

Introduction
● A number of years ago:

– Servers with a hardware raid controller and disks in
the same box or in a separate storage array

– Everyone used RAID5 to cope with disk failure

Introduction
● Store extra parity bits
● In case of a single disk failure, use parity

bits on other disk to reconstruct the
contents of the failed disks → rebuilding

● H/W RAID controller waits for the broken
disk to be replaced

● After disk is replaced, the RAID controller
starts rebuilding

● In the period between disk failure and the
end of the rebuild proces no disk failure
can be tolerated

Introduction
● But then disks got bigger and bigger

and rebuilding took longer and longer
● Chances increased of a second disk

failure before the end of a rebuild
● No problem->RAID6
● Store two extra parity bits
● Now two disks can fail
● In case of disk failure, use parity bits on

other disks to reconstruct the contents
of the failed disk → rebuilding

Introduction
● But the disks are still getting bigger and bigger

and rebuilding still takes longer and longer
● So even rebuilding for RAID6 is going to take

too long
● What do we do now?

Data durability
● Redundancy not in single RAID set but

distributed over nodes in a cluster

Data durability

Disks
Nodes
Racks
Datacenters

Data durability

Data durability

Data durability

Data durability

Data durability

● Software Defined Storage
– Auditting processes
– Failures are handled by the storage system itself. No manual intervention required.

Saves a lot of effort :)
– No individual disk or node is responsible for the durability of the data

● CEPH, SWIFT, IBM Spectra Scale (declustered array), Netapp StorageGrid,
Huawei OceanStor 9000, FUJITSU Storage ETERNUS CD10000 S2,…..

● Currently testing dCache with CEPH storage backend

CAP theorem
● CAP theorem (Eric Brewer)

– Consistency
 (all nodes see the same data at the same time)

– Availability
 (every request receives a response about whether it succeeded or failed)

– Partition Tolerance
 (the system continues to operate despite arbitrary partitioning due to network
failures)

● You can get only 2 out of 3
● SWIFT drops consistency to get availability, partition tolerance
● CEPH drops availability to get consistency and partition tolerance

Types of storage

SWIFT & CEPH
● SWIFT is only an object store and nothing else
● CEPH can be an object store (RGW), fle-based storage

(CEPHFS) and block storage (RBD)
● Both run on commodity hardware
● Both are Software Defned Storages
● Both have no SPOFs
● Both are self-healing

SWIFT
● CRUD – Create Read Update Delete
● Objects are accessible through an API (via URLs and

https)
● Object locations as URLs for

scalability of storage system
– https://proxy.swift.surfsara.nl/v1/

KEY_05b2aafab5a745eab2726d88649d95fe/
mycontainer/myobject

SWIFT
● Unstructured data

– Text, video, scientifc data
backups,websites,…..

● Highly available
● Eventual consistent

– No transactional data
● Speaks its own SWIFT protocol and

S3
● Massive scalability,

 SWIFT scales to the

SWIFT

SWIFT
● Single name space
● Geographically distributed

SWIFT

SWIFT
● Storage policies

– 3 replica’s →
– Also Erasure coding like 8+4
– SSDs/HDDs
– Geographic location

CEPH
● CEPH components

– Monitor/Manager
● Management
● Statistics
● Consensus distributed decicion making
● Cluster membership and state
● Odd number

– OSD
● 1 per disk
● Serves objects to clients
● Replication and recovery

CEPH

OSD

FS

Disk

M M M

CEPH

M M M

Client
librados

osdmap
monmap

CEPH
● Block device

M M M

VM
Hypervisor

libRBD

CEPH
● Object store

– Speaks SWIFT
and S3

M M M

RADOS GW

librados

applic
ation

CEPH
● File system

M M M

Linux host

libcephfs

folders

FTS
● Developed by CERN
● Responsible for distributing the majority of the

data from the Large Hadron Collider over the
world. Handles more than 35PB per month.

● Reliable bulk transfers of files between sites
● Zero configuration required :)

FTS
● Authentication by x509 proxy delegation

– Credentials never leave your machine
– SciTokens and are underway.

● Multi protocols
– Gridftp, WebDAV (HTTP 3rd party copy for dCache

and DPM), XrootD, S3

FTS
● Multi protocols

– Gridftp
– WebDAV

(HTTP 3rd party copy
for dCache and DPM)

– XrootD
– S3

GridFTP
Server 1

GridFTP
Server 2

GridFTP client

data

control

co
nt

ro
l

3rd party copy

FTS
● Horizontally scalable

FTS
● Session reuse
● Multihop transfers
● Interacts with tape

archives
● Retries

– Retry times, retry delay

● REST API
● Python bindings
● CLI
● WebFTS

FTS
● Optimizer

– Configuration might be possible if you would have a detailed
knowledge about network topology and the available resources

– Circumstances may change due to other users’ activities
– Empirical approach to maximise throughput

● Increases the number of parallel file transfers to maximise throughput
● Decreases the number of parallel file transfers when the number of

recoverable errors increase

FTS
● The optimizer in action

Send 100 files from Amsterdam to
Barcelona and from there to Vancouver

FTS commandline

https://youtu.be/FcvE4G-jAX4

https://youtu.be/FcvE4G-jAX4

FTS monitoring

https://youtu.be/T_RzhXxSVZE

https://youtu.be/T_RzhXxSVZE

WebFTS

https://youtu.be/PcvVTiw8h8w

https://youtu.be/PcvVTiw8h8w

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

