
  



  

Introduction
● A number of years ago:

– Servers with a hardware raid controller and disks in 
the same box or in a separate storage array

– Everyone used RAID5 to cope with disk failure



  

Introduction
● Store extra parity bits
● In case of a single disk failure, use parity 

bits on other disk to reconstruct the 
contents of the failed disks → rebuilding

● H/W RAID controller waits for the broken 
disk to be replaced

● After disk is replaced, the RAID controller 
starts rebuilding

● In the period between disk failure and the 
end of the rebuild proces no disk failure 
can be tolerated



  

Introduction
● But then disks got bigger and bigger 

and rebuilding took longer and longer
● Chances increased of a second disk 

failure before the end of a rebuild
● No problem->RAID6
● Store two extra parity bits
● Now two disks can fail
● In case of disk failure, use parity bits on 

other disks to reconstruct the contents 
of the failed disk → rebuilding 



  

Introduction
● But the disks are still getting bigger and bigger 

and rebuilding still takes longer and longer
● So even rebuilding for RAID6 is going to take 

too long
● What do we do now?



  

Data durability
● Redundancy not in single RAID set but 

distributed over nodes in a cluster



  

Data durability

Disks
Nodes
Racks
Datacenters



  

Data durability



  

Data durability



  

Data durability



  

Data durability



  

Data durability

● Software Defined Storage
– Auditting processes
– Failures are handled by the storage system itself. No manual intervention required. 

Saves a lot of effort :)
– No individual disk or node is responsible for the durability of the data

● CEPH, SWIFT, IBM Spectra Scale (declustered array), Netapp StorageGrid, 
Huawei OceanStor 9000, FUJITSU Storage ETERNUS CD10000 S2,…..

● Currently testing dCache with CEPH storage backend



  



  

CAP theorem
● CAP theorem (Eric Brewer)

– Consistency
 (all nodes see the same data at the same time)

– Availability
 (every request receives a response about whether it succeeded or failed)

– Partition Tolerance
 (the system continues to operate despite arbitrary partitioning due to network 
failures)

● You can get only 2 out of 3
● SWIFT drops consistency to get availability, partition tolerance
● CEPH drops availability to get consistency and partition tolerance 



  

Types of storage



  

SWIFT & CEPH
● SWIFT is only an object store and nothing else
● CEPH can be an object store (RGW), fle-based storage 

(CEPHFS) and block storage (RBD)
● Both run on commodity hardware
● Both are Software Defned Storages
● Both have no SPOFs
● Both are self-healing



  

SWIFT
● CRUD – Create Read Update Delete
● Objects are accessible through an API (via URLs and 

https)
● Object locations as URLs for 

scalability of storage system
– https://proxy.swift.surfsara.nl/v1/

KEY_05b2aafab5a745eab2726d88649d95fe/
mycontainer/myobject



  

SWIFT
● Unstructured data

– Text, video, scientifc data
backups,websites,…..

● Highly available
● Eventual consistent

– No transactional data
● Speaks its own SWIFT protocol and 

S3
● Massive scalability,

                  SWIFT scales to the 



  

SWIFT



  

SWIFT
● Single name space
● Geographically distributed



  

SWIFT



  

SWIFT
● Storage policies

– 3 replica’s →
– Also Erasure coding like 8+4
– SSDs/HDDs
– Geographic location



  

CEPH
● CEPH components

– Monitor/Manager
● Management
● Statistics
● Consensus distributed decicion making
● Cluster membership and state
● Odd number

– OSD
● 1 per disk
● Serves objects to clients
● Replication and recovery



  

CEPH
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CEPH

M M M

Client
librados

osdmap
monmap



  

CEPH
● Block device

M M M

VM
Hypervisor

libRBD



  

CEPH
● Object store

– Speaks SWIFT
and S3

M M M

RADOS GW

librados

applic
ation



  

CEPH
● File system

M M M

Linux host

libcephfs

folders



  



  

FTS
● Developed by CERN
● Responsible for distributing the majority of the 

data from the Large Hadron Collider over the 
world. Handles more than 35PB per month. 

● Reliable bulk transfers of files between sites
● Zero configuration required :)



  

FTS
● Authentication by x509 proxy delegation

– Credentials never leave your machine
– SciTokens and             are underway. 

● Multi protocols
– Gridftp, WebDAV (HTTP 3rd party copy for dCache 

and DPM), XrootD, S3 



  

FTS
● Multi protocols

– Gridftp
– WebDAV 

(HTTP 3rd party copy 
for dCache and DPM)

– XrootD
– S3 
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FTS
● Horizontally scalable



  

FTS
● Session reuse
● Multihop transfers
● Interacts with tape 

archives
● Retries

– Retry times, retry delay

● REST API
● Python bindings
● CLI
● WebFTS



  

FTS
● Optimizer

– Configuration might be possible if you would have a detailed 
knowledge about network topology and the available resources

– Circumstances may change due to other users’ activities
– Empirical approach to maximise throughput

● Increases the number of parallel file transfers to maximise throughput
● Decreases the number of parallel file transfers when the number of 

recoverable errors increase



  

FTS
● The optimizer in action



  

Send 100 files from Amsterdam to 
Barcelona and from there to Vancouver



  

FTS commandline

https://youtu.be/FcvE4G-jAX4

https://youtu.be/FcvE4G-jAX4


  

FTS monitoring

https://youtu.be/T_RzhXxSVZE

https://youtu.be/T_RzhXxSVZE


  

WebFTS

https://youtu.be/PcvVTiw8h8w

https://youtu.be/PcvVTiw8h8w
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