kll . klnl

b1 - K,

We will first reduce A to type 3 = 2—o0 using a term ¢ containing free variables of type
19,1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12,p1:1, p2:l}.
Consider the notion of reduction p defined by the contraction rules
pi(pMyMaz)—, M.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with & and jump to those starting with é.]

& This notion of reduction satisfies the subject reduction property. Moreover Gnp
is Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extending
the notion of reduction by adding

p(p1M)(poM)— M

preserves the CR property. In the untyped calculus this is not the case, see Klop [1980]
or Barendregt [1984], ch. 14.] Goto #.
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& Given the pairing p, p1, p2 one can extend it as follows. Write

pl = Ao
PP = x o zpzngrop(PFEy . 2n) T
p% = A\x:0.1;
Pt = o
f“ = Az:o.pk(p2), for i < k;
P* = M. feldzop®(fiz) ... (fr2);
PF = Ag:l)z0.pF(92), for i < k.

We have that pF acts as a coding for k-tuples of elements of type o with projections pf .
The P, Pf‘C do the same for type 1. In context containing {f:1j, g:1} write

=l = Azof(phz) ... (ph2);
g'7F = Az o f(PRa . z).
Then f*~1is f moved to type 1 and g'~* is ¢ moved to type 1.
Using Bnp-convertibility one can show

pf(pkzl L ZE) =2
PEP fi fi) = fi
k—1,1—k
o = I
For ¢'~FF=1 = g one needs s, the surjectivity of the pairing.

In order to define the term required for the reducibility start with the term ¥:A4—3
(containing p, p1,pe as only free variables). We need an auxiliary term W1, acting as
an inverse for ¥ in the presence of a “true pairing”.

U = AMMNF:2.M
N kin, —1
Mgy - - Fing g L (FP™ T T

Mot L - - P Lk, Do (F (P frmd =1 flmnn =1y,
UL = AN:(2—0)AK1:(kit, - ki) - MK (Ko - - K, )-
NOf:Lp™[Kq (PP )R (P )t hm]
(Ko (P f)F Rt (Pt )R]

Claim. For closed terms M7, M5 of type A we have
M1 =pBn M2 = \I’Ml =pBn \I/MQ.
It then follows that for the reduction A <g, 1s—1—1—3 we can take

P = )\MZA.)\pilg)\pl,pgil.\I/M.
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It remains to show the claim. The only interesting direction is (<=). This follows in

two ways. We first show that
\I’_l(\I’M) =pnp M. (1)

We will write down the computation for the “matrix”
(i b
ko1 koo

UM =g  AF:2.M[Afir:lp, pi(F(P =)
[/\f2131k21>\f22:1k22'p2(F(P2 5121_& 5222_&))];
\I/_l(\I/M) =3 )\Kli(kll))\Kgi(kgl,kgg).
UM f:Lp! [ (P f) R Ko (PEf) R (P f) 7 he2])
)\Kli(kll))\Kgi(kgl,k‘gg).\I/MH, say,
=5 MK Ko M\ fiipi(H(P' 1)
Mo\ foopa(H (P2 £33 3527 ))];
=pBp )\KlKg.M[)\fll.pl(p2[Klfll][..‘junk’..])]
[Afa1 A fa2.p2 (P?[..junk . ] [K2 fo1 fo2]);
=, A Ko M(Af11-K1 fi11) (A fa1 fao. Ko fo1 f22)
=, MG Ky MK Ko
=y M7

which is perfectly general.

since
H(Plfll) =pBp p2[K1f11][..‘junk’..]
H(P? 5121_}1 5222_}1) =gy P°[..Junk’.)[K2 fo1 foo].

The argument now can be finished in a model theoretic or syntactic way.
& If UMy =g, UMy, then U1 (UM;) =g, U™1(UM,). But then by (1) My =gy,
M. It follows from the Church-Rosser theorem for Bmp that M; =g, Ma, since these

terms do not contain p. Goto m.
’ WIRVBYA =pBn W Ms, then

)\pzlg/\plpg:l.\lf_l(\I’Ml) =8n /\p:12)\p1p2:1.\lf_1(\IJM2).

Hence
M(w) = Ap:LlaApipo: LU YW (M) = Ap:1oApipo: 1. U H(WMy).

Let q be an actual pairing on w with projections q1,qz. Then in M(w)
(Ap:LoAp1p2: 1.0~ (WMy))aardz = Ap:loApipe: .U (W Ms)qqiqs.
Since (M(w),q,q1,qz2) is a model of Bnp conversion it follows from (1) that
M(w) E My = M.

But then M; =g,, M>, by a result of Friedman [1975]. m
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We will see below, corollary 3.4.23 (i), that Friedman’s result will follow from the
reducibility theorem. Therefore the syntactic approach is preferable.
The proof of the next proposition is again syntactic. A warmup is exercise 3.6.7.

3.4.5. PROPOSITION. Let A be a type of rank < 2. Then

2—A <g, 1=1—0—A.

Proor. Let A = (1¥1,... 1%) = 1, —...1,—o0. The term that will perform the
reduction is relatively simple

O = AM:(2—A)Nf, g:1Az:0 b1 1y, .. Abp: 1y, M (A1 f(R(g(h2)))).
In order to show that for all M7, M5:2— A one has
My =g, DMy = My =g, My,
we may assume w.l.o.g. that A = 1,—0. A typical element of 2—15,—0 is
M = AF:2)\b:19.F (Az.F(Ay.byx)).
Note that its translation has the following long Bn-nf

OM = Af,g:1Az:0A\b:1g. f(Ny[z: = g(N[z: = 2]])),
where N, = f(b(g(bzz))x),
= A, g1Az0Ab 1o f(f(b(g(bz[g(f (b(g(b22))2))])) g (f(b(g(b22))2))])-

This term M and its translation have the following trees.

BT(M) AFb.F

AT,
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and
BT (®M) Afgzb-,)‘f
~ ( Qénnd_by
boundby b\
'-.g
|
g f
i |
VRN RN
z g g z
i i
| /N
b z z

g z
/ b\
z z
Note that if we can ‘read back’ M from its translation ®M, then we are done. Let

Cut,_. be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cuty..(PM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the term M, by reading f as F(A®. The
remaining problem is how to reconstruct the binding effect of each occurrence of the A®.
Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is accomplished
by a realizing that the occurrence z coming from g(P) should be bound at the position
[ just above where Cut,_..(P) matches in Cut,_,,(®M) above that z. For a precise
inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise 3.6.10. m

The following simple proposition brings almost to an end the chain of reducibility of
types.
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3.4.6. PROPOSITION.
14—>12—>0—>o <pgn la—o—o.
PROOF. As it is equally simple, let us prove instead
I—1s—0—0 <g, lo—o0—o0.
Define ® : (1—13—0—0)—12—0—0 by
O = AM:(1—13—0—0)Ab:1aAc:0 A f:1Ab: 19 c:0. M (f ) (b7 )e,
where

T = Xob(#)t;
bt = My, t2:0.b(#b)(bt1ts);

#f = beg
#b = be(bee).

The terms #f,#b serve as recognizers (“Godel numbers”). Notice that M of type
1—19—0—0 has a closed long Bn-nf of the form

MM = Af:1 b1 c:o.t
with ¢ an element of the set T generated by the grammar
T::=c|fT|bTT.
Then for such M one has ®M =g, &(M™) = M+ with
MT = Af:1A\b:1ahcio.t ™,
where tT is inductively defined by

ct = ¢

(f)Y = b#NHT;
(btita)t = b(#b)(bt]tT).

It is clear that M™ can be constructed back from MT. Therefore

OMy =g, My = M =g, M

= M =M
= MM =Myt
= M =pn My. m

By the same method one can show that any type of rank < 2 is reducible to T, do
exercise 3.6.12

Combining propositions 3.4.2-3.4.6 we can complete the proof of the reducibility
theorem.
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3.4.7. THEOREM (Reducibility theorem, Statman [1980a]). Let
T = 1s—o0—o.

Then
VAeT A<g, T.

PROOF. Let A be any type. Harvesting the results we obtain

A <z, B, with rank(B) < 3, by 3.4.2,
<gy, la—1*—2-0, by 3.4.4,
<sn 2—15—1%2—0, by simply permuting arguments,
<g; 1’—0—13—17—0, by 3.4.5,
<gn l2—o0—0, by an other permutation and 3.4.6 m

Now we turn attention to the type hierarchy, Statman [1980a].

3.4.8. DEFINITION. For the ordinals o < w + 3 define the type A, € T(\?,) as follows.

Ay = o

Ay = o—0;

A, = o'—o;

A, = 1l—o—0;
Apr1 = 1—=1—0—0;
Aw+2 = 3—0—0;
Aw+3 = 12 —0—0.

3.4.9. PROPOSITION. For a,3 < w + 3 one has
a<g = A, gﬁnAg.
Proor. For all finite k one has Ay <g, A1 via the map
P k1 = AmiApAzxy .. xpiomay . Ty =gy AmiAg. Km.
Moreover, A <g, A, via
Dy o = AmuARAf:lAzom(ci fx) ... (cpfx).
Then A, <g, Awy1 via

D, i1 = AN, gl z0o.m f.
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Now Aw+1 Sﬁn Aw+2 via
Qi 1, wr2 = AmiA, i AH B3 z0. H(A f:1.H(Ag:1.m fgx)).

Finally, A, 12 <g, Awt3 = T because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term @19 1 3. W

3.4.10. PROPOSITION. For a,3 < w + 3 one has
a< B« A, <g, Ag.
Proor. This will be proved in 3.5.32. m
3.4.11. COROLLARY. For a,3 < w + 3 one has
Ao <pnp A = a <.

For a proof that these types {Aq}a<w+3 are a good representation of the reducibility
classes we need some syntactic notions.

3.4.12. DEFINITION. A type A€M (\?,) is called large if it has a negative subterm
occurrence of the form B1— ... —B,—o0, with n > 2; A is small otherwise.

3.4.13. EXAMPLE. lp—o0—o0 is large; (13—0)—o0 and 3—o0—o0 are small.
Now we will partition the types T = T(\%,) in the following classes.

3.4.14. DEFINITION. Define the following sets of types.
T_; = {A] A has no closed inhabitant};

To = {o—o}

T, = {oF—o|k>1};

Ty, = {l—0%—o0|q¢>0}U{(l,—0)—0—0|p>0,q9>0};
Ty = {A]| Aissmall, rank(A)€{2,3} and A ¢ Ta};

T, = {A] Aissmall and rank(A) > 3};

T = {A] Aislarge}.

It is clear that the T; form a partition of M. A typical element of T_; is 0. This class
we will not consider much.

3.4.15. THEOREM (Hierarchy theorem, Statman [1980al).

AeT; = A~gyla—o—o0;

AeTy — A~gy3—0—0;

AeT; = A~gyl—=l—o—o;

AecTy — A~gyl—o—o;

AeTy = A~gy oF—o, for some k > 1;
AeTy — A ~gyo—0;

AeT 4, — A ~@n O.
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PROOF. Since the T; form a partition, it is sufficient to show just the =’s.

As to T35, it is enough to show that 13—o—o0 <g, A, for every large type A, since
we know already the converse. For this see Statman [1980a], lemma 7. As a warmup
exercise do 3.6.20.

As to Ty, it is shown in Statman [1980a], proposition 2, that if A is small, then
A <g, 3—o0—o. It remains to show that for any small type A of rank > 3 one has
3—o0—0 <g, A. Do exercise 3.6.27.

As to T3, the implication is shown in Statman [1980a], lemma 12. The condition
about the type in that lemma is equivalent to belonging to 3.

As to Ty, do exercise 3.6.22(ii).

As to T;, with ¢ = 1,0, —1, notice that Aﬁ(ok—m) contains exactly k closed terms for
k > 0. This is sufficient. m

For an application in the next section we need a refinement of the hierarchy theorem.

3.4.16. DEFINITION. Let A, B be types.
(i) Ais head-redicible to B, notation A <;, B, iff for some closed term ® € A?(A—B)
one has
VMl,MQZA [Ml =pn M2 <~ (I)Ml =pn (I)Mg],

and moreover ® is of the form
D = m:Adxq ... xp:B.mPy ... P,, (+)

with m ¢ FV(Py,...,P,).
(ii) A is multi head-reducible to B, notation A <,+ B, iff there are closed terms
®y,...,®,, € A(A—B) each of the form (4) such that

VMl,MQZA [Ml =pn M2 <~ (I)lMl =pn (I>1M2 &...& (I)li =pn (I)mMg.

(iii) Write A ~, B iff A <, B <;, A and similarly
A~y Bift A<+ B <;+ A.

3.4.17. PrROPOSITION. (i) A<, B = A <g, B.
(ii) Let A,BeT;, with i 75 2. Then A~y B.
(iii) Let A,B€TMy. Then A ~y+ B.

(iV) A §5,7 B = A<,+ B.

PRrROOF. (i) Trivial.

(i) Suppose A <g, B. By inspection of the proof of the hierarchy theorem in all
cases except for A € Ty one obtains A <;, B. Do exercise 3.6.24.

(iii) In the exceptional case one obtains A <,+ B, see exercise 3.6.23. m

(iv) By (ii) and (iii), using the hierarchy theorem.
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3.4.18. COROLLARY (Hierarchy theorem (revisited), Statman [1980b]).

AeTs — A~y la—o0—0;
AeTy — A~y 3—0—0;
AeT; — A~pl-l—-0—0;
AeT, — A ~p+ 1—0—0;
AeTy = A ~pr 0?0
AeTy — A~y 0—0;
AeT_ 1 <— A~yjo.

2

PROOF. The only extra fact to verify is that 0¥ —o0 <,+ 0*—o0. ®

Applications of the reducibility theorem

The reducibility theorem has several consequences.
3.4.19. DEFINITION. Let C be a class of A_, models. C is called complete iff
YVM,NeN[Cl=M=N < M =g, N].

3.4.20. DEFINITION. (i) 7 = Ty is the algebraic structure of trees inductively defined

as follows.
T=c|bTT

(ii) For a A_, model M we say that 7 can be embedded into M, notation 7 — M,
iff there exist by € M(0—0—0), ¢y € M(0) such that
Vi, seT[t#s = M tbocy # sdboco],

where u! = \b:o—o—oAc:0.u, is the closure of ue 7.

The elements of 7 are binary trees with ¢ on the leaves and b on the connecting nodes.
Typical examples are ¢, bec, be(bee) and b(bee)e. The existence of an embeding using
by, co implies for example that byco(bococo), bococo and ¢y are mutually different in M.

Note that 7 <+ M(2). To see this, write gz = bxxz. One has g%(c) # g*(c), but
M(2) | Vg:o—oVe:0.9%(c) = g*(c), do exercise 3.6.13.

3.4.21. LEMMA. (i) e M;EM =N <= VicI.M;}=M =N,
(i) MeN(T) < 3s€T.M =g, s°.

PRrOOF. (i) Since [M]"e™Mi = Xje I.[M]M.
(ii) By an analysis of the possible shape of the normal forms of terms of type T =
lo—o—o0. 1

3.4.22. THEOREM (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {M;};c1 of structurs in C such that

7T — Hie]Mi.
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PROOF. (=) Suppose C is complete. Let t,s € 7. Then

t£s = t9 #pn s
= CRtd =59, by completeness,
= My =t £ s for some Mg €C,
= My B M0 # 5Mbscrs,

for some b5 € M(0—0—0), ¢t € M(0) by extensionality. Note that in the third implication
the axiom of (countable) choice is used.
It now follows by lemma 3.4.21(i) that

Ht;ﬁths ): tCl 7£ sda

since they differ on the pair bycy with bg(ts) = bys and similarly for cg.
(<) Suppose T — II; ¢ ;M; with M; €C. Let M, N be closed terms of some type
A. By soundness one has
M=y, N = CEM=N.

For the converse, let by the reducibility theorem £ : A—T be such that
M =g, N <= FM =g, F'N,
for all M, N € A°. Then

CEM=N = I M;EM=N, by the lemma,
= HZGIMZ):FM:FN,
= HieIMi ):tdzsd,

where t, s are such that
FM =g, t*, FN =g, 5%, (%)

noting that every closed term of type T is @n-convertible to some u® with v € 7. Now
the chain of arguments continues as follows

= t=s, by the embedding property,
= FM =g, FN, by (*),
= M =g, N, by reducibility. m

3.4.23. COROLLARY. (i) [Friedman [1975]] { My} is complete.
(ii) [Plotkin [19857]] { My, }nen is complete.
(i) {My, } is complete.
(iv) {MD}D a finite cpo, is complete.

PRrROOF. Immediate from the theorem. m
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The completeness of the collection {M,, },, ¢y essentially states that for every pair of
terms M, N of a given type A there is a number n = nys y such that M, =M =N =
M =g, N. Actually one can do better, by showing that n only depends on M.

3.4.24. PROPOSITION (Finite completeness theorem, Statman [1982]). For every type A€ T(A2,)
and every closed term M of type A there is a number n = nys such that for all closed
terms N of type A one has

M, EM=N < M =g, N.

PROOF. By the reduction theorem 3.4.7 it suffices to show this for A = T. Let M a
closed term of type T be given. Each closed term N of type T has as long Bn-nf

N = A\b:1x)\c:0.5y,

where sy €7. Let p : No>N—N be an injective pairing on the integers such that
p(k}l,kg) > k;. Take
ny = [M]JM“p0+ 1.

Define p": X2, ,—X, 11, where X,,11 = {0,...,n+ 1}, by

p'(ki,ke) = p(ki,ke), if ki ko < np(ki, ko) <n;
= n+1 else.

Suppose M,, = M = N. Then [[M]]M”p’O = [[N]]M"p’O. By the choice of n it follows
that [M]M"p0 = [NJM"p0 and hence sy; = sy. Therefore M =g, N.m

3.4.25. DEFINITION (Reducibility Hierarchy, Statman [1980a]). For the ordinals ov < w+
3 define the type A, € T(A\2,) as follows.

AO = 0

A = o—o0;

4, = o'—o;

A, = 1l—o—o;
Aw-l—l = l—=l—0;
Aw+2 = 3—0—0;
Aw+3 = 12 —0—0.

3.4.26. PROPOSITION. For a,3 < w + 3 one has

Oéﬁ,@ = AaﬁgnAg.
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Proor. For all finite k one has Ay <g, A1 via the map

P k1 = AmiApAzxy .. xpiomay . Ty =gy AmiAg. Km.
Moreover, A, <g, A, via

Oy = AmuApAf:lAziom(ci fx) ... (cpfx).
Then A, <g,; Au41 via
D, i1 = A AN, gl xom f.

Now A1 <g, Au42 via

Qi1 w2 = AmiAy i AH:3 0. H(Af:1.H(Ag:1.mfgx)).

Finally, A, 12 <g, Awt3 = T because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term @2 ,,13. M

3.4.27. PROPOSITION. For a,3 < w + 3 one has

a< B« A, <p, Ag.
Proor. This will be proved in 3.5.32. m
3.4.28. COROLLARY. For a,3 < w + 3 one has

AagﬁnA,@ < Oéﬁ,@

3.5. The five canonical term-models

The open terms of \°, form an extensional model, the term-model Mp,. One may
wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type o. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on A2[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type o coincides with
=gy, can be obtained in this way. From now on D will range over sets of constants such
that there are closed terms for every type A (i.e. in A2[D](A)).

3.5.1. DEFINITION. Let M, N € A[D](A) with A = A;— ... —A,—o.



