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Simply typed A-calculus

Types T=0|T—T
Notation
0 £ 0
n+1 2 n—0 15 = 0—0—0

Examples
Ts=T £ 15—0—0 type of trees Cs = {b'2, "}
T,=M £ 3-50—0 ‘monster’ type Cy = {P3, Y}
T3=W £ 131200 type of words {f,g}* Cz={fq', "}
To,=N =2 1-0-0 type of Church numerals C, = {f!, "}
T.=B £ 0-0-0 type of Booleans C; =1{c,d"}
[To=S =& 00 singleton type Co = {c"}]

[T_.1=E = 0 empty type C.1=0]

Constants are considered as variables that we promise not to bind
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Terms of a type

No:AFx: A
ACurry '-M:(A—-B) TFN:A L,2:AFM: B
I'-(MN):B ' (A\z.M):(A— B)
rreN(A)
\Church MeA(A—B), NeA(A) = (MN)eA(B)
MeA(B) = (M .M)eA(A—DB)

AYB) & {MeA(B)|FV(M) =0}
Al o 2 (B) & {MeA(B) |FV(M) C {z, ... 271}
Fact. A(A;— ... A,—0) = Do ade M| MeA[z4, .. 227](0)}

For terms not containing AK-redexes the two versions are the same:

T1:AL, . Ay E M B = M ez, 2 ](B). M| = M
A

Difference: in the Church version one has to specify the type of | in Kz

r:AF Kzl A VS KxAIB_)BEA@[xA](A)
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Inhabitation machines
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>O) = {)\fga:wfgac | wfgé{f,g}*,
A(3) = {\F.F(\z;.F(A\zy. - -

A?(19) = {Dzy.z, Axy.y}

A?(1—0—0) =

{\fx.["z|n >0}

application to the right}

Fa,.z:).)) | 1<i<n)
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Inhabitants of M and T

M = 3—0—0
ACI)BAxOl/ AP(M) =
D
f C 0 — X 2 {)\Cba;.q)()\fl.wflCID()\fQ.wflfg ce @(Afnwflfnaj)))
v

i Af1 | we o €{f1,-- -, fx}*, application to the right}
X

T = 12—>0—>0
l”’lmxo A(T) = {Nbe.t | teTree)
0|=—r— .
l ~~—— | with | Tree :=c|b Tree Tree
X
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Type Hierarchy 1 (Rick Statman)

Definition. Let A, BET. Then A is 3n-reducible
(Bn-equivalent, strictly Bn-reducible) to (with) B iff

A<g, B <& 30eA’(A—=B).[vM,NeA(A).&(M)=3,®(N) <= M=p,N]
A~pgn B <2 A<g,B& B<g, A
A<gyB <= A<g,B& BogyA

Theorem. (i) One has [13 £ 020 = 0—(0—(0—0))]

T 1=0 <Bn T =1 <Bn 11 = 19 <Bn 13 <Bn---<pBn 15 <Bn 13 <Bn Ty <Bn Ty
(ii) Moreover, every AcT is B3n-equivalent to one of these types

The definitions of <g,, <;, <+ are due to Statman and he proved this theorem

except for 13 + g, T4, which was proved by Wil Dekkers
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Type Hierarchy 2 (Rick Statman).

Definition. Let A, B = B1— ... —B,—0e€T.
(i) A is head-reducible to B, denoted by A <;, B, iff for some ®cA’(A—B)

VM, Mye AP (A) [DMy =5, OMy <= M, =g, M),

and moreover ® = Am: A x1:Bg ... xp:By.mPy ... P,, a ‘Bohm transformation’(1)
with FV (P, ... P,) C{xy,...,xp} and m&{x, ... 2 }.

(ii) A is multi head-reducible to B, denotated by A <,+ B, iff for some
®y,...,P,,cAY(A—=B), each of the form (1),

VM, Mae AP (A) (&, M) =5, &1 Mo & ... & O, My =g, ®,, <= MyM; =g, Mo>)]

This means that @: A?(A)—(A?(B))™ is injective.
(iii) Define A~} B, A< Band A ~,+ B, A <, B as expected
Proposition. (i) A <, B= A<, B, A<g, B=A<,+ B
(i) 1o ~p+ 13 ~pt ..., but 135 £, 19
(iii) 3 <g, 1—0—0, but 3 £, 1-0—0 (Bram Westerbaan)

Theorem. (I) T 1=0<p+To=1<p+ 171 = 1o <p+ Ts <p+ T3 <p+ Ty <p+ 15

(ii) Every A€T is ~}+ with one of these
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Main results

Definition. Let D be a set of constants with various types in .

Let M, NeA?[D](A). D-equivalence is defined by

~p N <= Y FeA’D](A—=0) FM =3, FN

Note that for M, NeA?[D](A) and FeA?[D](A—B) one has

Theorem. Let F, GeA’[D](A—B). Then

FrpG < YMecAD|(A).FM ~p GM
This is first proved for C1,...,Cs and then for all D using type reducibility

Corollary. M (D) & A’[D]/~p is an extensional term model

Theorem. The only such models are M(Cy), M(C2),..., M(Cs)
apart from the trivial M (Cq)
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Main results continued

Definition. Th(M) £ {M = N | JAcT .M, NeA?(A) & M = M = N}
Theorem. Th(M(C5)), Th(M(C1)), Th(M(Cp)) are decidable.
In fact for all AcT and M, NecA?(A)
MEC)EM=N < M= N
M) =M =N <= X\, + M = N is consistent,
S VFE[FM =’ < FN = ¢"], which is decidable (V. Padovani)
MCy)EM=N +— 14+1=2

Differentiating equalities

M(Co) E Mlabx = Aflal.fz (0'="1))

M(Cy) E MlaV. fe = Mfla%.f2z ('1'='2)

M(C2) = Argtal. f(g(g(fx)) = Aflgta®.f(g(f(g2)))

M(C3) B AF?. FO\fLf(F(A\g .g(fx)))) = AP F(AfL.f(F(Ag'.g9(g97))))
M(Cy) = M220 h(hx(hax))(hex) = Mh'22°.h(hzz)(h(hazx)x)
M(C5) = I = Y

Open problems. (i) Are Th(M(Cy)), Th(M(C3)), Th(M(C5)) decidable?
(ii) Study reducibility in case there are more type atoms.
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