
Addenda for the sixth imprinting

The variable convention (keeping the names of bound variables as much different
as convenient from those of the free variables) is used throughout the book and
is convenient in an informal precise setting. This method was brought to my
attention by Thomas Ottmann in 1972 and ever since I used it without refering
to him (as it is so natural). After the appearence of this book the convention
became baptized with my name. This is unjustified to Ottmann and for this
reason I mention explicitly his name in these corrections.

Each row in the list below has generally five items: the page number; the line
number skipping to count the lines of pictures (a negative number indicates that
one has to count form below); the item to be changed; the sign ‘7→’; the modified
item. In some cases that are self-explanatory a different way of indicating the
erratum was used.

A wealth of corrections came from Harold Hodes and participants of a semi-
nar directed by Hidetaka Kondoh: Hironobu Kuruma, Jun-ichi Matsuda, Yuuji
Nagamatsu, Takanori Nishio and Tetsuo Tanaka. Other corrections were found
by to Ingemarie Bethke, Pierre-Louis Curien, Herman Geuvers, Bart Jacobs,
Gerard Renardel, Piet Rodenburg and Yiqing Zhu. The more important ones
are indicated by the symbol I in the margin.

A few words about progress in theory will be given. In section 6.5 the dou-
ble fixed-point is stated and proved in two different ways. The first proof is a
proof also valid in the λI-calculus. The second proof easily generalizes to the n-
fold case. Here we present a third proof, due to Smullyan, that has both virtues.

Theorem (Multiple fixed-point theorem). Given F1, . . . , Fn ∈ Λ. Then there
are A1, . . . , An ∈ Λ such that

A1 = F1A1 . . . An

. . .

An = FnA1 . . . An

Proof. Given ~F , define by the ordinary fixed-point theorem a term A such
that

A = λf~a.f(Aa1~a) . . . (Aan~a),

where ~a = a1, . . . , an. Take Ai ≡ AFi ~F . Then indeed for 1 ≤ i ≤ n one has

Ai ≡ AFi ~F

= Fi(AF1
~F ) . . . (AFn ~F )

≡ FiA1 . . . An.

A second result is the solution of several hunderd pages in the thesis of Enno
Volkerts to problem 21.4.9, see Folkerts [1998].
Theorem. Let F be a closed term considered as a map Λ◦/=βη→ Λ◦/=βη.
Then

F is a bijection ⇐⇒ F is βη-invertible.
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Finally conjecture 17.4.15, concerning the place in the projective hierarchy
of the λ-theory Hω axiomatized by equating all unsolvables and the ω-rule, is
proved by a complex argument due to Intrigila and Statman [2004].

Theorem. Hω is a Π1
1-comple λ-theory.

This settles most open problems of the book. One conjecture that remains open
is the range property for H, i.e. the question whether for a closed term F its
range modulo equating the unsolvables has cardinality either 1 or ℵ0.

Nijmegen April, 2004
Henk Barendregt
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Errata

Preface & Contents

x 16 ω-rule λη 7→ ω-rule inλη
xiv In diagram Add solid line from 10 to 14.

Chapter 1

3 −13 18.5.30 7→ 18.4.30
4 −21 Aczel [1980]. 7→ Aczel [1980]. See also

Barendregt et al. [1993] for
progress on Curry’s program.

−19 [1980] 7→ [1979]
10 −11 D = (D′,v′) 7→ D′ = (D′,v′)
13 3 (x, x′0) 7→ 〈x, x′0〉
15 4 is the least fixed point of f . 7→ is the least fixed point of f .

−4 cpo’s. 7→ cpo’s if fi(⊥) = ⊥ (strictness).
16 −11 retract of D 7→ retract of D, notation X C D,
18 1.2.28 coherent 7→ coherent (or

consistently complete)
−2 x<<y 7→ x<<y1

21 1.3.15 coherent algebraic cpo. 7→ coherent2 algebraic cpo.
I 21 1.3.16(i) This is incorrect, but holds if each bounded set Y ⊆ X

(i.e. ∃x∈X.Y v x) has a supremum in X; Jung [1989]

Chapter 2

24 8 F (WW ) = FX 7→ F (WW ) ≡ FX
I 30 5 and the 7→ and, if n > 1, then the
I 26 −9 Variable convention 7→ Ottmann Variable convention

35 2 λ 7→ λ

36 17 Par abus de language 7→ Par abus de langage
41 15 I 7→ I

46 7 Applications of CL to λ 7→ Bases and enumeration
−4 ψ(n) 7→ ψ(n)

47 7 M 7→ M

48 −11 Böhm out technique 7→ The Böhm out technique
48 −2 for the 7→ in the

1This definition is due to Scott [1972]. If D is a continuous lattice, then it is equivalent to

x<<y ⇔ ∀ directed X ⊆ D.[y v
G

X ⇒ ∃z ∈ X.x v z],

see Gierz et al. [1980], p. 110-111.
2The condition of coherence may be dropped.
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Chapter 3

51 2 R 7→ >−−

57 3.1.22(ii) R-∞(M) 7→ R-∞(M) or ∞R(M)
3.1.22(iii) R 7→ R

67 2 corollary 7→ theorem
10 Conservation theorem 7→ The conservation theorem

71 −3 Sequentiality 7→ Sequentiality and stability
72 −4 βηΩ-reduction 7→ βηΩ-reduction
73 1 ∆-reduction 7→ Delta reduction
75 19 ∃x1, . . . , xn x = x1>−−x2 7→ ∃x0, . . . , xn x = x0>−−x1

Chapter 4

83 14 17.2 7→ 16.2
−10 16. 7→ 16.1.
−1 'η 7→ '

η

84 −4 ω-rule 7→ ω-rule in λη
85 1 Omega incompleteness 7→ The ω-rule and Hη

−2 (2×) I 7→ I

Chapter 5

86 11 Plotkins 7→ Plotkin’s
87 17 Scott [1980] 7→ Scott [1980a]
90 14 (λ∗x,Q) 7→ (λ∗x.Q), otherwise.
91 6 M1 7→ (iv) M1

8 (iv) 7→ (v)

5.1.14
all over

}
5× [[ , ]] 7→ ( , ) 〈respectively〉

92 −5 [[ , ]] 7→ ( , ) 〈respectively〉
−1 ]]A 7→ ]]M

93 (6×) λ ` 7→ λ `
−4 λ ` Aλ = Bλ ⇒ M |= Aλ,CL = Bλ,CL, by 1, 7→

λ ` Aλ = Bλ ⇒ M |= Aλ = Bλ, by 1,
⇒ M |= Aλ,CL = Bλ,CL, by definition of [[Aλ]]Mρ

−1 Λ(M) 7→ Λ(M1)
94 −4 5.5.8 7→ 5.6.8
−1 〈not exactly〉M |= 7→ M |=
−1 (2×) λ 7→ λ∗

95 1 Meyer [1980] 7→ Meyer [1982]
2 Scott [1980] 7→ Scott [1980a]
5.2.8 (11×) λ 7→ λ∗

5.2.9 (8×) λ 7→ λ∗

5.2.10 (4×) λ 7→ λ∗
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Chapter 5 (continued)

96 all over (3×) K,S 7→ K,S, 〈respectively〉
−11,−10,−9 λ 7→ λ

97 1 [[ , ]] 7→ ( , ) 〈respectively〉
−5 Jacopini [1975a] 7→ Jacopini [1975]
−4,−3,−2 K 7→ K

−4,−3,−2,−1 S 7→ S

98 4 K 7→ K

S 7→ S

99 8 Syxz 7→ Sxyz

I 13 (λ )c `M = N ⇔ λ `M = N 7→ (λ )c ` A = B ⇔ λ ` Aλ = Bλ

−1 R-axiom. 7→ R-ax.
100 11 ∈ λ 7→ ∈ Λ

15 ξ-ax 7→ ξ-ax
−2 ξ-ax 7→ ξ-ax
−2,−1 -rule 7→ -rule

101 2 By corollary 5.2.23. 7→ Left to the reader.
3− 6 (4×) ω 7→ ω

6 theorem 4.1.15(i). 7→ proposition 4.1.15(i).
8 -rule 7→ -rule
10 T |= R 7→ T ` R
11 5.2.12(ii) 7→ 5.2.12(iii)

103 −11 (x := [[N ]]ρ) 7→ (x := [[z]]ρ(z:=[[N ]]ρ))
104 4 Λ(M) 7→ Λ(M1)
105 5 x.y 7→ x · y

14 [[D]] 7→ [[P ]]
107 −13 5.7.7. 7→ 5.8.7.

18.5.29 7→ 18.4.29
18.4.31 7→ 20.6.22

−7 categorial 7→ categorical
108 5 p2) 7→ p2〉

7 A,B ∈ C 7→ A,B ∈ C
14 〈Delete〉 It then follows that the same holds for all f, g : A→ B.

109 −11 λ 7→ λλ

110 8 by 4.1.(1) 7→ by the note after 5.5.1.(ii)
111 8, 9 〈Delete two lines.〉

10 ⇒ [[P ]]∆,x = [[Q]]∆,x 7→ [[P ]]∆,x = [[Q]]∆,x, by the IH,
13 M(C) 7→ M(C)
−5,−4 (2×) ⇒ 7→ ⇒ ∀x∈M
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Chapter 5 (continued)

112 6 F ◦G = id, 7→ F ◦G = id, G is mono,
8 g 7→ g, since p2 is epi.

113 5.5.10 M 7→ P

N 7→ Q

114 −16 1 7→ 1
−8 Scott [1980] 7→ Scott [1980a]

115 5.5.7 until I,K, S 7→ I,K,S 〈respectively〉
end of 5.6,
except 5.6.3
−5 t→ I 7→ T → I

117 9 Scott [1980] 7→ Scott [1980a]
−10 1 7→ 1
5.6.3 λ 7→ λ∗

118 5.6.3 λ 7→ λ∗

14 1 7→ 1
16 K1n 7→ K1p
17 1n 7→ 1p
−4 λ 7→ λ∗

120 13 1 7→ 1
124 14 (X, ·, λ) 7→ (X, ·,v)

−1 B 7→ B

125 −12 is 7→ vs.
126 5 M(T) 7→ M(T)

18 B 7→ B

127 18 21.4 Exercises 7→ 21.4 Exercises
−7 F = (X, · ) 7→ M = (X, · )

128 15, 16  7→ 6v
21 I,K,S,Ω 7→ I,K,S,Ω

Chapter 6

150 −16 2.3.5 7→ 2.4.5
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Chapter 7

152 18 CL ` 7→ CL `
−8 (λ∗x.Q). 7→ (λ∗x.Q), otherwise.

153 −8 Suppose ~x 6∈ FV( ~Q). Then 7→ Then
155 2 remark 3.1.7 7→ definition 3.1.5

8 λ-term 7→ λ-term
§7.2 M,N,L 7→ P,Q,R 〈respectively〉

156 −1 λ ` 7→ λ `
157 2 λ ` 7→ λ `
161 11 = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK))) 7→

S(KK)(S(S(KS)K)(K(SKK)))
I −1 λx.II→β λx.I 7→ λx.Ix→β I

I 162 2 S(KI)(KI) 6→→w KI 7→ S(KI)I 6→→w I

162 8 w-solvable 7→ w-solvable
−5 S′s 7→ S′s

163 4 I 7→ I

16 K,S 7→ K,S 〈respectively〉
−7 →→! 7→ →!

−5 K,S 7→ K,S 〈respectively〉

Chapter 8

162 −2 Petorossi 7→ Pettorossi

167− 168 (6×) # 7→ ]

169 −9 Proof. 7→ Proof. (i)
171 13 x 6∈ F 7→ x 6∈ FV(F )
173 9 N1N2 . . . Nn 7→ N1N2 . . . Nk

177 2 ~x, ~w 7→ ~x~w

178 7 MCLNCL 7→ MCL
~NCL

179 13 one has ψ 7→ one has φ
180 11 occurrences if redexes 7→ occurrences of redexes
181 2 M = M0 7→ M ≡M0

10 n ∈ N 7→ n ∈ N
(3×) 14, 15, 19 = 7→ ≡
182 −8 m is solvable 7→ m is solvable
184 11 KH4 7→ KH4

15 K3I 7→ K4I

−4 16.3.15 7→ 17.3.15
−2 S 7→ S
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Chapter 9

186 14 M ∈ Λ 7→ λx.M ∈ Λ
−5,−4 I 7→ I

193 −8 Nm 7→ Nn

198 −2 (2×) # 7→ ]

I 201 −2 ∀k≤lh(α) α(2k)≤m 7→ ∀k≤n α(2k)≤m
203 19 k = m+ k0 7→ k = m+ k0 + 1

−8 M I∼p 7→ M I∼p+1

−8 ∈ 7→ ∈β
205 −16 Pn+1, . . . Pp 7→ Pn+1 . . . Pp

208 2 ⊃ 7→ ⊃~
209 −6 9.1.7 7→ 9.1.6
211 14, 16 (2×) Pp 7→ Pp′

Chapter 10

216 −6 Böhm tree 7→ Böhm tree
220 −4,−3 (2×) ↑ 7→ = ⊥
222 20 i > m 7→ i ≥ m

−3 M〈0〉 = Ω 7→ M〈0〉 ≡ Ω
223 −3 ↑ else. 7→ ⊥ if lh(α) = k and α ∈ A;

↑↑ else.
226 15 #Bα 7→ ]Bα

227 −9 ~xα, yα 7→ ~xα, yα,mα

228 1 Theorem. 7→ Theorem (Bergstra
and Klop [1980]).

−12 α ∗ 〈0〉 7→ α ∗ 〈0〉
−11 #Bα 7→ ]Bα

I −3 ∀α {~xα} ⊆
⋃
{FVA(β) | β > α} 7→

∀α [A(α) ⇒ {~xα} ⊆ {yα} ∪
⋃
{FV(Aα∗〈i〉) | 0 ≤ i ≤ mα}].

229 −5 Proof. 7→ Proof. (i)
230 6 tree topology 7→ tree topology

7 BT : Λ→ B 7→ BT : Λ→ B

−9 (3×) BT 7→ BT
231 −5 λx.x 7→ 〈λx.x, 0〉
232 10.2.9 BT 7→ BT
233 1 A : X 7→ A;X

I 236 −5 xn ≤η Am 7→ xn ≤η Am & xn 6≡ y
I 237 −4 (M ;Xα)α 7→ M(BT(M);Xα)α

238 −11 Σ1 7→ Σ1 × N
245− 246 (3×) BT 7→ BT

247 5 (λ~x.M) ~N∗ 7→ (λy~x.M)P ~N∗
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Chapter 10 (continued)

248 2 = P2I(P2IyΩ) 7→
249 11 Unj 7→ Umj

13 xM1 . . .Mm 7→ xM0 . . .Mm

250 −5,−4 (2×) ~P 7→ ~R

−2 (1) 7→ (i)
251 9 M |β = N |β 7→ M |β ∼ N |β

18 λ~x.yNi1 . . . Nim 7→ λ~x.yMi1 . . .Mim

−6 10.3.6 (ii). 7→ 10.3.6 (ii), that also
holds for virtual nodes.

253, 254 −13, 5 along 7→ up to
254 −6 (i) By 7→ (i) It suffices to show

this for closed P,Q. By
256 4 'η 7→ '

η

7 along 7→ up to
257 3 F if 7→ F is

4 10.2.31 7→ 10.2.13
258 −9,−6 P4 7→ P4

261 2 λη ` 7→ λη `
−3 (i) 7→

263 −8 xMk
11 . . . . . . . . .M

k
1mq 7→ xM q

11 . . . . . . . . .M
q
1mq

265 10− 21 (19×) π 7→ π1

11, 13 (2×) k = 7→ p =
13 λ~yi.z1 7→ λ~y1.z1

16 k > 7→ p >

21, 22 (2×) Max 7→ min

I 265 26 Before 10.5.21 add the following definition.
10.5.20A. Definition. (i) π is called F-nonconfusing ⇐⇒
∀M,N ∈ F.[M ∼ N ⇔ Mπ ∼ Nπ] &

[M |〈 〉↓ ⇔ Mπ solvable]
(ii) FoI = {π ∈ I | π is F-nonconfusing and Mπ is solvable}.

266 2 bp 7→ bq

−12, 11,−9 bp 7→ bq

I 267 3 F-faithful 7→ F-nonconfusing
I 8, 14, 15, 18, F∗I 7→ FoI

−6,−1 (6×)
I 268 2 F∗I 7→ FoI

272 15 x ∈ BT(Fx) 7→ x ∈ BT(Fx), i.e. x ∈ FV(BT(Fx)),
16 λ ` 7→ λ `
15 〈something like〉 ΛIB 7→ ΛIB
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Chapter 11

279 2 . . . (P2[x2 := (. . .∆′1 . . .)]) 7→ . . . (P2[x2 := (. . .∆′1 . . .)]) . . .
282 2-nd diagram Arrow from M∼ to N∼ should have as label β′ (not β).
285 5 {∆ | ∆ ∈ P 7→ {|∆| | ∆ ∈ P
287 −11 an weighting 7→ a weighting
288 −1 274 7→ 278
289 −7 λix2.P0 7→ λjx2.P0

291 4 {M |M →→
dev

N} 7→ {N |M →→
dev

N}
−4 M 7→ (M,F)

292 −11 ω = λx.xx 7→ ω ≡ λx.xx
−4 →

1
7→ →→

1

294 5 M ′ →β0 N
′ 7→ M ′ →→β0 N

′

296 −3 σ : M → N 7→ σ : M →→ N

298 −3 M ′ →→
1,i

M even 7→ even M ′ →→
1,i

N

300 −12−−4 Argument can be simplified by distinguishing
N ≡ λx.N0 and N ≡ N0N1.

−2 (2×) ~M 7→ ~P

−1 ~N 7→ ~Q

−1 Mi →→ Ni 7→ Pi →→ Qi

301 2, 4, 7 (3×) ~N 7→ ~Q

Chapter 12

302 6, 7 (2×) → 7→ →→
303 9 12.1.1 7→ 12.1.1A
303 16 R-=-reduction 7→ R-=-reduction
304 2 w 7→ ∼=
305 7 D4 7→ D3

1st diagram σ ρ, ρ σ 7→ σ/ρ, ρ/σ 〈respectively〉
310 −7 Since by (2) 7→ Since by (3)
316 −4 ∼= an 7→ ∼= is an
319 −1 ∆n−1 7→ ∆n+1

320, 321 1, 5 lemma 2.1.12 7→ proposition 2.1.12
322 1 (σ) 7→ (σk)
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Chapter 13

324 −7 effective 7→ effective3

325 −7 β 7→ β

327 −3 = 7→ ≡
328 −5 β 7→ β

329 Fig. 13.3. N′ 7→ N

330 3 = 7→ ≡
331 1 reduction 7→ reduction

−4 M1 7→ M

Fig. 13.6 The gk-arrows should be dotted.
332 7 Proof. 7→ Proof. (i)
334 4, 5 (2×) C 7→ C1

I 4 →→ 7→ =
338 −1 0 ≤ i ≤ n 7→ 0 ≤ i < n

340 −11 (3×) → 7→ →→
342 6 order i 7→ order i− 1
343 11 13.4.11 (i) 7→ 13.4.11 (ii)

15 13.4.11 (ii) 7→ 13.4.11 (i)
Fig. 13.9 (5×) Arrows labelled ‘cpl’ should have double heads.

344 1 theorem 11.2.20 7→ proposition 11.2.20
11 Bergstra-Klop [198+] 7→ Bergstra-Klop [1982]

I 345 −6,−4 (3×) Replace ||M ||, ||N || by ||M ||1, ||N ||1, respectively,
where ||..||1 is defined in the proof of 13.3.5.

I −1 in Λ||M ||. 7→ in Λ||M ||1 and does not
contain an F -cycle.

I 346 1, 2 Between ‘otherwise’ and ‘F ’ insert:
‘at least one of the following two situations holds:
1. the F -path of M contains an F -cycle;
2. the F -path of M does not lie within Λ||M ||1 .
Case 1 is impossible as F is a B-optimal
normalizing strategy. If case 2 holds, then’

−9 AB 7→ AB

347 5 I 7→ I

9 l-1-optimal 7→ L-1-optimal
−3 B(II)) = 7→ B(II))) =

3Some readers prefer the word ‘efficient’.
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Chapter 14

348 5 (2×) # 7→ ]

11 (2×) # 7→ ]

350 Fig. 13.10 Figure c should be upside down.
351 −2 than 7→ then

355 17 →lab.β 7→ →lab.β

356 15 L1 = xV1 . . . VM 7→ L1 ≡ xV1 . . . VM

−5 M = M1M2 7→ M ≡M1M2

358 7 (x ~N)∗ ≡ ⊥ ~N 7→ (x ~N)∗ ≡ ⊥ ~N∗

360 4 an alternative proof 7→ a proof

361 −9 k = 0 7→ k ∈ {0, 1}
−9 k > 0 7→ k > 1

362 −5 14.2.8 7→ 14.2.7
363 2 theorem 7→ proposition

5, 6 elementary and diagram 7→ elementary diagram
−11 ∆′j 7→ ∆′i

Chapter 15

364 −7 β(⊥) 7→ β⊥
369 8 P ≡ D[⊥, . . . ,⊥] 7→ P β←← D[⊥, . . . ,⊥]

10 C[~P ] ≡ C[D[~⊥]] 7→ C[~P ] β←← C[D[~⊥]]
371 15 lemma 14.3.15 7→ lemma 14.3.14
372 8, 10 (2×) C[M ] = N 7→ C[M ] ≡ N
373− 374 (9×) Replace superscripts (n) and (m) by [n], [m], respectively.
382 16 (i) Suppose 7→ Suppose

16 redex. Show 7→ redex. (i) Show
−8 M ∈ A 7→ M ∈ Λ

385 10 (2×) ≡ 7→ =
−5 (3) and (1) 7→ (2) and (1)
−2 (xP1 . . . Pn)η 7→ (. . . (x...P1)... . . . Pn)η

386 −6 redexes 7→ β-redexes
387 −4 λx1 · · ·xn.x1N2 . . . Nn 7→ λxn · · ·x1.x1N2 . . . Nn

388 6 NL1 . . . Ln 7→ NLn . . . L1

7 y2P11 . . . P1k1 7→ y2P21 . . . P2k2

−9 M 6≡ Ω 7→ M 6≡ Ω

12− 19 (5×) Ω 7→ Ω
390 −8 ↓β 7→ ↓β
393 5 ((λx.z(xx))ω3) 7→ ((λx.z(xx))ω3))
395 −10 15.2.4(ii) 7→ 15.2.4(iii)
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Chapter 15 (continued)

396 Fig. 15.4 Interchange labels (1) and (2).
398 1 λy,M0 7→ λy.M0

4 H ⊆Mi 7→ H ⊂Mi

−17 λxm · y 7→ λxm.y

400 −10 δC 7→ δC

401 6 Λδ 7→ Λ◦δ
403 −3 M1, . . . ,Mn 7→ M1 . . .Mn

−2 BT(M1) BT(Mn) 7→ BT(M1) . . .BT(Mn)
406 diagram Left arrow with β should be doubly headed.

Chapter 16

413 −10 M ≈ N 7→ M ′ ≈ N ′

416 −10 19.2.12 7→ 19.2.9
418 −7 19.2.12 7→ 19.2.9
419 −11 πn 7→ πn

420 −12 M 6≡ N ′ 7→ M ′ 6≡ N ′

−3 'η 7→ '

η

422 2 Θ 7→ Y

2 B →→ 7→ Bx →→
425 −10,−9 (4×) BT 7→ BT
426 in fig. (2×) BT 7→ BT
427 3 ω 7→ ω

429 2 14.4.5 7→ 15.1.5
14 Θ(jxy.x(jy)) 7→ Θ(λjxy.x(jy))

429 17 w 7→ =∼
−8 ∀z∈Λ◦ 7→ ∀Z∈Λ◦

−5 AZ = AZ 7→ AZ = AZ ′

−4 AZ = A′Z 7→ AZ = AZ ′

430 9 M v N 7→ M <∼N
I −4 J = λ+ I = Ω3 ≡ ω3ω3 7→ J = λ+ I = Ω and Ω3 ≡ ω3ω3

−3 =J 7→ =J

Chapter 17

I 435 −9,−10 OM = {N | FM ∈ O} 7→ OM = {N | FN ∈ O}
443 4 15.1.9 7→ 16.1.9(ii)
465 11 17.1.9 (ii) 7→ 17.1.9
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Chapter 18

468 4 Palamidessi Catuscia 7→ Catuscia Palamidessi
473 −6 λGx.A 7→ λx.A

I 476 12 (λx.A)∅ = ∅ 7→ (λx.A)∅ 6= ∅
−2 ek 6⊆ ek 7→ ek 6⊆ ek′

477 −2,−1 (2×) ψ(x) 7→ ψ(x′)
481 12 〈tnxmin(n, i)〉i ∈ N 7→ 〈tnxmin(n, i)〉i∈N

483 11 y ∈ n 7→ y ∈ Dn

485 −3 Φn,∞(λλy ∈ Dn 7→ Φn+1,∞(λλy ∈ Dn

491 18.4.1 Pω∀1 = I 7→ Pω 6|= 1 = I

492 −10 15.3.4 7→ 15.4.4

Chapter 19

508 1 19.2.14 7→ 19.2.11
509 −6 operators 7→ combinators

−5 combinator 7→ operator

Chapter 20

513 5.3.25 7→ 5.2.23(i)
518 12 Wadsworth. 7→ Wadsworth. Write x ∈ BT(M)

for x ∈ FV(BT(M)).
521 −5 19.3.15 7→ 18.3.15

Appendices

570 11 [198+] 7→ [1982]
576 −3 [1980] 7→ [1979]
581 6 (2×) v2 7→ v1

584 20 [198-] 7→ [198?]

Addenda

582 6 xz(yx) 7→ xz(yz)
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References

585 −4 [198-] 7→ [1983]
−3 to appear. 7→ 48, pp. 931-940

586 −22 [1982] 7→ [1982a]
−11 Add: Bezem, M. A.

[1985] Isomorphisms between HEO and HROE , ECF and
ICFE . Journal of Symbolic Logic, 50, pp. 359-371.

−8 [1980] 7→ [1979]
589 15 (2×) [1980] 7→ [1979]
595 5, 6 (to appear). 7→ no. 3, pp. 271–286, 287–302, 303–325.
597 −9 p-functions 7→ p-function
598 −8 AGM 7→ ACM

Index of Names

599 R17 Add: Bezem, M. [1985] 566
L−19 516 7→ 250, 516
R−16 238, 7→ 238, 245,

600 R13 [1980] 7→ [1979]
601 R21 116 7→ 116,107

R22 [1983] 107 7→ [1984] 494
602 R11 149 7→ 150

L−17 536 7→ 534
L−13 75 7→
L−11 O’Donell 7→ O’Donnell

Index of Definitions

607 leftmost 179 7→ leftmost 180
608 L12 7→ Paradox

Curry- 573, 575
Liar’s- 573

Index of Symbols

613 11 λI-terms 7→ λI-terms

614 8 M() 7→ M() ~N()
19 354 7→ 355

618 Add: A =η B trees A,B are equal up to (possibly 240
infinitely many) η-conversions

619 −15 150 7→ 160
620 (2×) 11, 12 ||= M = N 7→ |= M = N
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