

6. Exercises Formal Grammars, Languages and Machines, Week 6, June 7, 2012

Let $\Sigma = \{a, b, c\}$. By ‘pumping lemma’ we intend that statement for *regular languages*.

6.1. (i) Consider $L_1 = \{abc\}$ and $L_2 = L(M)$ with M a PFA given by

δ	a	b	c
0	1		
1		2	
2			0

Let

$$\begin{aligned} L_3 &= \{a^n b^{n+1} \mid n > 0\} \\ L_4 &= \{a^n b^{n+1} c^{n+2} \mid n \geq 0\} \end{aligned}$$

Describe these languages (by giving examples and non-examples of words in them and possibly a formula description).

- (ii) Give regular grammars for L_1 , L_2 .
- (iii) Give a context-free grammar for L_3 .
- (iv) What does it mean for these languages to satisfy the pumping lemma?
- (v) Determine which of these languages satisfy the pumping lemma.

6.2. Consider the context-free grammars

$$G_1 \quad \begin{array}{l} S \rightarrow aABb \\ A \rightarrow aA \mid a \\ B \rightarrow bB \mid b \end{array} \quad G_2 \quad \begin{array}{l} S \rightarrow AABB \\ A \rightarrow AA \mid a \\ B \rightarrow BB \mid b \end{array}$$

- (i) Describe $L_1 = L(G_1)$ and $L_2 = L(G_2)$.
- (ii) Show $L_1 = L_2$.