
Lambda Calculi with Types 7also Pavlovi�c (1990). For the semantics of the Curry systems see Hindley(1982), (1983) and Coppo (1985). A later volume of this handbook willcontain a chapter on the semantics of typed lambda calculi.Barendregt and Hemerik (1990) and Barendregt (1991) are introductoryversions of this chapter. Books including material on typed lambda calculusare Girard et al. (1989) (treats among other things semantics of the Churchversion of �2), Hindley and Seldin (1986) (Curry and Church versions of�!), Krivine (1990) (Curry versions of �2 and �\), Lambek and Scott(1986) (categorical semantics of �!) and the forthcoming Barendregt andDekkers (199-) and Nerode and Odifreddi (199-).Section 2 of this chapter is an introduction to type-free lambda-calculusand may be skipped if the reader is familiar with this subject. Section 3explains in more detail the Curry and Church approach to lambda calculiwith types. Section 4 is about the Curry systems and Section 5 is aboutthe Church systems. These two sections can be read independently of eachother.2 Type-free lambda calculusThe introduction of the type-free lambda calculus is necessary in order tode�ne the system of Curry type assignment on top of it. Moreover, al-though the Church style typed lambda calculi can be introduced directly,it is nevertheless useful to have some knowledge of the type-free lambdacalculus. Therefore this section is devoted to this theory. For more infor-mation see Hindley and Seldin [1986] or Barendregt [1984].2.1 The systemIn this chapter the type-free lambda calculus will be called `�-calculus' orsimply �. We start with an informal description.Application and abstractionThe �-calculus has two basic operations. The �rst one is application. Theexpression F:A(usually written as FA) denotes the data F considered as algorithm appliedto A considered as input. The theory � is type-free: it is allowed to considerexpressions like FF , that is, F applied to itself. This will be useful tosimulate recursion.The other basic operation is abstraction. If M �M [x] is an expressioncontaining (`depending on') x, then �x:M [x] denotes the intuitive map



8 H.P. Barendregtx 7!M [x];i.e. to x one assigns M [x]. The variable x does not need to occur actuallyin M . In that case �x:M [x] is a constant function with value M .Application and abstraction work together in the following intuitiveformula: (�x:x2 + 1)3 = 32 + 1 (= 10):That is, (�x:x2 + 1)3 denotes the function x 7! x2 + 1 applied to theargument 3 giving 32 + 1 (which is 10). In general we have(�x:M [x])N =M [N ]:This last equation is preferably written as(�x:M )N = M [x := N ]; (�)where [x := N ] denotes substitution of N for x. This equation is called�-conversion. It is remarkable that although it is the only essential axiomof the �-calculus, the resulting theory is rather involved.Free and bound variablesAbstraction is said to bind the free variable x in M . For example, we saythat �x:yx has x as bound and y as free variable. Substitution [x := N ] isonly performed in the free occurrences of x:yx(�x:x)[x := N ] = yN (�x:x):In integral calculus there is a similar variable binding. In R ba f(x; y)dx thevariable x is bound and y is free. It does not make sense to substitute 7 forx, obtaining R ab f(7; y)d7; but substitution for y does make sense, obtainingR ab f(x; 7)dx.For reasons of hygiene it will always be assumed that the bound vari-ables that occur in a certain expression are di�erent from the free ones.This can be ful�lled by renaming bound variables. For example, �x:x be-comes �y:y. Indeed, these expressions act the same way:(�x:x)a = a = (�y:y)aand in fact they denote the same intended algorithm. Therefore expressionsthat di�er only in the names of bound variables are identi�ed. Equationslike �x:x � �y:y are usually called �-conversion.



Lambda Calculi with Types 9Functions of several argumentsFunctions of several arguments can be obtained by iteration of application.The idea is due to Sch�on�nkel (1924) but is often called `currying', afterH.B. Curry who introduced it independently. Intuitively, if f(x; y) dependson two arguments, one can de�neFx = �y:f(x; y)F = �x:Fx:Then (Fx)y = Fxy = f(x; y): (1)This last equation shows that it is convenient to use association to the leftfor iterated application:FM1 : : :Mn denotes (::((FM1)M2) : : :Mn):The equation (1) then becomesFxy = f(x; y):Dually, iterated abstraction uses association to the right:�x1 � � �xn:f(x1; : : : ; xn) denotes �x1:(�x2:(: : : (�xn:f(x1; : : : ; xn))::)):Then we have for F de�ned aboveF = �xy:f(x; y)and (1) becomes (�xy:f(x; y))xy = f(x; y):For n arguments we have(�x1 : : :xn:f(x1; : : : ; xn))x1 : : :xn = f(x1; : : : ; xn);by using (�) n times. This last equation becomes in convenient vectornotation (�~x:f(~x))~x = f(~x);more generally one has (�~x:f(~x)) ~N = f( ~N ):Now we give the formal description of the �-calculus.



10 H.P. BarendregtDe�nition 2.1.1. The set of �-terms, notation �, is built up from anin�nite set of variables V = fv; v0; v00; : : :g using application and (function)abstraction: x 2 V ) x 2 �;M;N 2 � ) (MN ) 2 �;M 2 �; x2 V ) (�xM ) 2 �:Using abstract syntax one may write the following.V ::= v j V 0� ::= V j (��) j (�V �)Example 2.1.2. The following are �-terms:v;(vv00);(�v(vv00));((�v(vv00))v0);((�v0((�v(vv00))v0))v000):Convention 2.1.3.1. x; y; z; : : : denote arbitrary variables;M;N;L; : : : denote arbitrary �-terms.2. As already mentioned informally, the followingabbreviations are used:FM1 : : :Mn stands for (::((FM1)M2) : : :Mn)and �x1 � � �xn:M stands for (�x1(�x2(: : : (�xn(M ))::))):3. Outermost parentheses are not written.Using this convention, the examples in 2.1.2 now may be written as follows:x;xz;�x:xz;(�x:xz)y;(�y:(�x:xz)y)w:Note that �x:yx is (�x(yx)) and not ((�xy)x).



Lambda Calculi with Types 11Notation 2.1.4. M � N denotes thatM and N are the same term or canbe obtained from each other by renaming bound variables. For example,(�x:x)z � (�x:x)z;(�x:x)z � (�y:y)z;(�x:x)z 6� (�x:y)z:De�nition 2.1.5.1. The set of free variables of M , (notation FV (M )), is de�ned induc-tively as follows: FV (x) = fxg;FV (MN ) = FV (M ) [ FV (N );FV (�x:M ) = FV (M )� fxg:2. M is a closed �-term (or combinator) if FV (M ) = ;. The set ofclosed �-terms is denoted by �0.3. The result of substitution of N for (the free occurrences of) x in M ,notation M [x := N ], is de�ned as follows: Below x 6� y.x[x := N ] � N ;y[x := N ] � y;(PQ)[x := N ] � (P [x := N ])(Q[x := N ]);(�y:P )[x := N ] � �y:(P [x := N ]); provided y 6� x;(�x:P )[x := N ] � (�x:P ):In the �-term y(�xy:xyz)y and z occur as free variables; x and y occur as bound variables. Theterm �xy:xxy is closed.Names of bound variables will be always chosen such that they di�erfrom the free ones in a term. So one writes y(�xy0 :xy0z) for y(�xy:xyz).This so-called `variable convention' makes it possible to use substitutionfor the �-calculus without a proviso on free and bound variables.Proposition 2.1.6 (Substitution lemma). Let M;N;L 2 �. Supposex 6� y and x =2 FV (L). ThenM [x := N ][y := L] �M [y := L][x := N [y := L]]:Proof. By induction on the structure of M .Now we introduce the �-calculus as a formal theory of equations between�-terms.



12 H.P. BarendregtDe�nition 2.1.7.1. The principal axiom scheme of the �-calculus is(�x:M )N =M [x := N ] (�)for all M;N 2 �. This is called �-conversion.2. There are also the `logical' axioms and rules:M = M ;M = N ) N =M ;M = N;N = L ) M = L;M = M 0 ) MZ = M 0Z;M = M 0 ) ZM = ZM 0;M = M 0 ) �x:M = �x:M 0: (�)3. If M = N is provable in the �-calculus, then we write � `M = N orsometimes just M = N .Remarks 2.1.8.1. We have identi�ed terms that di�er only in the names of bound vari-ables. An alternative is to add to the �-calculus the following axiomscheme of �-conversion.�x:M = �y:M [x := y]; (�)provided that y does not occur in M . The axiom (�) above wasoriginally the second axiom; hence its name. We prefer our version ofthe theory in which the identi�cations are made on a syntactic level.These identi�cations are done in our mind and not on paper.2. Even if initially terms are written according to the variable conven-tion, �-conversion (or its alternative) is necessary when rewritingterms. Consider e.g. ! � �x:xx and 1 � �yz:yz. Then!1 � (�x:xx)(�yz:yz)= (�yz:yz)(�yz:yz)= �z:(�yz:yz)z� �z:(�yz0:yz0)z



Lambda Calculi with Types 13= �zz0:zz0� �yz:yz� 1:3. For implementations of the �-calculus the machine has to deal withthis so called �-conversion. A good way of doing this is provided bythe `name-free notation' of N.G. de Bruijn, see Barendregt (1984),Appendix C. In this notation �x(�y:xy) is denoted by �(�21), the 2denoting a variable bound `two lambdas above'.The following result provides one way to represent recursion in the �-calculus.Theorem 2.1.9 (Fixed point theorem).1. 8F9XFX = X:(This means that for allF2� there is anX2� such that � ` FX = X:)2. There is a �xed point combinatorY � �f:(�x:f(xx))(�x:f(xx))such that 8F F (YF ) = YF:Proof. 1. De�ne W � �x:F (xx) and X � WW . ThenX � WW � (�x:F (xx))W = F (WW ) � FX:2. By the proof of (1). Note thatYF = (�x:F (xx))(�x:F (xx))� X:Corollary 2.1.10. Given a term C � C[f; x] possibly containing the dis-played free variables, then9F8X FX = C[F;X]:Here C[F;X] is of course the substitution result C[f := F ][x := X]:Proof. Indeed, we can construct F by supposing it has the required prop-erty and calculating back:8X FX = C[F;X]( Fx = C[F; x]( F = �x:C[F; x]( F = (�fx:C[f; x])F( F � Y(�fx:C[f; x]):This also holds for more arguments: 9F8~x F~x = C[F;~x]:



14 H.P. BarendregtAs an application, terms F and G can be constructed such that for allterms X and Y FX = XF;GXY = Y G(Y XG):2.2 Lambda de�nabilityIn the lambda calculus one can de�ne numerals and represent numericfunctions on them.De�nition 2.2.1.1. Fn(M ) with n 2 N (the set of natural numbers) and F;M 2 �, isde�ned inductively as follows:F 0(M ) � M ;Fn+1(M ) � F (Fn(M )):2. The Church numerals c0; c1; c2; : : : are de�ned bycn � �fx:fn(x):Proposition 2.2.2 (J. B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2N1. A+cncm = cn+m:2. A�cncm = cn:m:3. Aexpcncm = c(nm); except for m = 0 (Rosser starts at 1).Proof. We need the following lemma.


