Addenda for the sixth imprinting

The variable convention (keeping the names of bound variables as much different
as convenient from those of the free variables) is used throughout the book and
is convenient in an informal precise setting. This method was brought to my
attention by Thomas Ottmann in 1972 and ever since I used it without refering
to him (as it is so natural). After the appearence of this book the convention
became baptized with my name. This is unjustified to Ottmann and for this
reason I mention explicitly his name in these corrections.

Each row in the list below has generally five items: the page number; the line
number skipping to count the lines of pictures (a negative number indicates that
one has to count form below); the item to be changed; the sign ‘—’; the modified
item. In some cases that are self-explanatory a different way of indicating the
erratum was used.

A wealth of corrections came from Harold Hodes and participants of a semi-
nar directed by Hidetaka Kondoh: Hironobu Kuruma, Jun-ichi Matsuda, Yuuji
Nagamatsu, Takanori Nishio and Tetsuo Tanaka. Other corrections were found
by to Ingemarie Bethke, Pierre-Louis Curien, Herman Geuvers, Bart Jacobs,
Gerard Renardel, Piet Rodenburg and Yiqing Zhu. The more important ones
are indicated by the symbol » in the margin.

A few words about progress in theory will be given. In section 6.5 the dou-
ble fixed-point is stated and proved in two different ways. The first proof is a
proof also valid in the Al-calculus. The second proof easily generalizes to the n-
fold case. Here we present a third proof, due to Smullyan, that has both virtues.

THEOREM (Multiple fixed-point theorem). Given F1,...,F, € A. Then there
are Aq,..., A, € A such that

A1 = FA .. A,

A, = F,A ... A,

PROOF. Given F , define by the ordinary fixed-point theorem a term A such
that
A= \fd.f(Aa1qd) ... (Aand),

where @ = aq,...,a,. Take A; = AF‘iﬁ. Then indeed for 1 < ¢ < n one has

= F,(AFF)...(AF,F)
= -FzAl e An |

A second result is the solution of several hunderd pages in the thesis of Enno
Volkerts to problem 21.4.9, see Folkerts [1998].
THEOREM. Let F be a closed term considered as a map A°/=g,— A°/=g,.
Then
F'is a bijection <= F' is @n-invertible.



Finally conjecture 17.4.15, concerning the place in the projective hierarchy
of the A-theory Hw axiomatized by equating all unsolvables and the w-rule, is
proved by a complex argument due to Intrigila and Statman [2004].

THEOREM. Hw is a [T3-comple A-theory.
This settles most open problems of the book. One conjecture that remains open

is the range property for JH, i.e. the question whether for a closed term F' its
range modulo equating the unsolvables has cardinality either 1 or Ny.

Nijmegen April, 2004
Henk Barendregt



v

Errata

Preface & Contents

16 w-rule An — w-rule inAn

xiv In diagram | Add solid line from 10 to 14.

Chapter 1
3 13 18.5.30 — 18.4.30
4 =21 Aczel [1980]. —  Aczel [1980]. See also
Barendregt et al. [1993] for
progress on Curry’s program.
~19 [1980] —  [1979]
10 -—11 D= (D) — D'= (D)
13 3 (@, x) — (@, x))
15 4 is the least fixed point of f. > is the least fixzed point of f.
—4 cpo’s. — cpo’sif f;(L) = L (strictness).
16 —-11 retract of D —  retract of D, notation X < D,
18 1.2.28 coherent —  coherent (or
consistently complete)
-2 <<y — x<<g,E]
21  1.3.15 coherent algebraic cpo. — coheremﬂ algebraic cpo.
21 1.3.16(i) This is incorrect, but holds if each bounded set ¥ C X
(i.e. Jx€X.Y C z) has a supremum in X; Jung [1989]
Chapter 2
24 8 FWW)=FX — FWW)=FX
30 5 and the — and, if n > 1, then the
26 -9 VARIABLE CONVENTION — OTTMANN VARIABLE CONVENTION
35 2 A = A
36 17 Par abus de language —  Par abus de langage
41 15 I —
46 7 Applications of CL to A — Bases and enumeration
1 b(n) - T(n)’
47 7 M — M
48 11 Bohm out technique — The Bohm out technique
48 =2 for the — in the

!This definition is due to Scott [1972]. If D is a continuous lattice, then it is equivalent to
<<y < V directed X C D.[yC |_|X = Jze€ Xz Lz,

see Gierz et al. [1980], p. 110-111.
2The condition of coherence may be dropped.




Chapter 3

o1

2

R

= >
57 3.1.22(ii) R-0o(M) —  R-0o(M) or cor(M)
3.1.22(ii) R — R
67 2 corollary — theorem
10 Conservation theorem  +— The conservation theorem
71 -3 Sequentiality — Sequentiality and stability
72 —4 Bn-reduction —  [BnQ-reduction
73 1 A-reduction — Delta reduction
75 19 dzi, ..., xpx =x1>—22 +— dxg,...,TnT = To>—2T1
Chapter 4
83 14 17.2 —  16.2
—10 16. — 16.1.
-1 >~y = =y
84 —4 w-rule — w-rule in An
85 1 Omega incompleteness +— The w-rule and Hn
-2 (2x) I —
Chapter 5
86 11 Plotkins — Plotkin’s
87 17 Scott [1980] —  Scott [1980a]
90 14 Nz, Q) —  (A*z.Q)), otherwise.
91 6 My — (iv) I
8 (iv) — (V)
o114 }5>< I,1 — () (respectively)
all over
92 -5 I,1 —  (, ) (respectively)
-1 J* S
93 (6x) AF — AR
—4 )\l—A)\:B)\ = ml:A)\,CL:B)\,CL, by 1, —
)\l—A/\:B)\ = Qﬁ):A)\:B,\, byl,
= ME Aycr = Bxcr, by definition of [[AA]]ZR
-1 A(OM) — A(9)
94 —4 5.9.8 —  95.6.8
-1 (not exactly) M = — M=
—1(2x) A = AT
95 1 Meyer [1980] —  Meyer [1982]
2 Scott [1980] —  Scott [1980a]
5.2.8 (11x) A = A*
5.2.9 (8x) A =
5.2.10 (4x) A = AF




Chapter 5 (continued

~—

96

97

98

99

100

101

103
104
105

107

108

109

110
111

all over (3x)
~11,-10, -9
1

-5

—4,-3,-2
—4,-3,-2 -1
4

—5,—4 (2x)

K,S

A

[ ]

Jacopini [1975a]
K

S

K

S

Syxz

(M)eFM=N & AFM=N

R-axiom.

S\

&-ax

&-ax

-rule

By corollary 5.2.23.
w

theorem 4.1.15(i).
-rule

TER

5.2.12(ii)

(x = [N],)
A(OM)

.y

D]

5.7.7.

18.5.29

18.4.31

categorial

PQ)
A, BeC

R A A

1

K,S, (respectively)
A

(, ) (respectively)
Jacopini [1975]

K

S

K

S
Sxyz

()\)Cl—A:B = Al—A)\:B)\

R-ax.

-rule

Left to the reader.
w

proposition 4.1.15(3).
-rule

THFR

5.2.12(iii)

(@ := [zl p(zi=n,))
A(DM)

x-y

7]

5.8.7.

18.4.29

20.6.22

categorical

P2)
A, BeC

(Delete) It then follows that the same holds for all f,g: A — B.

A
by 4.1.(1)
(Delete two lines.)

= [[P]]A,x = [[Q]]A,x
M(C)
=

—

—

1

1

1

A
by the note after 5.5.1.(ii)

m(C)
= Ve




Chapter 5 (continued)

112 6 FoG=id, — F oG =id, G is mono,
8 g — g, since pg is epi.
113 5.5.10 M — P
N = Q
114 —-16 1 — 1
-8 Scott [1980] —  Scott [1980a]
115 5.5.7until |I,K,S — |, K,S (respectively)
end of 5.6,
except 5.6.3
-5 t—1 — T —1
117 9 Scott [1980] —  Scott [1980a]
—10 1 — 1
5.6.3 A = A*
118 5.6.3 A = A*
14 1 — 1
16 K1, — K1,
17 1, = 1,
—4 A = AF
120 13 1 — 1
124 14 (X, \) — (X,-,0)
-1 B — B
125 —12 is —  VSs.
126 5 M(T) — OM(T)
18 B — B
127 18 21.4 Exercises +— 21.4 FExercises
—7 F=(X,-) — M=(X,)
128 15,16 c - L
21 ILK,S,Q — 1K,S,Q
Chapter 6
150 —16 2.3.5 —  2.4.5




Chapter 7

152 18 CL + — CL+
-8 (N z.Q). —  (A*z.Q), otherwise.
153 -8 Suppose T & FV(Q) Then — Then
155 2 remark 3.1.7 — definition 3.1.5
8 A-term —  A-term
§7.2 M,N,L — P, Q, R (respectively)
156 -1 Ak — AR
157 2 A — AR
161 11 =S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK))) —
S(KK)(S(S(KS)K)(K(SKK)))
-1 Azl —g Azl = vl —gl
162 2 S(KI)(KI) 4, KI — S(KI)I /5 I
162 8 w-solvable —  w-solvable
-5 S’'s — S's
163 4 1 — T
16 K, S — K, S (respectively)
-7 —'» — '—>
-5 K, S — K, S (respectively)
Chapter 8
162 -2 Petorossi —  Pettorossi
167 — 168 (6x) # —
169 -9 PROOF. —  PROOF. (i)
171 13 r ¢ F — z ¢ FV(F)
173 9 NiNs...N, — NiNo...Np
177 Z, W — T
178 McrNer — MecrNer,
179 13 one has ¥ — one has ¢
180 11 occurrences if redexes — occurrences of redexes
181 2 M = M, — M= M,
10 neN — neN
(3x) 14,15,19 | = — =
182 -8 m is solvable — 'm!is solvable
184 11 KHy — KHy
15 K3l — K4l
—4 16.3.15 —  17.3.15
-2 S — S




Chapter 9

186 14 MeA — Az.M e A
—5,—4 1 —
193 -8 N, — N,
198 -2 (2x) +# - f
201 -2 Vik<lh(a) a(2k)<m —  Vk<n a(2k)<m
203 19 k=m+ kg — k=m-+ky+1
-8 MI~P —  MI~ptl
—8 € = E€g
205 —16 Poi1,... P, — Pyi1...5,
208 2 D — D
209 —6 9.1.7 — 9.1.6
211 14,16 (2x) | P, — P,
Chapter 10
216 —6 Bohm tree —  Bohm tree
220 —4,-3(2x) | 1 — =1
222 20 T>m — i >m
-3 My = Q — M<0> =0
223 -3 T else. — 1 iflh(a) =k and o € 4;
T else.
226 15 #B,, — By,
227 -9 ZasYa = Za, Yo, Ma
228 1 THEOREM. — THEOREM (Bergstra
and Klop [1980]).
—12 "o % (0) —ax(0),
~11 #B, — §Ba
-3 Va{Z,} CU{FVAB) | B>a} —
Va [A(a) = {Za} € {ga} UUFV(Agu) |0 < i < mall.
229 -5 PROOF. — PROOF. (i)
230 6 tree topology — tree topology
7 BT:A— B — BT:A—%9
-9 (3x) BT — BT
231 -5 Ax.x —  (Az.z,0)
232 10.2.9 BT — BT
233 1 A: X — A X
236 -5 Tn <y Am = Xy <y A & xy Fy
237 —4 (M;Xa)a — M(BT(M); Xa)a
238 —11 ¥ — X1 xN
245 — 246 (3x) BT — BT
247 5 (AZ.M)N* —  (A\yZ.M)PN*




v

Chapter 10 (continued)

248
249

250

251

253, 254
254

256

257

258
261

263
265

265

266

267

268
272

11
13
—5,—4 (2x)

10 — 21 (19x)
11,13 (2x)
13

16

21,22 (2x)
26

2
—-12,11,-9
3
8,14,15, 18,
—6,—1 (6x)
2
15
16
15

= P2l(P2ly$2)

>

117117111

!

!

1171171711111 11

=

M|[B ~ N|p

AC.yM;y ... M;

10.3.6 (ii), that also
holds for virtual nodes.
up to

(i) It suffices to show
this for closed P, Q. By

~n

up to
Fis
10.2.13
Py

min

Before 10.5.21 add the following definition.

10.5.20A. DEFINITION. (i) 7 is called F-nonconfusing <=

VM,Ne€F[M~N & M™~N &
[M|( )] <& M7 solvable]

(ii) 3¢ = {m € I | 7 is F-nonconfusing and M7™ is solvable}.

bp
bp
F-faithful
5

I
z € BT (Fx)
A

(something like) A|B

—

1171

11T 11

by
by
F-nonconfusing

I7

I

x € BT(Fz), ie. x € FV(BT(Fx)),

AR
AB




Chapter 11

279 2 i (Pyze = (. ALL))]) = (Pera = (AL
282 2-nd diagram | Arrow from M~ to N~ should have as label 5’ (not 3).
285 5 {A|AeP — {|A||AeP
287 —11 an weighting a weighting
288 -1 274 — 278
289 -7 Aizo. Py = Ajre. [y
291 4 {M|M$N} — {N|M(¥3N}

—4 M — (M,T)
292 —11 w = \x.TT — W= Ar.or

—4 N -
294 5 M —p, N’ — M —g, N’
296 -3 oc:M— N — o: M —»N
298 -3 M’ e M even — even M’ vy N
300 —-12—-—-4 Argument can be simplified by distinguishing

N = Ax.Ng and N = NgNV;.

-2 (2x) M — P

—1 N — Q

-1 M; — N; = P> Q;
301 2,4,7(3x) | N — g

Chapter 12

302 6, 7 (2)() — i
303 9 12.1.1 — 12.1.1A
303 16 R-=-reduction — R-=-reduction
304 2 = — X
305 7 Dy — D3

15t diagram | o p, po — o/p, p/o (respectively)
310 -7 Since by (2) —  Since by (3)
316 —4 = an — =isan
319 -1 JAVES) — Apy
320,321 1,5 lemma 2.1.12 — proposition 2.1.12
322 1 (0) = (og)

10




Chapter 13

324 -7 effective — effectivelé]
325 -7 I6; — 3
327 -3 = — =
328 =5 I6] — 3
329 Fig. 13.3. N — N
330 3 = — =
331 1 reduction —  reduction
—4 M — M
Fig. 13.6 The gk-arrows should be dotted.
332 7 PROOF. — PROOF. (i)
334 4,5 (2x) e — G
4 —» — =
338 -1 0<i<n — 0<i<n
340 —11 (3x) - - —»
342 6 order ¢ — order i —1
343 11 13.4.11 (i) —  13.4.11 (ii)
15 13.4.11 (ii) — 13.4.11 (i)
Fig. 13.9 (5%) | Arrows labelled ‘cpl’ should have double heads.
344 1 theorem 11.2.20 — proposition 11.2.20
11 Bergstra-Klop [198+] +— Bergstra-Klop [1982]
345 —6,—4 (3x) | Replace ||M]||,||N]| by ||M]|,||N||, respectively,
where [|..||; is defined in the proof of 13.3.5.
-1 n Ay — in AIIMlll and does not
contain an F'-cycle.
346 1,2 Between ‘otherwise’ and ‘F”’ insert:
‘at least one of the following two situations holds:
1. the F-path of M contains an F-cycle;
2. the F-path of M does not lie within Ay, -
Case 1 is impossible as F' is a B-optimal
normalizing strategy. If case 2 holds, then’
-9 AB — AB
347 5 I — |
9 [-1-optimal — L-1-optimal
3 B(1I)) = — B(I) =

3Some readers prefer the word ‘efficient’.

11




Chapter 14

348 5 (2x) # —
11(2x) | # —
350 Fig. 13.10 Figure ¢ should be upside down.
351 -2 than — then
355 17 —lab.s = —lab.g
356 15 Ly=zVp...Vy — Li=2Vi...Vy
-5 M = MM, — M = MM,
358 7 (zN)* = LN — (zN)*= LN*
360 4 an alternative proof — a proof
361 -9 k=0 — ke{0,1}
-9 k>0 — k>1
362 -5 14.2.8 —  14.2.7
363 2 theorem — proposition
5,6 elementary and diagram +— elementary diagram
—11 Al = Al
Chapter 15
364 -7 B(L) — Bl
369 8 P=D[l,... 1] — Ppg«— D[L,... 1]
10 C[P] = C[D[L]] — C[P] g« C[D[L]]
371 15 lemma 14.3.15 — lemma 14.3.14
372 8,10 (2x) C[M]=N — C[M]=N
373 —-374  (9x%) Replace superscripts (™ and (™ by [ ™ respectively.
382 16 (i) Suppose — Suppose
16 redex. Show — redex. (i) Show
-8 MeA — MeA
385 10 (2x) = — =
-5 (3) and (1) — (2) and (1)
-2 (zPy...P,)" = ((xr Py Py
386 —6 redexes — (-redexes
387 —4 Ax1 - Tp. 21Ny ... Ny, — AZrp - x1.21No ... N,
388 6 NLy...L, — NL,...Ly
7 yaPr1 ... Py, = yaPor ... Py,
-9 M #£Q — M #£Q
12 -19 (5x) | © — Q
390 -8 1B = g
393 5 (A\z.z(zz))ws) —  ((A\z.z(z7))ws))
395 ~10 15.2.4(ii) —  15.2.4(iii)

12




Chapter 15 (continued)

396 Fig. 154 Interchange labels (1) and (2).
398 1 Ay, My —  Ay.My
4 H C M; — HCM,
—17 AT - Y = ATy
400 —10 dc — dc
401 6 Aé — A°6
403 -3 My, ..., M, — My...M,
-2 BT(M;) BT(M,) — BT(M)...BT(M,)
406 diagram Left arrow with 8 should be doubly headed.
Chapter 16
413 —-10 M=~N — M =N’
416 —10 19.2.12 — 19.2.9
418 -7 19.2.12 — 19.2.9
419 -—-11 Tn = Ty
420 —12 M #N' — M #N'
-3 ~n =~y
422 2 () — Y
2 B — — Br —
425 —10,—-9 (4x) | BT — BT
426 in fig. (2x) | BT — BT
427 3 w — w
429 2 14.4.5 — 15.1.5
14 O (jzy.z(jy)) = O(Njzy.z(jy))
429 17 | — 3
-8 VzeA° = VZeN
-5 AZ = AZ — AZ =AZ
—4 AZ =A'Z — AZ =AZ
430 9 MCN — MLCN
—4 J=A+1=Q3=w3w3 — J=A+1=Qand Q3 = wsws
-3 =) = =g
Chapter 17
435 —9,-10 Oy={N|FM €O} +— Oy={N|FNecO}
443 4 15.1.9 —  16.1.9(ii)
465 11 17.1.9 (ii) — 17.1.9

13




Chapter 18

468 4 Palamidessi Catuscia +— Catuscia Palamidessi
473 —6 MGz A = Ar.A
476 12 (Az.A)) =0 = (A A)D A0
-2 er € eg — ep € e

477 2,1 (2x) | Y(2) — ()
481 12 (UnTmin(m,0))i €N = (UpnZmin(n,1))ien
483 11 YEn — yeD,
485 —3 Q, 0 (Ay € Dy, = Opi100(Ay € Dy,
491 18.4.1 Pwvl =1 — PwlE1l=I
492 —-10 15.3.4 — 15.4.4

Chapter 19
508 1 19.2.14 — 19.2.11
509 —6 operators — combinators

-5 combinator — operator

Chapter 20
513 5.3.25 —  5.2.23(i)
518 12 Wadsworth. —  Wadsworth. Write x € BT(M)

for x € FV(BT(M)).

521 =5 19.3.15 — 18.3.15

Appendices
570 11 [198+] —  [1982]
576 -3 [1980] —  [1979]
581 6 (2x) v — v
584 20 [198-] —  [1987]

Addenda

582 6 zz(yx) — xz(yz)

14
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—11 Add: BEzEM, M. A.
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297 -9 p-functions +— p-function
598 -8 AGM — ACM
Index of Names
599 R17 Add: Bezem, M. [1985] 566
L—19 | 516 — 250, 516
R—16 | 238, — 238, 245,
600 R13 [1980] — [1979]
601 R21 116 — 116,107
R22 [1983] 107 —  [1984] 494
602 R11 149 — 150
L—-17 | 536 — 534
L—13 75 —
L-11 O’Donell —  O’Donnell
Index of Definitions
607 leftmost 179 +— leftmost 180
608 L12 — Paradox
Curry- 573, 575
Liar’s- 573
Index of Symbols
613 11 Al-terms —  Al-terms
614 8 M| —  M)N)
19 354 — 355
618 Add: A=, B trees A, B are equal up to (possibly 240
infinitely many) n-conversions
619 —15 150 — 160
620 (2x) 11,12 ||EM =N +— EM=N
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