Lambda Calculi with Types 7

also Pavlovié (1990). For the semantics of the Curry systems see Hindley
(1982), (1983) and Coppo (1985). A later volume of this handbook will
contain a chapter on the semantics of typed lambda calculi.

Barendregt and Hemerik (1990) and Barendregt (1991) are introductory
versions of this chapter. Books including material on typed lambda calculus
are Girard et al. (1989) (treats among other things semantics of the Church
version of A2), Hindley and Seldin (1986) (Curry and Church versions of
A—), Krivine (1990) (Curry versions of A2 and AnN), Lambek and Scott
(1986) (categorical semantics of A—) and the forthcoming Barendregt and
Dekkers (199-) and Nerode and Odifreddi (199-).

Section 2 of this chapter is an introduction to type-free lambda-calculus
and may be skipped if the reader is familiar with this subject. Section 3
explains in more detail the Curry and Church approach to lambda calculi
with types. Section 4 is about the Curry systems and Section 5 is about
the Church systems. These two sections can be read independently of each
other.

2 Type-free lambda calculus

The introduction of the type-free lambda calculus is necessary in order to
define the system of Curry type assignment on top of it. Moreover, al-
though the Church style typed lambda calculi can be introduced directly,
it is nevertheless useful to have some knowledge of the type-free lambda
calculus. Therefore this section is devoted to this theory. For more infor-
mation see Hindley and Seldin [1986] or Barendregt [1984].

2.1 The system

In this chapter the type-free lambda calculus will be called ‘A-calculus’ or
simply A. We start with an informal description.

Application and abstraction

The A-calculus has two basic operations. The first one is application. The
expression

F.A

(usually written as F'A) denotes the data I’ considered as algorithm applied
to A considered as input. The theory A is type-free: it 1s allowed to consider
expressions like F'F, that is, F' applied to itself. This will be useful to
simulate recursion.

The other basic operation is abstraction. If M = Mz] is an expression
containing (‘depending on’) z, then Az.M[z] denotes the intuitive map

8 H.P. Barendregt
v — Mlz],

i.e. to x one assigns M[z]. The variable 2 does not need to occur actually
in M. In that case Ax.M[z] is a constant function with value M.

Application and abstraction work together in the following intuitive
formula:

(Az.z?+1)3=3%+1 (= 10).

That is, (Az.z? + 1)3 denotes the function — z? + 1 applied to the
argument 3 giving 3% + 1 (which is 10). In general we have

(Az.M[z])N = M[N].
This last equation is preferably written as
(Ax.M)N = Mz := NJ, (8

where [z := N] denotes substitution of N for «. This equation is called
G-conversion. It is remarkable that although it is the only essential axiom
of the A-calculus, the resulting theory is rather involved.

Free and bound variables

Abstraction is said to bind the free variable x in M. For example, we say
that Az.yxz has # as bound and y as free variable. Substitution [z := N] is
only performed in the free occurrences of x:

yr(Az.x)[x .= N] = yN(Az.z).

In integral calculus there is a similar variable binding. In fab flx,y)dz the
variable = 1s bound and y is free. It does not make sense to substitute 7 for
x, obtaining fba f(7,y)d7; but substitution for y does make sense, obtaining
fba fle, T)dx.

For reasons of hygiene it will always be assumed that the bound vari-
ables that occur in a certain expression are different from the free ones.
This can be fulfilled by renaming bound variables. For example, Az.z be-
comes Ay.y. Indeed, these expressions act the same way:

(Az.z)a = a = (Ay.y)a

and in fact they denote the same intended algorithm. Therefore expressions
that differ only in the names of bound variables are identified. Equations
like Az.x = Ay.y are usually called a-conversion.

Lambda Calculi with Types 9

Functions of several arguments

Functions of several arguments can be obtained by iteration of application.
The idea is due to Schonfinkel (1924) but is often called ‘currying’, after
H.B. Curry who introduced it independently. Intuitively, if f(x,y) depends
on two arguments, one can define

Fe = dyf(z,y)
F = Ax.F,.
Then
(Fa)y = Fyy = f(z,y). (1)

This last equation shows that 1t 1s convenient to use assoctation to the left
for iterated application:

FM ... M, denotes (..((FMy)Ms) ... My).
The equation (1) then becomes
Fay = f(x,y).
Dually, iterated abstraction uses assoctation to the right:
Axy-xn flor, ... 2n) denotes Axy.(Aza.(. .. (Azn. f(21, ..., 20)).)).

Then we have for F' defined above

F = ey .f(z,y)

and (1) becomes
(Aey. f(e,y)zey = f(x,y).
For n arguments we have

Azyocoxn flor, o xn))2r g = f(21, ..., 2n),

by using (5) n times. This last equation becomes in convenient vector
notation

(AZ.f(2)Z = f(&);
more generally one has

(M F(E)N = f(N).

Now we give the formal description of the A-calculus.

10 H.P. Barendregt

Definition 2.1.1. The set of A-ferms, notation A, is built up from an
infinite set of variables V' = {v, v, v"”, ...} using application and (function)
abstraction:

reV = =z €A,

M,NeA = (MN)eA,

MeAzeV = (AxM)eA.

Using abstract syntax one may write the following.
Vi=o |V
A==V | (AAN) | (AVA)

Example 2.1.2. The following are A-terms:

Convention 2.1.3.

1. #,y,z2,...denote arbitrary variables;
M,N,L,...denote arbitrary A-terms.

2. As already mentioned informally, the following abbreviations are used:
FM; ... M, stands for (..((FM1)Ms)...M,)

and

Ay -y M stands for (Azq(Aza(. .. (Azn(M)).)).

3. Outermost parentheses are not written.

Using this convention, the examples in 2.1.2 now may be written as follows:
Ty w2 Ar.wz;
(Az.xz)y;
(Ay.(Az.zz)y)w.

Note that Az.yz is (Az(yx)) and not ((Azy)z).

Lambda Calculi with Types 11

Notation 2.1.4. M = N denotes that M and N are the same term or can
be obtained from each other by renaming bound variables. For example,
Az.x)z = (Az.x)z;
Az.x)z: = (Ayy)z
(Az.x)z £ (Az.y)z.

Definition 2.1.5.

1. The set of free variables of M, (notation FV(M)), is defined induc-
tively as follows:

FV(z) = {z}
FV(MN) = FV(M)UFV(N);
FVQae.M) = FV(M)-{z}.

2. M is a closed A-term (or combinator) if FV(M) = 0. The set of
closed A-terms is denoted by A°.

3. The result of substitution of N for (the free occurrences of) x in M,
notation M [z := NJ, is defined as follows: Below a # y.

zfx :=N] = N;
yle . =N] = y
(PQ)e=N] = (Plx:= N)(@lx = N])
Ay.P)[z .= N] = Ay.(Ple:= NJ), provided y # x;
(Az.P)[x .=N] = (Az.P)
In the A-term
y(Ary.zyz)

y and z occur as free variables; # and y occur as bound variables. The
term Azy.zxy is closed.

Names of bound variables will be always chosen such that they differ
from the free ones in a term. So one writes y(Azy .xy'z) for y(Ary.xyz).
This so-called ‘variable convention’ makes it possible to use substitution
for the A-calculus without a proviso on free and bound variables.

Proposition 2.1.6 (Substitution lemma). Let M, N, L € A. Suppose
xZyandx¢ FV(L). Then

Proof. By induction on the structure of M. B [|

Now we introduce the A-calculus as a formal theory of equations between
A-terms.

12 H.P. Barendregt

Definition 2.1.7.

1. The principal axiom scheme of the A-calculus is
(Ax. M)N = M[x := N (8

for all M, N € A. This is called 3-conversion.

2. There are also the ‘logical’ axioms and rules:

M= M,;
M=N = N=M;
M=NN=L = M=L;
M=M = MZ=M2Z
M=M = ZM=ZM;
M=M = XeM=XM. €3

3. If M = N is provable in the A-calculus, then we write AF M = N or
sometimes just M = N.

Remarks 2.1.8.

1. We have identified terms that differ only in the names of bound vari-
ables. An alternative is to add to the A-calculus the following axiom
scheme of a-conversion.

Ae. M = Ay Mz = y], (o)

provided that y does not occur in M. The axiom (§) above was
originally the second axiom; hence its name. We prefer our version of
the theory in which the identifications are made on a syntactic level.
These identifications are done in our mind and not on paper.

2. Even if initially terms are written according to the variable conven-
tion, a-conversion (or its alternative) is necessary when rewriting
terms. Consider e.g. w = Az.zz and 1 = Ayz.yz. Then

wl = (Az.ax)(Ayz.yz)
= (Ayzyz)(Ayz.yz)
= Az.(Ayz.yz)z
= d.(Ayyd)z

Lambda Calculi with Types 13

= Azz'.zd
= Ayz.yz
= 1
3. For implementations of the A-calculus the machine has to deal with
this so called a-conversion. A good way of doing this is provided by
the ‘name-free notation’ of N.G. de Bruijn, see Barendregt (1984),

Appendix C. In this notation Az(Ay.zy) is denoted by A(A21), the 2
denoting a variable bound ‘two lambdas above’.

The following result provides one way to represent recursion in the A-
calculus.

Theorem 2.1.9 (Fixed point theorem).

1. VFAXFX = X.
(This means that for all FEA there is an X€A such that A\ - FX = X.)

2. There is a fixed point combinator
Y = Af.(Ax. f(zx))(Ax.f(zzx))
such that
VF F(YF)=YPF.
Proof. 1. Define W = Az.F(zz) and X = WW. Then
X=WW=AeF(zx))W=FWW)=FX.

2. By the proof of (1). Note that
YF = (Ae.F(ze))(Ao Flzz)=X. 1
| |

Corollary 2.1.10. Given a term C' = C|f, «] possibly containing the dis-
played free variables, then

IFYX FX = C[F, X].
Here C[F, X] is of course the substitution result C[f := F|[x := X].

Proof. Indeed, we can construct F' by supposing it has the required prop-
erty and calculating back:

VX FX = C[FX]
= Fe = C[F 7]
= F = XeC[F «]
= F= (AfeClf,e)F
= F = YQAfeClf,z]).m

This also holds for more arguments: 3FVZ F& = C[F, i].

14 H.P. Barendregt

As an application, terms F' and G can be constructed such that for all
terms X and Y

X = XF,
GXY = YG(YXG).

2.2 Lambda definability

In the lambda calculus one can define numerals and represent numeric
functions on them.

Definition 2.2.1.

1. F"(M) with n € N (the set of natural numbers) and F, M € A, is
defined inductively as follows:

I
<

FO(M)
FrHY M)y = F(F™(M)).

2. The Church numerals cg, ¢y, ca, ... are defined by

cn = Afa.f7(x).

Proposition 2.2.2 (J. B. Rosser). Define

Ar = Aaypq.ap(ype);
A. = Jdwyz.a(yz);
Ay = Azyyz.

Then one has for all n,m e N

1. Ajcpem = Cnym.
2. AvcnCm = Cpom-

3. AcepCnCm = C(pm), except for m = 0 (Rosser starts at 1).

Proof. We need the following lemma.

