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Abstract  
VEENING, J.G.,T. DE JONG AND  H. P. BARENDREGT. Oxytocin-messages 
via the cerebrospinal fluid: behavioral effects; a review. PHYSIOL BEHAV  
0000000 
The cerebrospinal fluid (CSF) usually is considered as a protective „nutrient 
and waste control‟ system for the brain. Recent findings suggest, however, 
that the composition of CSF is actively controlled and may play an influential 
role in the changes in brain activity, underlying different behavioral states. In 
the present review, we present an overview of available data concerning the 
release of oxytocin into the CSF, the location of the oxytocin-receptive brain 
areas and the behavioral effects of intracerebroventricular oxytocin. About 
80% of the oxytocin-receptive areas are located close to the ventricular or 
subarachnoid CSF, including the hypothalamic „Behavior Control Column‟ 
(L.W.Swanson, 2003). As a conclusion we suggest that „CSF-oxytocin‟ 
contributes considerably to the non-synaptic communication processes 
involved in hypothalamic-, brainstem- and olfactory brain areas and 
behavioral states and that the flowing CSF is used as a „broadcasting system‟ 
to send coordinated messages to a wide variety of nearby and distant brain 
areas. 
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1: INTRODUCTION  

Animal and human behavior can be described as „goal-directed‟ with a 

succession of different behaviors leading to different goals (feeding and 

drinking, or „social activities‟ like aggression or sex) over time. Such changes 

in behavior require adaptive physiological mechanisms and complex changes 

in neural activity in a wide variety of brain areas and have been described as 

switches of the „behavioral state‟ of the organism. Such states regulate the 

input-output repertoire of the organism and have been described and defined 

as motivational, emotional or mental states [1-6] in animal and human 

behavioral studies. Obviously, the hypothalamus, embedded in the limbic 

system is necessarily involved when motivational states change [1, 3, 6-8], 

but other brain areas, ranging from cortical regions to spinal cord, must be 

involved as well in order to accomplish the coordinated adaptations in the 

neural (sensory, motor and autonomic) as well as hormonal systems, 

underlying goal-directed behavior.  

Since the early eighties, the occurrence of „non-synaptic communication‟ or 

„volume transmission‟ has been described as a new mechanism in addition to  

„wiring transmission‟ [9-13]. „Volume transmission‟ has been proposed as a 

mechanism to change neuronal activity in more than a single brain area, for 

an extended period of time [1, 7, 8, 14-23], which are basic requirements for  

motivational changes. Many descending neuropeptidergic fiber systems 

containing mostly unmyelinated varicose fibers and lacking synaptic contacts 

[1, 6-8, 20, 22, 24-26] are in an excellent position for changing the weight 

factors in the neural network involved in keeping or switching between 
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behavioral states. Remarkably, many of these descending fibers are running 

close to the ventricular system [24-27], which raises the question in how far 

the cerebrospinal fluid (CSF), flowing through the ventricular system and the 

arachnoid space surrounding the brain, could be involved in behavioral 

changes.  

In early studies of Cushing [28] the term ‘third circulation’ was coined for the 

CSF, flowing caudally through as well as around the CNS. Friedman and 

Friedman [29] showed already that oxytocin-levels in the CSF were 

sufficiently high to induce contractions of the rabbit uterus, which makes it 

legitimate to ask in how far the circulating CSF can play a role in physiological 

and behavioral changes  and - states. 

Previously, Sewards and Sewards [30, 31] have argued, in our view 

convincingly, that vasopressin and cortocotropin-releasing-factor (CRF) are 

released into the CSF in order to induce their behavioral effects via activation 

of the appropriate receptors in distant brain areas. In a previous paper [23] we 

have discussed the available evidence that the flow of the CSF through and 

around the CNS provides a fast and specific substrate for sending 

neuropeptidergic as well as other „messages‟ to appropriate receptive brain 

areas. Especially the local release of melatonin into the dorsal part of the third 

ventricle and the release of „gonadotropin hormone releasing hormone‟ 

(GnRH) into the basal part of the 3rd ventricle, each with their own specific 

target brain areas [32-37] strongly support the hypothesis that the CSF may 

be involved in „broadcasting messages‟ as a special kind of „volume 

transmission‟. 
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In the present review we intend to explore the available evidence that oxytocin 

(OT)-producing neurons are using the CSF as a „broadcasting system‟ to 

communicate with a variety of other nearby as well as distant brain areas. For 

the assumption that OT distributed via the CSF is relevant for behavioral 

changes, at least the following  kinds of supporting evidence are necessary: 

- OT can be released into the CSF, „to go with the flow‟; 

- OT-levels in the CSF are regulated independently and different from 

the peripheral levels in the blood; 

- OT-levels in the CSF are sufficiently high to activate OT-receptive 

areas alongside the ventricular or arachnoid spaces; 

- OT-receptive „target‟-areas are located alongside the ventricular and 

arachnoid spaces of the brain; 

- OT-administration into the CSF induces behavioral effects not obtained 

by peripheral administration; 

- behavioral effects of intra-cerebro-ventricular (icv) -OT-administration 

can be linked, anatomically and/or functionally, to the OT-receptive 

brain areas. 

For each of these aspects, the available evidence will be presented and 

discussed in the next sections of the present review. 

 

2. OXYTOCIN AND CSF 

Oxytocin is a nonapeptide, synthesized by Du Vigneaud in 1953, after its 

isolation and clarification [38]. Since then, OT has been implicated in a 

dazzling variety of widely diverging functions. Many reviews are available 

summarising and highlighting the relevant specific findings in detail: in each of 
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the years 2007 and 2008 at least 20 reviews appeared focusing on specific 

OT-functions. 

 

2.1 Peripheral and CSF- OT-levels are regulated differentially. 

OT has been detected in the cerebrospinal fluid of many species, although the 

levels vary considerably both diurnally and between species [39-43]. 

It has been shown extensively that OT levels in the CSF are different from 

plasma OT levels and react very differently upon natural or experimental 

challenges. Natural and experimentally manipulated circadian rhythms are 

much more visible in the CSF than in the blood plasma [39-42, 44]. Effects of 

pregnancy and labor in humans [45], of parturition in sheep or rats [46, 47], of 

hand-milking in the goat [48] or of suckling in the guinea pig [49] are very 

different in CSF compared to plasma levels of OT. Experimental challenges 

like opioid or naltrexone administration in rats [50] and sheep [51], partner 

preference test [52], stress [53], vagino-cervical stimulation in the goat [54], 

electrical stimulation of the hypothalamus or neural lobe in the rat [55], 

chemical stimulation of the paraventricular hypothalamic nucleus (PVH) by the 

excitatory amino acid glutamate [56] and hypophysectomy [57] all affect OT-

levels in CSF differently from plasma OT-levels. Many additional findings are 

available from the literature to draw the conclusion that CSF and peripheral 

levels of OT are not only different but, more importantly, are controlled by 

different largely independent, mechanisms [42]. The finding that peripheral 

OT-levels contribute only 0.002% to the OT-CSF-levels [58], supports the 

functional independency. Peripheral levels may not be completely 
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independent, however, since CSF-OT may play a regulatory role in the control 

of peripheral OT levels [48].  

In addition to the differentially regulated levels, the half-life values of OT are 

completely different: about 28 minutes in CSF compared to 1-2 minutes in the 

blood plasma [49, 58-60], which suggests that the behavioral effects of OT 

inside the CNS use a radically different time-scale compared to the peripheral 

effects on specific organs. 

From the multiple functional differences in the control of CSF and plasma OT 

levels, we propose that it is certainly allowed to explore the possibility that 

ventricular release of OT into the CSF may compose a message for other 

parts of the brain, because, once released, it may „follow the flow‟ and reach 

many widespread brain areas within minutes. In the following parts of this 

review, the possible origins and destinations of the „CSF-OT-message‟ will be 

discussed. 

In summary: CSF-OT levels are not controlled by peripheral systemic levels 

but by independent mechanisms controlling both levels and temporary peaks 

in the CSF. Combined with the about 20 times longer half-time values of OT in 

the CSF, this suggests that independent ‘OT-messages’ to other brain areas 

are possible, without involvement of peripheral effects on specific organs.  

 

2.2 General neuroanatomy of the oxytocin system 

The production and subsequent central or peripheral release of OT is 

executed by partly overlapping and interconnected groups of neurons. The 

majority of OT-producing neurons is located in the paraventricular 

hypothalamic nuclei (PVH), with a dorsal extension into the bed nucleus of the 
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stria terminalis, and in the supraoptic hypothalamic nuclei (SON). Several 

additional perivascular clusters of OT-immunoreactive (OT-IR) neurons can 

be observed consistently in the rostral hypothalamus, „scattered‟ between the 

SON and PVH. These clusters are interesting because of the special role of 

the perivascular spaces for the rapid distribution of CSF-messages [61-64]. 

Parvocellular neurons in the dorsal part of the PVH release OT from their 

axons in distant CNS sites [65, 66]. Interestingly, many of these axonal 

projections reach areas bordering, surrounding and/or functionally related to 

the ventricular system [65-71]. Magnocellular neurons in the paraventricular 

and supraoptic nuclei of the hypothalamus release OT directly from their 

axons into the blood stream via the neurohypophysis. Many morphological 

and functional aspects of both types of OT-neurons (projections, afferent 

connections, co-localisation with other neuropeptides, plasticity, etc) have 

been discussed in a lengthy series of review papers since 1983 [66], and can 

be left out of focus for the present purpose. 

Production of OT occurs in 2 hypothalamic cell groups (the paraventricular 

and the supraoptic nuclei) as well as in a few perivascular clusters in 

between. Both brain areas border the CSF directly, (at the third ventricle or 

the arachnoid space, respectively) and contain magnocellular neurons that 

release OT via the pituitary directly into the systemic circulation. The 

parvocellular OT-neurons of the PVH send their axonal projections to many 

distant brain areas, including the spinal cord, often at a small distance from 

the ventricular system. 

 

2.3 Diffusion and Dendritic Release from PVH 
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Hoistad et al. [72] have convincingly shown that neuropeptides like beta-

endorphin, released at a distance, eventually appear in the CSF, with a peak-

delay of about half an hour. Their finding shows two important matters: on the 

one hand that axonally-released neuropeptides eventually reach the CSF 

through diffusion and/or extracellular fluid (ECF-) flow [73]; on the other hand 

that peptidase-levels in the ECF and CSF are apparently too low to prevent 

the appearance of peptides in the CSF, half an hour later. Apparently, in the 

CNS extracellular neuropeptides are distributed and may remain effective 

over considerable distances for an extended period of time.  On the other 

hand, however, the appearance of neuropeptides into the CSF is slow and 

levels remain generally low, when released at such distances from the 

ventricular system. In agreement with this suggestion, a recent paper showed 

that only about 10 to 15% of the ECF is drained into the CSF [74]. As a 

mechanism for „switching behavioral states‟ such ECF-CSF-exchange is 

probably too weak and too slow but „sustaining effects‟ cannot be excluded. 

Therefore, the notion of Landgraf & Neumann [69] may be generally right, that 

„neuropeptide levels in the CSF essentially reflect the more or less “global” 

activity of the corresponding neuropeptide in the brain‟. However, in the case 

of OT, a 5-fold daily increase in primate CSF-OT [40] has been observed. 

Without specific release mechanisms, such strong fluctuations cannot be 

explained by „axonal/terminal release at a distance‟. Interestingly, over the last 

few years, appropriate mechanisms have been described and investigated 

that are capable of releasing large amounts of OT specifically into the CSF.  

This fascinating role might be played by dendritic release and subsequent 

diffusion of oxytocin in the PVH and the SON [69, 75-77]. Inside the PVH, it is 
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remarkable to observe how the dendrites of the magnocellular (as well as 

other) parts of the PVH generally run in parallel to the outer borders of the 

PVH(-subdivisions) and show a strong preference to extend into the central-

medial parts of the PVH (Fig 1). Some of the medially directed dendrites not 

only reach and penetrate (Fig 1A,B) the ventricular lining but some of them 

have been observed to cross the dorsal side of the third ventricle, potentially 

to influence the contralateral PVH as well (Fig 1B) [78-81]. In combination with 

the lateral cell-free border zone, along the ventrolateral side of the PVH, 

which limits diffusion in a ventrolateral direction (pers.obs.), this particular 

„internally directed‟ dendritic organisation strongly suggests a specific function 

in the „internal‟ communication inside the PVH as well as towards the CSF. 

(Fig 2). The dendrites of the OT-neurons inside the SON show an even 

stronger preference to extend in a ventral direction, towards the subarachnoid 

space. All of these magnocellular dendrites have been shown to release OT 

[76, 82, 83] and have been described as „prototypic receiver/transmitters‟ [84, 

85]. (Fig 3) 

Since OT has a strong excitatory effect on the activity of (surrounding) OT-

neurons [84, 86, 87], dendritic exocytosis turned out to form the basis for a 

chain reaction of massive OT-activation and release of OT inside the PVH 

and SON leading to a thousand-fold increase of extracellular OT [69, 75, 76], 

inevitably followed by increases in CSF-levels because of the missing ECF-

CSF-barriers. This specific type of release may contribute to coordinate the 

action of large groups of OT neurons via positive feedback mechanisms, and 

may also play a role to functionally separate the peripheral release, in the 

neural lobe of the pituitary, from the central effects inside the hypothalamic 



 12 

nuclei. Dendritic release itself occurs at a millisecond time scale, but the size 

of the effects on surrounding neurons is strongly depending on the hormonal 

state of the animal [88, 89] and appears to be controlled by the presence of 

oestradiol and estrogen receptivity [89, 90], by specific changes in neuron-glia 

interactions, by numbers of plasmalemma juxtapositions and by priming 

effects [75, 76, 84, 91-93]. In addition, dendritic release of OT may be self-

sustaining and long-lasting (up to 90 min). These dendritic release 

mechanisms are in a complex way supported by specific priming effects [93], 

and by the twentyfold elongated half-life values in CSF compared to blood 

plasma [49, 58-60]. Mechanisms controlling the receptive properties of 

surrounding neurons by insertion of receptor proteins into postsynaptic 

membranes, [84] contribute to the complexity. 

For the cellular mechanisms involved in the differential regulation of dendritic 

versus axonal release of OT, the reader is referred to an extensive series of 

recent review papers [69, 76, 83, 85, 94].  

In summary: neuropeptides released elsewhere in the brain will eventually 

appear in the CSF, sometimes after considerable delay. The thousand-fold 

increases of OT-levels in the PVH and SON as a result of massive and 

coordinated dendritic release mechanisms will, however, strongly and almost 

immediately affect OT-levels in the CSF. Since the dendritic and the terminal 

release mechanisms of the magnocellular neurons appear to be functionally 

independent, dendritic release mechanisms are the best candidates to 

regulate CSF-OT levels independently from systemic release. 

 

2.4 Supra-ependymal Release 
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In addition to the dendritic release followed by diffusion of OT into the CSF, 

another source of OT-release is composed by the „supra- and sub-ependymal 

structures‟. 

It has been observed that OT-IR dendrites run subependymally along the 3rd 

ventricular wall, in a rostral or caudal direction [95], and that supraependymal 

fibers run along the ventricular surface to terminate in the supraependymal 

plexus on the floor of the 3rd ventricle [96]. Large numbers of „neural nitric 

oxide synthase (nNOS)-positive cerebrospinal fluid-contacting neurons‟ have 

been observed in the rat, with somas, dendrites and axons situated at sub- 

and supraependymal levels along the 3rd ventricular wall. 88% of these 

neurons were OT-IR [97]. In addition, in mice OT-immunoreactive cells with 

cilia extending into the 3rd ventricle from the lower part of the anterior 

ventricular wall near the suprachiasmatic nucleus, showed a significant daily 

rhythm in immunostaining, regulated by environmental lightning [44]. These 

effects were „OT-specific‟ since no effects on calbindin or vasopressin 

immunostaining were observed.  

Combining these data with older data concerning neurophysin (a carrier 

protein involved in the axonal transport of PVH-OT) [98], with the supposed 

general role of CSF-contacting neurons as reviewed by [99, 100], and with 

some of the data concerning the magnocellular PVH-neurons, as discussed 

above, it is only a small step to suggest that oxytocinergic fibers and „CSF-

contacting-neurons‟ surrounding the ependymal layer of the 3rd ventricle, may 

directly and actively contribute to the OT-levels in the CSF.  

There are no data available to estimate the size, or importance, of this 

contribution relative to the amounts released by the magnocellular PVH- and 
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SON dendrites. It may be questioned, however, whether it makes sense to 

discuss these contributions as separate entities. The release of massive 

amounts of any peptide along the ventricular wall (either by dendritic release 

inside the PVH or by axonal release from the varicosities of fibers running in 

parallel to the ventricular surface [25, 26, 101-103]) will immediately affect 

CSF-levels. „Short-distance-diffusion‟ will occur without delay in the direction 

of the lower concentrations in the CSF, because there are no intervening 

barriers. Diffusion will remain „CSF-directed‟ („CSF-petal‟) as long as the CSF-

levels are the lowest [72]. (The supposed „waste-removal‟-function of the CSF 

is fully based on this assumption!) If, however, levels of OT (or any other 

neuroactive substance) are increased in the CSF, relative to the local 

extracellular-fluid (ECF) -levels, due to release at some „upstream‟ location, 

diffusion will „change direction‟ and become „ECF-directed‟(„CSF-petal‟). (All 

experiments based on icv-administration are based on this assumption!) 

Therefore, increased CSF-levels will sustain and elongate the effects of 

locally released OT. Because of the free and bidirectional CSF-ECF 

exchange, all OT-release mechanisms, whether axonal alongside the 

ventricular walls or via the CSF, are mutually supportive, the main difference 

being the (short) delay for the CSF-messages. 

The exact size and place of the „cumulative‟ effects‟ of CSF-, ECF- and 

axonally released OT will be dependent on the location and on the local 

structure of the brain areas involved. The presence of glial cells, astrocyte 

extensions or fiber layers etc, (all contributing to „tortuosity‟) may be hindering 

diffusion in some of the possible directions (leading to „anisotropy‟) [104-106]. 

We have been studying tracer injections into the rat brain over the years and 
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we observed frequently that many „barriers‟ exist that prevent an expected 

“spherical” diffusion of the injected substances into the surrounding brain 

tissue (pers.obs, Veening). But if diffusion is hindered in certain directions, it 

will be enhanced in the other directions, especially towards the barrier-free 

CSF. 

In summary: supra- and sub-ependymal release of OT may contribute to the 

CSF-OT levels elevated by dendritic release of OT. The many varicose OT-

fibers running alongside and terminating in brain areas bordering the 

ventricular system, suggest a ‘mutual support’-relationship between 

axonal/terminal released OT and CSF-OT by enhancing and elongating the 

effects of OT-peaks. 

 

2.5 Synchronisation and Cross-talk of OT neurons 

Synchronization of OT-neurons seems to be the underlying mechanism for 

pulsatile release of OT into the blood stream when triggered by suckling [107-

109]. However, measurements inside the supraoptic nucleus have shown that 

synchronisation of dendritic release of OT results in 100 to 1000 times higher 

levels in the ECF compared to plasma levels [69, 110]. In primates OT levels 

in the CSF may be considerably higher than the peripheral levels and, as 

mentioned, show an independent rhythm, not observed in plasma levels [40-

42]. Circadian CSF rhythms of OT are endogenously generated, leading to 

five-fold increases in primates [40], synchronized by the daily light-dark cycle 

[39, 40] These findings suggest that strong positive feedback and 

synchronizing mechanisms are working during the coordinated dendritic 

release of OT. 
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In addition to the remarkable mechanisms involved in the co-activation of OT 

neurons inside each PVH or supraoptic nucleus, another interesting 

phenomenon has been observed: cross-talk („synchronisation‟) between OT-

neurons in different brain areas. Most research has been aimed at OT-

neurons in the supraoptic nucleus, where it was shown that unilateral 

activation of specifically OT neurons (and not the vasopressin neurons!) 

especially in lactating females induce activation in the contralateral supraoptic 

OT cells [108]. Apparently, all magnocellular OT cells are being synchronized 

in their activity and OT release, including those in the PVH [111]. Despite the 

fact that direct reciprocal connections between both supraoptic nuclei have 

not been observed with the available techniques, there is convincing evidence 

to exclude diffusion effects [108]. In a careful series of experiments, Moos et 

al. [109] have shown that ventromedial medullary neurons are involved in the 

synchronization of OT neurons, including those in the PVH. Interestingly, the 

ventral medullary brain areas receive messages from the CSF very rapidly 

because of fast CSF-transport and the „vascular pump-mechanisms‟ [61-64], 

and are therefore in an excellent position to provide the appropriate signals for 

a rapid „long-distance-synchronization‟. In addition, for the bilateral 

synchronization of PVH-OT neurons, short axonal collaterals and dendritic 

extensions across the upper border of the 3rd ventricle [80], (See Figs 1, 2) or 

even volume transmission from one PVH/ventricular wall across the 3rd 

ventricle to the opposing PVH/ventricular wall (small distance, no intervening 

barriers) have to be considered alongside the other hypothalamic and 

extrahypothalamic synchronization sources. 
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In summary: synchronisation of dendritic OT-release does not only occur 

between the neurons in a single hypothalamic nucleus, but happens bilaterally 

for both the PVH and SON, to produce maximal amounts of OT, if necessary. 

 

2.6 OT released into the CSF: are the levels functionally relevant? 

Because of the intervening blood-brain-barrier, peripheral OT contributes only 

a negligible amount (0.002%) to the OT-levels in the CSF [58]. Therefore, OT-

levels in the CSF arise from the paraventricular and supraoptic hypothalamic 

nuclei, directly by dendritic and supraependymal release into the CSF and/or 

indirectly by terminal release from OT-fibers in other brain areas from where 

OT may diffuse towards and into the CSF. What do we know about the 

relative contribution of these sources? 

We have to consider that in the magnocellular OT neurons, up to 95% of OT 

is present in and released from the dendrites [112] which makes this 

contribution many times more effective in regulating OT-CSF levels than the 

relative small amounts released by the terminals of the parvocellular neurons 

projecting to a variety of brain areas. While terminal release, for instance in 

the central amygdaloid nucleus, may induce a five-fold local increase in 

extracellular OT [113], it is hard to imagine how such minimal amounts at a 

considerable distance from the ventricular system could play a role, compared 

to the 1000-fold increases observed in PVH and SON [83] in the direct vicinity 

of the ventricular borders. The more so as diffusion over long distances 

disperses OT in more directions than only towards the CSF. In addition, 

„diffusion takes time‟, which means that the amounts of extracellular OT 

steadily decrease over time and distance. While the half-life-time for OT in the 
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CSF is about 10 to 20 times longer than in the blood, the ECF-half life-times 

are probably similar but remain to be determined. Anyway, both time and 

distance will decrease the amounts of OT reaching the CSF from „terminal 

release sites at a distance‟ to some extent. We propose that the contribution 

of terminal release of OT elsewhere in the brain (apart from the OT-fibers 

running along the ventricular system to release their contents along or even 

purposefully into the CSF) to varying OT-CSF levels will be, at the most, very 

limited and thereby the idea that varying OT-CSF levels reflect only „OT-

waste-disposal‟ as utmost improbable. 

This raises the question: are the amounts of OT becoming available from the 

well-coordinated dendritic release in PVH and SON sufficient to explain the 

varying OT-CSF levels and to induce behavioral/physiological effects? All 

available evidence suggests: yes, they are! Under resting conditions, basal 

OT-CSF levels tend to be in the range of 5 to 10 fmol/ml=pg/ml [49, 56, 114-

116], though occasionally higher basal levels have been reported [58, 117]. 

These basal levels tend to increase from about three- up to five-fold higher 

levels at night in the rat, [39] or at daytime in the human, [41], after osmotic 

stimulation [116, 118], after ejaculation [115] as well as during nursing in 

guinea pig [49] and sheep [119]. Such increases in OT-levels turned out to be 

sufficient and have been causally related to effects on nursing [119], learning 

processes [58] as well as pain-suppression [117]. In the latter publication it 

was shown that after electrical stimulation of the caudal PVH OT-levels were 

only increased in the CSF, while after rostral PVH-stimulation increased 

peripheral OT-levels were induced as well [120], a remarkable case of goal-

specific release. 
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Concerning the amounts of OT necessary to induce such 3 to 5-fold increased 

OT levels, it was shown by Robinson and Jones [49] that an injection of 100 

pg OT into the ventricular system of the guinea pig induced an eightfold 

increase from about 5 to 40 pg/ml, obviously in the range of the behavioral 

effects, discussed before. It has been calculated that the SON contains 3.2 ng 

OT [112, 121]. Adding the magnocellular PVH neurons, the total amount of 

OT „bordering‟ the CSF can be estimated as about 5 or 6 ng OT, of which 

95% is available for dendritic release [112]. These amounts are „huge‟ 

compared to the 100 pg necessary for an eightfold increase, which in itself 

seems to be two times higher than necessary to induce a physiological or 

behavioral effect. Amounts like 100 pg have, indeed, been shown to become 

readily available. The concentration of OT in the cisterna magna of the rat 

increases up to about 300 pg/ml after morphine withdrawal, with the SON as 

the sole source of this „subarachnoid OT‟, because lesioning the PVH was 

without effect [60, 83]. In addition, during acupuncture analgesia in the rat, the 

SON may release as much as 750 pg/mg protein, completely on its own 

without support from the PVH, with clearcut analgesic effects [122].  

The available evidence suggests that OT neurons in the PVH are perfectly in 

a situation to work synchronously (by positive feedback as well as by cross-

talk between left and right PVH), to release considerable amounts of OT 

specifically into the rostral 3rd ventricle, without concomitant release in the 

blood stream, providing potentially an independent message to other brain 

areas, in addition to the „parvocellular OT-projections‟, without peripheral 

involvement. OT-neurons in the SON may provide a similar message to brain 

areas at the outer surface of the brain, bordering the subarachnoid space. 
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In view of these neuroanatomical and functional characteristics of the OT 

system described above, we prefer to consider the CSF not as a „drain‟ by 

which superfluous amounts of OT are removed, but, following Sewards and 

Sewards [31], as an actively regulated system carrying variable amounts of 

OT, as a message to widespread „downstream‟ brain areas.  

In summary: since systemic OT does not contribute to CSF-OT, all CSF-OT 

must be derived from PVH and SON by dendritic release, supported by 

release via supraependymal elements and parvocellular terminals. The 

amounts of available and experimentally released OT into the CSF seem to 

be amply sufficient to compose a relevant signal or to ‘send a message’ to 

sensitive brain areas. 

 

2.7 Oxytocin Receptors and the CSF 

Questions about „sensitive brain areas‟ focus on the distribution and density of 

OT receptors, that have been studied by a variety of techniques, in different 

animals and at different ages [123-131] including the human brain [132, 133] 

and genetically modified lacZ gene- and Venus cDNA-expressing mouse 

brains [124, 131]. In an extensive review, Gimpl and Fahrenholz [134] 

discussed the OT-receptor system, and they listed about 50 brain areas 

showing detectable levels of OT-mRNA-expression or the occurrence of OT-

binding, in the rat and human brain. A few points, related to the subject of the 

present review, have to be addressed more specifically. 

An OT-message consisting of a single or a few successive peaks in the 

ventricular OT-levels contains in itself a very limited amount of „content‟, hard 

to reconcile with the many and variable effects of icv-administration of OT, as 
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described in the literature (see below). Necessarily, it has to be conceived that 

the „receptive system‟ (OT-receptors and binding sites) is a variable and 

plastic part of the communication system. It is hardly surprising, therefore, to 

see that an extensive set of controlling factors determines the „reactive state‟ 

of the OT-receptive system, with long- and short-term changes occurring both 

globally and in a site-specific way. It is the variability in the OT-receptive 

target areas that explains the differentiated behavioral effects of single icv-OT 

injections [135] (Fig4). Recently, it has been shown experimentally that 

genetic manipulation of the „receptive system‟ and viral vector-mediated 

changes in receptor expression induce impressive long-term behavioral 

changes [136-140]. 

As observed by Tribollet et al, [129], the distribution and local densities of OT-

receptors are strongly depending on the age of the individual and on existing 

species differences [129]. Changes in expression of OT-receptors concur with 

important behavioral changes, while neonatal manipulations induce long-

lasting behavioral effects [128, 141, 142]. Some species-differences are 

clearly related to social conditions (living monogamously or polygamously) 

[140, 143], but for other differences the functional context is not immediately 

clear. OT-receptors appear to be under extensive regulatory control, however, 

exerted by a variety of steroids, circulating in the blood stream. It has been 

shown that cholesterol [144, 145], gonadal steroids [146-149] and 

corticosteroids [150, 151] all play a regulatory role in the density and 

sensitivity of the OT-receptors. Since steroid levels are constantly changing, 

due to a large variety of internal as well as external control mechanisms, so 

will be the case for local OT-receptivity. These steroid effects are not involving 
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the whole population of OT-receptors irrespectively, but seem to be targeting 

specific brain areas, as shown by the specific variations during the estrous 

cycle on OT-receptor densities in the ventromedial or the preoptic 

hypothalamus in the rat [149, 152-158]. In this way, a picture of constantly 

changing patterns of OT-receptivity emerges when several brain areas are 

considered together. Additional indirect regulatory effects, like those 

described for opioids [159, 160] may add considerably to the observed 

variations in OT-receptor densities and distribution. Finally, the „common use‟ 

of the AVP1 receptor makes the OT-message partially depending on the state 

of the AVP-receptive system, adding to local variations in sensitivity for the 

„OT-message‟.  

Taken together, the „OT-receptive system‟ impresses as an extremely flexible 

congregation of brain areas, of which „OT-sensitivity‟ constantly changes over 

time, short-term and/or long-term, as well as over location. Apparently, OT-

sensitivity should be described as variable patterns. Such a variable 

patterning of OT-sensitivity over time and location seems to be amply 

sufficient to understand how a single „one-dimensional‟ message may have 

such a variety of effects. 

Among the 50 OT-receptive rat brain areas listed by Gimpl and Fahrenholz 

[134], at least 25 are located at a distance of less than 1 mm from the 

ventricular walls surrounding the CSF, and when the outer surface of the brain 

is taken into consideration as well, including the cortical areas, this number 

increases to about 40, revealing that 80% of the brain areas containing OT-

receptors are potentially influenced by volume-transmission via CSF-OT, 

within a matter of minutes (Fig5). 
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„Mismatch‟ is a well known phenomenon in the brain, meaning that the 

distribution of immunoreactive fibers for a given neuroactive brain substance 

is not congruent with the distribution of its receptors [161, 162]. In the case of 

OT, it is clear that many of the areas containing OT-receptors receive direct 

OT-projections from mainly the parvocellular part of the PVH. However, some 

remarkable exceptions seem to be present, suggesting a considerable 

„mismatch‟ between the density of the innervating fibers and the density of 

OT-binding sites. When comparing the distribution of OT-IR fibers in the rat 

[65, 67] and guinea pig brain [163] with the brain areas showing the highest 

„OT-receptivity‟ [127, 129, 130, 134, 135, 143, 164] several remarkable 

differences become apparent. Some „OT-receptive‟ brain areas hardly receive 

any OT-innervation, while some other brain areas may contain OT-IR fibers of 

parvocellular origin, but their close proximity to the ventricular system or 

subarachnoidal space suggests that interactive neuronal-CSF-OT-effects, as 

discussed before, most probably occur all the time.  

The most interesting brain areas have been indicated in Fig 5. This figure 

shows the flow of CSF with the OT „going with the flow‟ and 5 areas have 

been indicated specifically, where functional behavioral effects of OT might be 

of considerable importance. These brain areas will be discussed in more 

detail below, in section 4, but comprise medial hypothalamic regions, with 

important behavioral functions, brainstem areas involved in general and 

visceral functions, cortical areas and olfactory regions. 

In summary: if OT-releasing neurons use the CSF-system for distant 

messages, the variable, plastic part must be at the receptive side of such a 

‘messaging-system’ and relevant brain areas should be bordering the 
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ventricular and subarachnoid spaces. The great majority of OT-receptive brain 

areas are found along the ventricular and arachnoid surfaces and some of 

them do not even contain any OT-IR-fibers (‘mismatch’). Density and 

sensitivity of OT-receptors are extensively controlled by all kinds of steroid 

hormones and other factors, in a localised and specific way, resulting in a very 

variable pattern of  receptivity of brain areas. 

 

3. BEHAVIORAL EFFECTS OF OXYTOCIN ARE ELICITED IN THE CSF. 

Functionally, OT and its receptors are involved a wide variety of behaviors like 

maternal-, sexual-, aggressive-, affiliative-, anxiety-, grooming and feeding 

behavior, as well as in nociception [134]. 

The OT-involvement in a particular behavioral system is usually intertwined 

with other neurotransmitter or endocrine changes, as well as peripheral 

physiological phenomena. Most of the effects on organs or bodily systems 

can be understood as adaptive changes, supporting the behavioral effects, 

mentioned above. Some of the behavioral effects can be induced by (large 

amounts of) peripheral OT but, generally, peripheral administration induces 

only peripheral effects, due to the blood-brain-barrier. However, small 

amounts of icv-OT are remarkably effective to induce behavioral effects, while 

in some cases, direct neuronal connections of parvocellular OT-neurons seem 

to be indispensable. 

The hypothesis that, besides local release from axons, OT distributed by CSF 

plays a role in behavior is supported by the many effects found after 

intracerebroventricular injection of the neuropeptide. 
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3.1 Social Behavior 

Social behaviors exist in many forms and have been described as including 

parental behavior, affiliative behavior, social attachment, sociosexual behavior 

and monogamy, and all of these share the involvement of OT [140, 165-177]. 

In rodents, sheep and goats, olfactory and other cues, guiding social 

recognition, are obviously under oxytocinergic control. Several reviews 

appeared recently and showed the OT-involvement in a series of brain areas, 

like the olfactory bulb, the medial amygdala, the medial preoptic area, the 

ventral tegmental area and the nucleus accumbens,[166, 177-186]. 

Repeatedly, the similarities between the effects of disturbed OT systems and 

clinical syndromes like autism have been pointed out and recently the 

beneficial clinical effects of OT-treatment on positive social interactions as 

well as for autism were reported [167, 187-191]. Interestingly, underlying the 

different behavioral reactions to cues to be approached or to be avoided 

[177], there seems to be a balance between OT and the pituitary-adrenal axis 

activity [147, 192-196]. In this interaction, OT has stress-reducing effects, 

which even appear to be transmittable to a conspecific cage mate by olfactory 

cues [197, 198]! 

Intranasal administration of a variety of substances has been shown to be 

effective in inducing physiological, behavioral and clinical effects [199-207]. In 

humans, intranasal administration of oxytocin causes a substantial increase in 

trust among humans and decreases anxiety [208-213], thereby greatly 

increasing the benefits from social interactions. Oxytocin specifically affects 

an individual's willingness to accept social risks arising through interpersonal 

interactions [214]. Oxytocin also improves „mind reading‟: the ability to infer 
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the mental state of others from physical cues of the eye region [215]. 

Interestingly, the effects of intranasal administration of OT (as well as many 

other neuroactive substances) seem to originate not from the „olfactory 

system‟ itself, but from the „perineuronal spaces‟ surrounding the olfactory 

fibers while penetrating the cribriform plate, to reach the olfactory bulb and 

surrounding liquor space. The identity of and the relationships between these 

„perineuronal spaces‟ and the spaces functioning during the CSF-release into 

the „nose-lymphatics‟, certainly deserve more attention and additional 

research[199-201, 210-212, 216, 217]. 

 

 

 

3.2 Sexual Behavior 

An overwhelming amount of data shows that OT stimulates erection, with both 

central and peripheral mechanisms involved [218-228]. In the succeeding 

phases of the copulatory sequence of the male rat, OT significantly reduced 

mount and intromission latencies only in aging (20-month-old) rats [229], but 

the reduction in ejaculation latency as well as in the duration of the post-

ejaculatory interval were observed also in young vigorous males, most 

consistently after icv-administration [230, 231]. Recently, a case of male 

anorgasmia was treated successfully by intranasally applied OT [232]. 

Peripherally, OT stimulates only some specific aspects of the ejaculatory 

process, like sperm transport [225, 233-235]. Generally, peripheral 

interactions and the integrity of the pelvic nerve seem to be necessary, at 

least for the effects of systemically administered OT [236]. 



 27 

Interestingly, OT has antidepressant effects in several animal models for 

depression [237]. Antidepressant drugs, like specific-serotonin-inhibitors 

(SSRI‟s) may induce inhibition of masculine behavior [238]. OT may reverse 

this SSRI-induced inhibition [239, 240]. Moreover, oxytocin is released 

centrally during sexual activity and mating with a receptive female, and this 

seems to be involved in the reduction of anxiety and the increase in risk-

taking behavior in male rats that continues for several hours after copulation 

[77]. 

In contrast to the generally stimulating effects of OT on male sexual behavior, 

inhibitory effects of OT have also been observed, after high doses, especially 

after icv-administration. These inhibitory effects on penile erection [241] as 

well as on later phases of masculine behavior [242, 243] suggest that larger 

dosages of OT, administered centrally, may „create a physiological state, 

analogous to sexual satiety‟ [244, 245]. Concerning the brain areas involved 

in these effects on male sexual behavior, the OT-neurons in (and adjoining) 

the paraventricular hypothalamic nucleus play a crucial role [246], but 

hippocampal involvement in erection has been described as well [227, 228, 

247]. 

In addition, OT has been shown to play a facilitatory role in female sexual 

behavior [230, 245, 248-253], possibly due to its involvement in the efferent 

control of the (rodent) clitoris and vagina [254].  

Ovarian hormones as well as sexual interaction strongly influence the 

distribution and intensity of immunoreactivity of OT neurons [255] and 

OT+Fos-IR neurons have been observed after sexual activity in female rats 

[256]. Defining the neural substrate for these behavioral effects is 
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complicated, however, although the medial preoptic area and the lateral part 

of the ventromedial hypothalamic nucleus seem to be involved [257], precisely 

the brain areas where OT-receptors are influenced by gonadal hormones 

([154-158], (see section 2.7)! Part of the OT effects may be indirect by 

increasing the tolerance of the female rat for tactile stimulation or by actions 

on affiliative behaviors (see below) associated with sexual behavior [244]. 

Finally, species differences, even between rodents, may be considerable, 

because in the prairie vole no facilitatory effects could be demonstrated. 

Instead, high dosages resulted in immediate and long-lasting inhibition of 

female sexual behavior, but only after icv and not after systemic 

administration [244, 245]. 

 

3.3 Parental Behavior 

Especially in the peri- and postpartum period, a remarkable set of 

physiological and behavioral changes is induced, including parturition and 

lactation [168, 258]. To mention just a few of the adaptive changes described: 

olfactory changes, related to olfactory/social recognition [114, 181], changes 

in brain activation patterns [259, 260], morphological and excitatory changes 

in specific brain areas [92, 261] as well as changes in OT release concurrent 

with receptor expression [262, 263]. During parturition, the brain of the 

newborn is protected by the elevated OT levels [264], while afterwards the 

anxiolytic effects of OT become more manifest, supporting maternal defence 

[265]. A recent fMRI study showed the modulating effects of OT on 

unconditioned fear responses in lactating dams [266]. Apparently, the 

integrative role of OT around parturition is highly complex and affects several 
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behavioral and physiological levels in order to adjust the physiological 

mechanisms to the necessary changes in behavior. Many of the changes 

described have been related to functional changes in the „OT-receptive‟ target 

areas occurring in this time period. 

In ewes, intracerebroventricular infusions of oxytocin significantly increased 

the frequency of some or all of the maternal behaviors scored, while 

aggressive and negative behaviors significantly decreased in frequency [119]. 

In vivo microdialysis showed that OT concentrations increased significantly in 

the region of PVH at birth in multiparous ewes. When OT was retrodialysed 

bilaterally into the PVH, maternal behavior was induced [267]. 

 

3.4 Food Intake 

In relation to food intake, OT has been shown to affect both peripheral 

physiological aspects like gastric motility [268, 269], gastric acid secretion 

[270] and insulin secretion [271] as well as central behavioral aspects. OT 

generally seems to inhibit food intake while OT-knockout mice show 

enhanced intake of palatable carbohydrate solutions [272]. OT seems to play 

a special role in linking „long-term‟-satiety signals (leptin) to meal size control. 

The cells of origin for these inhibitory effects are OT-neurons located in the 

paraventricular nucleus, and their descending fibers may exert a tonic 

inhibitory influence via (parts of) the nucleus of the solitary tract. Interestingly, 

icv-administration of OT induces also strong feeding-related effects, especially 

via the 4th ventricle, where application of an OT-antagonist was shown to be 

about 1000-fold more effective than in the 3rd ventricle [273, 274]. Taken 

together, these data are strongly suggesting a conjoined and mutually 
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supporting effort of neuronal and CSF-messaging influencing the brainstem 

areas that control food intake. Additional effects on more rostral brain areas, 

like the activation of the ventromedial hypothalamic nucleus [275], previously 

known as „satiety center‟, may further contribute to a subtle differential 

inhibitory control of food intake. 

 

3.5 Grooming Behavior 

Grooming behavior can be induced by an icv injection of OT [276-279], even 

in transgenic „OT-null‟-mice [280]. These effects were thought to be initiated 

via the paraventricular hypothalamic nucleus and/or ventral tegmental area 

[281, 282], whereas the nucleus accumbens was associated with inhibition of 

OT-icv-induced grooming [283]. 

 

3.6 Pain 

OT has been reported to influence pain control mechanisms [117, 122, 284-

288], modulation of the sympathetic nervous system [289, 290], and cerebral 

hemodynamics [291], suggesting even further going indirect adaptive control 

functions for OT. Concerning the effects on pain regulating mechanisms, it 

turned out that only i.c.v.-administration of OT was effective in elevating the 

pain threshold, which could be blocked by an OT-antagonist, while peripheral 

administration was completely ineffective [122]. Increased OT-levels in the 

CSF, induced by central release of OT after PVH-stimulation, were directly 

involved in and causally related to the pain suppression [117]. 

In summary, icv-injections of OT induce many different behavioral as well as 

pain-reducing effects. Apparently, the state of the ‘OT-receptive-system’ 
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determines the effect of an experimental ‘CSF-OT-peak’. Systemic 

administration of OT frequently induced no behavioral effects at all and was 

completely ineffective in pain suppression. 

 

4 CSF-OXYTOCIN MAY AFFECT VARIOUS PARTS OF THE CNS.  

 

The multiple and variable behavioral effects of icv-injections of OT suggest a 

specific role for the CSF in distributing OT-messages to distant destinations. 

Fig 5 summarizes how OT, released from the PVH into the ventricular system 

and from the SON into the subarachnoidal space, reaches many OT-receptive 

parts of the brain by „going with the flow‟. Some of these brain areas deserve 

special attention, because of their strong involvement in a variety of 

physiological, behavioral and cognitive functions. These areas have been 

numbered 1 to 5 in Fig 5, and will be discussed successively. 

 

4.1 OT- effects on hypothalamic ‘Behavioral Control Column’ (Nr 1 in Fig 

5, Fig 6) 

Over the last years, Larry Swanson has developed the concept of a 

„behavioral control column‟ [1, 292]. This column consists of a longitudinal 

series of nuclei extending from the most rostral (preoptic) to the most caudal 

(premammillary and mammillary) parts of the medial hypothalamus, including 

the anterior and ventromedial nuclei. Nuclei of this hypothalamic „behavioral 

control column‟ turn out to play a keyrole in the organisation of behavior. (Fig 

6). Many neurons of this „column‟ are steroid sensitive and Pfaff and co-

workers have shown over the years that circulating gonadal hormones directly 
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affect OT-receptivity in the lateral part of the ventromedial hypothalamic 

nucleus, involved in the lordosis-circuitry of the female rat [154-156, 158, 256, 

257, 293-300]. This impressive line of research shows very clearly how 

steroid hormones influence OT-receptivity, allowing the gonadal endocrine 

systems regulatory control over a range of other behaviors. As an example: 

female rats readily switch their response to a male from a soliciting proceptive 

attitude when in estrous to an aggressive response when in non-estrous, 

showing how different hormonal states induce radically different reactions 

towards the same approaching stimulus. In this kind of behavioral reactions, 

the „behavioral control column‟ plays a keyrole together with some closely 

(and mostly reciprocally) connected parts of the bed nucleus of the stria 

terminalis, the amygdaloid complex and maybe other medial and cortical parts 

of the „ limbic system‟ [30].  

As mentioned before, OT and its receptors induce a complex set of behavioral 

changes, especially peri- and postpartum, involving effects on maternal, 

sexual and affiliative behavior, female aggression, anxiety, nociception and 

social memory [134]. One or more of the hypothalamic nuclei of the 

„behavioral control column‟ are always involved in these behavioral changes, 

as supported by numerous Fos- and other studies from our group [301-306] 

as well as from many others. Each of the nuclei of the „behavioral control 

column‟ is located closely to the ventricular walls (in rats (much) less than a 

mm) and contains neurons provided (sometimes densely) with OT-receptors 

[130].  

From these facts we propose that some major target areas of CSF-OT are 

located in the medial-hypothalamic „behavioral control column‟ as defined by 
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Swanson. The strong effect of icv-OT on ventromedial hypothalamic neuronal 

activity [275] is a nice demonstration of such hypothalamic targets. 

Suppression of aggressive reactions, normally obtained from the anterior 

hypothalamic nucleus, or the adjoining „hypothalamic attack areas‟ [307-311] 

could obviously be another OT-effect realised in the „behavioral control 

column‟. In addition to possible CSF-effects, some rostral (preoptic) and some 

caudal (pre)mamillary nuclei may receive a direct OT-innervation as well, 

supporting the idea of mutually supporting messages. 

N.B. Our conclusion regarding the importance of these paracrine OT-effects 

are neither meant to indicate that these paracrine effects are the only ones 

influencing these target areas, nor that the target areas are restricted to this 

behavioral control column! 

 

4.2 OT- effects on brainstem (‘core’- and ‘paracore’-) areas. (Fig 5, nr 2)  

Since there is no reason to assume that the caudal flow of CSF-OT becomes 

ineffective at the entrance of the cerebral aqueduct, the receptive parts of the 

periaqueductal gray (PAG), raphe nuclei, locus coeruleus and the solitary 

tract nucleus [30, 31, 134, 312, 313] may all add their contribution to the 

behavioral changes observed. Especially the PAG seems to be easily 

accessible for all kinds of substances passing the cerebral aqueduct, as 

apparent from all studies concerning the penetration depth of substances 

added to the CSF [161, 314-316] as well as those concerning GnRH effects 

on the PAG [317, 318].  

However, brain areas more remote from the ventricular or subarachnoidal 

space may also have easy access to (the contents of) the CSF as well, and 
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tanycytes seem to play a crucial role here. Tanycytes are specialised bipolar 

ependymal cells contacting the CSF [319-324], especially in the mediobasal 

hypothalamus. However, brainstem areas like locus coeruleus, raphe nuclei 

and the paragigantocellular nucleus in the ventral brainstem are also provided 

by tanycytes [325-329]. Very recently it was shown that the raphe nuclei may 

be reached by CSF-influences via such specialised tanycytes [330] and that 

the locus coeruleus accumulates nerve growth factor, about 50% of it not by 

neuronal transport mechanisms but obtained from the CSF [331]. Assuming 

that these findings form part of an increasing series of similar findings, it is 

interesting to recognize that the raphe nuclei and the locus coeruleus form 

part of the „medial and lateral paracore areas‟ respectively, as defined by 

Nieuwenhuys [7, 20, 22]. These „paracore areas‟ extending through the 

brainstem are characterized by their content of numerous unmyelinated 

peptidergic fibers, apparently involved in non-synaptic communication and 

subserving the physiological adaptations necessary for appropriate emotional 

and behavioral reactions [7]. We hypothesize that CSF-messages may 

become effective in these brainstem areas in cooperation with the many 

unmyelinated fibers, releasing neuropeptides in many brainstem areas, 

frequently running close and parallel to the ventricular system, especially the 

cerebral aqueduct. 

 

4.3 OT- effects on cortical areas. (Fig 5, nr 3) 

Another specific and important part of the brain influenced by the OT-CSF-

flow, is the cortical mantle, covering most of the telencephalon. Interestingly, a 

direct cortical innervation by OT-fibers seems to be virtually or totally lacking 
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in many cortical areas. Nevertheless, quite a few cortical areas are OT-

receptive, with the highest densities of OT-receptors located in cortical layers 

2 and 3 [127, 130, 134, 135]. Since cortical neurons located in layers 2 and 3 

are mostly involved in the intracortical connectivity, the following picture 

emerges: OT arriving via the CSF, has easy and rapid access to cortical and 

deeper brain areas via the perivascular spaces. OT may spread over the 

whole extension of the cortical mantle, to influence OT-receptive neurons in 

layers 2 and 3, not only to influence cortical development [332] but also to 

induce changes in local or overall cortical activity or functional „connectivity‟. 

Experimental data, confirming that OT affects cortical activity, including 

attenuation of memory and learning [333] are not difficult to find, despite the 

fact that these cortical effects of OT received considerably less attention, so 

far, than the subcortical behavioral effects [334-337].  

Recent findings show the key role of OT in phenomena like „affective 

evaluation‟ and „trust‟ [338-340]. In the human brain, „Von Economo neurons‟ 

play an important role in autism, intuition and social behavior [341-343]. The 

possibility of effective treatment regimens by intranasal OT-application offers 

exciting new opportunities [215, 338, 344-346] and it will certainly be possible 

to define the role of cortical OT much more specifically, in the near future. 

 

4.4 OT- effects on olfactory areas. (Fig 5, nr 4) 

If most of the CSF and OT is drained into the olfactory lymphatics, it means 

that the olfactory bulbs as well as all adjoining superficial olfactory areas are 

fully exposed to the surrounding CSF-OT, which makes it less surprising that 

electrical stimulation of the paraventricular hypothalamic nucleus (PVH) 
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induces the same inhibitory effect on the mitral cells in the olfactory bulb as 

microinfusion of oxytocin in the lateral ventricle (icv) [347]. While there are 

some OT-fibers directly innervating the bulbs and other olfactory areas, 

unilateral transections between PVH and olfactory bulb failed to block the 

stimulation effects and the authors suggested explicitly that the CSF was the 

way of communication [347]. Anyway, the density of OT-receptors in the 

olfactory areas is generally high [130, 134, 135, 348] and easily accessible for 

„CSF-OT‟.  

Taking into account the location of the easily accessible olfactory bulbs, 

completely surrounded by CSF, it is no longer surprising that OT is very 

effective in influencing in „olfaction-related-behaviors‟ and or can be used as a 

target for intranasal-OT sprays [344, 346].  

 

4.5 OT- effects on olfactory sensory neurons (OSNs). (Fig 5, nr 5) 

Drainage of CSF via the numerous small lymphatic vessels of the nose, 

opens the possibility that eventually even the olfactory sensory neurons 

(OSNs) themselves could be affected by the temporarily elevated OT-levels, 

while at the same time linking the brain to the lymphatic system [349]. Such a 

hypothetical effect of OT on the OSNs would serve the function of adapting 

olfactory sensitivity to the hormonal and behavioral state of the animal. This 

idea seems attractive for a number of reasons: 1) changes in the motivational 

state are known to induce temporary adaptive changes in the somatosensory, 

gustatory, visual and auditory sensations, and there is no reason to assume 

that the olfactory sense would be an exception to what seems to be a general 

rule: motivational changes induce sensory adaptations. 2) gonadal hormones 
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have been shown to influence olfactory sensations extensively (factors like 

estrous vs anestrous, or effects of castration [350-352]. 3) direct effects of 

neuropeptides on olfaction are harder to find, but in „behavioral states‟ like 

hunger vs satiety, two neuropeptides play a prominent role: orexin (of 

hypothalamic origin and stimulating food intake) and leptin (of peripheral 

origin and inhibiting food intake) [353-357]. Note that these peptides not only 

affect hypothalamic/limbic mechanisms regulating food-intake but also show 

direct effects on the olfactory sensations themselves, just like the motivational 

states hunger and satiety have been shown to induce changes in olfactory 

sensitivity [358-360]. 4) for OT to exert direct effects on the OSNs, the latter 

necessarily would need to be in the possession of the appropriate receptors. 

This information is hard to find in the literature, which reflects a general lack of 

knowledge about possible modulating effects of neuropeptides on OSNs. 

However, Levasseur et al. [361] have studied cultured OSNs and they 

showed not only the presence of several types of receptors on OSNs, but also 

direct effects of vasopressin and OT on OSNs. Especially the effect of OT, at 

this cellular level, turned out to be strong! 

Several other neuropeptides have been shown to affect OSN sensitivity: in 

addition to orexin and leptin, mentioned above, substance P [362], natriuretic 

peptides [363] and GnRH [364]. These findings strongly suggest that it is 

probably the rule, and not an exception, that neuropeptides involved in 

motivational changes, concurrently modulate olfactory sensitivity into a state 

optimally adapted to the current behavioral state. 

Finally we would like to ask attention again for the puzzling findings of Agren 

et al, who showed that the stress-reducing effects of OT are apparently 



 38 

transmitted to a conspecific cage mate by olfactory cues [197, 198]. Could it 

be that the OT in the nose-lymphatics and nasal epithelium is playing a role 

here? 

There is much experimental work to be done in this field of the functional 

relations between olfactory bulbs, the surrounding CSF, the olfactory fibers 

and adjoining lymph vessels and the possible direct modulating effects of 

neuropeptides as well as other substances on OSNs. Since each of these 

structures may also be involved in the effects of „intranasal administration‟ of 

drugs and neuropeptides, which treatment is growing more and more 

important as an alternative route for drug administration, to circumvent the 

blood-brain-barrier, it is to be expected that considerably more experimental 

data and more conclusive evidence will come available over the next few 

years. 

In summary: The most interesting brain areas, potentially targeted by OT-

messages via the CSF, comprise the medial hypothalamus and several 

brainstem, cortical and olfactory regions. For each of these regions, the 

available evidence that OT might be involved in functional and/or behavioral 

changes is presented. Apparently, there remains a lot of work to be done. 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS. 

In the previous sections we have stated that the CSF is used for 

communication in the central nervous system, that oxytocin is released into 

the CSF, that oxytocin in the CSF contains a meaningful message and 

reaches many brain areas that contain functional oxytocin receptors and that 

oxytocin in the CSF has multiple marked behavioral effects.  
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The question that remains is: what is the functional significance and the 

specific contribution of this relatively uncontrolled and broad-spectrum 

oxytocin release system, in addition to the targeted axonal release from 

parvocellular OT-neurons and the peripheral release of the magnocellular OT-

neurons? We support and propose the view that broadcasting messages via 

the CSF is an appropriate way to put several parts of the CNS into a 

„behavioral state‟, subserving the performance of specific behaviors or groups 

of behavioral elements sharing a common motivational system including the 

temporary suppression of specific behavioral or physiological reactions. 

These „CSF-messages‟ have to be considered as a partially independent 

signal, while at the same time constantly supporting, sustaining and in mutual 

exchange with the ECF-contents released by axon terminals all over the 

brain, but mostly in brain areas adjoining the CSF. This signaling pathway has 

been described recently as an „undervaluated pathway of neuroendocrine 

signaling into the brain‟ [365]. The presence of nanostructures, from various 

brain sources, appears to support such signaling functions in the human CSF 

[366]. 

Sewards and Sewards [31] proposed that the presence of elevated CSF- 

levels of corticotropin releasing factor (CRF) and vasopressin generate fear 

and „power-dominance‟ drive motivation, respectively. They hypothesized that 

the elevated neuropeptide levels in the CSF are detected and transduced into 

neuronal activities by, predominantly, hypothalamic neurons in the vicinity of 

the third ventricle. The purpose of this system was proposed to be maintaining 

a state of fear or anger and consequent vigilant or aggressive behavior after 

the initial fear- or anger-inducing stimulus itself is no longer perceptible [31]. In 
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other words, CSF-messages prolong the duration of a motivated state. 

Interestingly, important destination areas for this transmission (the medial 

hypothalamus, periaqueductal gray, midline thalamus and medial) prefrontal 

cortex are all bordering the CSF-liquor system, at the inner- or outer surface 

of the brain. In addition, each of these destination areas is extensively 

connected to other parts of the limbic system and functionally involved in a 

range of differently motivated behaviors [31]  

We propose that a similar (but compared to CRF opposite) role is being 

played by a CSF-OT-message-system. OT-release into the CSF upon stimuli 

like parturition, suckling or hand-milking, vagino-cervical stimulation or mating, 

can lead to a number of behavioral effects: facilitation of sexual behavior, 

inducing partner preference or pair bonds, facilitation of maternal behavior, 

decrease of aggressive behavior, increase of physical contact, increase of 

proximity and coherence in a group of huddling pups, increase in trust, 

improvement of social „mind-reading‟ and elevation of the pain threshold, 

amongst others. 

Although the complete scope of behaviors related to CSF-oxytocin release 

may not yet be complete, the general pattern that emerges is one of an 

increase in social behavior, contacts and „trust‟, combined with a decrease in 

stress and anxiety‟.  

In summary: We propose that OT-messages are broadcasted via the CSF in 

order to maintain for a prolonged period of time a ‘pro-social’ behavioral state, 

allowing and increasing bodily contacts, while at the same time modulating a 

variety of other behaviors, depending on the sensitivity (or ‘OT-receptive 

state’) of numerous brain areas involved.  
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Considering all available evidence we propose that: 

- OT levels in the CSF are being regulated actively; 

- OT levels in the CSF contain a meaningful message for brain areas in the 

appropriate receptive state; 

- OT-messages via the CSF are effective at an appropriate timescale to 

induce behavioral changes as well as to support and sustain the effects of OT 

released by axonal terminals in many ‘behavior-relevant’ brain areas 

bordering the ventricular and subarachnoidal spaces; 

- the ‘behavioral control column’ in the hypothalamus, brainstem areas (‘core’ 

and ‘paracore’ as well as ventral superficial) and the cortical and olfactory 

areas bordering the subarachnoid space and most probably including the 

olfactory sensory neurons, can be considered as the main target areas for the 

CSF-OT messaging system. 
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Legends to the Figures 

 

Fig 1 shows the location of paraventricular hypothalamic neurons and 

dendrites with their characteristic extensions in the medial direction, 

towards the ventricular surface, with exceptionally few dendrites 

leaving the confines of the paraventricular hypothalamic nucleus. Fig 

1A is reprinted from: Rho and Swanson [81], with permission of the 

Society of Neuroscience. Abbreviation: pv: periventricular part of the 

PVH, bordering the 3rd ventricle; Figs B, C and D clearly show the 

medialward preference of the dendritic extensions towards the 3rd 

ventricle on the left. In Fig B the 2 upper medial neurons show dendritic 

extensions that may cross the tip of the 3rd ventricle to extend to 

(dendrites from) the contralateral paraventricular nucleus, maybe 

contributing to bilateral PVH-synchronisation. Figs B,C and D are 

reprinted from: Armstrong et al. [80], with permission of Elsevier. 

 

 

Fig 2 is reprinted from Dubois-Dauphin et al. [163], with permission of 

Elsevier. Figs A and B show clearly how close OT-immunoreactive 

neurons are bordering the third ventricle in the guinea pig, in an 

excellent position to release their dendritic contents into the CSF. In 

addition, Fig B shows many OT-IR fibers penetrating the ependymal 

lining of the 3rd ventricle and the intermingling of OT dendrites from the 

right and left side of the ventricle. Since dendritic OT-release stimulates 



 43 

dendritic activity of other OT-neurons, the bilateral proximity of OT-IR 

dendrites will contribute to the synchronised release of OT by the left 

and right PVH simultaneously. Abbreviations: *: 3rd Ventricle; f: fornix; 

AH: anterior hypothalamic nucleus; Pa: paraventricular hypothalamic 

nucleus (=PVH). 

 

 

Fig 3 is reprinted from Ludwig and Pittman [85], with permission from Elsevier. 

It shows clearly (a) how many OT-IR neurons in the Supraoptic nucleus 

(SON) extend their dendrites towards the ventral surface of the brain 

(b). These dendrites (D) are loaded with OT-IR vesicles, sometimes 

trapped at the moment of dendritic release (small arrows)(c). 

 

Fig 4 is reprinted from: Ostrowski [135], with permission of Elsevier. It shows 

the distribution of OT-receptor mRNA in the rat brain. The ample 

occurrence in medial hypothalamic, superficial cortical layers as well as 

the olfactory regions is immediately clear.  

 

Fig 5 is based on a midsagittal section of the rat brain, kindly provided by L.W. 

Swanson. It shows dendritic OT release-sites, from where OT „goes 

with the flow‟. An „internal flow‟ caudalward from the PVH, followed by 

a rostralward flow along the outside of the brain. The supraoptic 

nucleus (SON), at the ventral surface of the hypothalamus, mainly 

contributes to this „external flow‟. The main regions containing OT-

receptors and potentially influenced by „OT-messages‟ arriving with the 
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CSF, have been indicated and numbered 1 to 5 as follows: 

1,„Behavioral control column‟ in the hypothalamus; 2 „core‟ and 

„paracore‟- brainstem areas; 3, cortical areas; 4, olfactory regions; 5, 

olfactory sensory neurons. Each of the regions is discussed in the text. 

 OT released in the CSF starts flowing caudally along the dorsal and 

ventral side of thalamic adhesion, to enter the cerebral aqueduct (AQ) 

and fourth ventricle; a small part of the CSF may continue flowing 

caudally through the central canal of the spinal cord, but most of the 

CSF leaves the ventricular system via the lateral apertures to start 

flowing through the subarachnoid space, surrounding the brain. This 

„external-flow‟ is indicated here along the dorsal and ventral surface but 

occurs along all external brain surfaces. The destination of the 

arachnoid flow is the cribriform plate of the ethmoidal bone, containing 

the penetrating olfactory fibers, where CSF is released in small 

lymphatic vessels. The picture suggests that the ventricular bulk-flow of 

CSF is caudalward and arachnoid flow mainly rostralward. 

Abbreviations: IVF: interventricular foramen; PVH: paraventricular 

hypothalamic nucleus; SON: supraoptic hypothalamis nucleus; 

V3(p,h,m,t,pl): parts of the third ventricle; V4: fourth ventricle; 1-6: 

circumventricular organs; 5: Pineal organ; 

 

 

Fig 6 is a horizontal reconstruction of the rat brain, kindly provided by L.W. 

Swanson. The concept of a „Behavioral Control Column‟  [1, 292, 367] 
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is represented by the series of hypothalamic nuclei, extending from the 

rostral preoptic part to the caudal premammillary region.  

While the number of OT-IR fibers traversing the medial hypothalamus 

is very limited, the presence of OT-receptors is generally abundant, as 

indicated by the orange arrows in the lower part of the figure, that are 

based on Vaccari [130]. As discussed in the text, this situation 

suggests that the „Behavioral Control Column‟ can be considered as 

one of the main target regions for OT-messages flowing with the CSF. 

Abbreviations: MPN: medial preoptic nucleus; AHN: anterior 

hypothalamic nucleus; PVHd: paraventricular hypothalamic nucleus; 

VMH: ventromedial hypothalamic nucleus; PMv & PMd: ventral and 

dorsal premammillary nuclei; VTA: ventral tegmental area. 
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