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1.1	 Freshwater systems

Freshwater systems are vital for natural and human communities. Their comparatively 
scattered and restricted distribution, totaling less than 1% of the globe’s surface, belies 
the exceptionally high number of species they harbor and the essential services they 
provide to our society (Dudgeon et al., 2006; Strayer et al., 2010). According to the 
freshwater animal diversity assessment, 9.5% (or ~126,000) of the globally described 
number of animal species live in freshwater, including one third of all vertebrates 
and ~40% of all fish species (Balian et al., 2008; Nelson, 2006; Tedesco et al., 2017). 
The ecosystems comprising this remarkably diverse assemblage of species and their 
physical habitat are essential for humans. Freshwater ecosystems, indeed, provide 
water for consumptive and non-consumptive use (including natural filtration/treatment 
ensuring water quality), aquatic organisms for food and medicines, buffering of flood 
flows and erosion, and opportunities for recreational and touristic activities (Díaz et al., 
2019; Millennium Ecosystem Assessment, 2005). Yet, the human-driven engineering 
and management of freshwater resources that maximize human access to water and 
the transformation of freshwater systems through urbanization, industrialization, and 
land-cover change directly modify and degrade freshwater ecosystems (Dudgeon et 
al., 2006; Strayer et al., 2010; Vörösmarty et al., 2010). Future climate change is expected 
to further threaten freshwater ecosystems worldwide (Knouft and Ficklin, 2017; Reid et 
al., 2019).

1.2	 Integrated assessments

The complex nexus of multiple and interacting anthropogenic pressures on natural 
systems needs to be assessed in an integrated way to gather a synoptic and solution-
focused outlook of the problem (Dowlatabadi, 1995). Through a transdisciplinary 
approach to interpret and quantify the drivers-pressures-state-impact-response 
pathways (DPSIR; Figure 1.1), integrated assessment models (IAMs) are designed to 
provide useful information to politicians and policy makers (Parson et al., 2007; Parson 
and Fisher-Vanden, 2002). IAMs allow for projections of human and natural systems 
based on future development scenarios of human energy use, industrial and urban 
development, agriculture and land-use/cover changes (Parson et al., 2007; Parson and 
Fisher-Vanden, 2002). For instance, scenario frameworks developed by the climate 
change research community such as the five narratives of the Shared Socioeconomic 
Pathways (SSPs) are implemented in IAMs to provide an integrated analysis of future 
(e.g., socioeconomic and environmental) climate impacts, vulnerabilities, and the 
potential of adaptation and mitigation measures (Riahi et al., 2017).
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In IAMs, the status of the abiotic (i.e., physical) component of freshwater systems is 
generally modelled by land surface models that describe water resource variables 
aggregated over large spatial extents. For instance, LPJmL (used in IMAGE and REMIND-
MAgPIE), and EPIC (in MESSAGE-GLOBIOM and WITCH-GLOBIOM) provide estimates of 
hydrological variables over ~55x55 km2 grid cells (Fricko et al., 2017; Schaphoff et al., 
2018; van Vuuren et al., 2017; Wang et al., 2013). A higher resolution would be beneficial 
to more accurately quantify human impacts on the water resources and identify parts of 
catchments that need to be prioritized for management, conservation and restoration 
measures (Bierkens et al., 2015; Knouft and Ficklin, 2017). The biotic component of 
ecosystems, on the other hand, remains under-represented in IAMs (Harfoot et al., 
2014b). Further, among the biodiversity assessment models available, the representation 
of freshwater biodiversity lags behind compared to terrestrial or marine ecosystems, 
hampering a balanced quantification of impacts across all natural ecosystems (Di Marco 
et al., 2017; Merow et al., 2018). Therefore, it is highly needed to develop freshwater 
biodiversity assessment models that can be readily linked to IAMs. 

1.3	� Global modelling of streamflow: data-driven approaches to achieve 
higher spatial resolution

Large-scale hydrological models have long been developed to solve the lack of 
observational hydrological data and to project potential hydrological changes to 
forecast, for instance, droughts and floods. Measurements of water flow are indeed 
constrained by the scattered coverage of monitoring stations around the world, 
reflected by, for example, the spatially biased coverage of gauging stations from the 
recently released global streamflow indices and metadata archive (GSIM) (Do et al., 2018; 
Gudmundsson et al., 2018). The poor coverage in monitoring is due to the inaccessibility 
of most headwaters and a lack of financial and human resources, highlighted by the 
substantial decline in monitoring since the mid-1980s (Fekete and Vörösmarty, 2007; 
Hannah et al., 2011; Shiklomanov et al., 2002; Sivapalan, 2003). Modelling is therefore 
necessary to obtain a globally continuous and representative coverage of hydrological 
variables and predict future hydrological changes.

Process-driven global hydrological models (GHMs) and land surface models (LSMs) 
provide a gridded quantification of hydrological variables (Beck et al., 2016a; Haddeland 
et al., 2014, 2011; Schellekens et al., 2017; Schewe et al., 2014). Yet, the usage of such data 
for ecological modelling or water quality assessments is constrained by the relatively 
coarse spatial resolution characteristic of most GHMs/LSMs (~10 to 55 km), due to 
computational and input data constraints (Bierkens et al., 2015; Döll et al., 2016). Such 
coarse gridded data are unable to provide reliable estimates of hydrological variables for 
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small rivers (Strahler stream order < 5), which comprise 94.6 % of the total stream length 
and riparian interface on the planet (Downing et al., 2012). Small rivers and headwaters 
play a central role in understanding sediment and nutrient transport, ecology and 
connectivity of the overall water system (Wohl, 2017). Data-driven correlative models 
may provide a computationally efficient alternative for obtaining global hydrological 
data at high spatial resolution, which in turn can be used to downscale the output of 
GHMs/LSMs (Lin et al., 2019). Compared to GHMs/LSMs, regression-based and machine-
learning approaches, like neural networks, are computationally efficient and relatively 
quick to parameterize at relatively high spatial resolutions (Verdin and Worstell, 2008). 
Recent studies have shown the feasibility of applying data-driven approaches to 
quantify streamflow, resulting in estimates that have a greater accuracy than the output 
of GHMs/LSMs (Beck et al., 2016a, 2015; Razavi and Coulibaly, 2013; Yaseen et al., 2015). 
Despite these encouraging results, consistent high-resolution global streamflow maps 
are not yet available.

1.4	� Global freshwater biodiversity models: towards a species-based 
approach

Our knowledge of global biodiversity responses to anthropogenic threats is limited for 
freshwater ecosystems. Large-scale assessments typically focus on charismatic species 
in terrestrial systems, with less than 20% of recent papers dealing with aquatic species 
(Di Marco et al., 2017). For instance, effects of climate change on species distributions 
have been extensively modelled for terrestrial systems worldwide (Hof et al., 2011; 
Powers and Jetz, 2019; Visconti et al., 2016; Warren et al., 2018; Zurell et al., 2018), while 
freshwater species remain underrepresented in the literature. The bias towards terrestrial 
biodiversity is also reflected in the recent global assessment of the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (Díaz et al., 
2019; Merow et al., 2018). For the assessment, various global biodiversity assessments 
and models across different levels of biological organization (i.e., species, community 
and ecosystem) were available for terrestrial and marine systems, whereas only the 
community-based GLOBIO-Aquatic model (Janse et al., 2015) was available for freshwater 
biodiversity (Merow et al., 2018). The lack of comprehensive freshwater biodiversity 
assessments is in contrast with the high threat status of freshwater biodiversity. Between 
1970 and 2014, populations of freshwater species experienced declines as high as 83% 
on average, which is considerably higher than the decline rates observed for marine or 
terrestrial species (WWF, 2018, 2016). About 30% of the ~28,000 freshwater-dependent 
species assessed so far by the International Union for Conservation of Nature are 
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threatened with extinction (IUCN, 2018). Large-scale models are needed to better assess 
current and future impacts of human activities on freshwater biodiversity.

Freshwater fish play a key role in the function and regulation of freshwater ecosystems 
and are of important economic and nutritional value as the livelihoods of many people, 
especially in developing countries, depend on fisheries (FAO, 2018; Holmlund and 
Hammer, 1999). The very few attempts to quantify human impacts on freshwater fish 
biodiversity at a global scale relied on relatively coarse-grain (i.e., low spatial resolution) 
assemblage-level metrics, by relating potential changes in the total number of species 
occurring over relatively large regions, to the degree of change in the underlying 
hydrology, e.g., streamflow or connectivity (Liermann et al., 2012; Tedesco et al., 2013; 
Xenopoulos et al., 2005). The assemblage-level approach employed in these type 
of models hampers the identification of specific species more at risk than others. In 
addition, the coarse spatial grain these studies relied on (e.g., freshwater ecoregions 
or gridded estimates at ~55 km) limits the spatial detail, essential for a reliable impact 
quantification given the dendritic nature of freshwater systems. Yet, advancements 
in availability of species occurrence data and environmental variables along with 
increased computational power make it now possible to model anthropogenic impacts 
at the level of individual fish species. Such refined approaches can provide a much 
higher level of spatial detail and accuracy, needed to delineate vulnerable areas and 
prioritize conservation efforts.

1.5	 Aim and research questions

The overarching goal of this thesis is to improve the representation of freshwater 
systems in global integrated assessments. To that end, I aim to answer two main 
research questions: 

1	 How to improve the spatial representation of hydrological variables at the global 
scale? 

2	 How to model the direct (damming) and indirect (climate change) human impacts 
on freshwater fish biodiversity worldwide? 

The first question addresses the need for improved hydrological data, while the second 
question begins to address the gap in global impact assessments for freshwater 
biodiversity.
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1.6	O verview of the thesis

This thesis is divided into two main parts, each addressing one of the two research 
questions and covering a different aspect of the DPSIR chain (Figure 1.1). The first 
part (Chapters 2 and 3) describes the development and application of data-driven 
models to derive high-resolution gridded streamflow variables. Chapter 2 describes 
the development of a multiple regression model to predict mean annual streamflow 
at a global scale and compares its performance with a global hydrological model. 
Chapter 3 takes data-driven hydrological modeling a step further by employing a 
machine-learning approach to map yearly estimates of mean, minimum and maximum 
streamflow. This effort resulted in the FLO1K dataset, comprising gridded data at ~1 km 
spatial resolution for the three variables (mean, minimum and maximum streamflow) for 
each year from 1960 through to 2015. The second part of the thesis aims at quantifying 
the impacts of human activities on the geographic ranges of freshwater fish species 
worldwide. Chapter 4 quantifies changes in the connectivity of the geographic ranges 
of ~5,700 freshwater fish species due to dam construction, including ~40,000 existing 
dams as well as ~3,700 dams currently being constructed or planned. Chapter 5 
quantifies potential future geographical range contractions driven by anthropogenic 
climate change for ~7,000 freshwater fish species. In particular, range contractions are 
predicted for different levels of global mean temperature increase, including 1.5oC,  
2oC, 3.2oC and 4.5oC (compared to pre-industrial levels). Finally, Chapter 6 compares 
and integrates the results from the different chapters and provides general implications 
and recommendations.

Figure 1.1  |   Different aspects of the DPSIR chain covered by the studies of this thesis.
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Abstract

Quantifying mean annual flow of rivers 
(MAF) at ungauged sites is essential for 
assessments of global water supply, 
ecosystem integrity and water footprints. 
MAF can be quantified with spatially 
explicit process-based models, which 
might be overly time-consuming and 
data-intensive for this purpose, or with 
empirical regression models that predict 
MAF based on climate and catchment 
characteristics. Yet, regression models 
have mostly been developed at a regional 
scale and the extent to which they can 
be extrapolated to other regions is not 
known. In this study, we developed a 
global-scale regression model for MAF 
based on a dataset unprecedented in 
size, using observations of discharge 
and catchment characteristics from 
1,885 catchments worldwide, measuring 
between 2 and 106 km2. In addition, 
we compared the performance of the 

regression model with the predictive 
ability of the spatially explicit global 
hydrological model PCR-GLOBWB by 
comparing results from both models 
to independent measurements. We 
obtained a regression model explaining 
89% of the variance in MAF based on 
catchment area and catchment averaged 
mean annual precipitation and air 
temperature, slope and elevation. The 
regression model performed better 
than PCR-GLOBWB for the prediction of 
MAF, as root-mean-square error (RMSE) 
values were lower (0.29–0.38 compared 
to 0.49–0.57) and the modified index 
of agreement (d) was higher (0.80–0.83 
compared to 0.72–0.75). Our regression 
model can be applied globally to estimate 
MAF at any point of the river network, 
thus providing a feasible alternative to 
spatially explicit process-based global 
hydrological models.
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2.1	 Introduction

Mean annual discharge or flow of rivers (hereafter abbreviated as MAF) is an important 
indicator of global water supply, with applications in irrigation supply assessment, climate 
change vulnerability assessment (Chang, 2003; Santini and di Paola, 2015), hydropower 
assessment (Hall et al., 2004), water footprinting (Hanafiah et al., 2011; Hoekstra et al., 
2011; Jefferies et al., 2012; Pfister et al., 2009; Tendall et al., 2014), and for quantifying 
sediment fluxes (Syvitski et al., 2003). It also represents one of the most important 
factors determining the ecosystem integrity of freshwater biodiversity (Oberdorff et al., 
2011, 1995; Poff and Zimmerman, 2010; Xenopoulos et al., 2005; Xenopoulos and Lodge, 
2006). Despite its importance, streamflow data availability is limited, and monitoring is 
in rapid decline since the mid-1980s (Shiklomanov et al., 2002). Modelling approaches 
have long been used to estimate MAF at ungauged sites and are generally divided into 
two categories: spatially explicit process-based models and regression-based empirical 
models.

State-of-the-art spatially explicit numerical models for global-scale calculations of 
streamflow are Macroscale Hydrological Models (MHM) or Global Hydrology and Water 
Resources Models (GHWM) (Alcamo et al., 2003; Gosling and Arnell, 2011; Hanasaki 
et al., 2008; Van Beek and Bierkens, 2009; Van Der Knijff et al., 2010; Widén-Nilsson et 
al., 2007; Wisser et al., 2010). As these models account for the spatial variability of the 
physical processes involved within catchment hydrology and are capable of predicting 
streamflow even at the daily time scale, they are computationally and data intensive. 

Regression-based approaches to calculate MAF are less time-consuming and 
computationally less intensive. Moreover, regression equations relating streamflow 
to explanatory catchment characteristics like upstream drainage area, precipitation 
and temperature may help to better understand general hydrological patterns and 
processes across different scales (Burgers et al., 2014; Farmer et al., 2015). However, to 
date, regression-based approaches relating mean annual streamflow to catchment 
characteristics have been mainly applied at a regional scale (Hortness and Berenbrock, 
2001; Stuckey, 2006; Tran et al., 2015; Verdin and Worstell, 2008; Vogel et al., 1999) or to 
specific climate zones (Syvitski et al., 2003), and the extent to which these models can be 
extrapolated to other regions is not known. Regression relationships at the global scale 
have hardly been established so far. An exception is Burgers et al. (2014), who derived 
MAF relationships at a global scale using precipitation and catchment area as predictors. 
However, their model explained only 56% of the variance in MAF, which is low compared 
to the range of 77-99% achieved by regional regression models (e.g. Verdin and Worstell 
(2008)). Yet, the regional studies typically included a larger number of predictors, which 
suggests that the explanatory power of a global-scale regression model may increase 
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if relevant predictors are added. In addition, the applicability of global regression 
relationships for the prediction of mean annual streamflow has not yet been tested. 
Therefore, the aim of this study was twofold: 1) to establish an empirical regression 
model relating MAF to easily retrievable catchment characteristics at the global scale; 
2) to test the predictive ability of the regression model in a backcasting analysis and 
compare its performance with the predictive performance of PCR-GLOBWB, a spatially 
explicit MHM (van Beek et al., 2011). To our knowledge, our study is the first to make 
an explicit comparison of the predictive abilities of a process-based and a regression-
based global-scale model.

We based our regression model on measured long-term average MAF from 1,885 
catchments worldwide, ranging from 2 km2 to 106 km2 in size. We used five predictor 
variables, including two climatic variables – mean annual precipitation and air 
temperature – and three geomorphologic variables – area, mean slope and mean 
elevation of the catchment. Drainage area, mean annual precipitation and mean annual 
temperature are often used as predictors of MAF in regional regression modelling 
studies (Verdin and Worstell, 2008; Vogel et al., 1999; Vogel and Sankarasubramanian, 
2010). The dependence of MAF on drainage area is a well-accepted power relationship 
reflecting the self-similarity of river systems (Rodriguez-Iturbe and Rinaldo, 2001). Mean 
annual precipitation represents the potential runoff of the catchment, as it equals the 
amount of water supplied to the catchment (Thomas and Benson, 1970). We selected 
the mean annual temperature as a proxy for the potential evapotranspiration (PET), 
because temperature is a major determinant of evapotranspiration (Hamon, 1963; Lu et 
al., 2005; Thornthwaite, 1948). Furthermore, previous regression analyses of MAF have 
shown an increased explained variance when additional geomorphologic parameters 
were considered (Hortness and Berenbrock, 2001; Stuckey, 2006; Vogel et al., 1999). 
Therefore, we included average slope and elevation of the catchment as additional 
predictors in our study. Although elevation and slope alone may not directly influence 
MAF, they may serve as proxies for other factors causing inter-basin streamflow variation 
which are difficult to measure, e.g. radiation, wind, vegetation and basin ruggedness 
(Thomas and Benson, 1970).

2.2	 Materials and methods

2.2.1	 Mean annual discharge data

We retrieved worldwide MAF data from the Global Runoff Data Centre (GRDC) database, 
which provides daily or monthly observations of 9,213 gauging stations monitored from 
1806 to 2015, with variable record length (GRDC, 2017). The GRDC has spent more than 
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25 years gathering river discharge data from the National Hydrological Services of all 
the World Meteorological Organization (WMO) state members, which has resulted in a 
discharge dataset unprecedented in size. For example, the SAGE Global River Discharge 
Database (http://nelson.wisc.edu/sage/data-and-models/riverdata/) and the RivDis 
database (Vorosmarty et al., 1998) provide discharge data for 3,500 and 1,018 stations, 
respectively. The accuracy of the discharge measurements included in the GRDC 
database is estimated to be about 10 – 20% (Syvitski, 2005). For our model development 
we selected discharge data for the period 1981 – 2010. We used a 30 year period 
because this is in accordance with the recommendations for climate analyses (World 
Meteorological Organization, 1992). We excluded years after 2010 because of a decrease 
in data availability for the most recent years. We averaged the daily discharge data over 
each year, using only those years where 100% of the daily observations were available. 
Next, we averaged the yearly observations for the period 1981 - 2010 in order to obtain a 
long-term mean annual discharge for each catchment. We selected monitoring stations 
with at least 15 yearly average discharge values in order to obtain representative long-
term mean values (Kennard et al., 2009). This resulted in a dataset of 1,885 observations 
out of the 2,759 available GRDC gauged catchments with observations in the time range 
1981 - 2010 (Figure 2.1).

Figure 2.1  |   Distribution of the 1885 GRDC gauging stations monitored for at least 15 years in 
the 1981–2010 period. The stations are grouped based on the mean annual flow (MAF) recorded 
at each station. Next to each MAF category, the number of observations is provided in brackets.
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2.2.2.	Catchment characteristics

We retrieved catchment-specific values for catchment area (A), average altitude (H), 
average slope (S), 30-years average temperature (T) and 30-years average precipitation 
(P) from a combination of data sources (Table 2.1). Catchment area was retrieved from 
the GRDC database, which includes a georeferenced map of the upstream catchment 
corresponding with each gauging station (GRDC, 2011). Catchment boundaries in this 
map have been established based on the HydroSHEDS drainage network, a 15 arc-
seconds hydrological map derived from 3 arc-seconds elevation data of the National 
Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission 
(SRTM), extended with the hydro1k hydrological network for latitudes above 60N, which 
are not covered by the SRTM data (GRDC, 2011; Lehner et al., 2008).

We derived altitude from the WorldClim digital elevation model (DEM), which is a 30 arc-
seconds DEM based upon the SRTM elevation data extended with GTOPO30 elevation 
data for latitudes above 60N (Hijmans et al., 2005). We derived a raster slope map from 
the WorldClim DEM using the ‘average maximum technique’ in ArcGIS, similarly to 
Hortness and Berenbrock (2001). For precipitation and temperature, we averaged 30 
arc-minutes resolution monthly raster maps from the Climatic Research Unit time series 
(CRU TS) 3.23 to annual values, and consequently averaged over the period 1981-2010 
(Harris et al., 2014). 

We resampled the raster maps obtained for precipitation, temperature, altitude and 
slope in order to match the 15 arc-seconds resolution of the HydroSHEDS drainage 
network, upon which the watershed boundaries were established. We then calculated 
a single mean value of each variable for each catchment corresponding with a GRDC 
gauging station, as described by Syvitski et al. (2003). Resampling and averaging were 
performed in ArcGIS 10.3. An overview of the summary statistics of the variables is 
available in Table 2.1. 

Table 2.1  |  Summary statistics of the mean annual streamflow (MAF) and catchment characteristics 
of 1,885 gauging stations in the period 1981-2010

Variable Symbol Unit Mean Median SDa Mina Maxa γ1
a

Source 

database

MAF Q m3∙s-1 3.72∙102 3.38∙101 1.99∙103 3.47∙10-3 4.73∙104 14.2 GRDCb

Catchment area A m2 4.58∙1010 4.61∙109 2.05∙1011 2.00∙106 3.63∙1012 9.7 GRDCc

Altitude H m 6.84∙102 4.52∙102 6.05∙102 1.35∙101 4.76∙103 1.6 WorldClimd

Slope S (°) 2.31∙100 1.27∙100 2.65∙100 4.71∙10-2 1.56∙101 2.0 WorldClimd

Precipitation P m∙s-1 2.78∙10-8 2.46∙10-8 1.46∙10-8 3.53∙10-9 1.09∙10-7 1.3 CRU TS 3.23e

Temperature T °C 8.96∙100 8.24∙100 7.51∙100 -1.67∙101 2.76∙101 0.4 CRU TS 3.23e

aSD = standard deviation; Min = minimum; Max = maximum; γ1 = skewness, b(GRDC, 2015), c(GRDC, 2011), d(Hijmans et al., 
2005), e(Harris et al., 2014)
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2.2.3	 Model fitting

Methods available for correlative modelling range from parametric and non-parametric 
regression-based approaches to machine-learning techniques (Chen et al., 2015; 
Danandeh Mehr et al., 2013; Fan et al., 2015; Okkan and Serbes, 2012; Wang et al., 
2015; Wu et al., 2009). For the present study we selected ordinary least squares (OLS) 
regression because it results in an explicit equation, which facilitates interpretation 
and comparison with other studies. All the variables except for temperature were log-
transformed to avoid heteroscedasticity as they revealed a right-skewed distribution 
(Table 2.1), in agreement with the choices made in previous studies for similar variables 
(Burgers et al., 2014; Hendriks et al., 2012; Syvitski et al., 2003; Verdin and Worstell, 2008; 
Vogel et al., 1999). This resulted in the following linear regression equation:

(2.1)

where β0 is the intercept, <βA, βP, βT, βS, βH> is the vector of the regression coefficients 
associated with the predictor variables (symbols are described in Table 2.1) and ε is the 
error term. The back-transformed form to real scale of Equation 2.1 yields the nonlinear 
formulation:

(2.2)

Prior to performing the regression analysis, we assessed multi-collinearity among the 
predictors using Variance Inflation Factors (VIFs), employing the function “vif” of the 
package “HH” (Heiberger, 2015) in the R environment (r-project.org). We preferred VIFs 
over bivariate correlation analysis because pairwise correlation coefficients do not 
reveal more subtle forms of multicollinearity (Field, 2009). The maximum VIF was 2.8, 
well below the standard threshold of 5 (Zuur et al., 2009). We then fitted OLS regression 
models for an increasing number of predictors. To identify the best regression model 
for each of the five sets of predictors (first set with one predictor variable, second set 
with two predictor variables, etc.) as well as the best overall model, we employed the 
function “dredge” of the package “MuMIn” in the R environment (Barton, 2015). Within 
each set, the algorithm analyzes all possible combinations of predictor variables and 
ranks the regression models based on a user-defined criterion. To identify the most 
parsimonious model for each set of predictors, we used the Akaike Information Criterion 
(AIC) as well as the Bayesian Information Criterion (BIC), which employs a larger penalty 
term for additional predictor variables. Further, we used the Cooks D influence statistic 
in order to identify observations that may have biased the coefficients of the regression 
(Cook and Weisberg, 1982).

𝑙𝑙𝑙𝑙𝑙𝑙$%𝑄𝑄 = 𝛽𝛽% + 𝛽𝛽* ∙ 𝑙𝑙𝑙𝑙𝑙𝑙$%𝐴𝐴 + 𝛽𝛽- ∙ 𝑙𝑙𝑙𝑙𝑙𝑙$%𝑃𝑃 + 𝛽𝛽/ ∙ 𝑇𝑇 + 𝛽𝛽1 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙$%𝑆𝑆 + 𝛽𝛽3 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙$%𝐻𝐻 + 𝜀𝜀 
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In order to assess potential bias in the regression coefficients induced by spatial 
autocorrelation resulting from the nested structure of the catchments, we compared 
the regression coefficients with the coefficients of a spatial error (SE) model. Since 
spatial autocorrelation can exist within either the residuals (spatial error) or the response 
variable (spatial lag), we performed a preliminary test for spatial autocorrelation based 
on the Lagrange Multiplier test (LM test) using the R package ‘spdep’ (Anselin, 1988; 
Bivand et al., 2013; Bivand and Piras, 2015). We preferred the LM test to the more 
commonly employed Moran’s I test, for the LM test has a higher power to discriminate 
among either spatial error autocorrelation or spatial lag (Anselin and Rey, 1991). The LM 
test showed significantly higher autocorrelation in the error term (LM test value of 465, 
robust LM test value of 375) than in the response variable (with values of 115 and 25, 
respectively). Therefore we fitted an SE model that accounts for spatial autocorrelation 
in the residuals, expressing the error term of Equation 2.1 as: ε = λWε + μ, where λ is 
the coefficient in the spatial autoregressive structure, W is a weight matrix defined by 
the inverse distance between observations, and μ is the vector of identically distributed 
random errors (Ord, 1975). We calculated the distances between the GRDC stations across 
the stream network thereby considering as neighbors only those stations belonging 
to the same encompassing hydrologic basin. As we employed HydroSHEDS as rivers 
network for the calculation of W, we fitted and compared the OLS and SE regression 
coefficients based on a subset of observations within 58S - 60N latitude (n = 1,748).

2.2.4	 Comparison with PCR-GLOBWB: backcasting analysis

We compared the predictive performance of our best regression model with the global 
hydrological model PCR-GLOBWB (van Beek et al., 2011; Van Beek and Bierkens, 2009). 
Defined as a “leaky bucket” type of model, PCR-GLOBWB calculates changes in water 
storage between two different soil layers, groundwater reservoir and atmosphere, 
forced by CRU TS 2.1 data, on a cell-by-cell basis at 30 arc-minutes resolution, for daily 
time steps. PCR-GLOBWB has been widely employed for assessments of global surface 
water and groundwater availability, nutrient transport modelling and biodiversity 
impact calculations (Beusen et al., 2016; Gleeson et al., 2012; Janse et al., 2015; Wada et 
al., 2011; Wanders and Wada, 2015). Compared to other GHMs, PCR-GLOBWB is a purely 
process-based model, as opposed to for example WaterGAP which is partially calibrated 
(Alcamo et al., 2003; Döll et al., 2003). Therefore, we considered PCR-GLOBWB a more 
suitable benchmark for the comparison.

We considered monitoring data of GRDC stations continuously monitored from 1971 to 
1980 as an independent and common basis for the comparison between the regression 
model and PCR-GLOBWB. From the 2,219 GRDC stations used for the testing of PCR-
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GLOBWB (van Beek et al., 2011), we selected the 543 stations that were continuously 
monitored from 1971 through 1980 (Figure A.2). We derived mean annual values of 
temperature and precipitation from the CRU TS 3.23 for each catchment, according to 
the approach described in section 2.2, and calculated mean annual streamfl ow for each 
year in the time span 1971-1980, and as a 10 years average.

We evaluated and compared the performances of the regression model and PCR-
GLOBWB employing root mean square error (RMSE) and modifi ed index of agreement 
(d). Thus, we employed an absolute as well as a relative error measure, following the 
recommendations for hydrological model evaluation as provided by Legates and 
McCabe (1999). We adopted the index of agreement d2 in the modifi ed form d to avoid 
infl ation of errors by squared values (Legates and McCabe, 1999). In addition, the d 
represents an improvement over the coeffi  cient of determination (R2) (Legates and 
McCabe, 1999). 

Given the six orders of magnitude covered by the data, we log transformed the mean 
annual streamfl ow values. The RMSE is calculated as:

(2.3)

where n∙m are the dimensions of the matrix of observations of the m GRDC stations over 
the n years of the backcasting period, Ox,t is the observed value for the station x at time 
t, and Px,t is the predicted value for the station x at time t. 

The d is formulated as:

(2.4)

where  stands for the overall average of the observed streamfl ow of all the stations 
across the 10 years period. The index of agreement varies between 0 and 1, with higher 
values indicating a better fi t. When the mean annual streamfl ow averaged over the 10 
years is considered, n becomes 1 in equations 2.3 and 2.4.
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2.3	R esults

2.3.1	 Model fitting

The OLS regression analysis revealed that the model with the full set of predictors was 
the most parsimonious (i.e., lowest AIC; Table A.1). Nearly 90% of the variation in MAF 
could be explained by the five catchment characteristics (Table 2.2), indicating that the 
most relevant predictors for MAF were covered by the regression model. According to 
the standardized regression coefficients, which can be compared across explanatory 
variables to assess their relative importance (Bring, 1994), catchment area was the 
most important predictor of MAF, followed by precipitation, temperature, slope and 
elevation. 

Table 2.2  |  Coefficients (raw and standardized), goodness of fit (R2) and number of underlying 
observations (m) of the most parsimonious regression model Q = 10β0 ∙ A βA ∙ P βP ∙ 10 βT∙T ∙ H βH ∙ S 

βS. CI = confidence interval.

Coefficient Value (95% CI) Std. value R2 m

β0 9.066 (8.503  -  9.630) 0 0.89 1,885

βA 1.018 (1.001  -  1.035) 0.961

βP 2.070 (1.991  -  2.148) 0.486

βT -0.038 (-0.040  -  -0.035) -0.290

βH -0.509 (-0.565  -  -0.454) -0.212

βS 0.464 (0.421  -  0.507) 0.237

The model performed better for higher MAF values (Figure 2.2). Furthermore, residual 
errors were slightly larger for catchments with lower precipitation values and at higher 
altitudes (Figure A.1). Residuals tended to be randomly distributed in relation to 
catchment area, precipitation or slope (Figure A.1). Only about 1.3% of the predicted 
values showed errors greater than one order of magnitude (Figure 2.2). For the Cooks 
D statistic, a maximum value of 0.03 was found, well below the threshold of 1 (Cook 
and Weisberg, 1982), meaning that none of the observations biased the regression 
coefficients. 
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Figure 2.2  |  Predicted versus observed MAF values of the 1885 GRDC stations employed in the 
regression analysis. The solid line represents perfect model fit (1:1 line) and the dashed lines 
represent a difference of one order of magnitude.

The comparison of the regression coefficients between the OLS and SE regression 
models revealed a large overlap of the confidence intervals of the coefficients (49-86% 
CI overlap; Table A.2). This indicated that the OLS regression coefficients were not 
significantly influenced by spatial autocorrelation (type I error).

2.3.2	� Performance testing on independent data and comparison with PCR-

GLOBWB

The testing of the regression model on independent data in the time period 1971 - 
1980 (backcasting analysis), for both single year and 10-years average MAF, revealed 
that the predictions of the regression model were characterized by lower RMSE values 
and higher d values than the predictions of the global hydrological model PCR-GLOBWB 
(Figure 2.3). 
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Figure 2.3  |  Results of the backcasting analysis for the period 1971–1980, showing predicted 
versus observed MAF for the OLS regression model (left) and the GHM PCR-GLOBWB (right), based 
on yearly values (top) as well as 10-year average values (bottom). Within each chart, the solid line 
represents perfect model fit (1:1 line) and the dashed lines define a range of accuracy of plus/
minus one order of magnitude. RMSE = root mean square error; d = modified index of agreement.

The PCR-GLOBWB simulation resulted in a greater number of outliers, in agreement with 
the higher RMSE values (Figure 2.3). For the OLS model, about 3% of the observations 
had residuals greater than one order of magnitude, whereas about 7% of the PCR-
GLOBWB results deviated more than one order of magnitude from the measurements. 
PCR-GLOBWB performed slightly better than the OLS model for the highest MAF values 
(> 10,000 m3/s; Figure 2.3). Both models performed poorly for MAF values lower than 
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10 m3/s. In general, residuals of PCR-GLOBWB revealed a cone-shaped distribution, with 
larger errors at lower discharge values. In contrast, the OLS model showed a tendency 
to overestimate low discharge values.

Both models performed better when backcasting the 10-years average of MAF than 
MAF for single years. For the 10-years average MAF, the residuals greater than 1 order 
of magnitude reduced to about 1% (4 observations) and 4% (22 observations) for the 
regression model and PCR-GLOBWB, respectively.

2.4.	 DISCUSSION

2.4.1	 Regression coefficients interpretation

We developed a global-scale multiple regression model for predicting mean annual 
flow of rivers based on easily retrievable input parameters. We calibrated the model on 
1,885 catchments worldwide based on long-term average discharge data (1981-2010), 
resulting in a model explaining 89% of the variance in MAF based on catchment area 
and catchment-averaged precipitation, temperature, slope and altitude. The analysis 
revealed the catchment area to be the most important predictor of MAF (Table 2.2). 
Indeed, a single regression analysis based on catchment area alone already explains 61% 
of the variation in MAF (Table A.1), in agreement with scaling relationships reflecting 
self-similarity across catchments. Nevertheless, additional predictors considerably 
increased the explained variance (Table A.1). This suggests that multiple regression 
improves the interpretation of the spatial scaling of MAF at a global level, in agreement 
with recent findings that point toward multiple regression (called “multiscaling”) to 
improve the interpretation of scaling behavior for daily streamflow of the Southeast 
United States (Farmer et al., 2015).

The MAF scaled to catchment area with an exponent of about 1, implying a linear 
relationship between MAF and drainage area. This is in agreement with the coefficients 
reported by a number of regional studies using multiple regression analysis (Table 2.3), 
and close to the value of 0.86 reported by the global study of Burgers et al. (2014). Further, 
MAF scaled to precipitation with an exponent of about two. This is highly similar to 
the findings reported by Tran et al. (2015) (Table 2.3), who conducted a regional study 
covering 533 catchments. On the other hand, the coefficient for precipitation found in 
this study is in contrast with the linear relationship observed in Burgers et al. (2014). 
However, in the current study we employed about three times more observations and 
our regression model explained about 33% more of the variance. In general, coefficients 
reported for precipitation tend to be greater than 1 and converging towards 2 (Table 2.3),  
reflecting nonlinearity in the physical process responsible for the runoff generation (see 
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e.g. (Yu et al., 2015)). Therefore, given the global coverage, the heterogeneity of the 
input variables values employed to calibrate the coefficients and the large explained 
variance, the value of about 2 is considered to be a reasonable estimate of the exponent 
for precipitation.

For temperature a negative coefficient was obtained, reflecting decreasing MAF with 
increasing temperature. Indeed, increases in temperature would lead to an increased 
evapotranspiration, which eventually implies that less water is routed through the 
drainage network and poured at the discharge point. The negative relationship is in 
agreement with the results of regional studies, but as these studies were based on 
log-transformed temperature data, the values of the coefficients are not directly 
comparable with ours (Tran et al., 2015; Verdin and Worstell, 2008; Vogel et al., 1999). 
The relationship between MAF and altitude is rather complex. The exponent resulting 
from the regression analysis was negative, which can be explained by the fact that at 
higher altitudes the solar radiation and wind are more intense, therefore enhancing 
the evapotranspiration process (Tran et al., 2015). In contrast, some studies reported 
positive exponents for altitude (Table 2.3). A possible explanation could be that these 
studies did not include temperature as a predictor, which implies that the positive 
exponent for the altitude term may reflect an effect of temperature. At high altitudes, 
the lower temperature likely results in less evapotranspiration hence an increase in 
MAF. However, if the model does not include temperature as predictor, the larger MAF 
at higher altitudes may result in a positive regression coefficient for altitude instead. 
The positive exponent of about ½ obtained for slope (S) compares well with the values 
reported in regional studies and reflects that in catchments with steeper slopes, the 
runoff and consequently the MAF is enhanced. 
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Table 2.3  |  Regression coefficients found in this study compared with coefficients reported in 
regional and global studies available from the literature. n represents the number of catchments 
employed to calibrate the regression coefficients; A range is the range of the catchment areas 
employed in the respective study.

This 
study

Burgers et al. 
(2013)

Hortness and 
Berenbrock 
(2001)

Stuckey 
(2006)

Tran et al. 
(2015)

Vogel et al. 
(1999)

Gyawali 
et al. 
(2015)

βA 1.02 0.86 0.83 - 1.10 1.01 1.01 0.58 - 1.14 0.87

βP 2.07 1.01 1.64 - 2.70 1.80 2.04 1.21 - 6.42 3.68

βT -0.04 - - - -0.49a -7.66 - 
-0.51a -

βS 0.46 - -3.44 - 7.52b - - 0.33 - 0.51 0.30b

βH -0.51 - -2.36 - 2.30 0.13 - 1.66c -

n 1,885 663 200 195 533 1,553 93

A range 
[km2]

2.0∙100 - 
3.6∙106

7.3∙103 - 4.6∙106 8.0∙100 - 3.5∙104 5.6∙100 - 
4.5∙103

1.3∙101 – 
1.7∙102

- 6.2∙100 - 
4.4∙103

Extent Global Global Idaho, USA Pennsylvania, 
USA

Upper 
Mississippi, 
USA

USA western 
Great 
Lakes, 
USA

avalues refer to the log-transformed form and are therefore not directly comparable with the coefficient obtained in this study
bvalues refer to slope in percent instead of degrees and are therefore not directly comparable with the coefficient obtained 
in this study
cused only for region 16, “Great Basin” in Vogel et al. (1999)

2.4.2	 Performance comparison with PCR-GLOBWB

Overall, our regression model performed better than PCR-GLOBWB when applied 
to an independent test dataset. Differences were apparent in particular for smaller 
catchments (Figure 2.3). The residuals (absolute values) of PCR-GLOBWB for the 10-years 
average MAF revealed a significant negative trend in relation to area (p-value < 0.01, R2 
= 0.03), while for the regression model no significant correlation was found. However, 
new global hydrological models with greater spatial resolution than the 30 arc-minutes 
version of PCR-GLOBWB employed in this study may achieve better results, especially 
for smaller catchments (e.g. see the list of models provided in Bierkens (2015)). Yet, 
such refined models are more demanding in terms of computational costs (Bierkens, 
2015), and might therefore be more suitable when monthly or daily discharge values 
are needed.
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Both the regression model and PCR-GLOBWB performed worse for water-scarce 
regions, as revealed by larger errors at higher dryness ratio values (Figure 2.4). The 
dryness ratio reflects water losses due to evapotranspiration relative to the amount of 
precipitation. It is defined as the actual annual evapotranspiration divided by the total 
annual precipitation, where the actual evapotranspiration is calculated as the annual 
precipitation minus the unit discharge, in turn obtained by dividing the discharge by 
the area of the catchment (Vogel et al., 1999). The larger errors with higher dryness 
ratios are likely due to a combination of higher uncertainty in the precipitation values 
for water-scarce regions and hydrological processes that are particularly relevant in dry 
regions yet not described by the models (Döll et al., 2003; van Beek et al., 2011; Vogel 
et al., 1999). Examples of such processes include the almost instantaneous evaporation 
from many ephemeral post-rainfall ponds and relatively large losses from the river 
channel to groundwater (Döll et al., 2003). In addition, water abstraction by human 
activities is likely to affect the natural flow in water scarce regions more than in wet 
regions, thus providing an additional possible explanation for the overestimation of 
MAF in dry regions.

Figure 2.4  |  Residuals plot of the backcasting of the 10-year average MAF vs the dryness ratio for 
(a) the regression model and (b) PCR-GLOBWB. Note that 18 values (about 3% of total data) with 
dryness ratios smaller than zero were excluded for clarity of representation.

2.4.3	 Applicability of the regression model

The residuals of our regression model were not related to area (Figure A.1-b), 
suggesting that the model is area-independent and maintains similar performance 
across catchments ranging across at least six orders of magnitude in size (2 to 106 km2). 
Although the distribution of the monitoring stations employed for the calibration of 
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the regression coefficients was skewed towards America and Europe (Figure 2.1), the 
residuals of the model-application (yearly and 10 years average MAF) were consistent 
across different continents (Figure A.3). This is supported by the wide range of latitudes 
covered by the monitoring stations, reflected by a large range in precipitation and 
temperature values (Table 2.1). This indicates that the model developed by this study 
can be applied to predict MAF at any point of any river network globally, taking into 
account the weaker prediction power for water scarce regions (see section 4.2). As such, 
the model is most suitable for assessments of water availability and ecological integrity 
in relation to changing future climatic conditions.

The model requires only a small number of input parameters, namely catchment area, 
catchment-averaged precipitation, catchment-averaged temperature, catchment-
averaged altitude and catchment-averaged slope. Catchment area as well as slope and 
altitude can be easily derived from a flow direction raster map and a digital elevation 
model with standard Geographic Information System (GIS) tools. Annual mean 
precipitation and temperature can be obtained from observations covering a given 
period of interest. If predictor variable values are within the range of values employed 
in the calibration phase (Table 2.1), the uncertainty of the predictions is known. 
Application of the model to predictor values outside the calibration domain results in 
MAF values with unknown uncertainty. In addition to this, given the fact that the model 
was calibrated on climatic data different from the CRU TS 3.23 (Harris et al., 2014), with 
a river network different from HydroSHEDS 15-sec (Lehner et al., 2008) or with another 
DEM else than the one provided by the WorldClim database (Hijmans et al., 2005), we 
acknowledge that the model is not valid with other input sources. 

The regression model performed worse for extreme MAF values when applied at finer 
temporal scales, as exemplified by the decreased performance of the model on a year-
by-year basis (Figure 2.3). This is due to the fact that the regression coefficients have 
been calibrated on 30 years averaged data and therefore when the model is applied at 
a finer temporal scale it would underestimate high MAF values and overestimate low 
MAF values. Yet, the bias due to temporal downscaling was relatively low at high MAF 
values (Figure 2.3), suggesting that the overestimation of MAF at low values is related 
to the decreased model performance in water-scarce regions (Figure 2.4) rather than 
the temporal downscaling. Implementing catchment aridity as predictor in a regression 
model is, however, a non-trivial problem. Attempts to include an interaction term of 
precipitation and temperature to describe catchment aridity within this study were 
inconclusive due to the scarce increase in the explained variance and multicollinearity 
issues. Furthermore, including complex multi-variable predictors would go beyond the 
scope of developing a conceptually simple and easily applicable model. In addition, 
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process-based models like PCR-GLOBWB which implement the evapotranspiration 
process in a more mechanistic way reveal the same limitations when predicting MAF 
in arid catchments. Therefore, the scarcity and uncertainty of monitored precipitation 
and discharge values in such regions represent a major source of bias. Hence, further 
research should focus on improving models for predicting mean annual flow in water 
scarce regions, which is particularly relevant in assessments of water availability and 
water footprints. In addition, future work would benefit from an increase in the quality 
and quantity of monitoring data, for precipitation and discharge in particular.

2.5	 CONCLUSIONS

We presented a conceptually simple model for predicting mean annual flow of rivers 
globally at any point of the river network. The model explained 89% of the variance in 
MAF based on observations retrieved from 1,885 catchments worldwide. The regression 
coefficients obtained were within the ranges reported by previous regional-scale studies 
and indicated that MAF scales linearly to catchment area, while it scales nonlinearly 
to precipitation with an exponent of about 2. Temperature, slope and altitude, which 
have not been used before in global regression models for MAF, further improve the 
explained variance. Our model can be applied to estimate MAF at any ungauged site in 
the river network globally. However, it should be noted that the model is valid only for 
input parameters within the range of the calibration variables and therefore, outside the 
applicability domain the uncertainty in the estimation of MAF is unknown. Application 
of the model to predict 1-year and 10-year average MAF based on independent test 
data revealed that only 3% and 1% of the simulated MAF values deviated more than 
one order of magnitude from the measurements, respectively. In addition to this, our 
model performed slightly better than the widely employed macro hydrological model 
PCR-GLOBWB, particularly for smaller catchments. Both the model developed in this 
study and PCR-GLOBWB performed worse for water-scarce regions by overestimating 
the MAF, due to the increased uncertainty in rainfall and discharge observations and to 
the difficulty in describing the catchment hydrology in such regions. This implies that in 
dry regions, our model should be applied very cautiously. 

It is recommended that forthcoming studies on global models for the prediction of 
MAF concentrate on including a better description of water-scarce regions within the 
model. Nonetheless, streamflow prediction models would in general benefit from the 
improvement of quality and quantity of monitored precipitation and discharge data 
especially in arid regions. In addition, future research should focus on whether such a 
simplified framework for describing catchment hydrology worldwide can be derived for 
finer temporal resolutions (daily or monthly).
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Abstract

Streamflow data is highly relevant for 
a variety of socio-economic as well as 
ecological analyses or applications, but 
a high-resolution global streamflow 
dataset is yet lacking. We created FLO1K, 
a consistent streamflow dataset at a 
resolution of 30 arc seconds (~1 km) 
and global coverage. FLO1K comprises 
mean, maximum and minimum annual 
flow for each year in the period 1960–
2015, provided as spatially continuous 
gridded layers. We mapped streamflow 
by means of artificial neural networks 
(ANNs) regression. An ensemble of ANNs 
were fitted on monthly streamflow 
observations from 6,600 monitoring 

stations worldwide, i.e., minimum and 
maximum annual flows represent the 
lowest and highest mean monthly flows 
for a given year. As covariates we used 
the upstream-catchment physiography 
(area, surface slope, elevation) and 
year-specific climatic variables 
(precipitation, temperature, potential 
evapotranspiration, aridity index and 
seasonality indices). Confronting the 
maps with independent data indicated 
good agreement (R2 values up to 
91%). FLO1K delivers essential data for 
freshwater ecology and water resources 
analyses at a global scale and yet high 
spatial resolution.
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3.1	 Background & Summary

Quantifying streamflow is critical to a variety of socio-economic and ecological analyses 
and applications (Bakker, 2012; Vörösmarty et al., 2010; WWAP (United Nations World 
Water Assessment Programme), 2015). Examples include the study of freshwater 
biodiversity patterns (Iwasaki et al., 2012; Oberdorff et al., 2011; Poff and Zimmerman, 
2010; Xenopoulos and Lodge, 2006), assessments of global water resources (Dai, 2016; Dai 
et al., 2009), for example irrigation supply, hydropower or water footprinting (Hanafiah 
et al., 2011; Hoekstra et al., 2011; Tendall et al., 2014), analyses of the fate of pollutants 
(Grill et al., 2016) and quantification of sediment fluxes (Syvitski et al., 2003; Syvitski, 
2005). Most of the stream reaches in the world are poorly or not monitored at all (Fekete 
and Vörösmarty, 2007; Sivapalan, 2003), due to the inaccessibility of most headwaters 
and a lack of financial and human resources (Shiklomanov et al., 2002), highlighted by 
a substantial decline in monitoring since the mid-1980s (Fekete and Vörösmarty, 2007; 
Hannah et al., 2011; Shiklomanov et al., 2002). Streamflow is commonly quantified with 
process-driven global hydrological models (GHMs) and land surface models (LSMs) (Beck 
et al., 2016a; Bierkens, 2015; Haddeland et al., 2014, 2011; Schellekens et al., 2017). GHMs/
LSMs are typically run at coarse spatial resolutions (~10 to 50 km), due to computational 
constraints, and consequently are unable to provide reasonable streamflow estimates 
for small rivers (defined here by Strahler stream order < 5), which comprise 94.6 % of 
the total stream length and riparian interface on the planet (Downing et al., 2012). 
Streamflow data at higher spatial resolution would be highly beneficial for ecological 
applications and water resources assessment, for example understanding/modelling 
freshwater species distributions or modelling the fate and effects of pollutants in the 
aquatic environment (Domisch et al., 2015a, 2015b; Grill et al., 2016; Labay et al., 2015; 
Thorp et al., 2006).

Compared to process-based models, data-driven models like regression equations 
and neural networks are more suited for generating high-resolution streamflow data 
with large spatial extent, thanks to their computational efficiency and relatively quick 
parameterization (Verdin and Worstell, 2008). Data-driven models typically quantify 
streamflow based on upstream catchment characteristics related to topography, 
climate, land cover, and soils (Barbarossa et al., 2017; Beck et al., 2015, 2013; Verdin and 
Worstell, 2008). Data-driven approaches have been mostly employed at a local scale 
(Razavi and Coulibaly, 2013). Recent studies demonstrated, however, the feasibility of 
applying a data-driven approach at a global scale, resulting in streamflow estimates 
that may have greater accuracy than the output of GHMs/LSMs (Barbarossa et al., 2017; 
Beck et al., 2015). Despite these encouraging results, consistent high-resolution global 
streamflow maps are not yet available.
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Here we present FLO1K: a consistent dataset of global annual streamflow maps at 1 km 
resolution for each year in the period 1960-2015. Annual flow (AF) metrics include 
mean annual flow as well as minimum and maximum monthly flow for a given year. 
We produced the maps with feed-forward Artificial Neural Networks (ANNs) trained on 
yearly AF metric values from 6,600 monitoring stations worldwide, using catchment-
averaged covariates representing topography and climate. We delineated the upstream 
catchments based on the 1-km HydroSHEDS (https://www.hydrosheds.org) hydrography 
(Lehner et al., 2008), extended with Hydro1k (https://lta.cr.usgs.gov/HYDRO1K) for 
latitudes above 60°N not covered by HydroSHEDS, thereby achieving a global coverage 
(excluding Antarctica). For the training of the ANNs, we used 10 yearly values of mean, 
minimum and maximum AF per monitoring station and climate covariates for the 
corresponding years. We then constructed the AF metric maps by first computing for 
each year and each 30 arc seconds grid cell the upstream catchment-averaged covariates 
(which varied from year to year for climate), and then applying the trained ANNs. 
The streamflow is calculated for each terrain grid cell, i.e., it represents the potential 
in-channel discharge that would occur in the presence of a natural watercourse. The 
flow maps have a resolution 10 to 50 times higher than those typically produced using 
state-of-the-art GHMs/LSMs (Verzano et al., 2012; Wada et al., 2014) and global data-
driven approaches (Beck et al., 2015). For each of the three AF metrics, 56 yearly layers 
(1960-2015) are available packed in the NetCDF-4 format CF-compliant. In addition, we 
provide the FLO1K layers upscaled to 5 and 30 arc minutes resolutions for coarser-grain 
applications, including comparisons with GHMs/LSMs outputs. The FLO1K database can 
be downloaded from http://geoservice.pbl.nl/download/opendata/FLO1K and figshare 
(Data Citation 1: figshare https://dx.doi.org/10.6084/m9.figshare.c.3890224).

3.2	 Methods

3.2.1	 General approach and streamflow network

The procedure to generate the maps consisted of (i) model fitting, including observed 
streamflow data preparation, extraction of covariates, and training of the ANNs, and (ii) 
application of the ANNs to generate the global AF maps. Figure 3.1 provides a general 
outline of the procedure. We used the 30 arc seconds (~1 km) version of HydroSHEDS35 
extended with Hydro1k for latitudes above 60°N to retrieve the drainage direction 
network and delineate the upstream catchment of each grid cell (Wu et al., 2012, 
2011). The HydroSHEDS hydrography is based on the National Aeronautics and Space 
Administration (NASA) Shuttle Radar Topography Mission (SRTM) digital elevation 
model (DEM) (Farr et al., 2007), which covers the entire terrestrial land surface from 
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latitudes 56°S to 60°N. To achieve a global spatial coverage, we extended HydroSHEDS 
with Hydro1k (Wu et al., 2012, 2011), the latter being a United States Geological Survey 
(USGS) product derived from the GTOPO30 Digital Elevation Model (DEM) (https://lta.
cr.usgs.gov/GTOPO30). The resulting drainage direction network is available at http://
files.ntsg.umt.edu/data/DRT/.

Figure 3.1  |   Schematic overview of the streamflow mapping procedure. The procedure 
consisted of four main steps: 1) monitoring stations (gauges) are geo-referenced based on the 
global hydrography, 2) catchment-specific covariates are compiled by aggregating climatic 
and physiographic variables over the upstream catchment of each cell, 3) ANNs are trained on 
monitoring data of AF metrics and covariates of the corresponding upstream catchment, 4) the 
trained ANNs are applied to the spatially-continuous covariates to create the global streamflow 
maps.

3.2.2	 Streamflow observations

We derived mean, maximum and minimum AF values from flow records in the 
Global Runoff Data Centre (GRDC) database (www.bafg.de/GRDC) (GRDC, 2017). 
The GRDC comprises daily and monthly streamflow records from 9,252 monitoring 
stations worldwide. The GRDC monitoring stations are not directly referenced on the 
hydrography employed in this study. This means that mismatched monitoring stations 
might encompass the wrong upstream catchment basin, which in turn may lead to 
errors when training the ANNs. As the GRDC dataset includes the estimated catchment 
area upstream of each monitoring station, we geo-referenced each station in order to 
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match the most similar upstream area on the 30 arc seconds stream network, following 
the procedure previously used to allocate GRDC stations on the HydroSHEDS 15 arc 
seconds hydrography (GRDC, 2011). For each station, a new location is selected that 
minimizes discrepancies in catchment area and distance from the original location, 
within a 5 grid cells (~5 km) search radius. Out of the original 9,252 monitoring stations, 
285 were excluded as they did not report coordinates. Of the remaining 8,967, 746 (~8%) 
were excluded because there was no matching catchment area within the search radius 
(based on a threshold of maximum 50% difference (GRDC, 2011)). Out of the remaining 
8,221, 65% reported an area difference smaller than 5%, 15% had an area difference 
between 5% and 10%, and 20% had an area difference between 10% and 50%.

We used the monthly records provided by the GRDC to calculate AF metrics for the 
period 1960-2015. We computed the mean AF for each year by averaging the 12 
monthly values, and retrieved maximum and minimum AF by selecting the highest and 
lowest monthly values for each year, respectively. We considered only those years with 
a complete 12 months record and selected monitoring stations with at least 10 years 
of data from 1960 through 2015. The remaining set of stations totaled 6,600 and were 
globally distributed as shown in Figure 3.2.

Figure 3.2  |  Distribution of the 6,600 GRDC stations monitored for at least 10 years in the period 
1960-2015. Stations are colored according to the Köppen-Geiger climate classification (Kottek et 
al., 2006). 
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3.2.3	 Catchment-specific covariates

As covariates of the flow metrics we used topography and climate, which we retrieved 
from publicly available spatially explicit sources and then aggregated to the upstream 
catchment of each grid cell. The choice of the covariates set and source data was based 
on previous studies (Barbarossa et al., 2017; Beck et al., 2015, 2013; Farmer and Vogel, 
2013; Razavi and Coulibaly, 2013; Verdin and Worstell, 2008; Vogel et al., 1999), expert 
knowledge and data availability. A list of the covariates and related source databases is 
provided in Table 3.1.

Table 3.1  |   Description of the predictor variables used as input for the modelling of AF. The 
spatial resolution refers to the source data; for the analysis all variables were resampled to ~1 km.

Category Variable 
description

Source Annual 
metric

Unit No. 
layers

Spatial 
resolution

Temporal 
coverage

Topography

Upstream 
catchment area

This study - km2 1 ~ 1 km -

Elevation
SRTM + 
GTOPO30

- m 1 ~ 1 km -

Surface slope USGS - ° 1 ~ 1 km -

Climate

Precipitation
MSWEP + 
GPCC

Mean
mm/
month

56 x 4 ~ 25 km 1960 - 2015

Minimum
mm/
month

Maximum
mm/
month

Seasonality 
index

-

Air temperature
CRU TS 
3.24.01

Mean K

56 x 3 ~ 50 km 1960 - 2015Minimum K

Maximum K

Potential evapo-
transpiration

This study

Mean
mm/
month

56 x 2 ~ 50 km 1960 - 2015
Seasonality 
index

-

Aridity index This study - - 56 ~ 25 km 1960 - 2015
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We calculated the area of the upstream catchment of each cell by summing the areas 
of the upstream grid cells. We derived the upstream catchment-averaged elevation 
from the SRTM DEM40 resampled at 30 arc seconds as provided by HydroSHEDS35, 
supplemented with the GTOPO30 DEM for areas lacking SRTM coverage, i.e., latitudes 
above 60°N. We transformed the elevation values by adding a constant value of 500 m 
to avoid negative values, the lowest being represented by the shores of the Dead Sea 
at 430 m below sea level. We employed the USGS slope map developed for the Prompt 
Assessment of Global Earthquakes for Response (PAGER) system (Verdin et al., 2007) 
to calculate upstream catchment-averaged surface slope values. This map is based on 
the same SRTM+GTOPO30 DEM and has been corrected for the discrepancy between 
ground units (arc degrees) and elevation units (meters; Figure 3.3) (Verdin et al., 2007).

Figure 3.3  |  Long-term mean annual flow map overview. The long-term mean annual flow 
represents the average of the year-specific FLO1K maps for mean AF over the period 1960-2015. 
The global map has been upscaled using maximum-value resampling by a factor of 20 for clarity 
of visualization. Insets show the original 1 km resolution. Location of each inset is marked on the 
global map by a black square.

We derived the upstream catchment-averaged values for annual mean, maximum 
and minimum air temperature (Tair) and precipitation (P), as well as potential 
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evapotranspiration (PET), aridity index (AI) and seasonality index for P and PET, for 
every year over the period 1960-2015. For air temperature, we employed the Climate 
Research Unit (CRU) Time Series (TS) dataset (Harris et al., 2014) (version 3.24.01; 
monthly temporal and 0.5° spatial resolution). For precipitation, we used the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2017) (version 
1.2; 3-hourly temporal and 0.25° spatial resolution; 1979-2015) supplemented with the 
Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis (Schneider et al., 
2015) (version 7; monthly temporal and 0.5° spatial resolution) prior to 1979. MSWEP 
merges a wide range of gauge, satellite, and reanalysis datasets to achieve precipitation 
estimates with greater accuracy than any other global dataset (Beck et al., 2017). To 
combine the GPCC and MSWEP datasets, we rescaled the GPCC estimates such that 
the 1979-2013 mean of GPCC matched that of MSWEP. For each year and grid cell, we 
retrieved the mean annual value of Tair and P as the mean over the 12 monthly layers, and 
the minimum and maximum as the lowest and highest monthly values, respectively. We 
computed mean annual potential evapotranspiration from monthly Tair values following 
the temperature-based approach of Hargreaves et al., (1985) and employing the same 
CRU TS v. 3.24.01 source data for temperature. Similarly, we calculated seasonality index 
layers for P and PET as , where si, yr and m stand for seasonality 
index, yearly and monthly values, respectively (Walsh and Lawler, 1981). We downscaled 
the raster layers for the climate-related covariates to match the 30 arc seconds resolution 
of the hydrography using nearest-neighbour resampling. In addition, we calculated the 
aridity index for each year as PET/P, using mean annual P and PET.

To calculate the upstream catchment-average values of the covariates, we employed the 
TauDEM software (Terrain Analysis Using Digital Elevation Models, http://hydrology.usu.
edu/taudem). TauDEM is an open-source C++ software explicitly designed to implement 
the flow algebra for large datasets, employing a Message Passing Interface (MPI, http://
mpi-forum.org) to implement highly parallelized processing algorithms (Tarboton, 2008; 
Tarboton et al., 2009; Tesfa et al., 2011). We extracted the covariates for the upstream 
catchment of each cell of the global hydrological network via the so-called flow 
accumulation technique (‘AreaD8’ in TauDEM). This technique considers each grid cell 
as a pour point and subsequently calculates the number of upstream grid cells or the 
sum of the attribute values of these upstream grid cells, using the flow direction map to 
delineate the watershed boundaries of the upstream catchment. To derive continuous 
upstream catchment-averaged values for the predictor variables, we divided the sum 
of the upstream covariate values by the total number of upstream grid cells at each 
pour point. To speed-up the calculations, we split the global flow direction layer into six 
continents (North America, South and Central America, Europe, Africa, Asia, Oceania). 
Adjacent continents (e.g., Europe and Asia) were separated along watershed boundaries.
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3.2.4	 Training of Artificial Neural Networks

We quantified the relationships between the flow metrics and the covariates using 
artificial neural networks (ANNs), which have been widely used for hydrological 
modelling from local (Yaseen et al., 2015) to global (Beck et al., 2015, 2013) scales. 
We employed the feed-forward ANN algorithm based on the multi-layer perceptron 
structure with one hidden layer (Bishop and M., 1995; Haykin, 1994) (Figure 3.1). We 
trained the ANNs based on year-specific values of mean, minimum and maximum AF, 
using the upstream-catchment topography and year-specific climate as covariates 
(Table 3.1). We applied a Box-Cox transformation to normalize the distributions of each 
variable (response and covariates) (Box and Cox, 1964). In addition, we standardized 
each distribution to zero mean and unit standard deviation, as required for the ANNs 
(Haykin, 1994). To avoid possible bias due to differences in monitoring intensity among 
the stations, we randomly picked 10 yearly values from those stations monitored at 
least 10 years across the 1960–2015 period. We then iterated the ANNs training 20 times, 
sampling different years from those stations having a record longer than 10 years. Prior 
to the training, we tuned the number of neurons of the hidden layer of the ANNs and 
the weights decay value to regularize the ANNs cost function, and therefore control for 
overfitting. To this end, we used 10-fold cross-validation (CV) whose folds were based on 
excluded monitoring stations, and identified the number of neurons and weights decay 
value that maximized the median coefficient of determination (R2) and minimized the 
median Root Mean Square Error (RMSE) of the testing set. As a result, we employed 20 
neurons for the ANNs hidden layer and a weights decay value of 0.01.

3.2.5	 Generating mean, maximum and minimum AF global maps

We applied the ANNs model to produce 30 arc seconds maps with mean, maximum and 
minimum annual flow from 1960 through 2015 (Data Citation 1: figshare https://dx.doi.
org/10.6084/m9.figshare.c.3890224). For each grid cell, we computed the AF metrics as the 
median across the outputs of 20 trained ANNs and back-transformed the values to m3∙s-1.

We upscaled the 30 arc seconds layers to 5 and 30 arc minutes resolutions, in order to 
serve potential coarser-grain applications. We based the upscaled output on the 5 and 
30 arc minutes flow direction grids produced by applying the dominant river tracing 
(DRT) algorithm to the same 30 arc seconds flow direction layer used in this study (Wu 
et al., 2012, 2011). The 5 and 30 arc minutes flow direction grids are freely available 
for download at http://files.ntsg.umt.edu/data/DRT/. We upscaled the 30 arc seconds 
streamflow values by choosing the value of the cell that minimized the differences in 
upstream-drainage area between the native 30 arc seconds and the coarser resolution 
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grid cell. For the 5 arc minutes grids it was necessary to employ a one-cell search radius 
to avoid losing connectivity.

3.2.6	 Code availability

The code used to generate the covariate data, geo-reference the monitoring stations, 
train the ANNs and generate the flow maps (Data Citation 1: figshare https://dx.doi.
org/10.6084/m9.figshare.c.3890224) was written and run in R version 3.3.2. TauDEM 
tools (Tarboton, 2008) were used to produce the catchment-specific covariate layers 
and GDAL library (GDAL Development Team, 2017) functions were employed to handle 
the analyses on large raster data. The scripts are available on request.

The ensemble of trained ANNs are available as R objects (.rds) and as Portable Model 
Markup Language (PMML) objects for cross-platform compatibility (.pmml, http://dmg.
org). The parameters used for the Box-Cox transformation and standardization of the 
variables employed by the ANNs are also available in CSV format.

3.3	 Data Records

The FLO1K dataset is a set of gridded layers packed as NetCDF-4 files freely available for 
download (Data Citation 1: figshare https://dx.doi.org/10.6084/m9.figshare.c.3890224). 
For each of the three AF metrics, 56 yearly layers are available from 1960 through 2015, 
yielding a total of 168 layers. Each non-null cell represents the potential streamflow 
in m3∙s-1, stored as 32-bit floating point. Layers are in the WGS84 coordinate system 
with a cell size of 30 arc seconds (~ 1 km) and a global extent, including all continents 
except for Antarctica (90°N to 90°S latitude and 180°W to 180°E longitude). In addition, 
upscaled data are available at 5 and 30 arc minutes.

3.4	 Technical Validation

To evaluate the quality of the FLO1K maps, we run a 10-fold cross-validation for each of 
the 20 ANN runs, such that each observation was included in the test set once and by 
splitting the folds by stations. We assessed the overall map quality with R2 and RMSE 
calculated based on log-transformed values to evaluate the performance across the full 
spectrum of streamflow values (10-3-105 m3∙s-1). Cross-validation results showed high 
agreement between training (90%) and independent testing (10%) data, with negligible 
variation among the replicates (Table 3.2).
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Table 3.2  |  Model performance statistics. The R2 and RMSE values represent medians (with 
standard deviations in brackets) of the 10-fold cross-validation of 200 replicates. Both R2 and RMSE 
were calculated from log-transformed values, therefore the RMSE is unitless.

AF metric R2 RMSE

Training Testing Training Testing

Mean 0.92 (0.001) 0.91 (0.002) 0.32 (0.002) 0.34 (0.004)

Maximum 0.91 (0.001) 0.90 (0.002) 0.33 (0.002) 0.34 (0.005)

Minimum 0.85 (0.001) 0.83 (0.003) 0.48 (0.002) 0.51 (0.005)

We assessed the uncertainty per grid cell resulting from the sub-sampling of the 
monitoring stations, by computing the coefficient of variation (CoV) over the 20 
replicates. Uncertainty was very low (CoV < 0.5) for the main river stems globally and 
smaller reaches in wet regions (Figure 3.4). We found higher uncertainty (higher 
CoV values) for low streamflow values in dry areas, e.g., the upper basin of the Nile 
(central inset of Figure 3.4). These higher CoV values likely reflect the lower number of 
streamflow observations available for calibrating the ANNs in these areas. The highest 
CoV values (> 3.5) were found in grid cells with a low number of upstream grid cells 
(typically <5) in dry areas. In these grid cells, most of the ANN replicates yielded zero-
flow values whereas one or few replicates yielded close-to-zero values, resulting in a 
low mean yet large CoV across the 20 replicates.

We checked for potential bias in streamflow estimates in the northern hemisphere due 
to snowmelt delays, e.g., the contributing effect of snowfall in November-December of 
the previous year on the streamflow in May-June. To this end, we generated streamflow 
maps based on the US water year (November-October) for stations north of 40N and 
compared their performance to the original (calendar year-based) FLO1K maps. We 
tuned the ANNs ensemble and computed the streamflow fields adopting the US water 
year for both the streamflow data and the climate input variables. Differences in R2 
between models based on calendar versus US water year were smaller than 0.01 and 
therefore considered negligible (Table 3.3).
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Figure 3.4  |  Uncertainty in mean AF due to differences in sub-sampling among the 20 ANN 
replicates. Uncertainty is expressed as coefficient of variation (CoV) averaged across the overall 
period 1960-2015. The global map has been upscaled using mode resampling by a factor of 5 for 
clarity of visualization. Insets show the original 1 km resolution. Location of each inset is marked 
on the global map by a black square.

Table 3.3  |  Comparison of R2 values for streamflow metrics based on calendar vs US water year. 
The comparison is based on 2,484 stations north of 40N latitude, monitored for at least 30 years in 
the period 1960-2015. The R2 was calculated from log-transformed values. LT: long term; YR: yearly.

AF metric

Mean (LT) Mean (YR) Max (LT) Max (YR) Min (LT) Min (YR)

Calendar year 0.975 0.953 0.969 0.936 0.933 0.885

US water year 0.975 0.955 0.969 0.942 0.928 0.879

3.5	 Usage notes

The FLO1K dataset reports the potential streamflow in m3·s-1 in each grid cell, i.e., the 
discharge that would occur if there were a natural watercourse. To avoid confusion, 
we emphasize that the estimates represent volumetric streamflow rather than specific 
runoff. As such, the estimates cannot directly be compared with outputs from climate 
or land surface models without a streamflow routing component.
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We refrained from filtering the output to the actual stream network because there 
are multiple methods for stream network delineation (Avcioglu et al., 2017; Hancock, 
2005; Istanbulluoglu et al., 2002; Russell et al., 2015; Sangireddy et al., 2016; Tarboton 
et al., 1992, 1991; Thompson et al., 2001), which users of FLO1k may want to select or 
refine according to their needs. For global-scale analyses one might adopt an arbitrary 
upstream catchment area threshold in order to delineate the network (e.g., 25 upstream 
grid cells as in Hydrosheds (Lehner et al., 2008)), as to our knowledge more refined 
methods have not yet been developed/tested.

The estimated maximum and minimum flow values for a given year reflect the highest 
and the lowest monthly values of that year. This does not give an indication about which 
months of the year belong to the maximum or minimum flow. The corresponding months 
might change from year to year based on the yearly distribution of the precipitation.

Users of the upscaled streamflow grids should keep in mind that these are contingent 
on the respective DRT flow direction layers (Wu et al., 2012, 2011). Further, the accuracy 
of the upscaled grids has not been evaluated.
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Abstract

Dams have a high socio-economic 
value (e.g., for water security, energy 
provisioning and flood protection), but 
also fragment freshwater habitats. Yet, 
a global species-level quantification 
of dam-induced fragmentation is 
lacking. Here, we assessed the degree of 
fragmentation of the occurrence ranges 
of ~5,700 lotic fish species worldwide 
due to ~40,000 existing and ~3,700 
additional future dams. Per river basin, 
we quantified a connectivity index (CI) 
for each fish species by combining its 
occurrence range with a high-resolution 
hydrography and the locations of the 

dams. Ranges of non-diadromous fish 
species were more fragmented (CI=69 
± 30%; mean ± standard deviation) than 
ranges of diadromous species (CI=82 
± 22%). Fragmentation due to future 
dams was especially high in the tropics, 
with declines in mean CI of ~20-30% in 
the Amazon, Niger, Congo and Mekong 
basins. Our assessment can guide river 
management at multiple scales and in 
various domains, including strategic 
hydropower planning, identification 
of species at risk, and prioritization 
of restoration measures, such as dam 
removal and bypass construction.
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4.1	 Introduction

Freshwater habitats cover only about 0.8% of the Earth’s surface, yet they host a 
disproportionately high diversity of species. One third of the described vertebrates, 
including ~40% of the fish species, are found in freshwater environments (Nelson, 
2006). Freshwater biodiversity is also disproportionately threatened, with decline rates 
higher than observed for marine or terrestrial biodiversity (WWF, 2018). Damming of 
rivers is one of the main threats to freshwater biodiversity (Reid et al., 2019; Vörösmarty 
et al., 2010). While dams provide direct economic benefits (e.g. water security, flood 
protection and renewable energy), they affect freshwater ecosystems by inundation, 
hydrologic alteration and fragmentation, for example (Grill et al., 2019; Herbert and 
Gelwick, 2006). Fragmentation of the freshwater environment has major implications 
for freshwater fish (Carvajal-Quintero et al., 2019) as dams obstruct migration routes, 
essential for spawning or feeding, and limit dispersal (Fuller et al., 2015; van Puijenbroek 
et al., 2019). The near-future expansion of hydropower facilities will further threaten 
freshwater fish biodiversity (Reid et al., 2019). While an estimated ~50% of the river 
volume is currently altered by either flow regulation or fragmentation, the pending 
construction of ~3,700 major hydropower dams is expected to increase this percentage 
to 93% (Grill et al., 2015; Zarfl et al., 2015). 

Efforts to quantify the effects of dams on the connectivity of freshwater fish habitat 
have mainly been carried out at local scales (e.g., 9, 12, 13). Global-scale assessments 
are key to identify and prioritize conservation needs, but thus far have focused on 
mapping river connectivity without quantifying impacts on freshwater biodiversity 
(Grill et al., 2019, 2015; Nilsson et al., 2005). An exception is Liermann et al. (Liermann 
et al., 2012) relating the degree of present-day river fragmentation within freshwater 
ecoregions to their overall freshwater fish diversity. However, freshwater ecoregions 
cover large extents (average area = 311,605 km2, n = 426) (Abell et al., 2008) and do not 
account for the actual geographical range of species, which can be limited to smaller 
areas and hence be subject to different degrees of fragmentation. In addition, by 
encompassing and cutting through multiple watersheds (Abell et al., 2008), ecoregions 
do not account for the spatial connectivity of rivers, which defines the spatial template 
for aquatic biodiversity and species migration. Thus, a spatially resolved and species-
specific assessment of fragmentation effects, accounting for the actual global drainage 
network, is missing.

Here, we assessed impacts of current and future dams on the geographic range 
connectivity for ~5,700 lotic (i.e., that live partially or exclusively in flowing freshwater 
bodies) fish species worldwide. We included ~40,000 existing dams (Lehner et al., 2011; 
Mulligan et al., 2009) and ~3,700 dams that are currently under construction or planned 
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(Zarfl et al., 2015). We employed a species-specific modelling approach to quantify 
connectivity for each of the ~5,700 fish species based on their actual occurrence range. 
We based our analysis on a high-resolution hydrological network comprising ~1M 
sub-basin units with an average size of ~100 km2 (Lehner et al., 2008). We adopted 
connectivity measures specific to non-diadromous and diadromous fish species, 
respectively, as fragmentation impacts of dams might differ between fish that migrate 
between freshwater and marine environments and fish that complete their lifecycle in 
freshwater (Cote et al., 2009). The species-specific modelling approach combined with 
a detailed hydrography allowed us to identify species groups most at risk as well as 
geographic hotspots of impact. 

4.2 Results

Based on the ~40,000 existing dams we found substantially lower range connectivity 
for non-diadromous species (CI=69±30%, mean ± standard deviation) compared to 
diadromous species (CI=82±22%, Figure 4.1). The completion of ~3,700 dams that are 
currently under construction or planned will further lower the connectivity of non-
diadromous species’ ranges (CI=60±31%, Figure 4.1). For diadromous species the 
decrease in CI due to future dams construction was smaller (CI=78±23%, Figure 4.1), 
but still locally relevant (Figure 4.2). In general, connectivity was lower and projected 
to further decrease in larger rather than smaller basins (Figure 4.2). 

Our results revealed the lowest CI values for species occurring in North America, Europe, 
India and China. These values did not substantially decrease in the future (Figure 4.2). 
In contrast, we found the largest differences between present and future dams for 
species occurring in South America, Africa and South East Asia (Figure 4.2). Decreases 
in connectivity due to future dams were particularly high for non-diadromous species 
in large tropical and sub-tropical rivers, e.g., Amazon, Congo, Niger, Salween, and 
Mekong (Figure 4.2, 2.3a and B.4). For instance, the mean CI across the species of the 
Amazon basin dropped by ~30 percent points in the future, and in the Mekong, Congo 
and Niger the drop was ~20 percent points (Figure 4.3a). In contrast, the connectivity 
of diadromous species’ ranges declined most in small basins along the coastline of 
Central-Eastern Africa, Western Africa and the Malay Archipelago (Figure 4.2). For 
instance, in the Comoe in Western Africa and the Purari basin in Papua New Guinea, the 
construction of a few mainstream dams resulted in a strong decrease in connectivity. 
For instance, the mean connectivity dropped from ~100% to ~20% in the Purari basin 
and to ~50% in the Comoe basin (Figure 4.3b). Yet, high CI reductions for diadromous 
species were observed also in larger basins like the Danube, Niger and Salween, where 
connectivity drops were as high as ~30 percent points (Figure 4.2, 4.3b and B.4).
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Figure 4.1  |  Connectivity Index (CI) across species (top) and main river basins (bottom). Values 
are shown for present dams (black) as well as present and future dams together (gray). For species 
occurring in multiple watersheds, the area-weighted mean of the basin-specific CI values was 
calculated (top). The basin-level CI  (bottom) represents the mean of the CI values across the 
species occurring within the basin. Boxes represent the interquartile range and the median, and 
whiskers the 95% interval. Red diamonds represent the mean.
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Figure 4.2  |  Mean connectivity index (%) per sub-basin (~1M units) for present situation (top), 
future projection (center) and the difference between them (bottom) for diadromous (left) and 
non-diadromous (right) fish species. Grey represents areas without species range data.
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Figure 4.3a. Mean connectivity Index (CI) across non-diadromous species in four main hydrologic 
basins. The maps show the basin hydrography with the location of dams (on the left) and the 
connectivity index at the sub-basin level for the present situation and future projections 
(center). On the right, the species-specific CI values are summarized as boxplots, with diamonds 
representing the mean. Location of the selected basins is shown in Figure B.6.
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Figure 4.3b. Mean connectivity Index (CI) across diadromous species in four main hydrologic 
basins. The maps show the basin hydrography with the location of dams (on the left) and the 
connectivity index at the sub-basin level for the present situation and future projections 
(center). On the right, the species-specific CI values are summarized as boxplots, with diamonds 
representing the mean. Location of the selected basins is available in Figure B.6.
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In the current situation the ranges of species in equatorial climates (n = 3,077) were 
the most connected, but the connectivity dropped considerably in response to the 
future dams (mean CI from ~80% to ~70%; Figure 4.4a). CI values for species with larger 
occurrence ranges were lower and projected to further decrease in the future compared 
to species occurring over smaller areas (<~10,000 km2, Figure 4.1 and 4.4b). The CI was 
lower for large-bodied species (maximum body length >30cm, mean CI≈50%) than for 
very small species (< 5cm, mean CI≈75%; Figure 4.4c). Species classified as “least concern” 

Figure 4.4  |  Mean of species-specific CI values by different traits and categories for present 
and future, including a) Köppen-Geiger climate zones, where A=Equatorial, B=Arid, C=Warm 
temperate, D=Snow, E=Polar, b) initial geographical range area (log (base 10)-transformed km2), 
c) body length (cm), d) IUCN threat status, where CR=Critically endangered, VU=Vulnerable, 
NT=Near Threatened, LC=Least Concern, EN=Endangered, DD=Data Deficient, e) commercial 
relevance , where Com. = commercial, HCom. = highly commercial, MCom. = minor commercial, 
NonInt. = of no interest and Subs. = subsistence fisheries, and f) species order, where groups with 
less than 20 species are grouped together in the “other” category (the full list of order names is 
provided in Table B.1). For species occurring in multiple watersheds, an area-weighted mean of 
the basin-specific CI values was calculated before we averaging across species. Each panel shows 
a subset of the analyzed 5,638 species in this study (underneath each category the number of 
species is reported in brackets), as metadata for species traits and categories was not available for 
all the species.



62    |    Chapter 4

or “not threatened” by the IUCN, revealed CI values equal to or lower than threatened 
species (Figure 4.4d). Furthermore, we found overall low mean CI values for species of 
commercial importance (~50%), while projected future declines in connectivity were 
relatively high for species of no commercial interest and species subject to subsistence 
fisheries (Figure 4.4e). Taxonomic groups with the lowest present and future CI values 
were Cypriniformes, Osmeriformes, Salmoniformes and Scorpaeniformes (Figure 4.4f). 

4.3	 Discussion

In this study, we assessed impacts of present and future dams on geographical range 
connectivity for ~5,700 lotic fish species. Based on the largest consistent global 
compilation of existing dams, we found that the ranges of non-diadromous species 
are, on average, considerably more fragmented than the ranges of diadromous species 
(Figure 4.1). The marked difference is likely due to the different spatial distribution of 
the two species groups with respect to dams’ location (Figure B.2 and B.3). Diadromous 
species are concentrated along the coastlines of the world’s continents, with hotspots 
of species richness in small basins of the Malay Archipelago and African coastline 
(Figure B.2), which are less fragmented (Figure 4.2) due to relatively low numbers of 
both present and future dams (Figure B.3). In contrast, the connectivity reduction of 
~9 percent points for non-diadromous species (Figure 4.1) suggests that the relatively 
large number of small upstream dams planned for hydropower generation (Figure B.5) 
(Zarfl et al., 2015) will affect non-diadromous fish disproportionately. According to our 
results, ranges of many non-diadromous species in the world’s largest tropical basins will 
become highly fragmented after the completion of dams currently under construction 
or planned (Figure 4.2 and 4.3a). This result is in line with the general expectation 
that the biodiverse tropical watersheds such as the Amazon, Mekong and Congo will 
experience large ecological consequences from the expected boom in hydropower in 
these regions (Latrubesse et al., 2017; Winemiller et al., 2016). 

We acknowledge that the database of dams considered in our study is not exhaustive, 
as small barriers are not considered. Even the ~40,000 dams covered by the GRanD and 
GOODD databases represent a minority of all dams worldwide (McCully, 2001; World 
Comission on Dams, 2000), highlighting the need for increased efforts to geo-reference 
dams and barriers. From this perspective, the connectivity index values reported here 
most likely represent an optimistic estimate (i.e., ranges might be more fragmented in 
reality). In addition, present-day species ranges may have been contracted compared 
to a pristine scenario due to existing dams (van Puijenbroek et al., 2019), potentially 
leading to a further underestimation of the fragmentation impacts in our assessment. 
On the contrary, we could not include fish passes in our modelling approach hence 
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assumed full impassability of the barriers, potentially leading to an overestimation 
of the fragmentation in some river basins. Yet, while efforts have been carried out to 
include fish passes in dams to allow fish to migrate across the barrier, evidence suggests 
that fish passes are not very effective and sometimes even harmful, with nature-like 
bypasses as the only exception (Birnie-Gauvin et al., 2018; Silva et al., 2018). We further 
acknowledge that the species covered by the IUCN represent roughly half of the known 
freshwater fish species (Tedesco et al., 2017), with a spatial bias in terms of coverage. For 
instance, the IUCN assessed only about one fourth of the species actually occurring in 
the Amazon basin (Tedesco et al., 2017). This implies that the basin-average connectivity 
index might be lower or higher than estimated here, depending on the locations of the 
ranges of the missing species.

Higher levels of fragmentation will likely resolve in reduced fish populations (Alò and 
Turner, 2005; Dias et al., 2017; Ziv et al., 2012). By disconnecting the continuum of the 
river network, dams isolate fish populations, reduce access to feeding areas and disrupt 
access to spawning sites (Fuller et al., 2015; van Puijenbroek et al., 2019). Indirectly, dams 
also exert additional upstream and downstream pressures on the aquatic habitats, e.g., 
by impoundment and altering flow and thermal regime and sediment and nutrient 
dynamics (Grill et al., 2019; Herbert and Gelwick, 2006; Poff and Schmidt, 2016). The 
tradeoffs among ecosystem services and hydropower gains are often overlooked and 
might lead to high socio-economic costs (Intralawan et al., 2018). This holds especially 
where communities are highly reliant on inland fisheries as source of proteins and 
household income, e.g., in basins such as the Amazon, Congo, Niger, Mekong, Irrawaddy 
and Salween (FAO, 2018; Intralawan et al., 2018; McIntyre et al., 2016). On the one hand, 
implementation of aquaculture fish production can compensate for reduced inland 
fisheries but it is associated with environmental impacts like introduction of non-
native fishes and degradation of water quality (Edwards, 2015; Jia et al., 2015). Further, 
increased fragmentation could potentially exacerbate the ecological effects of size-
biased harvesting of freshwater fish species. Our findings revealed that larger species 
have, on average, a more fragmented range than smaller species (Figure 4.4c), meaning 
that damming could potentially increase the effects of direct human exploitation, that 
are larger on the bigger fish species (Olden et al., 2007).

To our knowledge, our assessment is the first to quantify losses of connectivity of 
freshwater fish species ranges globally. Our species-specific and high-resolution 
(watershed units of ~100 km2) method enables further understanding of potential 
ecological effects of existing dams and future dam installations that are often neglected 
in hydropower planning (Latrubesse et al., 2017). For instance, the case of the Purari basin 
in Papua New Guinea showed that the potential completion of one downstream dam 
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could strongly reduce the connectivity of the basin for diadromous species (Figure 4.3b). 
By only considering the topologic connectivity of the river network, without accounting 
for the actual geographical ranges and migratory behavior of the species, such patterns 
would not emerge. Our assessment also showed that fish species in Western Europe, 
US, India and China retain the lowest connectivity values (Figure 4.2). In Europe and 
US, efforts to remove ecologically impactful dams and restore longitudinal connectivity 
are currently underway. For instance, ~1,500 dams have already been removed in the 
US (American Rivers, 2019; O’Connor et al., 2015) and ~2,500 in Europe (data from UK, 
Sweden, Spain, Finland, www.damremoval.eu), although potential ecological tradeoffs 
related to the removal of large dams are still not well understood (Foley et al., 2017; 
Ishiyama et al., 2018). Our study can aid designing optimization strategies to prioritize 
sites for hydropower expansion (Schmitt et al., 2018) as well as river restoration, e.g. 
through dam removal (Opperman et al., 2011) or nature-like bypasses (Silva et al., 2018), 
that minimize or reduce ecological impacts and maximize dams benefits. 

4.4	 Methods

4.4.1	 Species occurrence data

We retrieved data on species’ occurrence from the IUCN Red List of Threatened Species 
(IUCN, 2018). The IUCN database provides spatially explicit occurrence range data for 
7,242 freshwater fish species, about half of the known freshwater fish species (Tedesco 
et al., 2017), compiled from occurrence records and expert knowledge. This database 
represents the best available data on the spatial occurrence of freshwater fish species 
worldwide (McManamay et al., 2018). Since our analysis focuses on lotic species (that 
are found in flowing water bodies), we excluded lentic species that occur exclusively in 
stagnant water bodies. In addition, we considered only geographical ranges of species 
reported as extant. In total, we employed geographical ranges for 5,638 fish species 
(Figure B.2). We defined species that according to fishbase.org (Froese and Pauly, 2018) 
migrate to/from the marine environment as “diadromous” (n = 221), while the remaining 
were classified as “non-diadromous” (n = 5,417). More details on the classification of 
species are provided in Appendix B.

4.4.2	 Present and future dam locations data

We retrieved data on the locations of 39,912 dams worldwide (Figure B.3), including 7,320 
major dams (> 15 m high) from the Global Reservoir and Dam (GRanD) database (Lehner 
et al., 2011) and 32,592 additional dams from the GlObal geOreferenced Database of 
Dams (GOODD), comprising dams visible on global remote-sensing imagery (Mulligan 
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et al., 2009). To date, these two databases represent the most comprehensive global 
source for georeferenced data on dams (Grill et al., 2019). We employed the future 
Hydropower Reservoirs and Dams (fHReD) database for future dam locations (Zarfl  et 
al., 2015), which includes 3,681 dams (from here on called “future dams”) of which 574 
are “under construction” while the others are planned. This collection of dams is limited 
to hydropower dams above 1 MW capacity with available data on location and capacity 
and which have, at least, passed the feasibility evaluation stage (Zarfl  et al., 2015).

4.4.3 Connectivity index calculation

We calculated a habitat connectivity index for each species following the approach of 
Cote et al (2009),  diff erentiating between diadromous and non-diadromous species. In 
our study, we applied the approach developed for potamodromous species to the non-
diadromous category, which includes both resident migratory (potamodromous) and 
resident non-migratory lotic species. Connectivity indices are commonly calculated based 
on vectorized river networks. However, the IUCN database reports species’ occurrence 
as geographical ranges, areas covering a portion of a main hydrologic basin (which is 
defi ned as a basin with an outlet to the sea/internal sink). To apply the connectivity 
indices to sub-basin (or watershed, from here onwards used interchangeably) areas, we 
converted watershed area to river length using a well-proven power law 
indices to sub-basin (or watershed, from here onwards used interchangeably) areas, we 

 (Hack 
et al., 1957; Sassolas-Serrayet et al., 2018). β is dependent on the shape of the watershed, 
while α is a constant ranging between 0.5 and 0.6 (Sassolas-Serrayet et al., 2018). When 
substituting for l in the CI equations from (Cote et al., 2009), β cancels out (see Appendix 
B). Hence, we calculated the connectivity index for each non-diadromous fi sh species s 
in the main hydrologic basin b (CINs,b) as:

(4.1)

where aj,i,s,b represents the area of watershed j belonging to the isolated patch i (due 
to a dam) within a main hydrologic basin b and hosting species s. We used a value of 
0.55 for α, i.e., the central value within the 0.5-0.6 range proposed by (Sassolas-Serrayet 
et al., 2018). The isolated patches are counted from the most downstream to the most 
upstream patch n, and are defi ned as the area upstream a dam or outlet/sink connecting 
zones of the species geographical range until the next upstream dam or the main basin 
boundary. The connectivity index of diadromous fi sh species s in basin b (CIDs,b) was 
calculated as:
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(4.2)

In this case, the CI for diadromous species is solely dependent on the sum of watershed 
areas aj,1,s,b belonging to the most downstream patch connected to the ocean. This 
means that the most downstream dam will aff ect connectivity for diadromous species 
to a much higher extent than non-diadromous species (Cote et al., 2009). To calculate the 
areas of the watersheds containing a certain species within a main basin, we allocated 
the IUCN geographical ranges of each species to the ~1M overlapping HydroBASINS 
watersheds (Pfafstetter level 12, median area = 137 km2). Thus we determined in which 
watersheds a species occurs and in turn which species occur in any given watershed. 
The derivation of the equations along with an example sketch as well as additional 
details on choice of the underlying hydrography are provided in the Appendix B.

 4.4.4 Aggregation of CI values across species 

Based on the species-specifi c CI values, we calculated a global mean value of CI across 
all diadromous and non-diadromous species, respectively, for both the present and 
future scenario. for species occurring in multiple basins (see previous section for 
a defi nition of main hydrologic basin vs watershed), we calculated a mean CI value 
weighted by the occurrence range area of the species within the diff erent main 
basins. We further calculated basin-specifi c CI values as the mean CI across all species 
occurring in the basin. finally, we calculated the mean connectivity index for species 
groups characterized by diff erent traits, again using an area-weighted mean for species 
occurring in multiple basins. We diff erentiated species according to main climate zone 
by overlaying the occurrence ranges with the Köppen-Geiger climate categories (Kottek 
et al., 2006). Species falling into multiple climate zones were assigned the climate zone 
with the largest overlap. We retrieved information on threat status and taxonomic 
group (Order) directly from the IUCN metadata (IUCN, 2018). further, we retrieved data 
from fishBase (froese and Pauly, 2018) on maximum body length and commercial 
importance (species of high-low commercial relevance or used in subsistence fi sheries). 
We performed a synonyms check for the binomial nomenclature provided in the IUCN 
database to maximize the overlap with the fishBase database (froese and Pauly, 2018).
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Abstract

The Intergovernmental Panel on Climate 
Change recently emphasized the 
importance to limit global warming to 
1.5oC rather than 2oC to reduce, amongst 
others, impacts on biodiversity and 
ecosystems. Yet, freshwater fish species 
have been ignored in global climate-
change impact assessments. Here, we 
provide the first global quantification of 
potential geographical range contractions 
of freshwater fish species worldwide due 
to changes in water temperature and 
availability. We estimated that 20% of the 
freshwater fish species will lose >50% of 

their current geographical range in a 2oC 
warmer world. Intensifying mitigation 
efforts to limit warming to 1.5oC lowers 
this percentage to 13%. In comparison, 
44% of the species will lose >50% of their 
range in a “current pledges” scenario 
(3.2oC). Projected range losses were 
largest in tropical and sub-arid regions. 
Further, range losses were larger than 
recent estimates for terrestrial species, 
highlighting the need to intensify (inter)
national commitments to limit global 
warming, particularly to safeguard 
freshwater biodiversity and ecosystems.
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5.1	 Introduction

Freshwater habitats are disproportionally biodiverse. While they cover only 0.8% of the 
Earth’s surface, they host ~15,000 fish species, corresponding to approximately half of 
the global known fish diversity (Dudgeon et al., 2006; Tedesco et al., 2017). As decline 
rates of global biodiversity have been unusually high over the last four decades (Butchart 
et al., 2010), freshwater biodiversity has experienced the highest plunge (Dudgeon 
et al., 2006). Amid human pressures on freshwater ecosystems (including water 
abstraction, diversion, damming, pollution), anthropogenic climate change is expected 
to become increasingly important in the future (Reid et al., 2019; Urban, 2015). Rising air 
temperatures and changing precipitation patterns modify water temperature and flow 
regimes worldwide, thus affecting two key habitat factors for freshwater species (Knouft 
and Ficklin, 2017). Being ectotherms, fish are directly influenced by water temperature, 
while the hydrologic regime determines the structure and dynamics of the freshwater 
habitat (Comte and Olden, 2017; Poff, 2018). Geographical range shifts or contractions 
are among the most prominent biotic responses to climate change (Daufresne et al., 
2009), whereby the strongest responses are expected in ectotherms (Deutsch et al., 
2008). Impacts are exacerbated in freshwater systems, as the insular nature of many 
freshwater habitats hampers compensatory movements to cooler locations, especially 
for fully aquatic organisms like fishes (Dudgeon et al., 2006). About 50% of the known 
freshwater fish species are expected to be affected by climate change (Darwall and 
Freyhof, 2016). Yet, warming-induced range changes of freshwater fish species have not 
yet been systematically quantified at the global scale, in sharp contrast with the many 
studies on species in terrestrial systems (Hof et al., 2011; Powers and Jetz, 2019; Warren 
et al., 2018; Zurell et al., 2018).

Here, we project changes in the geographical ranges of freshwater fish species 
worldwide (n = 6,924) for different global warming scenarios. Following the latest 
IPCC report (Ove Hoegh-Guldberg et al., 2018), we include scenarios that limit global 
mean temperature increases to 1.5oC and 2.0oC. For comparison purposes, we include 
two additional scenarios: a “current pledges” scenario set at 3.2oC warming, where no 
emission cuts are performed after the first Nations Determined Contribution in 2030, 
and a “no-policy” scenario (no mitigation) set at 4.5oC warming (all temperatures 
relative to pre-industrial) (Warren et al., 2018). We compiled species-specific thresholds 
for three key habitat factors determining the distribution of freshwater fish species 
(Eaton and Scheller, 1996), namely maximum weekly water temperature, minimum 
weekly flow and the number of zero flow weeks. Thresholds for these three factors were 
defined by extreme flow and water temperature conditions in the species’ geographical 
ranges (see Methods). We validated the species-specific water temperature thresholds 
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with critical thermal maxima reported from laboratory tests (Comte and Olden, 2017) 
and found them in good agreement (mean standard error = 0.09 [-]; Figure C.1). We 
then used the thresholds to quantify reductions in geographical ranges due to future 
changes in flow and thermal regimes. We calculated the present and future weekly 
flow and water temperature values at a spatial resolution of 5 arc-minutes (~10 km) 
using a Global Hydrological Model (GHM) coupled to a dynamic water temperature 
model (Sutanudjaja et al., 2018; Wanders et al., 2019). The GHM was forced with the 
meteorological input from five different Global Climate Models (GCMs) combined with 
four Representative Concentration Pathway (RCP) future scenarios.

5.2	R esults

5.2.1	 Global patterns of geographical range contractions

The scenario without climate-change mitigation policy (+ 4.5oC) resulted in projected 
range contractions larger than 50% for 69% (±7%) of the freshwater fish species (the 
value in brackets represents the standard deviation of the GCM-RCP combinations 
ensemble at each warming level, see Figure C.2). This number was projected to 
decrease to 44% (±9%), 20% (±5%) and 13% (±4%) for warming levels of 3.2oC, 2oC and 
1.5oC, respectively (inset of Figure 5.1a), suggesting substantial benefits of limiting 
global warming. We found larger range losses than recently estimated for terrestrial 
vertebrates, where 6%, 12%, 37% and 57% of the species were projected to lose >50% 
of their current range for the same four warming targets of 1.5oC., 2oC, 3.2oC and 
4.5oC, respectively (Warren et al., 2018). Further, previous studies have reported that 
ectotherms are likely to be less resilient to climate change compared to endotherms, 
due to a lower buffering capacity to increased experienced temperature (Buckley et 
al., 2012; Deutsch et al., 2008). Our range loss estimates for freshwater fish species were 
closer to losses estimated for amphibians than for endothermic terrestrial vertebrates 
(Warren et al., 2018). This contributes to the evidence that climate change is likely to 
have a higher impact on ectothermic organisms.
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Figure 5.1  |   Geographical range contractions of freshwater fish species for different 
global warming levels. The maps show the local cumulative range loss (see Methods) 
at five arc minutes (~ 10km) resolution for global warming levels of 3.2oC (a), 1.5oC (b),  
2.0oC (c) and 4.5oC (d). The inset shows the distribution of geographical range contractions across 
the species, including the median and interquartile range (horizontal lines). Gray denotes no data 
areas (no species occurring or no data available).

Overall, hotspots of range contractions were found in tropical, sub-arid and 
Mediterranean regions (Figure 5.1). At higher latitudes, substantial range contractions 
became apparent only at higher warming levels (3.2oC, 4.5oC). As a result, the largest 
local relative species losses were recorded in tropical watersheds such as the Amazon, 
Niger, Congo and Mekong (Figure 5.2; see Figure C.10 for a more exhaustive overview), 
in accordance with previous studies suggesting large climate-change induced habitat 
degradation in these watersheds (Béné et al., 2012; Frederico et al., 2016; Pokhrel et al., 
2018). Tropical species are indeed expected to be highly affected by climate change 
(Tewksbury et al., 2008), and our results confirm this for freshwater fishes (Figure 5.3a). 
We note that many of the tropical watersheds host low-income food-deficit countries 
where local communities are highly dependent on fishery as a primary food source. 
Indeed, up to 50% of household incomes in countries along the Mekong, Zambezi 
and Brazilian Amazon depend on fishing (FAO, 2018). Hence, range contractions of 
freshwater fish species, particularly high in these regions, are likely to have socio-
economic repercussions (Allison et al., 2009).
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Figure 5.2  |  Average local cumulative range loss at different warming levels for 25 large 
watersheds. For each continent defined according to the World Bank Development Indicators 
(www.worldbank.org), we selected the six watersheds with the largest numbers of species and 
covering at least 50% of the known species richness (according to Tedesco et al., (2017)). We made 
an exception for the Amazon, where our data covered less than 50% of the known species but still 
a considerable number (404 species). A more exhaustive overview of 200 watersheds is available 
in Figure C.10. Numbers in brackets represent the ratio of the number of species covered in our 
study over the total number of species known to occur in the watershed according to Tedesco 
et al., (2017). Our numbers may exceed those of Tedesco due to differences in sampling and 
catchment delineation. 

5.2.2	 Drivers of geographical range contractions

Our results show that the projected increase in water temperature has a much larger 
impact on freshwater fish species than more severe low flow conditions (Figure C.3). 
Further, we found only limited spatial overlap of contractions due to low flow and high 
water temperature (Figure C.3), reflecting the uneven spatial distribution of the two 
stressors (Figure C.4, I-III). Indeed, climate change results in reduced flows (including 
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low flows) only in specific regions, e.g., the Mediterranean,  Sub-Saharan Africa, parts of 
the US, South America and Australia (Wiel et al., 2019), while water temperature will rise 
almost everywhere (Figure C.4-III) (Wanders et al., 2019). Changes in water temperature 
are expected to become the dominant stressor for salmonid populations (Isaak et al., 
2012). In the face of climate change, there is a need to strengthen the understanding of 
the effects of water temperature changes also on other freshwater fish species.

5.2.3	 Comparison across species groups and traits

According to our results, species with smaller initial occurrence range (up to 105 km2) 
and smaller body size (up to 30 cm of maximum body length) are the most threatened 
by climate change (Figure 5.3b-c). This is in line with previous studies highlighting 
that smaller species are at higher risk of habitat degradation, in contrast to larger fishes 
that are mostly threatened by direct exploitation (Olden et al., 2007; Ripple et al., 2017). 
The largest geographical range contractions were projected for species in lakes (i.e., 
lentic species; Figure 5.3d). At 1.5oC warming, the proportion of species losing more 
than half of their habitat was ~47% for lentic species as opposed to only ~6% for lotic 
species (including species found in both flowing and stagnant water bodies; Figure 
5.3d and Figure C.5). It should be noted, however, that our range loss estimates for 
species living in lakes with large bathymetric ranges are likely to be overestimated. In 
fact, since our hydrological model provides only average water temperature estimates 
in lakes (Wanders et al., 2019), we could not account for microclimatic refugia offered 
by water stratification (Morrissey-McCaffrey et al., 2018).  Further, species that spend 
part of their lives in the marine environment were predicted to have the smallest range 
reductions (that is, in the freshwater environment, thus without considering potential 
altered habitat conditions in the ocean; Figure 5.3d). A similar pattern was observed 
when looking at the migratory behavior for a subset of species (Figure 5.3e). We found 
species migrating between the freshwater and marine environment (i.e., diadromous 
species) to be the most resilient to climate change and non-migratory the most affected 
(Figure 5.3e). In line with this, relatively small range contractions were found for orders 
mostly comprising diadromous species, such as Mugiliformes (mullets), Osmeriformes 
(smelts), Syngnathiformes (e.g. pipefish), Tetraodontiformes and Pleuronectiformes 
(Figure 5.3i). In contrast, commercial categories, trophic groups and current IUCN 
threat categories did not serve as a good predictor for future threats posed by climate 
change (Figure 5.3f-h). Species currently belonging to a low threat category (e.g. 
“near threatened” or “least concern”) might become threatened in the future (Figure 
5.3f and Figure C.6). Furthermore, we notice that species currently marked as “data 
deficient” (~20% of the species analyzed in our study), will on average have larger range 
contractions than “least concern” or “near threatened” species.
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Figure 5.3  |  Implications of different warming levels, expressed as the percentage of species 
losing more than 50% of their range, for various species groups. Köppen-Geiger climate zones 
(a), where A=Equatorial, B=Arid, C=Warm temperate, D=Snow, E=Polar. Initial geographical range 
area (b), in log (base 10)-transformed km2, and body length (c) in cm. Habitat type (d), Le=Lentic, 
Lo=Lotic, LL=Lentic and lotic, M=Marine and freshwater. Three main migratory behaviors (e), 
diadromous (migrate to and from the marine environment), potamodromous (migrate within 
freshwater) and non-migratory. IUCN threat status (f), CR=Critically endangered, VU=Vulnerable, 
NT=Near Threatened, LC=Least Concern, EN=Endangered, DD=Data Deficient. Trophic level 
(g), categorized in Carnivorous, Omnivorous and Herbivorous species. Commercial relevance 
(h), commercial, “highly” and “minor” commercial, of no interest, of potential interest and 
“subsistence fisheries”(Froese and Pauly, 2018). Species order (i), where groups with less than 20 
species represented in our database are grouped together in the “other” category for simplicity 
of representation (the full list of order names is provided in Table C.2). The outer line represents 
100% and each inner line is drawn with a 25% interval.
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5.3	 Discussion

This study represents the first comprehensive quantification of geographical range 
contractions for freshwater fish, covering the entire globe and about half of the known 
freshwater fish species diversity. We showed that climate change impacts on freshwater 
fish species are expected to be particularly high in tropical areas, retaining ~60% of 
the fish species assessed in this study. Our results further highlight that limiting global 
warming will substantially decrease potential impacts.

The projected range changes presented in our study are worst-case estimates in the 
sense that we only account for range contractions. Projecting range expansion was 
considered unfeasible due to the many barriers (e.g., dams, weirs, culverts, sluices) and 
uncertainties and data gaps associated with the barriers’ current and future locations 
(McManamay et al., 2018). Additionally, data needed to reliably estimate dispersal 
ability is still lacking for the majority of the species (Radinger et al., 2017). For terrestrial 
vertebrates,  percentages of species losing more than half of their geographical ranges 
were reduced by 33 to 23% when dispersal was accounted for (Warren et al., 2018). 
Nonetheless, we observe that the most impacted species reported in our study are small-
bodied species (Figure 5.3e), typically having weaker dispersal abilities (Radinger et al., 
2017). Further, our results might overestimate range contractions if current geographical 
range boundaries are not primarily determined by climate-related factors, but also 
influenced by biogeographic dispersal barriers or anthropogenic pressures (Faurby 
and Araújo, 2018). This is an inherent caveat of bioclimatic envelope model projections 
in general, highlighting that these should be considered as baseline estimates of the 
magnitude and the distribution of climate-induced effects on biodiversity rather than 
predictions of the future distributions of individual species (Lawler et al., 2009).

The spatial patterns found in this study are contingent on the availability of species 
occurrence data (Figure C.7). For some basins in northern Asia, South America, and 
Australia, the fish species range maps available covered less than 20% of the known 
occurring species (Tedesco et al., 2017) (Figure C.8). Additionally, we recognize that 
a given increase in global mean temperature may lead to locally different range 
contractions depending on the GCM-RCP combination, as each is characterized by 
specific distributions of changes in water temperature and flow (Seneviratne et al., 
2018). We notice a greater variability across GCMs than RCPs when looking at species-
specific range contractions (Figure C.2), similar to previous findings for hydro-climatic 
variables (Greve et al., 2018). However, variability across the GCMs did not affect the 
species-specific thresholds, which were consistent across the models (Figure C.9). 
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Although reported range contractions in this study represent worst-case scenarios, our 
comparative analysis across the different warming levels and targets clearly showed an 
increase in impacts with increasing global warming. Limiting global warming to 2oC 
will reduce the percentage of freshwater fish species potentially losing more than half 
of their ranges by 55% compared to current pledges of governments (3.2oC). Restricting 
the global mean temperature rise to 1.5oC will lower the percentage by an additional 
15% (or 35% compared to 2oC). While we acknowledge that the ecological realism of 
our model projections can be improved, these first comparative baseline estimates 
highlight the need to intensify (inter)national commitments to limit global warming if 
potentially severe disruption of freshwater biodiversity is to be prevented.

5.4	 Methods

5.4.1	 Species occurrence data

We used the IUCN Red List of Threatened Species occurrence range data to map the 
habitat of each freshwater fish species (IUCN, 2018). The IUCN database provides spatial 
occurrence data for 7,242 freshwater fish species (~56% of freshwater fish species (Nelson, 
2006)), compiled from literature and expert knowledge. This database represents the best 
available spatial data on freshwater fish species geographical ranges (McManamay et al., 
2018). We referenced the occurrence data of each species to the 5 arc-minutes (~10 km) 
hydrography used in this study by selecting grid cells with the majority of the area falling 
within the occurrence range of the species. Out of the initial 7,242 freshwater fish species, 
318 (~4%) were excluded because the occurrence range was smaller than ~1,000 km2 (i.e., 
10 grid cells), resulting in 6,924 species employed in this study (Figure C.2).

5.4.2	 Hydrological data

We employed the Global Hydrological Model (GHM) PCR-GLOBWB (Sutanudjaja et al., 
2018)  with a full dynamical two-way coupling to Dynamical Water temperate model 
(DynWAT) (Wanders et al., 2019) at 5 arc-minutes spatial resolution (~10 km at the 
equator), to retrieve weekly streamflow and water temperature worldwide (Sutanudjaja 
et al., 2018; Wanders et al., 2019). We selected this model combination for it allows a 
full representation of the hydrological cycle (considering also anthropogenic stressors, 
e.g. water use). It fully integrates water temperature and calculates the hydrological 
variables on a high-resolution hydrography. The choice of one hydrological model over 
an ensemble was motivated by the fact that very few GHMs or Land Surface Models 
(LSMs) calculate water temperature at the spatial resolution desired for this study 
(Sutanudjaja et al., 2018; Wanders et al., 2019). The PCR-GLOBWB model setup was 
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similar to Wanders et al.(Wanders et al., 2019), with the exception that fl ow and water 
temperature were aggregated at the weekly scale to capture the fi sh species’ tolerance 
levels to extreme events (Eaton and Scheller, 1996).

5.4.3 Species-specifi c thresholds for extreme fl ow and water temperature

We quantifi ed thresholds for minimum weekly fl ow, maximum number of zero fl ow 
weeks and maximum weekly water temperature for each species based on the present-
day distribution of these characteristics within the occurrence range, similarly to (not 
exhaustive) Eaton and Scheller (1996), Azevedo et al., (2013), Leuven et al., (2010). To this 
end, we overlaid the species’ range maps with the weekly fl ow and water temperature 
metrics calculated for each year from the output of the hydrological model and 
averaged over a long-term 30-years historical period, to conform to the standard for 
climate analyses (Rogelj et al., 2017) (1976-2005, for each GCM employed in the study). 
We calculated for each 5 arc-minutes grid cell the long-term minimum weekly fl ow (Qmin, 
equotation 5.1), the long-term frequency of zero-fl ow weeks (Qzf, equotation 5.2) and 
the long-term maximum weekly temperature (Twmax, equotation 5.3), as follows: 

(5.1)

(5.2)

(5.3)

where Q7 and Tw7 are the vectors of weekly streamfl ow and water temperature values 
for a given year i, respectively; q7 is the streamfl ow value for the week j; N is the number 
of years considered for the long-term (30 in this case) and M is the number of weeks in 
a year (~52). We then used the spatial distributions of these values within the range of 
each species to determine species-specifi c ‘thresholds’ for each of the three variables, 
defi ned as the 2.5 percentile of the minimum fl ow and the 97.5 percentile of the 
maximum water temperature and zero fl ow weeks values. We preferred these to using 
the absolute minimum and maximum values to reduce the infl uence of uncertainties 
and outliers in the threshold defi nition. An overview of the thresholds’ distribution is 
available in Figure C.5.
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5.4.4	 Climate forcing and warming targets

We considered four main future scenarios based on increases of global mean air 
temperature equal to 1.5, 2.0, 3.2 and 4.5oC. The global mean temperature increase 
refers to a 30-years average, in accordance with guidelines for climate analyses (Rogelj 
et al., 2017), and with pre-industrial reference set at 1850-1900 (Seneviratne et al., 2018). 
To obtain estimates of weekly water temperature and flow for each warming level, we 
forced the hydrological model with the output from an ensemble of five Global Climate 
Models (GCMs), each run for four Representative Concentration Pathway (RCP) scenarios, 
namely RCP 2.6, 4.5, 6.0 and 8.5 (see Supplementary Methods in Appendix C for details). 
Hence, each RCP-GCM combination would reach each warming level at a different point 
in time, with some of the RCP-GCM combinations not reaching certain warming levels. 
Consequently, the number of scenarios available differed among warming levels (an 
overview is provided in Table C.1). In total we modelled 42 scenarios (one scenario = 
one GCM-RCP combination at a certain point in the future), including 17 scenarios for 
1.5oC, 15 for 2.0oC, 7 for 3.2oC and 3 for 4.5oC.

5.4.5	 Patterns at the species level

We assessed the percentage of species losing more than half of their geographical range 
at each warming level, following Warren et al., (2018). To that end, we first calculated 
the percentage of species losing >50% of their range for each GCM-RCP scenario 
ensemble. Then, we calculated the mean and standard deviation at each warming level. 
In addition, we looked at the percentage of species losing more than half of their range 
according to different species traits and categories. We overlaid each species occurrence 
range with the historic Köppen-Geiger climate categories to obtain the main climate 
zone per species (i.e., capital letter of the climate classification) (Kottek et al., 2006). 
Species falling into multiple climate categories were assigned the climate zone with the 
largest overlap. We retrieved information on threat status and species order directly 
from the IUCN metadata (IUCN, 2018). We also gathered a list of potential habitats for 
each species from the same IUCN database. We classified species as lotic if they were 
associated with habitats containing at least one of the words “river”, “stream”, “creek”, 
“canal”, “channel”, “delta”, “estuaries”, and as lentic if the habitat descriptions contained 
at least one of the words “lake”, ”pool”, ”bog”, ”swamp”, ”pond”. Further, we retrieved 
data from Fishbase (www. fishbase.org) on migratory behavior, maximum body length 
and commercial importance (Froese and Pauly, 2018). From the same database we also 
retrieved trophic level values and aggregated them into Carnivore (trophic level >2.79), 
Omnivore (2.19 < trophic level ≤ 2.79) and Herbivore (trophic level ≤ 2.19) (Froese and 
Pauly, 2018). Prior to the comparison with Fishbase, we performed a synonym check for 
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the binomial nomenclature provided by in the IUCN database to maximize the overlap 
with the fishbase database. 

5.4.6 Spatial patterns of geographical range contractions

We stacked together the range contractions for the individual species to study spatial 
trends. To this end, we calculated the local cumulative range loss (LCRL) at each 5 arc-
minutes (~10 km) grid-cell, globally. We calculated the LCRL as the median of the relative 
losses across the GCM-RCP scenarios, as follows:

(5.4)

where SN represents the number of species with their range in grid-cell i, for the scenario 
s within the warming target w. We used the median rather than the mean because the 
data showed skewed distributions across the GCM-RCP combinations. In addition, we 
aggregated the LCRL for each watershed with an outlet to the ocean/sea or internal sink 
(e.g. lake), as follows:

(5.5)

where I represents the number of grid cells within the watershed x. 
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6.1	 Introduction

The central aim of this thesis was to advance integrated global assessments of freshwater 
systems by 1) improving the accuracy and spatial detail of global hydrological data 
and 2) developing models to assess the impacts of dams and future climate change 
on the geographic ranges of freshwater fish species. Chapters 2 and 3 presented data-
driven models to estimate streamflow at high spatial resolution. Impacts on freshwater 
fish geographical ranges due to dam-driven fragmentation and climate change were 
quantified in Chapters 4 and 5, respectively. This final chapter synthesizes the findings 
by evaluating the benefits, limitations and trade-offs of data-driven streamflow models 
and opportunities for further improvements (section 6.2). Next, section 6.3 discusses 
the added value of high-resolution species-specific routines to improve freshwater 
biodiversity assessments, evaluates combined impacts of damming and climate change 
on the fish species ranges, and lists a number of opportunities for future improvements 
of the species-based models. Finally, section 6.4 provides overall conclusions and 
recommendations.

6.2	� Improving the spatial detail of global streamflow estimates with 
data-driven models

6.2.1	 Pros and cons of data-driven hydrological models

An improved spatial resolution of hydrological data benefits various global water 
resource assessments needs (e.g., irrigation supply assessments, water footprinting) as 
well as the modeling of chemical fate, sediments transport and freshwater biodiversity 
(Bakker, 2012; Grill et al., 2019, 2016; Hanafiah et al., 2011; Hoekstra et al., 2011; Oberdorff 
et al., 2011; Poff and Zimmerman, 2010; Syvitski, 2005; Tendall et al., 2014). Whereas data 
availability and computational costs are a constraint for process-based hydrological 
models (Bierkens et al., 2015), data-driven models are a promising alternative to reach 
very high spatial resolution (≤ 1 km) while maintaining a global coverage. Chapters 2 
and 3 of this thesis applied different data-driven approaches to quantify streamflow 
variables worldwide at high spatial resolution. The correlative model based on multiple 
linear regression (Chapter 2) yielded estimates of long-term average streamflow that 
were in good agreement with observed data. Further, streamflow estimates were 
relatively more accurate than those from a GHM, similarly to previous studies that 
compared runoff estimates from data-driven models with the output of GHMs/LSMs 
(Beck et al., 2016a, 2015). When estimating mean annual flow on a yearly basis, the 
regression model performance was diminished but it still outperformed the GHM. In 
turn, the machine-learning approach applied in Chapter 3 outperformed the regression 
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model, with R2 values of ~0.91 even for yearly streamflow estimates (compared to an 
R2 of 0.89 for long-term annual mean streamflow reported in Chapter 2). In addition, 
the more complex model structure and parameterization of artificial neural networks 
used to produce FLO1K, and the inclusion of additional climatological predictors 
(e.g. seasonality, aridity index) allowed the calculation of more yearly streamflow 
metrics, namely maximum and minimum annual streamflow (Chapter 3). The spatial 
resolution of FLO1K is ~10 to ~50 times higher than the output of global process-based 
hydrological models, allowing the quantification of streamflow for small reaches and 
headwaters (Chapter 3). Small upstream reaches provide unique habitat and refuges 
for riparian and aquatic biota and govern the overall connectivity of the watershed 
by connecting upstream sources to downstream flows (Wohl, 2017). Indeed, they are 
highly relevant for sediments, nutrients and chemicals transport, which are highly 
dependent upon upstream retention and release (Alexander et al., 2007; MacDonald 
and Coe, 2007; McClain and Naiman, 2008; Wohl, 2017). Therefore, modelling of such 
physical and biological processes can highly benefit from a high-resolution hydrology. 
An example of this is the application of FLO1K to develop a model to quantify exposure 
to pharmaceuticals in European surface waters, ePiE (Oldenkamp et al., 2018). The high 
spatial resolution of FLO1K was an essential prerequisite to correctly allocate the point 
sources of pharmaceuticals along the stream network and headwaters, and to route the 
compounds concentrations downstream the river network by considering average but 
also high and low flow conditions (Oldenkamp et al., 2018). 

Nevertheless, the temporal resolution achieved by data-driven models at a global 
scale remains low compared to global process-based models (Beck et al., 2016, 2013; 
Razavi and Coulibaly, 2013; Schewe et al., 2014). Whereas GHMs/LSMs can achieve 
streamflow estimates at daily and sub-daily time steps (Schellekens et al., 2017), FLO1K 
is restricted to annual mean, maximum and minimum streamflow metrics (Chapter 3). 
The main factor limiting the temporal resolution of data-driven models is the relatively 
simple correlation-based structure as opposed to the mechanistic approach of GHMs/
LSMs, which can account for a more holistic representation of hydrological processes 
and interactions therein. Further, even if more complete and detailed daily time 
series would be available for training machine-learning type of models, the amount 
of input data necessary to describe processes at the daily scale would likely decrease 
the computational performance advantage over mechanistic models. Therefore, 
mechanistic models such as GHMs/LSMs remain the preferred choice when applications 
require streamflow estimates with a high temporal resolution. Hybrid models constitute 
a recent development to obtaining hydrological variables at both high spatial and high 
temporal resolution by leveraging data-driven high-resolution estimates of hydrological 
variables to bias-correct and downscale the output of GHMs/LSMs (Lin et al., 2019). Such 
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approaches are very promising but still in their infancy. In any case, hybrid approaches 
still impose the computational burden of GHMs/LSMs, which have to be run prior to a 
downscaling routine applied by the hybrid approach.

Simple linear regression models remain a useful tool for generating or testing hypotheses. 
In Chapter 2, I considered a simple multiple regression framework to test variables’ 
importance and contribution to the explained variance in estimating streamflow. The 
information of variables’ importance and ranking derived from the results of Chapter 
2, was then used to build the more complex ANNs-based FLO1K model (Chapter 3). 
Differently from linear regression, ANNs do not give any useful insights concerning 
variable importance and coefficients, as that information cannot be extracted from the 
complex constructs of ANNs (Haykin, 1994).

The potential for extrapolation and projection of the correlative streamflow models 
developed in this thesis remains to be tested. Therefore, GHMs/LSMs continue to be the 
preferred choice to derive specific hydrological variables for scenario analyses. Yet, when 
a small set of hydrological variables is needed at relatively low temporal resolutions 
(e.g., yearly) and for a relatively far future (e.g., the year 2100), running a mechanistic 
model might be inefficient from a computational point of view, as the model needs 
to run through every day up till the aimed point in time. In addition, the resulting 
spatial resolution achieved for future scenarios would still be bound to the GHM/LSM 
resolution. As discussed above, the spatial resolution limitation could be overcome by 
the employment of hybrid models, but so far these have only been applied for historical 
natural conditions (Lin et al., 2019), and their applicability for future scenarios remains 
to be tested.

In conclusion, different types of global models to estimate streamflow involve 
tradeoffs between spatial and temporal resolution as well as between complexity and 
computational costs (Figure 6.1). Correlative models are preferable when the aim is to 
achieve high spatial resolution. In contrast, daily or sub-daily time series can only be 
achieved by mechanistic models, yet at the expense of a lower spatial resolution. Hybrid 
models might offer a solution to achieve both high temporal and spatial resolution, 
but at high computational costs, as they involve both a process-based model and a 
downscaling routine (Lin et al., 2019). As of now, process-based models are the only 
tool available for obtaining streamflow data for scenario analysis as the effectiveness of 
regression approaches is yet to be tested for this type of application. 
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Figure 6.1  |   Schematic representation of tradeoffs among different types of streamflow models 
with respect to a) spatial and temporal resolution and b) model complexity and computational 
costs. LR: linear regression, ML: machine learning, PB: process-based and HY: hybrid.

6.2.3	 Outlook

Data-driven hydrological/streamflow models require observational data for training 
and testing. The spatial distribution of gauging stations with streamflow time series 
was highly scattered across the globe and biased towards western countries at the 
time of the development of the models presented in this thesis (Chapters 2 and 3). The 
recent release of a new streamflow monitoring dataset (Do et al., 2018; Gudmundsson 
et al., 2018), including about four times more monitoring stations than the GRDC data 
(GRDC, 2017) and with a sub-weekly temporal resolution, unlocks new opportunities 
to refine and validate global data-driven models, such as FLO1K. Higher temporal 
resolutions may be obtained if more complete and less spatially biased streamflow time 
series become available, by accounting for the time lag in rainfall-runoff processes and 
including human water use. Additionally, developments in remote sensing are expected 
to further boost data availability for covariates used in data-driven models. An example 
is the development of land cover time series (https://www.esa-landcover-cci.org/) or 
of the Global River Width from Landsat (GRWL) database (Allen and Pavelsky, 2018). 
Furthermore, the launch of the NASA Surface Water and Ocean Topography (SWOT) 
mission in the coming years will provide highly detailed altimetry data of surface 
water bodies that may further advance hydrological data-driven models (https://swot.
jpl.nasa.gov/). This increased availability of data will make it possible to improve the 
accuracy of or develop new data-driven models of hydrological variables at a global 
scale. For instance, efforts have already been carried out in the past to model runoff 
(Beck et al., 2016b), groundwater (Fan et al., 2013), sediment fluxes (Syvitski et al., 2003; 
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Syvitski, 2005) or water temperature (Krider et al., 2013; Piccolroaz et al., 2016; Rabi et 
al., 2015; Toffolon and Piccolroaz, 2015) by means of regression-based models. Future 
studies may investigate how to develop or improve such models based on new remote-
sensing data.

Data-driven streamflow models as presented in this thesis (Chapter 2 and 3) have 
potential for forecasting streamflow under changing future climatic conditions (Peel 
and Blöschl, 2011). Yet, additional uncertainty introduced by potential non-stationarity 
of model parameters under transient climatic conditions should be further investigated 
to better understand the reliability of such projections (Blöschl and Montanari, 2012; 
Lima and Lall, 2010). In addition, the promising hybrid approach that combines the 
output of mechanistic models with data-driven estimates to downscale streamflow to 
high spatial resolution (Lin et al., 2019) should also be explored, especially to apply such 
an approach to obtain high spatial and temporal resolution streamflow forecasts for 
scenario analyses.

6.3	� Assessing the impacts of dams and climate change on freshwater 
fish biodiversity

6.3.1	 A global species-based freshwater biodiversity modelling framework

Large-scale assessments of freshwater biodiversity were limited to coarse-grain 
assemblage-level estimates (Liermann et al., 2012; Winemiller et al., 2016; Xenopoulos et 
al., 2005). Chapters 4 and 5 started filling this gap by assessing the impacts of two key 
threats to freshwater fish, namely damming and climate change (Reid et al., 2019), on 
the geographic ranges of individual species. A species-based modelling approach was 
developed to leverage the availability of detailed information on the current geographical 
range of freshwater fish species (IUCN, 2018). This allowed both studies to quantify 
changes at the species level, detect inter-species differences in impacts and hence identify 
species groups most at risk, which in turn may help prioritizing conservation efforts. The 
spatial detail of the underlying hydrology used in both studies constitutes a considerable 
improvement compared to previous assemblage-level global freshwater biodiversity 
assessments, which typically employed large spatial units (e.g., freshwater ecoregions) 
or coarse spatial grids (e.g., 55x55 km2) (Liermann et al., 2012; Xenopoulos et al., 2005). 
The species-specific connectivity index values (Chapter 4) were calculated at the level of 
sub-basins (~100 km2), based on the 15 arc seconds (~500 m) HydroSHEDS hydrography 
(Lehner et al., 2008; Lehner and Grill, 2013). Chapter 5 employed the 5 arcminutes (~10 
km) version of the GHM PCR-GLOBWB (Sutanudjaja et al., 2018; Wanders et al., 2019) to 
project water flow and temperature estimates driven by a combination of representative 
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concentration pathway scenarios and global climate models. A process-based rather than 
data-driven hydrological model was necessary to include water temperature and obtain 
the necessary level of temporal detail (Section 6.2.1).

Combining the results of the fragmentation and climate change impacts assessments 
highlights that a considerable number of species is threatened by both projected 
dam infrastructure building and climate-driven alteration in water temperature and 
flow. Specifically, 3% (n=96) of tropical and 2% (n=36) of warm temperate species 
may experience increases in impacts > 50% from both stressors (Figure 6.2). At 
3.2oC warming, projected impacts of climate change were much higher than impacts 
of ongoing and future dam building (Figure 6.2). Yet, at lower warming levels the 
difference between fragmentation and climate change impacts leveled, and at 1.5oC 
warming the projected impacts of dams exceeded the climate change effects (Figure 
D.1-3). The disproportional combined impact of dam building and climate change in 
tropical regions, as shown in Figure 6.1, complements the findings of both Chapters 4 
and 5, which showed that tropical species are expected to be mostly at risk from future 
fragmentation and climate change impacts. In the Amazon, Congo, Niger, Chao Phraya, 
Salween and Mekong basins, for example, large impacts were found for both stressors 
(Chapter 4 and 5). Therefore, species in these areas may experience disproportional 
impacts of future environmental change, in agreement with concerns expressed by 
previous qualitative surveys (Winemiller et al., 2016). Furthermore, both Chapters 4 and 
5 highlighted that species that complete their life cycle in freshwater, which constitute 
the majority of the species, are more threatened than species that migrate between 
fresh water and the ocean (Figure 4.1 and 5.3). For instance, Chapter 4 reported a 
substantial difference in potential habitat fragmentation impacts between diadromous 
and non-diadromous species (current Connectivity Index = 82% for diadromous versus 
69% for non-diadromous). 

It should be noted that potential interactions between changes in flow/temperature 
and future dams were not included in the climate change projections (Chapter 5), as 
the location and number of dams was kept constant in PCR-GLOBWB. This can lead 
to potential overestimation of impacts in sub-arid or Mediterranean regions, where 
depletion of low flows is the leading driver of habitat loss (Chapter 5). Indeed, dams 
constructed in these regions can arguably contrast the effect of climate change by 
increasing downstream flows during the dry season (Pokhrel et al., 2018, 2012). Yet, 
Chapter 5 highlighted that water temperature is the main driver of climate-change 
induced fish habitat loss, indicating that potential overestimations of impacts are likely 
limited to small areas where increased droughts are the dominant driver of habitat loss. 
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Figure 6.2  |  Impacts from climate change (at 3.2oC global warming) and fragmentation on 
the geographical ranges of 5,450 freshwater fish species per Köppen-Geiger climate zone (with 
number of species per zone in brackets). Each plotted point represents a species, whereby point 
size is proportional to the original range size. Numbers in the quadrants represent the proportions 
of species. Relative range/connectivity losses were calculated as the difference between current 
and future range area/ connectivity index divided by the current range area/connectivity index. 
Climate category was assigned based on the overlap of the range of each species with the Köppen-
Geiger climate zones. Figures for different warming levels are shown in Appendix D.

6.3.3	 Outlook

The studies presented in Chapters 4 and 5 constitute a first step in species-based 
assessments of the impact of human pressures on freshwater fish species. A need 
remains to express both fragmentation (Chapter 4) and geographical range contractions 
(Chapter 5) in the same impact metric to integrate/compare them. A solution would 
be to translate the loss in connectivity as presented in Chapter 4 to spatially resolved 
geographical range contractions. For instance, Carvajal-Quintero et al. (2017) related 
the range areas of fish species occurring in the Magdalena basin (South America) to 
their body size, to translate loss of longitudinal connectivity to loss of suitable habitat. 
To illustrate, Carvajal-Quintero et al. (2017) fitted a linear regression to the lower quantile 
of the species range area-body size relationship and used it to determine patches of the 
range that would become unsuitable due to dam construction.  While I could reproduce 
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the range-body size relationship of this study for the Magdalena basin, I did not find 
significant relationships for the majority of other hydrologic basins (Figure D.4). This 
suggests that more refined relationships are needed, for instance bases on a larger set 
of environmental or physiological variables.

A number of aspects relevant to quantify species responses to human pressures are 
not yet included in the species-based modelling frameworks presented in Chapters 4 
and 5. Dispersal of fish species in response to climate change was not considered as the 
literature is currently lacking models that allow quantifying dispersal ability across large 
numbers of fish species (McManamay et al., 2018; Radinger et al., 2017; Radinger and 
Wolter, 2015, 2014). Therefore, future studies should focus on developing strategies to 
incorporate dispersal, e.g., based on phylogenetic similarity (Comte and Olden, 2017). 
Further, future work is needed to more accurately assess and validate the species-specific 
flow and water temperature tolerance thresholds that were inferred from species ranges 
in Chapter 5. While the water temperature thresholds compared reasonably well with 
laboratory data (Figure C.1), the comparison was done for only ~200 species for which 
data was readily available. Thus, more comprehensive databases on fish environmental 
thresholds would be highly beneficial to more thoroughly validate the underlying 
assumptions of the model and findings presented in Chapter 5. 

The inclusion of ~40,000 dams in Chapter 4 constitutes a large improvement compared 
to previous connectivity studies (Liermann et al., 2012), but this number is still far from 
representing the actual number of existing small and mid-size man-made barriers 
(McCully, 2001). For instance, it has been estimated that there are over 800,000 dams 
across the world (Wisser et al., 2010). There is a need to improve existing dam databases, 
for example through the development of new techniques to leverage remote-sensing 
data to detect dams using supervised machine learning techniques. Additionally, the 
analysis presented in Chapter 4 is based on the assumption that all dams are impassable. 
While fish ladders are indeed ineffective for most species (Birnie-Gauvin et al., 2018; 
King et al., 2017; Silva et al., 2018), future efforts should focus on integrating information 
about the presence of more natural or nature-like bypasses within dams databases. Such 
nature-like bypasses are the most effective solution to partially restore longitudinal 
connectivity of freshwater waterways, without the need to remove the barrier and 
compromise socio-economic benefits (Silva et al., 2018). Improving information on dam 
locations and associated (nature-like) bypasses, combined with improved information 
on species’ dispersal ability, will considerably improve future connectivity assessments.

A number of other important stressors remain to be assessed to complement the 
freshwater fish impact assessments presented in this thesis (Dudgeon et al., 2006; Reid 
et al., 2019). For instance, the impacts of nutrients (e.g., harmful algal blooms leading 
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to depleted oxygen levels) on fish species are increasingly well understood but global 
species-based assessments are still lacking (Janssen et al., 2019). Other potentially 
relevant stressors include toxic compounds, nanomaterials and microplastics, and more 
research is needed to assess their impacts on freshwater biodiversity (Reid et al., 2019). 
Further, future studies should investigate interaction effects among multiple stressors 
and among species/food chains, which are not yet implemented in global freshwater 
biodiversity models (Harfoot et al., 2014a). Finally, a parallel development of more 
complex species distribution models (SDMs) for fish (Domisch et al., 2015; Labay et al., 
2015; Radinger et al., 2017) at a global scale would help to validate the conclusions of the 
studies presented in this thesis.

6.4	 Conclusions

Based on the work conducted in this thesis, the following main conclusions are drawn:

•	 Computationally efficient and spatially accurate gridded predictions of annual 
streamflow metrics can be achieved by means of data-driven models at a global 
scale

•	 Mechanistic global hydrological models retain a higher level of temporal accuracy 
and are preferred over data-driven models when daily time series are needed

•	 Future hydropower development will pose a higher threat to non-diadromous 
fish species than to diadromous fish species 

•	 Percentages of freshwater fish species losing more than half of their current 
geographical range were projected be 13% at 1.5oC, 20% at 2oC, 44% at 3.2oC and 
69% at 4.5oC of global warming (global temperature raises refer to pre-industrial 
levels)

•	 Fish species occurring in tropical and warm temperate basins might be particularly 
at risk due to the combined effects of climate change and future hydropower 
development

Recommendations for future work based on the findings of this thesis are:

•	 Future studies should aim to improve the temporal resolution of data-driven 
hydrological models by leveraging the increasing availability of remotely sensed 
covariates 

•	 Future studies should test the applicability of global data-driven hydrological 
models for scenario projections and/or for downscaling the output of process-
based models
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•	 Future research should develop global fish dispersal models to be included in 
projections of geographical range changes

•	 More extensive datasets on environmental thresholds of freshwater fish species 
should be developed to more accurately assess future range changes

•	 More inclusive global datasets of dams and associated by-passes should be 
developed to improve freshwater fish impact assessments

•	 Interactions among multiple stressors and among species/food chains should 
be further investigated to improve the ecological realism of freshwater fish 
assessment models
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Appendix A

Figure A.1  |   Residuals plot of the regression analysis (MAF 1981-2010) vs a) the response variable 
mean annual flow Q, b) area of the catchment A, c) 30-years mean precipitation P, d) 30-years 
mean temperature, e) average slope of the catchment and f) average altitude. The x axes are 
dimensionless as the variables have been log-transformed, except for temperature which is in °C. 
Dashed red lines delimit the 1 order magnitude deviation.
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Figure A.2  |  Distribution of the 543 GRDC gauging stations used for performance testing of the 
MAF model in the backcasting analysis.
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Figure A.3  |  Model residuals per continent of the backcasting analysis for a) the yearly MAF and 
b) the 10-years averaged MAF values. Residuals are dimensionless as MAF is in base-10 log scale. In 
brackets the number of observations for each continent.
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Table A.1  |  Regression analysis for increasing number of predictors (MAF 1981-2010) based on Q = 
10β0 ∙ A βA ∙ P βP ∙ 10 βT∙T ∙ H βH ∙ S βS. R2: coefficient of determination; AIC: Akaike Information Criterion; 
BIC: Bayesian Information Criterion; Int.: intercept.

N. predictors Int. A P T S H R2 AIC BIC

1 -6.505 0.828 - - - - 0.611 3471 3488

2 6.565 0.933 1.850 - - - 0.790 2312 2335

3 10.956 0.957 2.411 -0.039 - - 0.866 1464 1492

4 10.403 0.965 2.354 -0.037 0.184 - 0.874 1345 1378

5 9.066 1.018 2.070 -0.038 0.464 -0.509 0.893 1049 1088

Standardized coefficients

1 0.000 0.782 - - - -

2 0.000 0.881 0.434 - - -

3 0.000 0.903 0.566 -0.305 - -

4 0.000 0.911 0.553 -0.284 0.094 -

5 0.000 0.961 0.486 -0.290 0.237 -0.212

Table A.2  |  Comparison of the coefficients from the spatial error (SE) and OLS regression models. 
The analysis is based on the subset of observations within 58S-60N latitudes. R2: coefficient of 
determination; LM: Lagrange Multiplier test score; m: number of observations.

Variable SE coeff. (95% CI) OLS coeff. (95% CI)

λ 0.614 (0.573  --  0.656) -

Int. 9.900 (9.245  -  10.556) 10.365 (9.778  -  10.952)

A 0.982 (0.965  -  0.999) 0.999 (0.981  -  1.017)

P 2.184 (2.090  -  2.278) 2.268 (2.186  -  2.351)

T -0.034 (-0.037  -  -0.031) -0.032 (-0.035  -  -0.030)

H -0.396 (-0.466  -  -0.327) -0.386 (-0.446  -  -0.327)

S 0.368 (0.313  -  0.422) 0.396 (0.351  -  0.440)

R2 0.93 0.90

LM 7 465

m 1,748 1,748
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APPenDIx B

B.1 Supplementary Methods

B.1.1 Lotic/lentic species classifi cation

We classifi ed species as lotic, lentic or both lotic and lentic, using metadata from the 
IUCN Red List (IUCN, 2018). for each species, we retrieved a list of habitat types where 
the species was known to be found. We classifi ed species as lotic if they were associated 
with habitats containing at least one of the words “river”, “stream”, “creek”, “canal”, 
“channel”, “delta”, “estuaries”, and as lentic if the habitat descriptions contained at least 
one of the words “lake”, ”pool”, ”bog”, ”swamp”, ”pond”.

B.1.2 Derivation of the connectivity index equations. 

The equations proposed by Cote et al., (2009) allow to calculate the connectivity 
index for non-diadromous (N) and diadromous (D) fi sh species, assuming barriers are 
impassable, as follows:

(B.1)

(B.2)

where  li,s,b represents the length of stream segment i isolated due to a dam for a species 
s within a main basin b and n is the number of isolated segments due to n – 1 dams 
within that basin. Hence, CIs,b expresses the habitat connectivity, with smaller values 
indicating less connectivity. The equation for diadromous species diff ers from the one 
for non-diadromous as the most downstream dam obstructing the passage to/from the 
marine environment is likely to have the highest impact (Cote et al., 2009). In equation 
B2,  l1,s,b is the length of the longest river segment that is connected to the ocean. While 
the measures of Cote et al., (2009) can in principle account for diff erent passability of 
barriers, we assume here that the dams considered in this analysis are impassable. 

The IUCN species occurrence locations are not reported per stream segment, but as 
geographical ranges occupying a portion of the hydrologic basin, while equations B1-
B2 were developed for river segments. To make these equations applicable to the areal 
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range data from IUCN, we propose the following conversion between a watershed area 
and the length of the streams in that area based on Hack’s law. According to Hack’s law 
(Hack et al., 1957), l = ßaa i.e., the length of a stream (l) is proportional to its drainage 
area (a). Therefore, equations B1 and B2 can be rewritten as:

(B.3a)

(B.4a)

where, m are the watershed areas from j to m within the isolated patch i where the 
species s occurs. equations B3a and B4a can in turn be rewritten as:

(B.3b)

(B.4b)

Therefore, β can be eliminated and the fi nal equations are as follows:

(B.3c)

(B.4c)

We used the HydroBASINS (henceforth abbreviated as HB) watershed units (Pfafstetter 
level 12) to determine the watershed areas a (Lehner et al., 2008; Lehner and Grill, 2013). 
We allocated the IUCN geographical ranges of each species to the overlapping HB 
watersheds so that each watershed was assigned a list of species for which it provides 
habitat. In turn, we identifi ed all HB watersheds that provide habitat for each species. HB 
divides the globe in 1,034,083 watersheds (area median = 135 km2, interquartile range 
= 64 km2) following the Pfafstetter coding scheme (Lehner and Grill, 2013) and based 
on the high-resolution 15 arc-seconds (~500m) HydroSHEDS hydrography (Lehner et 
al., 2008). We employed HB as most of the freshwater fi sh IUCN ranges are established 
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based on HB and with Pfaffstetter level 12 we used the highest level of spatial definition, 
i.e., the smallest watershed units. Each of the watersheds in HB carries information on 
the connectivity to the next downstream watershed, which allows to determine the 
total connected area within a basin. Dams falling within a HB unit were georeferenced 
to the downstream boundary of that HB unit so that isolated patches were a collection 
of HB watershed units. Figure B.1 shows an example application of Equations B.4a 
and B.4c.

Figure B.1  |   CI calculation for a hypothetical species s (occupying the gray areas) in a fictitious 
basin b (external solid line) partitioned in HB watersheds (internal boundary dashed lines). The 
addition of dams fragments the basin in isolated patches (red hues with numbers). For each 
configuration, the CI is given for species s being either diadromous or non-diadromous. Note 
that the CI would not change for a diadromous species between the center and the right panel, 
even though the right panel contains more dams, as the connectivity for diadromous species is 
controlled by the most downstream dam.
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Figure B.2  |  Occurrence data of 221 diadromous (top) and 5,417 non-diadromous (bottom) 
freshwater fish species included in this study, represented as the number of species in each of the 
~1M sub-basins. Grey represents areas without species according to the IUCN database.
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Figure B.3  |  Location of dams included in this study for the present situation (39,912 dams; top) 
and for the future projection (3,681 dams; bottom).
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Figure B.4  |  Connectivity index (%) for present and future scenarios aggregated for the world’s 
main basins. The difference refers to the delta between present and future scenarios. For each of 
the ~58,000 basins, the mean of the CI value for the species occurring within that basin is reported. 
Grey represent areas without species according to the IUCN database.
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Figure B.5  |  Location of example basins shown in Figures 4a and 4b.



appendices    |    107

app


x

Figure B.6  |  Hydropower capacity in log10-transformed MW based on the metadata available for 
future dams (Zarfl et al., 2015). Median = 23 MW, IQR = 109 MW, n = 3,527.
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Table B.1  |   Abbreviations used for the species order names of Figure 4.4i in the main text. 
“OTHER” groups together order names with less than 20 species available for our analysis.

Order name Abbreviation used

ACIPENSERIFORMES ACIPE.

ANGUILLIFORMES ANGUI.

ATHERINIFORMES ATHER.

BATRACHOIDIFORMES OTHER

BELONIFORMES BELON.

CHARACIFORMES CHARA.

CLUPEIFORMES CLUPE.

CYPRINIFORMES CYPRINI.

CYPRINODONTIFORMES CYPRINO.

ELOPIFORMES OTHER

ESOCIFORMES OTHER

GASTEROSTEIFORMES GASTE.

GONORYNCHIFORMES GONOR.

GYMNOTIFORMES GYMNO.

LEPISOSTEIFORMES OTHER

MUGILIFORMES MUGIL.

OPHIDIIFORMES OTHER

OSMERIFORMES OSMER.

OSTEOGLOSSIFORMES OSTEO.

PERCIFORMES PERCI.

PERCOPSIFORMES OTHER

PLEURONECTIFORMES PLEUR.

POLYPTERIFORMES OTHER

SALMONIFORMES SALMO.

SCORPAENIFORMES SCORP.

SILURIFORMES SILUR.

SYNBRANCHIFORMES SYNBR.

SYNGNATHIFORMES SYNGN.

TETRAODONTIFORMES TETRA.

GADIFORMES OTHER
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Appendix C

C.1	 Supplementary Methods

C.1.1	 Representativeness of species richness

We compared fish species richness, as derived from IUCN range maps, against a recent 
collection of freshwater fish species richness for the major world’s watersheds (Tedesco 
et al., 2017) (Figure C.8).Tedesco et al., (2017) provide a list of 14,953 freshwater fish 
species occurring in 3,119 watersheds, collected from both literature and web-based 
sources. Using the same watershed boundaries, we sampled the species of the IUCN 
database (IUCN, 2018) occurring in each watershed.

C.1.2	 Validation of the water temperature threshold

We compared the species-specific maximum weekly water temperature thresholds 
derived in this study to laboratory data of critical thermal maxima for 213 species 
(Comte and Olden, 2017). This allowed us to check whether the threshold inferred 
from spatial data was representative of the actual thermal tolerance of freshwater fish 
species. For those species for which multiple experiments to quantify the thermal limit 
were reported, we averaged over the reported outcomes. We then compared such data 
to the maximum weekly water temperature threshold calculated in our study. Since 
the threshold is calculated for each historical period forced by a different GCM, we 
considered the median of the five values and reported the range in terms of maximum 
and minimum values across the GCM ensemble.

C.1.3	 Details on the GCM-RCP ensemble

For the climate forcing applied to the hydrological model PCR-GLOBWB, we employed 
the five global climate models (GCMs) available from the InterSectoral Impact Model 
Intercomparison Project (ISI-MIP). ISI-MIP provides bias-corrected and spatially down-
scaled climate inputs standardized for impact models (Hempel et al., 2013; Schewe 
et al., 2014; Warszawski et al., 2014). The climate variables were used as input for the 
hydrological model PCR-GLOBWB and temperature model DynWAT and consisted of 
precipitation, temperature and radiation components.
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C.2	 Supplementary Discussion

C.2.1	 Choice of ecologically relevant thresholds

A plethora of flow and water temperature metrics potentially affecting the spatial 
occurrence of freshwater species have been reported by previous studies (Arismendi et 
al., 2013; Carlisle et al., 2017; Dhungel et al., 2016; Döll and Zhang, 2010; Gao et al., 2009; 
Maheu et al., 2016; Olden and Poff, 2003; Poff et al., 2010; Poff and Zimmerman, 2010; 
Richter et al., 1996; Steel et al., 2017; van Vliet et al., 2013). Such metrics describe different 
features of the hydrograph and thermograph (magnitude, frequency, duration, timing 
and rate of change) and are usually selected depending on the study area, river type 
and species studied. Given the high number of metrics available and the redundancy 
among them (Arismendi et al., 2013; Olden and Poff, 2003), defining habitat suitability 
thresholds common to ~7,000 freshwater fish species is a non-trivial task. We adopted 
maximum water temperature (Tmax), minimum flow (Qmin), and the number of 
zero flow weeks (Qzf) as suitability thresholds, based on the weekly hydrograph and 
thermograph of the hydrological model. The maximum water temperature (Tmax) is 
the most important physiological threshold for fish species as mortality of ectothermic 
species occurs above lethal thresholds (Comte and Olden, 2017). Low flow (Qmin) and 
the number of zero flow events (Qzf) represent the range of low flow conditions that 
the species can withstand. Decreases in Qmin directly affect the riffle-pool systems 
and connectivity between viable habitat patches, leading to a rapid loss of biodiversity 
(Poff et al., 2010). Qzf gives an indication about the number of zero-flow events that a 
species can tolerate. Indeed, the increase in frequency of dry-spells directly correlates 
with reduction in diversity and biomass due to the loss of suitable aquatic habitat (Poff 
et al., 2010). 
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Figure C.1  |   Validation of the upper threshold of maximum weekly water temperature used in this 
study against critical thermal maxima from laboratory experiments (n = 213)(Comte and Olden, 
2017). The error bars represent full range of values from the five GCMs used in this study, while 
the dots show the median value. The dots size is proportional to the area of the IUCN occurrence 
range of each species and the values in the scale stands for a round of ±0.5. Circles represent 
lotic species while triangles stand for exclusively lentic species. Climate zoning is according to the 
historic Köppen-Geiger classification, A=Equatorial, B=Arid, C=Warm temperate, D=Snow. The 1:1 
line is shown as a black dashed line. Mean standard error = 0.09; R2 = 0.36.
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Figure C.2  |  Output variability stemming from the different inputs of Global Climate Models and 
Representative Concentration Pathway scenarios. Each box delimits the interquartile range and 
shows the median, and whiskers stand for the 95% interval for the 6,924 fish species assessed in 
this study.
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Figure C.3  |  Stressors contribution to the relative loss of species at each five arc minutes grid-cell 
at 3.2oC for flow (a) and water temperature (b). The overlap (relative loss of species due to both 
flow and water temperature) of the two stressors is also reported (c). The maps represent the 
median of the ensemble of the GCM-RCP combinations available for the 3.2oC warming scenario. 
Grey denotes areas without information available on freshwater fish species. 
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Figure C.4-I  |   Minimum weekly flow anomaly at the four different warming levels compared to 
the historical period (1976-2005). Each map represents the median of the GCM-RCP ensemble at 
each warming level. The difference is reported in units of m3/s.
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Figure C.4-II   |   Number of zero flow weeks anomaly at the four different warming levels compared 
to the historical period (1976-2005). Each map represents the median of the GCM-RCP ensemble at 
each warming level. The difference is number of weeks.
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Figure C.4-III  |   Maximum weekly water temperature anomaly at the four different warming 
levels compared to the historical period (1976-2005). Each map represents the median of the GCM-
RCP ensemble at each warming level. The difference is reported in units of oC.
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Figure C.5  |  Breakdown of range contractions percentage for lotic vs (exclusively) lentic species 
at the four global warming levels. The solid horizontal lines of the violin plots represent the 
interquartile range and median. Contribution to the percentage of range contractions from flow 
and water temperature are reported in the middle and lower panels.
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Figure C.6  |  Percentage of range lost for the 6,924 species grouped by different IUCN threat 
categories at each warming level. For each species, the median of the ensemble of the GCM-RCP 
combinations is reported. CR=Critically endangered, EN=Endangered, VU=Vulnerable, LC=Least 
Concern, NT=Near Threatened, DD=Data Deficient.
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Figure C.7 |  Current species richness at each five arc-minutes grid cell derived from the IUCN 
range maps for the 6,924 species used in this study (a). Distributions of lotic species that can live 
in flowing water bodies (b) and of exclusively lentic species that can live only in stagnant water 
bodies (c) are also reported (see Methods for further details of lentic and lotic categories). Gray 
denotes no data.
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Figure C.8  |  Number of freshwater fish species available for the major watersheds of the world for 
the IUCN data used in this study(IUCN, 2018) and according to Tedesco et al.(Tedesco et al., 2017) 
(a). The percentage of species covered in each watershed by this study (IUCN data)(IUCN, 2018) 
compared to Tedesco et al.(Tedesco et al., 2017) is also reported.
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Figure C.9  |  Statistical distribution of the flow and water temperature thresholds used in 
this study for the 6,924 species, represented as violin plots. For each variable, the threshold is 
calculated for each GCM historical period 1976-2005. In brackets, the percentile used for each 
threshold. Horizontal lines represent the interquartile range and median. 
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Figure C.10  |  Local cumulative range loss averaged over the 200 largest watersheds of the world. 
Numbers in brackets represent the ratio of the number of species covered in our study over the 
total number of species known to occur in the watershed according to Tedesco et al.(Tedesco et 
al., 2017). Differences among the total number of species within each watershed are dependent 
upon sampling and differences in catchment delineation.
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Table C.1  |   Years at which each GCM-RCP scenario reaches one of the four global warming levels. 
The levels are defined by global mean temperature rises compared to pre-industrial (1850-1900). 
Years represent the central value of the 30-years moving average. Three scenarios do not report 
values as they do not reach even the 1.5OC warming level. 

1.5oC 2oC 3.2oC 4.5oC

gfdl_rcp2p6

gfdl_rcp4p5 2044

gfdl_rcp6p0 2052 2073

gfdl_rcp8p5 2034 2051

hadgem_rcp2p6 2028

hadgem_rcp4p5 2029 2044

hadgem_rcp6p0 2034 2048 2082

hadgem_rcp8p5 2024 2036 2058 2080

ipsl_rcp2p6 2011 2033

ipsl_rcp4p5 2012 2031

ipsl_rcp6p0 2012 2032 2078

ipsl_rcp8p5 2011 2026 2051 2074

miroc_rcp2p6 2018 2035

miroc_rcp4p5 2021 2035

miroc_rcp6p0 2023 2039 2073

miroc_rcp8p5 2018 2030 2053 2074

noresm_rcp2p6

noresm_rcp4p5

noresm_rcp6p0 2050 2072

noresm_rcp8p5 2033 2048 2078
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Table C.2  |  Abbreviations used for the species order names of Figure 5.3i in the main text. 
“OTHER” groups together order names with less than 20 species available for our analysis.

Order name Abbreviation used

ACIPENSERIFORMES OTHER

ANGUILLIFORMES OTHER

ATHERINIFORMES ATHER.

AULOPIFORMES OTHER

BATRACHOIDIFORMES OTHER

BELONIFORMES OTHER

CHARACIFORMES CHARA.

CLUPEIFORMES CLUPE.

CYPRINIFORMES CYPRINI.

CYPRINODONTIFORMES CYPRINO.

ELOPIFORMES OTHER

ESOCIFORMES OTHER

GASTEROSTEIFORMES OTHER

GONORYNCHIFORMES GONOR.

GYMNOTIFORMES GYMNO.

LEPISOSTEIFORMES OTHER

MUGILIFORMES MUGIL.

OPHIDIIFORMES OTHER

OSMERIFORMES OSMER.

OSTEOGLOSSIFORMES OSTEO.

PERCIFORMES PERCI.

PERCOPSIFORMES OTHER

PLEURONECTIFORMES PLEUR.

POLYPTERIFORMES OTHER

SALMONIFORMES SALMO.

SCORPAENIFORMES SCORP.

SILURIFORMES SILUR.

SYNBRANCHIFORMES SYNBR.

SYNGNATHIFORMES SYNGN.

TETRAODONTIFORMES TETRA.

GADIFORMES OTHER
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Appendix D

Figure D.1  |   Impacts from climate change (at 1.5oC global warming) and fragmentation on 
the geographical ranges of 5,450 freshwater fish species per Köppen-Geiger climate zone (with 
number of species per zone in brackets). Each plotted point represents a species, whereby point 
size is proportional to the original range size. Numbers in the quadrants represent the proportions 
of species. Relative range/connectivity losses were calculated as the difference between current 
and future range area/ connectivity index divided by the current range area/connectivity index. 
Climate category was assigned based on the overlap of the range of each species with the Köppen-
Geiger climate zones.



128    |    appendices

Figure D.2  |  Impacts from climate change (at 2oC global warming) and fragmentation on the 
geographical ranges of 5,450 freshwater fish species per Köppen-Geiger climate zone (with 
number of species per zone in brackets). Each plotted point represents a species, whereby point 
size is proportional to the original range size. Numbers in the quadrants represent the proportions 
of species. Relative range/connectivity losses were calculated as the difference between current 
and future range area/ connectivity index divided by the current range area/connectivity index. 
Climate category was assigned based on the overlap of the range of each species with the Köppen-
Geiger climate zones.
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Figure D.3  |  Impacts from climate change (at 4.5oC global warming) and fragmentation on 
the geographical ranges of 5,450 freshwater fish species per Köppen-Geiger climate zone (with 
number of species per zone in brackets). Each plotted point represents a species, whereby point 
size is proportional to the original range size. Numbers in the quadrants represent the proportions 
of species. Relative range/connectivity losses were calculated as the difference between current 
and future range area/ connectivity index divided by the current range area/connectivity index. 
Climate category was assigned based on the overlap of the range of each species with the Köppen-
Geiger climate zones.



130    |    appendices



appendices    |    131

app


x

Figure D.4  |  Geographical range area vs fish length and associated quantile regression models 
for the 0.05 and 0.95 quantiles for hydrologic basins with an area greater than 100,000 km2 and 
with at least 30 species according to the IUCN data (IUCN, 2018). The basin ID is according to the 
HydroBASINS database (Lehner and Grill, 2013), while the name of some basins are reported.
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Summary

Freshwater systems across the globe are subject to significant modification by human 
activities. Integrated assessments models can help to understand impacts of human 
activities on natural systems and to inform policy makers about optimal strategies to 
preserve ecosystems and the essential services they provide. Various key aspects of 
freshwater systems, however, remain underrepresented in integrated assessments 
models. The aim of this thesis was to improve the representation of freshwater systems 
in integrated assessments by establishing global models of 1) hydrological variables at 
high spatial resolution and 2) human impacts on freshwater fish species, with a focus 
on dams and climate change. Ultimately, this thesis thus provides tools to advance the 
understanding of human impacts on freshwater systems.

An adequate spatially explicit representation of hydrological variables at a global extent 
is key to correctly predict, among others, concentrations of harmful contaminants in 
fresh water and the integrity of freshwater ecosystems. Chapters 2 and 3 explore data-
driven modelling strategies to obtain global spatially continuous layers of streamflow 
variables. Chapter 2 presents a multiple regression approach to quantify mean annual 
streamflow based on data from 1,885 monitoring stations with associated catchment 
basins ranging from 2 to 106 km2 in size. The model relates the streamflow at the mouth 
of the catchment to a set of catchment-based characteristics expected to influence 
streamflow, i.e., precipitation, temperature, slope, elevation and area. The regression 
model explained 89% of the variance among the observations and performed better 
(RMSE=0.29-0.38) than a process-based global hydrological model (RMSE=0.49-0.57; 
based on log-transformed values). Motivated by the high predictive accuracy of the 
regression model, Chapter 3 employs supervised artificial neural networks based on 
data from 6,600 monitoring stations to map maximum, minimum and mean annual 
streamflow at ~1x1 km2 grid-cell resolution across the globe and for every year from 
1960 through 2015. FLO1K is the first database reporting year-specific streamflow 
metrics at such high spatial resolution.

Freshwater biodiversity has so far been underrepresented in global assessments and 
there is an urgent need to more accurately quantify the potential impacts of human 
activities on freshwater biodiversity. Chapters 4 and 5 focused on the development 
of species-based models to quantify impacts of dams and climate change on fish 
geographical ranges worldwide. Chapter 4 presents an assessment of dam impacts 
quantified in terms of connectivity loss for ~5,700 riverine freshwater fish species. 
For each species, a connectivity index between 0 (no connectivity) and 100 (full 
connectivity) was calculated based on ~40,000 current dams and for ~3,700 dams that 
are under construction or planned. The results showed lower range connectivity for 
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fish species that complete their life cycle in freshwater (CI=69 ± 30%; mean ± standard 
deviation) as opposed to fish that migrate to or from the marine environment (CI=82 
± 22%). Connectivity losses due to the development of new hydropower dams were 
especially high in the tropics, with mean declines of 20-30 CI points for species in the 
Amazon, Niger, Congo and Mekong basins. Chapter 5 adopted a similar species-based 
approach to quantify potential geographical range contractions of ~7,000 freshwater 
fish species due to future climate change.  For each species, a maximum weekly water 
temperature and a minimum weekly flow threshold were established by overlaying 
species occurrence ranges with data on flow and water temperature. These thresholds 
were then used to estimate potential range contractions due to projected changes 
in water temperature or flow at different levels of global warming, according to four 
representative concentration pathway scenarios and five global climate models. Water 
flow and temperature were modelled with the global hydrological model PCR-GLOBWB 
2.0 at ~10x10 km2 spatial resolution. The assessment indicates that 20% of freshwater 
fish species will lose >50% of their current geographical range at 2oC warming, while 
intensifying mitigation efforts to limit warming to 1.5oC lowers this percentage to 13% 
(all warming levels relative to pre-industrial). In comparison, 44% of the fish species will 
lose >50% of their range in a “current pledges” scenario (3.2oC) and 69% (±7%) in case 
no mitigation action will take place (4.5oC).

Based on the findings of this thesis it was concluded that data-driven approaches are 
a powerful tool to estimate hydrological variables at high spatial-resolution and with 
(potentially) greater accuracy than process-based models. Data-driven models for global 
applications are only in their infancy and the increasing availability of remote sensing data 
has the potential to improve the temporal accuracy of data-driven models and allow the 
quantification of wider range of hydrological variables. The freshwater fish   distribution 
models developed in this thesis constitute a major first step to a global species-level 
impact assessment-modeling framework for freshwater biodiversity. Future studies 
may improve the models by including a wider range of stressors, including for example 
aspects of water quality, and include more realism, such as dispersal ability of fish and 
barrier passability. The tools and results of this thesis can be linked to broader integrated 
assessment modeling frameworks to more comprehensively assess human impacts on 
freshwater systems and, ultimately, better guide water management and policy.
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Zoetwatersystemen zijn wereldwijd onderhevig aan veranderingen als gevolg van 
menselijke activiteiten. Om de omvang van deze veranderingen te kwantificeren en 
beleidsmakers te helpen bij het ontwikkelen van optimale strategieën voor shet behoud 
van gezonde zoetwatersystemen, zijn grootschalige integrale beoordelingsmodellen 
en –methoden nodig. Verschillende belangrijke aspecten van zoetwatersystemen zijn 
echter ondervertegenwoordigd in bestaande integrale beoordelingsmodellen. Het 
doel van dit proefschrift was om de representatie van zoetwatersystemen in mondiale 
integrale beoordelingen te verbeteren door 1) het kwantificeren van hydrologische 
variabelen op hoge ruimtelijke resolutie en 2) het bepalen van de effecten van dammen 
en klimaatverandering op de verspreidingsgebieden van zoetwatervissen. Hiermee 
draagt het proefschrift bij aan een verbetering van grootschalige methoden voor het 
bepalen van de effecten van menselijk handelen op zoetwatersystemen.

Een gedetailleerde ruimtelijk expliciete weergave van hydrologische variabelen 
is van cruciaal belang voor het bepalen van, onder andere, concentraties van 
verontreinigingen in oppervlaktewater en de integriteit van zoetwaterecosystemen. 
Hoofdstuk 2 en 3 beschrijven datagedreven modelleringsstrategieën om rivierafvoer 
te berekenen op hoge ruimtelijke resolutie wereldwijd. Hoofdstuk 2 presenteert een 
meervoudige regressiemodel om de jaargemiddelde rivierafvoer te kwantificeren 
op basis van gegevens van 1.885 meetstations met bijbehorende stroomgebieden 
variërend in grootte van 2 tot 106 km2. Het model relateert de gemeten afvoer aan een 
aantal kenmerken van het stroomgebied die naar verwachting de afvoer beïnvloeden, 
d.w.z. neerslag, temperatuur, helling, hoogte en oppervlakte. Het regressiemodel 
verklaarde 89% van de variantie tussen de waarnemingen en bleek nauwkeuriger dan 
een mondiaal hydrologisch procesmodel (RMSE van 0,29-0,38 t.o.v. 0,49-0,57; gebaseerd 
op log-getransformeerde waarden). In hoofdstuk 3 is gebruik gemaakt van machine 
learning (supervised artifical neural network) om rivierafvoer in kaart te brengen op 
basis van afvoergegevens van 6.600 meetstations. Dit heeft geresulteerd in de dataset 
FLO1K: maximale, minimale en gemiddelde jaarlijkse rivierafvoer op een resolutie van ~ 
1x1 km2, voor elk jaar vanaf 1960 tot en met 2015. FLO1K is de eerste mondiale database 
met jaarspecifieke afvoerdata op een dergelijke hoge ruimtelijke resolutie.

De biodiversiteit van zoetwatersystemen is tot dusverre sterk ondervertegenwoordigd 
in grootschalige integrale milieubeoordelingen en er is een dringende behoefte om 
de potentiële effecten van menselijke activiteiten op de zoetwaterbiodiversiteit 
nauwkeuriger te kwantificeren. Hoofdstuk 4 en 5 beschrijven methoden voor 
het kwantificeren van de effecten van dammen en klimaatverandering op de 
verspreidingsgebieden van vissen. In hoofdstuk 4 is voor ~ 5.700 vissoorten de mate van 
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fragmentatie van hun verspreidingsgebied berekend als gevolg van de aanwezigheid 
van dammen. Voor elk soort werd een connectiviteitsindex berekend tussen 0 (geen 
connectiviteit; volledig gefragmenteerd) en 100 (volledige connectiviteit; geen 
fragmentatie), op basis van een mondiale dataset met ~ 40.000 bestaande dammen 
en ~ 3.700 dammen die in aanbouw of gepland zijn. De verspreidingsgebieden van 
vissoorten die hun levenscyclus in zoet water voltooien bleken sterker gefragmenteerd 
(CI = 69 ± 30%; gemiddelde ± standaardafwijking) dan de verspreidingsgebieden 
van soorten die migreren tussen zoetwater en mariene systemen (CI = 82 ± 22%). 
Fragmentatie als gevolg van de ontwikkeling van nieuwe waterkrachtdammen bleek 
vooral op te treden in de tropen, met gemiddelde dalingen van 20-30 CI-punten voor 
soorten in de stroomgebieden van de Amazone, Niger, Congo en Mekong. 

In hoofdstuk 5 is de potentiële inkrimping van het verspreidingsgebied als gevolg 
van klimaatverandering gekwantificeerd voor ~ 7.000 zoetwatervissoorten. Voor elk 
soort is eerst de maximale wekelijkse watertemperatuur en de minimale wekelijkse 
rivierafvoer binnen het verspreidingsgebied vastgesteld op basis van ruimtelijk 
expliciete gegevens over rivierafvoer en watertemperatuur. Deze drempelwaarden 
zijn vervolgens gebruikt om potentiële inkrimping van het verspreidingsgebied in 
te schatten als gevolg van geprojecteerde veranderingen in watertemperatuur of 
stroming bij verschillende niveaus van opwarming van de aarde, gebaseerd op vier 
scenario’s voor broeikasgasemissies en vijf mondiale klimaatmodellen. De rivierafvoer 
en temperatuur zijn gemodelleerd met het globale hydrologische model PCR-GLOBWB 
2.0, op een ruimtelijke resolutie van ~ 10x10 km2. Bij een opwarming van 2oC zal voor 
20% van de zoetwatervissoorten meer dan 50% van hun huidige verspreidingsgebied 
mogelijk ongeschikt worden als gevolg van veranderingen in afvoer of temperatuur. 
Dit percentage daalt van 20 naar 13% indien de opwarming beperkt blijft tot 1,5 °C en 
stijgt van 20 naar 44% bij een opwarming van 3,2oC (t.o.v. een pre-industriële situatie). 
Bij een opwarming van 4,5oC zal 69% van de vissoorten mogelijk meer dan 50% van hun 
verspreidingsgebied verliezen.

Op basis van de bevindingen in dit proefschrift kan worden geconcludeerd dat 
datagedreven benaderingen in staat zijn om hydrologische variabelen te kwantificeren 
op een hoge ruimtelijke resolutie en met een (potentieel) grotere nauwkeurigheid 
dan procesmodellen. Datagedreven hydrologische modellen staan ​​nog in de 
kinderschoenen en de nauwkeurigheid en temporele resolutie van de schattingen van 
de hydrologische variabelen zullen naar verwachting kunnen worden verbeterd met 
behulp van de toenemende beschikbaarheid van data (o.a. vanuit remote sensing). De 
modellen die in dit proefschrift zijn ontwikkeld voor het bepalen van de effecten van 
klimaatveranderingen en fragmentatie op de verspreidingsgebieden van vissen vormen 
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een belangrijke eerste stap naar een mondiaal en soortspecifiek beoordelingsinstrument 
voor de biodiversiteit in zoet water. Toekomstige studies kunnen de modellen 
verbeteren door een breder scala aan relevante omgevingsfactoren op te nemen, 
waaronder bijvoorbeeld aspecten van waterkwaliteit, en meer realisme  toe te voegen, 
zoals het verspreidingsvermogen van vissen en de passeerbaarheid van dammen. De 
methoden en resultaten in dit proefschrift kunnen worden gekoppeld aan bestaande 
integrale beoordelingsmodellen om de menselijke effecten op zoetwatersystemen 
beter te beoordelen en, uiteindelijk, een betere leidraad te vormen voor waterbeheer 
en waterbeleid.
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Gli ecosistemi di acqua dolce presenti sul nostro pianeta sono soggetti a sostanziali 
modifiche ad opera dell’uomo. I cosiddetti Integrated Assessment Models (IAMs) - 
modelli progettati per studiare l’interazione tra i settori dell’economia, dell’energia, 
dell’uso del suolo e il clima - costituiscono uno strumento essenziale per comprendere 
l’impatto delle attività umane sui sistemi naturali e portare i policy makers a conoscenza 
delle più efficienti strategie per preservare gli ecosistemi e i molteplici benefici che 
questi forniscono al genere umano. Vari aspetti chiave degli ecosistemi di acqua dolce 
rimangono tuttavia sottostimati negli IAMs. Con questo lavoro di tesi si intende fornire 
dei modelli numerici che siano applicabili su scala globale per 1) variabili idrologiche ad 
alta risoluzione spaziale e 2) l’impatto sulla ittiofauna mondiale d’acqua dolce di attività 
umane, quali lo sbarramento dei corsi d’acqua ad opera di dighe, e il cambiamento 
climatico. In definitiva, questa tesi fornisce strumenti essenziali per migliorare la 
comprensione delle conseguenze delle attività antropogeniche sugli ecosistemi di 
acqua dolce.

Un’adeguata rappresentazione spaziale delle variabili idrologiche su scala globale è 
essenziale, ad esempio, per predire concentrazioni nocive di sostanze contaminanti 
nell’acqua e comprendere l’integrità degli ecosistemi di acqua dolce. Nei capitoli 2 e 
3 sono esplorate strategie di modellazione numerica di tipo data-driven per ottenere 
una coerente rappresentazione spaziale della portata di flusso dei fiumi della Terra. Nel 
capitolo 2 è presentato un approccio di regressione lineare multipla utile a quantificare 
la portata media annua di flusso basandosi su dati provenienti da 1.885 stazioni di 
monitoraggio e dei bacini idrografici associati di dimensioni comprese tra 2 e 106 km2. 
Il modello mette in relazione la portata di flusso allo sbocco del bacino con un insieme 
di caratteristiche basate sullo stesso, quali la precipitazione atmosferica, la temperatura 
dell’aria, il pendio medio del versante, l’elevazione e l’area del bacino idrografico. Il 
modello di regressione ha spiegato l’89% della varianza delle osservazioni ed ha esibito 
una prestazione più soddisfacente (RMSE = 0,29-0,38) rispetto ad un modello idrologico 
globale di tipo process-based (RMSE = 0,49-0,57; RMSE si riferisce a valori di portata 
trasformati in scala logaritmica). Considerata la precisione predittiva del modello 
statistico di regressione sviluppato nel Capitolo 2, nel Capitolo 3 viene impiegata una 
modellazione numerica basata su Artificial Neural Networks, e sui dati provenienti da 
6.600 stazioni di monitoraggio, per mappare la portata annua massima, minima e media 
di flusso ad una risoluzione spaziale di ~1x1 km2 su scala globale, e per ogni anno dal 
1960 al 2015. FLO1K è il primo database che riporta stime di vari indici di portata annua 
con una risoluzione spaziale così elevata.
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Allo stato dell’arte attuale non risultano soddisfacenti rappresentazioni della 
biodiversità di acqua dolce nelle valutazioni su scala globale ed è pertanto urgente 
quantificare con maggiore precisione a che livello sia stata e sarà impattata dalle attività 
umane. Nei capitoli 4 e 5 sono sviluppati modelli numerici che sono species-based (la 
modellazione viene fatta per ogni singola specie separatamente), per quantificare gli 
impatti delle dighe e del cambiamento climatico sull’habitat di specie di pesci d’acqua 
dolce di tutto il mondo. Nel capitolo 4 viene presentata una valutazione dell’impatto 
derivante dallo sbarramento dei corsi fluviali ad opera di dighe, impatto quantificato 
in termini di perdita di connettività longitudinale e modellato per circa 5.700 specie di 
pesci d’acqua dolce. Per ogni specie è stato calcolato un indice di connettività compreso 
tra 0 (connettività nulla) e 100 (connettività massima) basato su ~40.000 dighe esistenti 
e per ~3.700 dighe che al momento sono in costruzione o la cui realizzazione è 
stata pianificata. I risultati hanno riportato una connettività inferiore per specie che 
completano il ciclo di vita in acqua dolce (CI = 69 ± 30%; media ± deviazione standard) 
rispetto alle specie ittiche che migrano da o verso ambienti marini (CI = 82 ± 22%). Le 
perdite di connettività dovute allo sviluppo di nuove dighe per centrali idroelettriche 
saranno particolarmente elevate ai tropici, con una riduzione media del 20-30% per 
le specie che abitano i bacini dell’Amazzonia, del Niger, del Congo e del Mekong. Nel 
capitolo 5 è stato adottato un simile approccio species-based per quantificare potenziali 
contrazioni delle aree geografiche di circa 7.000 specie ittiche d’acqua dolce in risposta 
al cambiamento climatico. Per ogni specie, sono state stabilite una massima temperatura 
dell’acqua e una portata di flusso minima settimanali consentite, sovrapponendo le aree 
geografiche delle specie con i dati su temperatura dell’acqua e portata. Queste soglie 
sono state quindi utilizzate per stimare le potenziali contrazioni delle aree geografiche a 
cui potrebbero condurre ipotetiche variazioni di temperatura dell’acqua o della portata 
di flusso causate dal riscaldamento globale, a sua volta quantificato relativamente alle 
ipotesi formulate da quattro Representative Concentration Pathways in combinazione 
con cinque modelli climatici globali. La portata fluviale e la temperatura dell’acqua 
sono state quantificate con il modello idrologico a scala globale PCR-GLOBWB 2.0, ad 
una risoluzione spaziale di ~10x10 km2. La valutazione mostra che il 20% delle specie 
di pesci d’acqua dolce perderà più della metà della loro area geografica per via di 
un innalzamento della temperatura di 2°C. In uno scenario di maggiore mitigazione 
climatica, per cui si può ipotizzare un aumento limitato a 1,5°C, questa percentuale si 
ridurrebbe al 13% (tutti i livelli di riscaldamento globale sono relativi alla temperatura 
atmosferica media di circa la seconda meta’ del XIX secolo). Di contro, in uno scenario 
in cui non vi sia alcuna mitigazione climatica, una volta adempiuti i National Determined 
Contributions (3,2°C), il 44% delle specie ittiche rischia di perdere piu’ della metà del 
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proprio spazio vitale, cifra che sale fino al 69% nel caso in cui non vi sia alcun intervento 
di mitigazione (4,5°C).

A partire dai risultati delle ricerche esposti in questa sede si può concludere che 
i cosiddetti approcci data-driven siano un potente strumento per stimare le variabili 
idrologiche ad alta risoluzione spaziale e con un’accuratezza potenzialmente maggiore 
rispetto ai modelli process-based. I modelli data-driven per le applicazioni globali sono 
solo agli esordi e grazie alla crescente disponibilità di dati di telerilevamento, si presenta 
la possibilità di un netto miglioramento dell’accuratezza temporale di modelli di tipo 
data-driven; in aggiunta, ciò consentirebbe la quantificazione di una gamma ancor più 
ampia di variabili idrologiche. I modelli per l’ittiofauna d’acqua dolce sviluppati in questa 
tesi rappresentano il primo passo di un processo che porterà ad ottenere un quadro 
definito degli impatti antropogenici sulla biodiversità di acqua dolce su scala globale. 
Studi futuri potrebbero migliorare tali modelli includendo una gamma più ampia di 
fattori di stress, come ad esempio variabili rappresentive della qualità delle acque ed 
un maggior realismo, come, ad esempio, la capacità di dispersione dei pesci e il grado 
di insormontabilità delle dighe. Gli strumenti e i risultati di questa tesi possono essere 
collegati tra di loro ed utilizzati in valutazioni integrate di sostenibilità ambientale con 
l’intento di migliorare la rappresentazione dell’impatto delle attività umane sui sistemi 
di acqua dolce e, in definitiva, migliorare la gestione delle risorse idriche.
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