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Simply typed λ-calculus
——————————————————————————————————–

Types TT:= 0 | TT→ TT

Notation

0 , 0

n + 1 , n→0 12 = 0→0→0

Examples

T5 = ⊤ , 12→0→0 type of trees C5 = {b12 , c0}

T4 = M , 3→0→0 ‘monster’ type C4 = {Φ3, c0}

T3 = W , 1→1→0→0 type of words {f, g}∗ C3 = {f1, g1, c0}

T2 = N , 1→0→0 type of Church numerals C2 = {f1, c0}

T1 = B , 0→0→0 type of Booleans C1 = {c0, d0}

[ T0 = S , 0→0 singleton type C0 = {c0} ]

[ T−1 = E , 0 empty type C−1 = ∅ ]

Constants are considered as variables that we promise not to bind
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Terms of a type
——————————————————————————————————–

λCurry
→

Γ, x:A ⊢ x : A

Γ ⊢ M : (A → B) Γ ⊢ N : A

Γ ⊢ (MN) : B

Γ, x:A ⊢ M : B

Γ ⊢ (λx.M) : (A → B)

λChurch
→

xA∈Λ(A)

M∈Λ(A→B), N∈Λ(A) ⇒ (MN)∈Λ(B)

M∈Λ(B) ⇒ (λxA.M)∈Λ(A→B)

Λ∅(B) , {M∈Λ(B) | FV(M) = ∅}

Λ∅[xA1 , . . . , xAn

n ](B) , {M∈Λ(B) | FV(M) ⊆ {xA1 , . . . , xAn

n }}

Fact. Λ∅(A1→ . . . An→0) ∼= {λxA1 . . . xAn

n .M | M∈Λ∅[xA1 , . . . , xAn

n ](0)}

For terms not containing λK-redexes the two versions are the same:

x1:A1, . . . , xn:An ⊢ M : B ⇐⇒ ∃!M ′∈Λ∅[xA1 , . . . , xAn

n ](B).|M ′| ≡ M

Difference: in the Church version one has to specify the type of I in KxA I

x : A ⊢ Kx I : A vs KxA IB→B∈Λ∅[xA](A)
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Inhabitation machines
——————————————————————————————————–

12

λx0λy0

��

0

~~~~
~~

~~
~~

  @
@@

@@
@@

@

x y

1→0→0

λf1λx0

��

f 0@GAFBE

��
x

Λ∅(12) = {λxy.x, λxy.y}

Λ∅(1→0→0) = {λfx.fnx | n ≥ 0}

1→1→0→0

λf1λg1λx0
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3 = 2→0

λF 2

��

0

��

F
++
1

λx0

kk

x

Λ∅(1→1→0→0) = {λfgx.wfgx | wfg∈{f, g}
∗, application to the right}

Λ∅(3) = {λF.F (λx1.F (λx2. · · ·F (λxn.xi)..)) | 1 ≤ i ≤ n}
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Inhabitants of M and ⊤

——————————————————————————————————–

M = 3→0→0

λΦ3λx0

��

f 0@GAFBE Φ
++

��

2

λf1

kk

x

Λ∅(M) =

{λΦx.Φ(λf1.wf1Φ(λf2.wf1f2 . . .Φ(λfn.wf1...fnx)..))

| wf1···fk∈{f1, . . . , fk}
∗, application to the right}

⊤ = 12→0→0

λb12λx0

��

0

��

b //kk
ss

x

Λ∅(⊤) = {λbc.t | t∈Tree}

with Tree ::= c | b Tree Tree
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Type Hierarchy 1 (Rick Statman)
——————————————————————————————————–

Definition. Let A,B∈TT. Then A is βη-reducible

(βη-equivalent, strictly βη-reducible) to (with) B iff

A ≤βη B ⇐⇒
△

∃Φ∈Λ∅(A→B).[∀M,N∈Λ∅(A).Φ(M)=βηΦ(N) ⇐⇒ M=βηN ]

A∼βη B ⇐⇒
△

A≤βη B & B ≤βη A

A<βη B ⇐⇒
△

A≤βη B & B 6∼βηA

Theorem. (i) One has [13 , 03→0 = 0→(0→(0→0))]

T−1 = 0<βη T0 = 1<βη T1 = 12 <βη 13 <βη . . . <βη T2 <βη T3 <βη T4 <βη T5

(ii) Moreover, every A∈TT is βη-equivalent to one of these types

The definitions of ≤βη,≤h,≤h+ are due to Statman and he proved this theorem

except for T3 6∼βη T4, which was proved by Wil Dekkers
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Type Hierarchy 2 (Rick Statman).
——————————————————————————————————–

Definition. Let A, B ≡ B1→ . . .→Bb→0∈TT.
(i) A is head-reducible to B, denoted by A ≤h B, iff for some Φ∈Λ∅(A→B)

∀M1,M2∈Λ
∅(A) [ΦM1 =βη ΦM2 ⇐⇒ M1 =βη M2],

and moreover Φ ≡ λm:Aλx1:B0 . . . xb:Bb.mP1 . . . Pa, a ‘Böhm transformation’(1)

with FV(P1, . . . , Pa) ⊆ {x1, . . . , xb} and m/∈{x1 . . . xb}.

(ii) A is multi head-reducible to B, denotated by A ≤h+ B, iff for some

Φ1, . . . ,Φm∈Λ∅(A→B), each of the form (1),

∀M1,M2∈Λ
∅(A) [Φ1M1 =βη Φ1M2 & . . .& ΦmM1 =βη Φm ⇐⇒ M2M1 =βη M2]

This means that ~Φ: Λ∅(A)→(Λ∅(B))m is injective.

(iii) Define A ∼h B, A <h B and A ∼h+ B, A <h+ B as expected

Proposition. (i) A ≤h B ⇒ A ≤βη B, A ≤βη B ⇒ A ≤h+ B

(ii) 12 ∼h+ 13 ∼h+ . . ., but 13 6≤βη 12

(iii) 3 ≤βη 1→0→0, but 3 6≤h 1→0→0 (Bram Westerbaan)

Theorem. (i) T−1 = 0 <h+ T0 = 1 <h+ T1 = 12 <h+ T2 <h+ T3 <h+ T4 <h+ T5

(ii) Every A∈TT is ∼h+ with one of these
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Main results
——————————————————————————————————–

Definition. Let D be a set of constants with various types in TT.

Let M,N∈Λ∅[D](A). D-equivalence is defined by

M ≈D N ⇐⇒ ∀F∈Λ∅[D](A→0)FM =βη FN

Note that for M,N∈Λ∅[D](A) and F∈Λ∅[D](A→B) one has

M ≈D N ⇒ FM ≈D FN

Theorem. Let F,G∈Λ∅[D](A→B). Then

F ≈D G ⇐⇒ ∀M∈Λ∅[D](A).FM ≈D GM

This is first proved for C1, . . . , C5 and then for all D using type reducibility

Corollary. M(D), Λ∅[D]/≈D is an extensional term model

Theorem. The only such models are M(C1), M(C2), . . . ,M(C5)

apart from the trivial M(C0)
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Main results continued
——————————————————————————————————–

Definition. Th(M), {M = N | ∃A∈TT.M,N∈Λ∅(A) & M |= M = N}

Theorem. Th(M(C5)),Th(M(C1)),Th(M(C0)) are decidable.

In fact for all A∈TT and M,N∈Λ∅(A)

M(C5) |= M = N ⇐⇒ M =βη N

M(C1) |= M = N ⇐⇒ λ→ +M = N is consistent,

⇔ ∀F.[FM = c
0
⇔ FN = c

0], which is decidable (V. Padovani)

M(C0) |= M = N ⇐⇒ 1 + 1 = 2

Differentiating equalities

M(C0) |= λf1x0.x = λf1x0.fx ( 0 = 1 )

M(C1) |= λf1x0.fx = λf1x0.f2x ( 1 = 2 )

M(C2) |= λf1g1x0.f(g(g(fx))) = λf1g1x0.f(g(f(gx)))

M(C3) |= λF 3x0.F (λf1.f(F (λg1.g(fx)))) = λF 3x0.F (λf1.f(F (λg1.g(gx))))

M(C4) |= λh12x0.h(hx(hxx))(hxx) = λh12x0.h(hxx)(h(hxx)x)

M(C5) |= Ic0 = c0

Open problems. (i) Are Th(M(C4)),Th(M(C3)),Th(M(C2)) decidable?

(ii) Study reducibility in case there are more type atoms.
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New book for P.-L.C: Happy Birthday
——————————————————————————————————–
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