

Combinators

Words, language, theory

Remember that for a language L over an alphabet Σ one has $L \subseteq \Sigma^*$

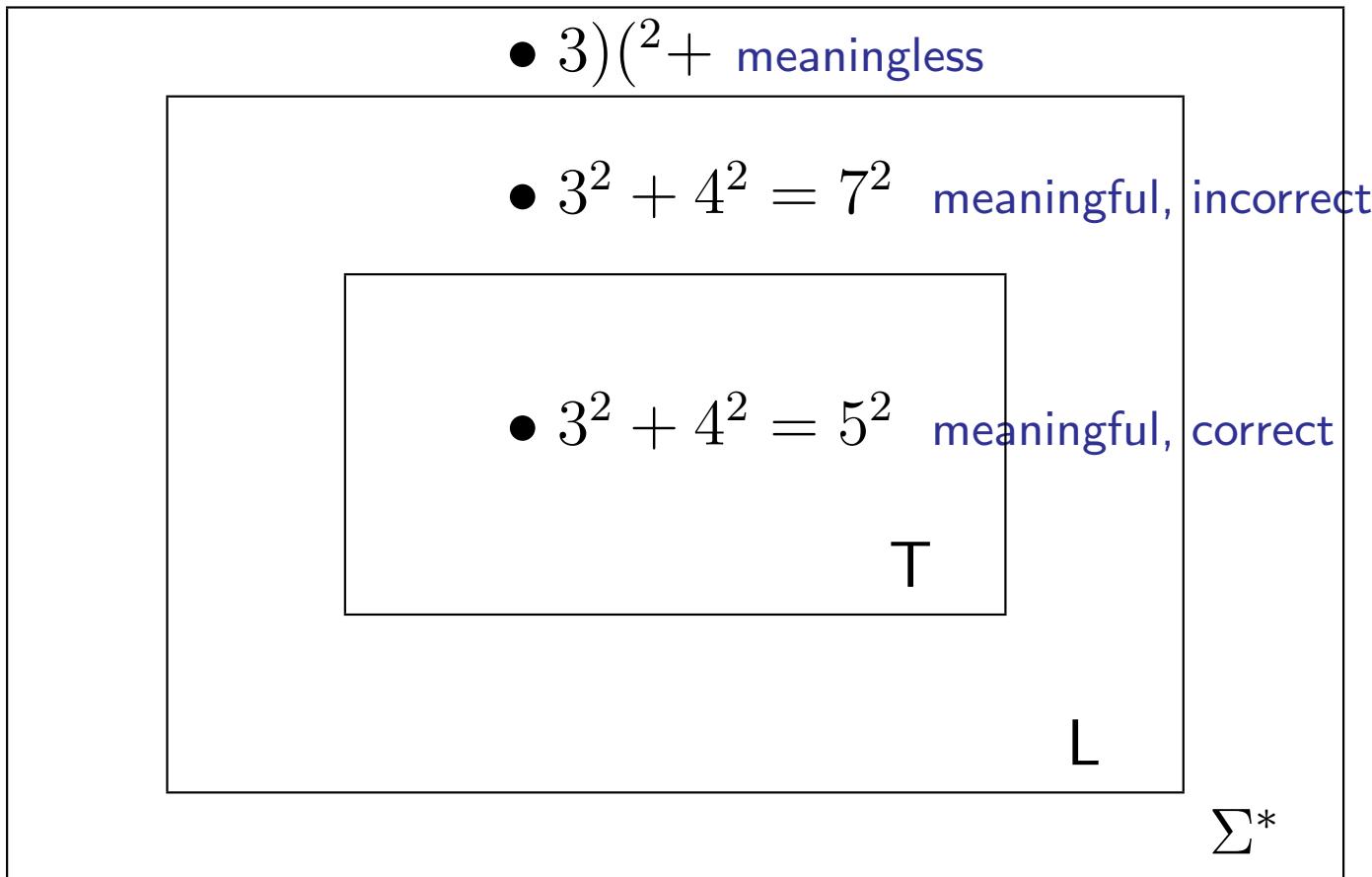
Σ^* consists of all strings, possibly nonsensical

$L \subseteq \Sigma^*$ chooses in some way *meaningful* strings called *sentences*
often such a language is given by a grammar

With a *theory* T we go one step further:

A theory in a language L is just a subset $T \subseteq L$
selecting a set of *correct* sentences
often such a theory is given by an axiomatic system

Words, language, theory



$$\Sigma \mapsto \Sigma^* \mapsto L \mapsto T$$

Combinators

$$\Sigma_{\text{CL}} = \{\mathbf{I}, \mathbf{K}, \mathbf{S}, x, ',), (, =\}$$

We introduce several simple regular grammars over Σ_{CL} .

(i) **constant** := $\mathbf{I} \mid \mathbf{K} \mid \mathbf{S}$

(ii) **variable** := $x \mid \text{variable}'$

(iii) **term** := **constant** | **variable** | $(\text{term} \text{ term})$

(iv) **formula** := **term** = **term**

Intuition:

in $(F A)$ the term F stands for a *function* and A for an *argument*

Combinatory Logic

Axioms

$$\begin{array}{ll} \mathbf{IP} = P & (\mathbf{I}) \\ \mathbf{KPQ} = P & (\mathbf{K}) \\ \mathbf{SPQR} = PR(QR) & (\mathbf{S}) \end{array}$$

Deduction rules

$$\begin{array}{ll} P = P & \\ P = Q \Rightarrow Q = P & \\ P = Q, Q = R \Rightarrow P = R & \\ P = Q \Rightarrow PR = QR & \\ P = Q \Rightarrow RP = RQ & \end{array}$$

Here P, Q, R denote arbitrary terms (also called *combinators*)

\mathbf{IP} stands for (\mathbf{IP}) , \mathbf{KPQ} for $((\mathbf{KP})Q)$ and \mathbf{SPQR} for $((\mathbf{SP})Q)R$

In general $PQ_1 \dots Q_n \equiv \dots ((PQ_1)Q_2) \dots Q_n$ (association to the left)

Write $P =_{\mathbf{CL}} Q$ if $P = Q$ is provable from these axioms and rules

Some magic with combinators

PROPOSITION.

(i) Let $D \equiv SII$. Then (doubling)

$$Dx =_{\text{CL}} xx.$$

(ii) Let $B \equiv S(KS)K$. Then (composition)

$$Bfgx =_{\text{CL}} f(gx).$$

(iii) Let $L \equiv D(BDD)$. Then (self-doubling, life!)

$$L =_{\text{CL}} LL.$$

PROOF.

(i) $Dx \equiv SIIx$	(ii) $Bfgx \equiv S(KS)Kf gx$	(iii) $L \equiv D(BDD)$
$= Ix(Ix)$	$= KSf(Kf)gx$	$= BDD(BDD)$
$= xx.$	$= S(Kf)gx$	$= D(D(BDD))$
	$= Kfx(gx)$	$\equiv DL$
	$= f(gx).$	$= LL.$

We want to understand and preferably also to control this!

First insight

LEMMA. For every term P and every variable x , there is a term Q such that x does not occur in Q and

$$Qx =_{\text{CL}} P.$$

We denote this term Q constructed in the proof as $[x]P$.

PROOF. Induction on the complexity of P .

Case 1. P is a constant or a variable .

Subcase 1.1 $P \equiv \mathbf{C}$ with $\mathbf{C} \in \{\mathbf{I}, \mathbf{K}, \mathbf{S}\}$. Take $[x]\mathbf{C} \equiv \mathbf{K}\mathbf{C}$. Then indeed

$$([x]\mathbf{C})x =_{\text{CL}} K\mathbf{C}x =_{\text{CL}} \mathbf{C}.$$

Subcase 1.2 $P \equiv x$. Take $[x]x \equiv \mathbf{I}$. Then

$$([x]x)x \equiv \mathbf{I}x =_{\text{CL}} x.$$

Subcase 1.3 $P \equiv y \not\equiv x$. Take $[x]y \equiv \mathbf{K}x$. Then indeed

$$([x]y)x \equiv \mathbf{K}yx =_{\text{CL}} y.$$

Case 2. $P \equiv UV$. Take $[x](UV) \equiv \mathbf{S}([x]U)([x]V)$. Then indeed

$$([x](UV))x \equiv \mathbf{S}([x]U)([x]V)x =_{\text{CL}} (([x]U)x)(([x]V)x) =_{\text{CL}} UV. \blacksquare$$

Algorithms

The previous proof gave

P	$[x]P$	$([x]P)x = P?$
\mathbf{C}	\mathbf{KC}	$\mathbf{KC}x = \mathbf{C}$
x	\mathbf{I}	$\mathbf{I}x = x$
$y \neq x$	$\mathbf{K}y$	$\mathbf{K}yx = y$
UV	$\mathbf{S}([x]U)([x]V)$	$\mathbf{S}([x]U)([x]V)x =$ $(([x]U)x)(([x]V)x) = UV$

More efficient algorithm

P	$[x]P$
x	\mathbf{I}
P with $x \notin P$	$\mathbf{K}P$
UV	$\mathbf{S}([x]U)([x]V)$

Second Insight: Fixed Points

THEOREM For all combinators P there exists an X such that

$$PX =_{\text{CL}} X$$

PROOF. Given P , define

$$W \triangleq [x]P(xx)$$

$$X \triangleq WW$$

Then X is a so called *fixed point* of P .

$$\begin{aligned} X &\equiv WW \\ &\equiv ([x]P(xx))W \\ &=_{\text{CL}} P(WW) \\ &\equiv PX \end{aligned}$$

Hence $PX =_{\text{CL}} X$. ■

L is a fixed point of D : one has $L = DL = LL$.