

14 H.P. BarendregtAs an application, terms F and G can be constructed such that for allterms X and Y FX = XF;GXY = Y G(Y XG):2.2 Lambda de�nabilityIn the lambda calculus one can de�ne numerals and represent numericfunctions on them.De�nition 2.2.1.1. Fn(M) with n 2 N (the set of natural numbers) and F;M 2 �, isde�ned inductively as follows:F 0(M) � M ;Fn+1(M) � F (Fn(M)):2. The Church numerals c0; c1; c2; : : : are de�ned bycn � �fx:fn(x):Proposition 2.2.2 (J. B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2N1. A+cncm = cn+m:2. A�cncm = cn:m:3. Aexpcncm = c(nm); except for m = 0 (Rosser starts at 1).Proof. We need the following lemma.

Lambda Calculi with Types 15Lemma 2.2.3.1. (cnx)m(y) = xn�m(y);2. (cn)m(x) = c(nm)(x); for m > 0.Proof. 1. By induction on m. If m = 0, then LHS = y = RHS. Assume(1) is correct for m (Induction Hypothesis: IH). Then(cnx)m+1(y) = cnx((cnx)m(y))=IH cnx(xn�m(y))= xn(xn�m(y))� xn+n�m(y)� xn�(m+1)(y):2. By induction on m > 0. If m = 1, then LHS � cnx � RHS. If (2) iscorrect for m, thencm+1n (x) = cn(cmn (x))=IH cn(c(nm)(x))= �y:(c(nm)(x))n(y)=(1) �y:xnm�n(y)= c(nm+1)x:Now the proof of the proposition.1. By induction on m.2. Use the lemma (1).3. By the lemma (2) we have for m > 0Aexpcncm = cmcn = �x:cnm(x) = �x:c(nm)x = c(nm);since �x:Mx =M if M = �y:M 0[y] and x =2 FV (M). Indeed,�x:Mx = �x:(�y:M 0[y])x= �x:M 0[x]� �y:M 0[y]= M:We have seen that the functions plus, times and exponentiation on Ncan be represented in the �-calculus using Church's numerals. We will showthat all computable (recursive) functions can be represented.

16 H.P. BarendregtBoolean truth values and a conditional can be represented in the �-calculus.De�nition 2.2.4 (Booleans, conditional).1. true � �xy:x; false � �xy:y:2. If B is a Boolean, i.e. a term that is either true, or false, thenif B then P else Qcan be represented by BPQ. Indeed, truePQ = P and falsePQ =Q.De�nition 2.2.5 (Pairing). For M;N 2 � write[M;N] � �z:zMN:Then [M;N] true=M[M;N] false= Nand hence [M;N] can serve as an ordered pair.De�nition 2.2.6.1. A numeric function is a map f : Np!N for some p.2. A numeric function f with p arguments is called �-de�nable if onehas for some combinator FFcn1 : : :cnp = cf(n1;:::;np) (1)for all n1; : : : ; np 2 N. If (1) holds, then f is said to be �-de�ned byF .De�nition 2.2.7.1. The initial functions are the numeric functions U ir ; S+; Z de�ned by:U ir(x1; : : : ; xr) = xi; 1 � i � r;S+(n) = n + 1;Z(n) = 0:2. Let P (n) be a numeric relation. As usual�m:P (m)denotes the least number m such that P (m) holds if there is such anumber; otherwise it is unde�ned.As we know from Chapter 2 in this handbook, the class R of recur-sive functions is the smallest class of numeric functions that contains all

Lambda Calculi with Types 17initial functions and is closed under composition, primitive recursion andminimalization. So R is an inductively de�ned class. The proof that all re-cursive functions are �-de�nable is by a corresponding induction argument.The result is originally due to Kleene (1936).Lemma 2.2.8. The initial functions are �-de�nable.Proof. Take as de�ning termsUip � �x1 � � �xp:xi;S+ � �xyz:y(xyz) (= A+c1);Z � �x:c0:Lemma 2.2.9. The �-de�nable functions are closed under composition.Proof. Let g; h1; : : : ; hm be �-de�ned byG;H1; : : : ;Hm respectively. Thenf(~n) = g(h1(~n); : : : ; hm(~n))is �-de�ned by F � �~x:G(H1~x) : : : (Hm~x):Lemma 2.2.10. The �-de�nable functions are closed under primitive re-cursion.Proof. Let f be de�ned byf(0; ~n) = g(~n)f(k + 1; ~n) = h(f(k; ~n); k; ~n)where g; h are �-de�ned by G;H respectively. We have to show that f is �-de�nable. For notational simplicity we assume that there are no parameters~n (hence G = cf(0).) The proof for general ~n is similar.If k is not an argument of h, then we have the scheme of iteration.Iteration can be represented easily in the �-calculus, because the Churchnumerals are iterators. The construction of the representation of f is done

18 H.P. Barendregtin two steps. First primitive recursion is reduced to iteration using orderedpairs; then iteration is represented. Here are the details. ConsiderT � �p:[S+(ptrue);H(pfalse)(ptrue)]:Then for all k one hasT ([ck; cf(k)]) = [fS+ck;Hcf(k)ck]= [ck+1; cf(k+1)]:By induction on k it follows that[ck; cf(k)] = T k[c0; cf(0)]:Therefore cf(k) = ckT [c0; cf(0)] false;and f can be �-de�ned byF � �k:kT [c0; G] false:Lemma 2.2.11. The �-de�nable functions are closed under minimaliza-tion.Proof. Let f be de�ned by f(~n) = �m[g(~n;m) = 0], where ~n = n1; : : : ; nkand g is �-de�ned by G. We have to show that f is �-de�nable. De�nezero � �n:n(true false)true:Then zero c0 = true,zero cn+1 = false.By Corollary 2.1.10 there is a term H such thatH~ny = if (zero(G~ny)) then y else H~n(S+y):Set F = �~n:H~xc0. Then F �-de�nes f :Fc~x = Hc~nc0= c0; if Gc~nc0 = c0;= Hc~nc1 else;= c1; if Gc~nc1 = c0;= Hc~nc2 else;= c2; if : : := : : :Here c~n stands for cn1 : : :cnk:Theorem 2.2.12. All recursive functions are �-de�nable.

Lambda Calculi with Types 19Proof. By 2.2.8-2.2.11.The converse also holds. The idea is that if a function is �-de�nable,then its graph is recursively enumerable because equations derivable in the�-calculus can be enumerated. It then follows that the function is recur-sive. So for numeric functions we have f is recursive i� f is �-de�nable.Moreover also for partial functions a notion of �-de�nability exists and onehas is partial recursive i� is �-de�nable. The notions �-de�nable andrecursive both are intended to be formalizations of the intuitive concept ofcomputability. Another formalization was proposed by Turing in the formof Turing computable. The equivalence of the notions recursive, �-de�nableand Turing computable (for the latter see besides the original Turing, 1937,e.g., Davis 1958) Davis provides some evidence for the Church{Turing the-sis that states that `recursive' is the proper formalization of the intuitivenotion `computable'.We end this subsection with some undecidability results. First weneed the coding of �-terms. Remember that the collection of variablesis fv; v0; v00; : : :g.De�nition 2.2.13.1. Notation. v(0) = v; v(n+1) = v(n)0.2. Let h ; i be a recursive coding of pairs of natural numbers as a naturalnumber. De�ne](v(n)) = h0; ni;](MN) = h2; h](M);](N)ii;](�x:M) = h3; h](x);](M)ii:3. Notation pMq = c]M :De�nition 2.2.14. Let A � �.1. A is closed under = ifM 2A; � `M = N) N 2A:2. A is non-trivial if A 6= ; and A 6= �:3. A is recursive if]A = f]M jM 2Ag is recursive.The following result due to Scott is quite useful for proving undecidabilityresults.

20 H.P. BarendregtTheorem 2.2.15. Let A � � be non-trivial and closed under =. Then Ais not recursive.Proof. (J. Terlouw) De�neB = fM jMpMq 2Ag:Suppose A is recursive; then by the e�ectiveness of the coding also B isrecursive (indeed, n 2]B , h2; hn;]cnii 2]A). It follows that there is anF 2 �0 with M 2 B , FpMq = c0;M =2 B , FpMq = c1:Let M0 2A;M1 =2A. We can �nd a G 2� such thatM 2 B , GpMq =M1 =2A;M =2 B , GpMq =M0 2A:[Take Gx = if zero(Fx) thenM1 elseM0, with zero de�ned in the proofof 2.2.11.] In particularG 2 B , GpGq =2A ,Def G =2 B;G =2 B , GpGq2A ,Def G 2 B;a contradiction.The following application shows that the lambda calculus is not a de-cidable theory.Corollary 2.2.16 (Church). The setfM jM = truegis not recursive.Proof. Note that the set is closed under = and is nontrivial.2.3 ReductionThere is a certain asymmetry in the basic scheme (�). The statement(�x:x2 + 1)3 = 10can be interpreted as `10 is the result of computing (�x:x2 + 1)3', but notvice versa. This computational aspect will be expressed by writing(�x:x2 + 1)3 !! 10which reads `(�x:x2 + 1)3 reduces to 10'.

