2. Languages

Alfabet, word

An alphabet ¥ is a (finite) set of symbols

a;

Examples >

Yo = {0,1}

Y3 = {AC.G, T}

Yy = {a,bced,...,x,y, 2}
Y5 = {s|sis an ascii symbol}

S = {...)

A word (string) over X is a finite list of elements from X
The set >* consists of all words over .

Inductive generation of words

e, ¢ is the empty word
wedX" = wseX®, forall seX

HB Reflection

fall 2013

Language

A language over X is a subset of X.*, notation L C »*

Examples

L1 = {we{a,b}* | abba does occur as substring of w}
Ly = {weda,b}* | abba does not occur as substring of w}

Operations on words

UE", s€EX = usex”
ued”, veY = u-+veX” concatenation
ued™, neN = y"ed”

|
g

Inductive definitions U+ € U U
u+ (vs) = (u+v)s uff?

|
S
S

write u + v as uv

HB Reflection fall 2013

Operation on languages (easy!)

Ly C X7,
Ly C X7,

L1 U Lo
Ly Ly

Ln—l—l
L*

Lo CY = LiULy CY"

Ly CY = L[1Ly CY°

LCY = L*CX

{w | weLy or weLly}
{w1w2 | wiel & UJQELQ}

1€
"L

UL”:LOUL1UL2U...

neN

{w* | welL}

HB

Reflection

fall 2013

Regular expressions & languages over X

Let > = {a,b}. Then a(ba)*bb is a regular expression denoting

L = {a(ba)"bb | neN}
= {abb, ababb, abababb, ababababb, . .., a(ba)"bb, ...}

For general X the regular expressions over > are generated by

rex p— €E| S| rex rex rex UreX rex
py :i=0] €| s | rexp; rexp | rexp; Py | Texp;

with s€’
This means ()€rexpy., €€rexpy, and s€rexpy, for s€X. Moreover
e1,e0€rexpy, = (e1 Ueg)Erexps,

e1,2€rexpy. = (e1e3)Erexpy

eErexpy, = € €rexpy

HB Reflection fall 2013

Regular languages

For a regular expression e over 3. we define the language L(e) C ¥*:

L) = 0
Lty = 1)
Leses) —= Lier)L(es)
L(@l U 62) = L(el) U L(Gg)
L(e*) = L(e)

A language L is called regular if L = L(e) for some ecrexp

L = {w | bb occurs in w} over ¥ = {a, b} is regular:

L=L((aUb)*bb(aUb)")
Also ' =¥* — L = {w | bb does not occur in w}:

L' = L(a*(baa™)* U a*(baa™)*b)

HB Reflection fall 2013

Context-free languages

A context free language L over X is being generated by productionrules of the vorm
X —w

with X €V and we(X U V)*. The elementens of V' are called auxiliary. There is an SeV
(start). The language L is generated by the rules obtained via the relatie = defined as
follows (we have u, v, w,z,yc(X U V)™):
X —=>w = xzXy=zwy
U=V, V=W = U= W

Finally we have
L ={weX" | S = w}.

Notation. X — w; | w2 abbreviates

X — w1
X — wsy

S — €| aSb|yields L = {a"b"™ | neN}.

S—e€|lal|b|aSa|bSh|yields L ={w | w is a palindrome}

HB Reflection fall 2013

Small part of Engels as CF language

S = (sentence
(sentence
(noun — phrase

(name

(noun

(article

(verb

(adverb
(adjective — list
(adjective
(object — phrase

)
)
)
)
)
)
(verb — phrase)
)
)
)
)
)
)

(object — phrase

N A A

(noun — phrase){verb — phrase).

(noun — phrase)(verb — phrase)(object — phrase).

(name) | (article)(noun)

John | Jill

bicycle | mango

a | the

(verb) | (adverb){verb)

eats | rides

slowly | frequently
(adjective)(adjective — list) | €
big | juicy | yellow

(adjective — list) (name)

(article){adjective — list) (noun)

Jill frequently eats a juicy yellow mango belongs to this language

HB

Reflection

fall 2013

Context-sensitive and enumerable languages®

The context sensitive languages start with production rules of the form
uXvV — uwo,

with weX™* not € and u, ve(X U V)* arbitrary.

For the enumerable languages production rules are of the form
uXvV — uwo,

with u,ve(X U V)* and weX* arbitrary.

For unrestricted languages the production rules are of the form
U — v,

with u, ve(X U V)*.

These are equivalent to the enumerable languages.

HB Reflection fall 2013

Chomsky hierarchy*

A languages is called computable if both L and L = ¥* — L are enumerable. Let R, CF,
CS, Com, Enu be notations for the regular, context-free, context-sensitive, computable
and enumerable languages, respectively. Then R C CF C CS C Com C Enu.

® L4y

e {a? | pis prime}

o {a"b"c" | n > 0}

o {a"b" | n >0}

o L((ab™)")

CF

e English?

CS

Com

Enu

The Chomsky hierarchy

HB

Reflection

fall 2013

