

Context-free Languages & Pushdown Automata

Let G be given by

$$V = \{S, A, B\}$$

$$\Sigma = \{a, b\}$$

$$S \rightarrow aB \mid bA$$

$$A \rightarrow a \mid aS \mid BAA$$

$$B \rightarrow b \mid bS \mid ABB$$

Show that $ababba \in L(G)$ but $baaababba \notin L(G)$

Characterize $L(G)$; give motivation.

$G = \langle V, \Sigma, R, S \rangle$ with $S \in V$ and R a set of rules of the form

$$A \rightarrow \sigma B \text{ or } A \rightarrow \lambda$$

where $A, B \in V$ and $\sigma \in \Sigma$. Such grammar is called *regular*

Many books are a bit more liberal

$$A \rightarrow \sigma B \text{ or } A \rightarrow \lambda \text{ or } A \rightarrow \sigma$$

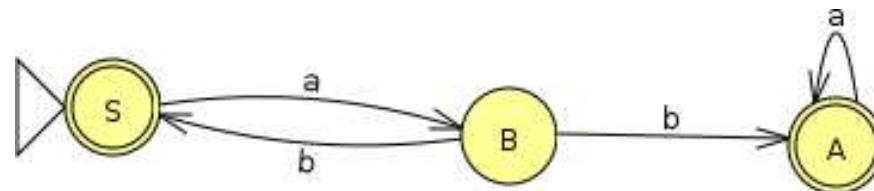
But that is essentially the same

$A \rightarrow \sigma$ can be simulated by $A \rightarrow \sigma A'$ and $A' \rightarrow \lambda$

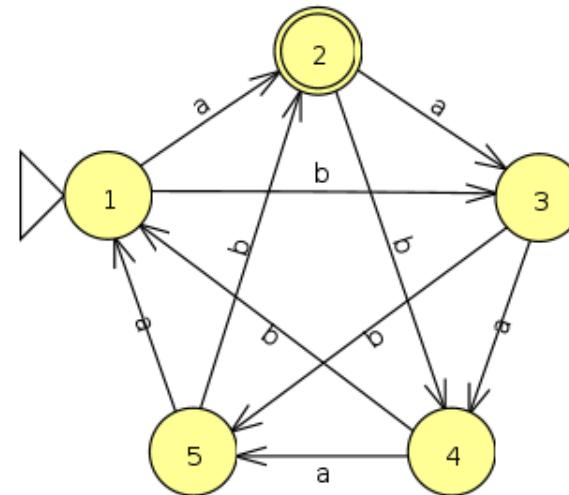
If G is a regular grammar, then $L(G)$ is a regular language.

Example $S \rightarrow aB \mid \lambda$
 $B \rightarrow bS \mid bA$
 $A \rightarrow aA \mid \lambda$

NFA



Conversely, given a DFA



Can we find a regular grammar generating the same language?

Yes:

$S = 1 \rightarrow a2 \mid b3$
$2 \rightarrow a3 \mid b4 \mid \lambda$
$3 \rightarrow a4 \mid b5$
$4 \rightarrow a5 \mid b1$
$5 \rightarrow a1 \mid b2$

The *context-sensitive grammars* have production rules of the form

$$uXv \rightarrow uwv,$$

with $u, v \in (\Sigma \cup V)^*$ arbitrary and $w \in (\Sigma \cup V)^*$ with $w \neq \lambda$
or $S \rightarrow \lambda$ if S doesn't occur on the right of a rule

For the *phrase-structure grammars* production rules are of the form

$$uXv \rightarrow uwv,$$

with $u, v \in (\Sigma \cup V)^*$ and $w \in (\Sigma \cup V)^*$ arbitrary.

Grammar/language	rule	condition
regular	$A \rightarrow \sigma B \mid \lambda$	$A, B \in V, \sigma \in \Sigma$
context-free	$A \rightarrow w$	$A \in V, w \in (V \cup \Sigma)^*$
context-sensitive	$uAv \rightarrow uwv$ or $S \rightarrow \lambda$	$A \in V, u, v, w \in (V \cup \Sigma)^*, w \neq \lambda$ if S 'not on the right'
phrase-structure/enumerable	$uAv \rightarrow uwv$	$A \in V, u, v, w \in (V \cup \Sigma)^*$

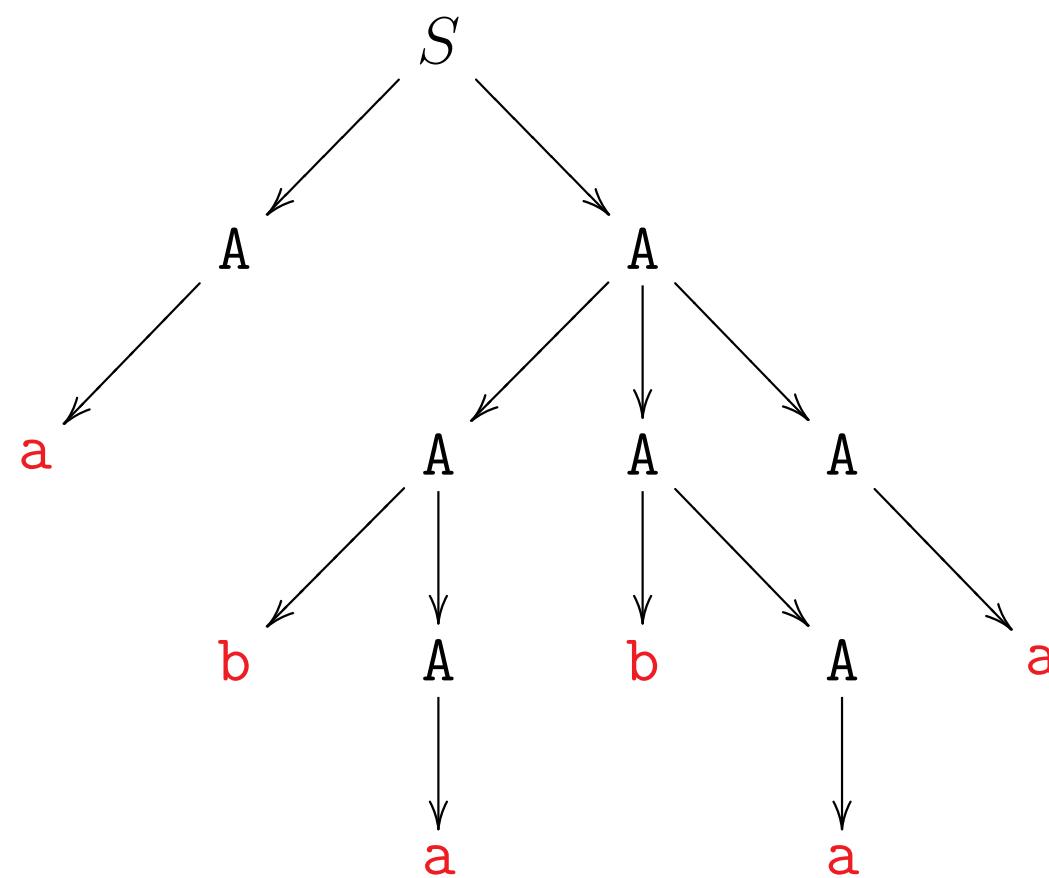
Given the grammar G

$$S \rightarrow AA$$

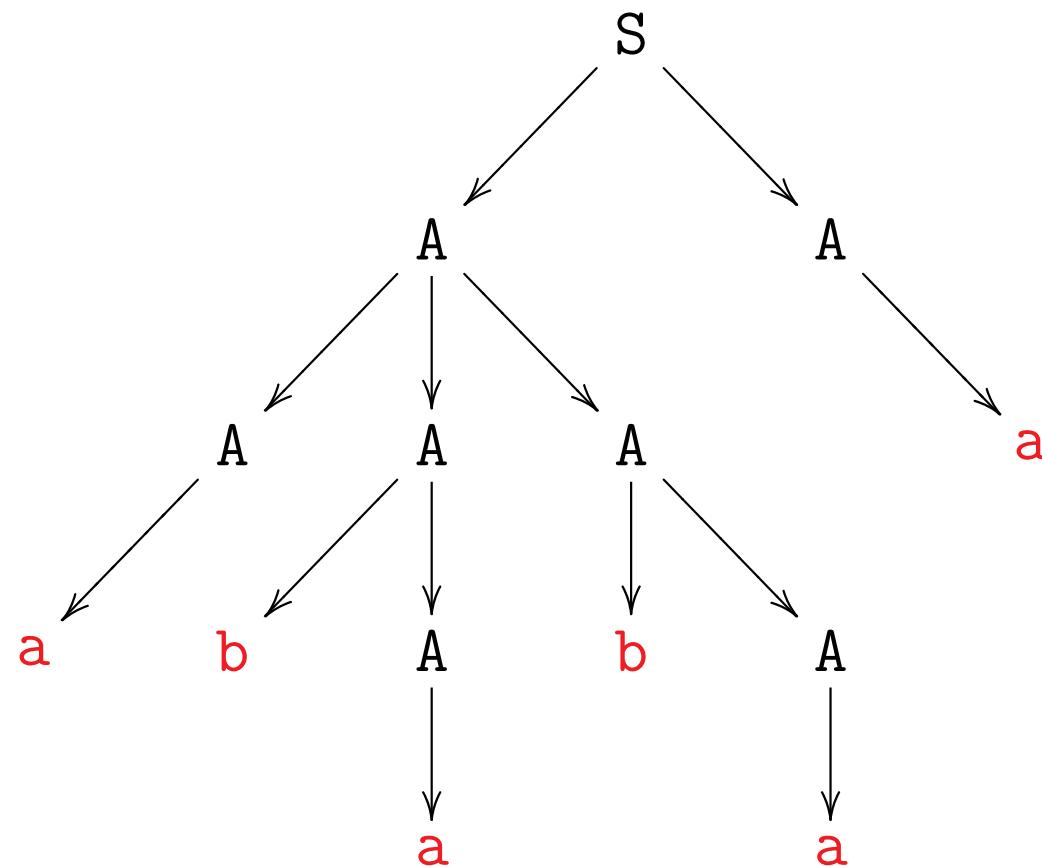
$$A \rightarrow AAA \mid bA \mid Ab \mid a$$

We have $S \Rightarrow AA$ $S \Rightarrow AA$ $S \Rightarrow AA$
 $\Rightarrow aA$ $\Rightarrow AAA$ $\Rightarrow Aa$
 $\Rightarrow aAAA$ $\Rightarrow aAAA$ $\Rightarrow AAAa$
 $\Rightarrow abAAA$ $\Rightarrow abAAA$ $\Rightarrow AAbAa$
 $\Rightarrow abaAA$ $\Rightarrow abaAA$ $\Rightarrow AAbaa$
 $\Rightarrow ababAA$ $\Rightarrow ababAA$ $\Rightarrow AbAbaa$
 $\Rightarrow ababaA$ $\Rightarrow ababaA$ $\Rightarrow Ababaa$
 $\Rightarrow ababaa$ $\Rightarrow ababaa$ $\Rightarrow ababaa$

$S \Rightarrow AA$
 $\Rightarrow aA$
 $\Rightarrow aAAA$
 $\Rightarrow abAAA$
 $\Rightarrow abaAA$
 $\Rightarrow ababAA$
 $\Rightarrow ababaA$
 $\Rightarrow ababaa$



$S \Rightarrow AA$
 $\Rightarrow AAAA$
 $\Rightarrow aAAA$
 $\Rightarrow abAAA$
 $\Rightarrow abaAA$
 $\Rightarrow ababAA$
 $\Rightarrow ababaA$
 $\Rightarrow ababaa$



M is a DFA over Σ if $M = (Q, \Sigma, q_0, \delta, F)$ with

Q	is a finite set of 'states'
Σ	is a finite <i>alphabet</i>
$q_0 \in Q$	is the <i>initial</i> state
$F \subseteq Q$	is a finite set of <i>final</i> states
$\delta : Q \times \Sigma \rightarrow Q$	is the <i>transition</i> function (often given by a table)

Reading function $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$

$$\begin{aligned}\hat{\delta}(q, \lambda) &= q \\ \hat{\delta}(q, a) &= \delta(q, a) \\ \hat{\delta}(q, aw) &= \hat{\delta}(\delta(q, a), w)\end{aligned}$$

Language accepted by M , notation $L(M)$:

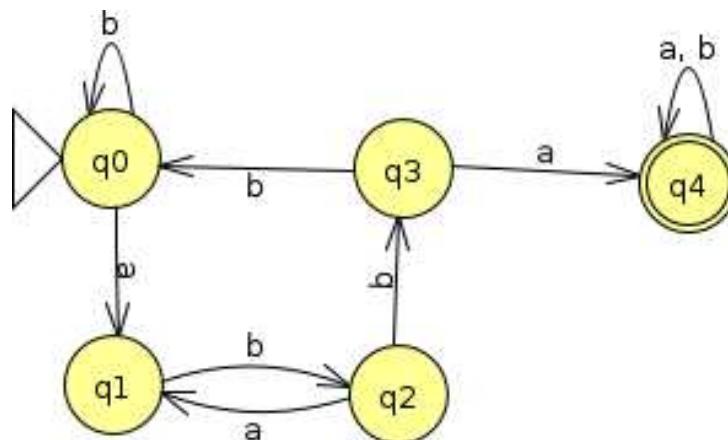
$$L(M) = \{w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F\}$$

Computation for $\hat{\delta}(q, w)$ in the example $w = abba$:

$$\begin{aligned}
 [q, abba] &\vdash [\delta(q, a), bba] \\
 &\vdash [\delta(\delta(q, a), b), ba] \\
 &\vdash [\delta(\delta(\delta(q, a), b), b), a] \\
 &\vdash [\delta(\delta(\delta(\delta(q, a), b), b), a), \lambda]
 \end{aligned}$$

Example transition table for δ with $Q = \{0, 1, 2, 3, 4\}$, $\Sigma = \{a, b\}$, $q_0 = 0$, and $F = \{4\}$

δ	a	b
0	1	0
1	1	2
2	1	3
3	4	0
4	4	4



We have $\hat{\delta}(0, abba) = 4 \in F$ and $[0, abba] \vdash^* [4, \lambda]$, hence $abba \in L(M)$

Similarly $\hat{\delta}(0, baba) = 1 \notin F$; so even if $[0, baba] \vdash^* [1, \lambda]$ we have $baba \notin L(M)$.

Even if $\hat{\delta}(1, bba) = 4 \in F$ and $[1, bba] \vdash^* [4, \lambda]$ we have $bba \notin L(M)$.

A pushdown automaton is a sextuple $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$ with

Q a finite set of states

q_0 an element of Q , the initial state

F a subset of Q

Σ a finite set of symbols (input alphabet)

Γ the *stack alphabet*

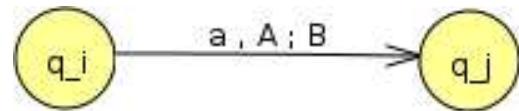
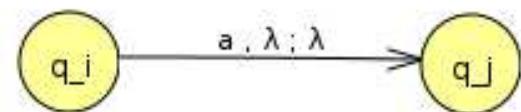
δ a map ('afbeelding')

$\delta : Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow \mathcal{P}(Q \times \Gamma \cup \{\lambda\})$

We write e.g. $\delta(q_i, a, A) = \{[q_j, B], [q_k, C]\}$

The stack is not mentioned, but it is used in the operation of the PDA!

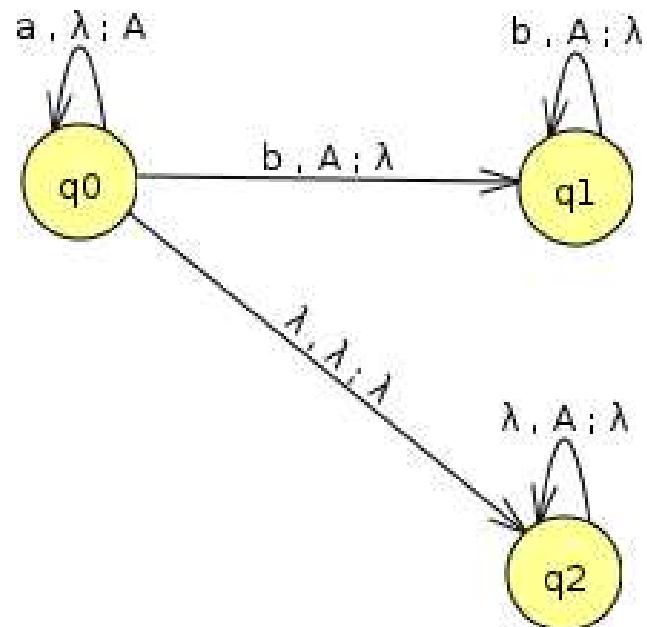
$[q', B] \in \delta(q, a, A)$ and you **can** pop A and **do** push B



$$L(M) = \{w \in \Sigma^* \mid [q_0, w, \lambda] \vdash^* [q_i, \lambda, \lambda] \ \& \ q_i \in F\}$$



Accepts $\{a^n b^n \mid n \geq 0\}$



accepts $\{a^n \mid n \geq 0\} \cup \{a^n b^n \mid n \geq 0\}$