
A Tutorial to the Clean Object I/O

Library - version 1.1

Peter Achten

Martin Wierich

Department of Functional Programming

University of Nijmegen

The Netherlands

June 11, 1999

Contents

1 Preface 9

2 Introduction 11

2.1 What are interactive objects . 11

2.2 How to manage running interactive objects 13

2.2.1 Opening of interactive objects 14

2.2.2 Modi�cation of interactive objects 15

2.2.3 Closing of interactive objects 16

2.3 How to start an interactive program 16

2.4 My �rst Clean object I/O program 17

3 Global structure of the object I/O library 19

3.1 Abstract devices . 19

3.1.1 Menus . 20

3.1.2 Windows . 20

3.1.3 Timers . 20

3.1.4 Receivers . 20

3.2 Interactive processes . 20

3.3 Drawing . 21

3.4 Channels . 21

3.5 General . 22

4 Object identi�cation 25

5 Drawing 27

5.1 Picture attributes . 28

5.2 Drawing classes . 29

5.3 Font and text handling . 29

5.4 Examples . 32

5.4.1 Pen size and position . 33

5.4.2 Drawing lines . 33

5.4.3 Drawing text . 34

2

CONTENTS 3

5.4.4 Drawing ovals . 35

5.4.5 Drawing curves . 36

5.4.6 Drawing rectangles . 38

5.4.7 Drawing boxes . 40

5.4.8 Drawing polygons . 40

5.4.9 Drawing bitmaps . 41

5.4.10 Drawing in xor mode . 43

5.4.11 Drawing in Hilite mode . 43

5.4.12 Drawing in Clipping mode . 44

6 Windows and dialogues 47

6.1 Basic terminology . 47

6.1.1 Anatomy of windows and dialogues 48

6.1.2 Stacking order . 49

6.1.3 Active window or dialogue . 49

6.2 Window and dialogue attributes . 49

6.2.1 Window and Dialog attributes 49

6.2.2 Window attributes . 50

6.3 Opening and closing of windows and dialogues 51

6.4 Handling the document layer . 52

6.4.1 Indirect rendering . 52

6.4.2 Direct rendering . 54

6.4.3 Pragmatics . 54

6.4.4 Example: displaying a bitmap 54

6.5 Handling the control layer . 56

6.6 Handling the window and dialogue frame 56

6.6.1 Opening a window or dialogue frame 57

6.6.2 Changing a window and dialogue frame 57

6.7 Handling keyboard and mouse input 57

6.7.1 Keyboard input . 58

6.7.2 Mouse input . 60

6.8 Modal dialogues . 62

6.8.1 Example: a notice extension 63

7 Control handling 69

7.1 The standard controls . 69

7.1.1 The shared control attributes 70

7.1.2 The RadioControl . 70

7.1.3 The CheckControl . 71

7.1.4 The PopUpControl . 72

7.1.5 The SliderControl . 73

4 CONTENTS

7.1.6 The TextControl . 75

7.1.7 The EditControl . 75

7.1.8 The ButtonControl . 76

7.1.9 The CustomButtonControl 77

7.1.10 The CustomControl . 78

7.1.11 The CompoundControl . 79

7.2 Control glue . 80

7.2.1 :+: . 81

7.2.2 ListLS and NilLS . 81

7.2.3 AddLS and NewLS . 81

7.2.4 Example: a counter control 82

7.3 Control layout . 83

7.3.1 Layout at �xed position . 84

7.3.2 Layout at view frame boundary 85

7.3.3 Layout in lines . 85

7.3.4 Layout o�sets . 85

7.3.5 Layout relative to the previous control 86

7.4 Resizing controls . 88

7.5 Examples . 89

7.5.1 Keyspotting revisited . 89

7.5.2 Mousespotting revisited . 92

8 Menus 95

8.1 Menus and menu elements . 95

8.1.1 The menu attributes . 96

8.1.2 The Menu . 96

8.1.3 The MenuItem . 97

8.1.4 The MenuSeparator . 98

8.1.5 The RadioMenu . 98

8.1.6 The SubMenu . 99

8.2 Menu glue . 100

8.2.1 :+: . 100

8.2.2 ListLS and NilLS . 100

8.2.3 AddLS and NewLS . 101

8.3 The Windows menu . 101

8.4 Menu conventions . 102

8.4.1 Subsetting the available commands 102

8.4.2 Command conventions . 102

8.5 Example: a small menu system . 104

9 Timers 109

CONTENTS 5

9.1 Examples . 110

9.1.1 Expanding circles . 110

9.1.2 Internal clock . 113

10 Receivers 117

10.1 Receiver de�nitions . 117

10.2 Receiver creation . 118

10.3 Message passing . 118

10.3.1 Uni-directional message passing 119

10.3.2 Bi-directional message passing 120

10.4 Examples . 120

10.4.1 Talk windows . 120

10.4.2 Resetting the counter . 124

10.4.3 Reading the counter . 126

11 Interactive processes 131

11.1 De�ning interactive processes . 131

11.2 Interactive process creation . 133

11.2.1 Creating single processes . 133

11.2.2 Creating multiple processes 134

11.2.3 Process relations . 136

11.3 Examples . 136

11.3.1 Talk revisited . 136

11.3.2 Clock revisited . 138

12 Clipboard handling 147

12.1 Example: a clipboard editor . 148

13 Printing 151

13.1 The User Interface for Printing . 151

13.2 The print function . 152

13.3 Reusing drawing functions . 155

13.4 The printUpdateFunction function 157

13.5 The printPagePerPage function . 158

13.6 Printing text . 159

14 TCP 163

14.1 Introduction to TCP . 163

14.2 Basic Ideas . 164

14.3 Blocking TCP in World programs . 165

14.3.1 Establishing a connection . 165

14.3.2 Basic Operations on Channels 167

6 CONTENTS

14.3.3 Tearing down a connection 171

14.3.4 Putting it together . 172

14.3.5 Multiplexing . 173

14.3.6 More Channels . 177

14.4 Non Blocking TCP in I/O Programs 178

A I/O library 185

A.1 StdBitmap . 185

A.2 StdChannels . 186

A.3 StdClipboard . 189

A.4 StdControl . 190

A.5 StdControlClass . 194

A.6 StdControlDef . 195

A.7 StdControlReceiver . 197

A.8 StdEventTCP . 198

A.9 StdFileSelect . 199

A.10 StdId . 200

A.11 StdIO . 201

A.12 StdIOBasic . 202

A.13 StdIOCommon . 204

A.14 StdMaybe . 208

A.15 StdMenu . 209

A.16 StdMenuDef . 212

A.17 StdMenuElement . 213

A.18 StdMenuElementClass . 215

A.19 StdMenuReceiver . 216

A.20 StdPicture . 217

A.21 StdPictureDef . 223

A.22 StdPrint . 225

A.23 StdPrintText . 228

A.24 StdProcess . 230

A.25 StdProcessDef . 232

A.26 StdPSt . 233

A.27 StdReceiver . 235

A.28 StdReceiverDef . 238

A.29 StdStringChannels . 239

A.30 StdSystem . 240

A.31 StdTCP . 241

A.32 StdTCPChannels . 242

A.33 StdTCPDef . 245

A.34 StdTime . 247

CONTENTS 7

A.35 StdTimer . 248

A.36 StdTimerDef . 249

A.37 StdTimerElementclass . 250

A.38 StdTimerReceiver . 251

A.39 StdWindow . 252

A.40 StdWindowDef . 257

8 CONTENTS

Chapter 1

Preface

The functional programming language Clean has an extensive library to build graph-
ical user interface applications, the object I/O library. In this tutorial the basic
concepts of the object I/O library are explained. Many of the concepts are illus-
trated by means of Clean program examples. Clean code will be typeset in type

writer style. The example programs are also available as Clean sources in the
corresponding `Tutorial Examples' folder.

This tutorial is not a technical reference manual: you will not �nd an extensive and
detailed description of every data structure and function of the library. It is also
assumed that the reader is familiar with functional programming and Clean.

In Chapter 2 a very broad overview of the object I/O library is given, just to give
the reader a taste of what the object I/O system is all about. Chapter 3 presents
the global structure of the object I/O system.

The remaining part of this document explains the individual components of the
library. But before we can explain the graphical user interface elements, we �rst
talk about object identi�cation (Chapter 4), and drawing (Chapter 5).

To users of graphical user interfaces the interface elements are of course the windows
and dialogues. These are discussed in Chapter 6. Windows and dialogues can
contain controls. Because there are many aspects about control handling their
treatment deserves a separate chapter (7). In all graphical user interface systems,
the set of available commands is presented by means of menus, see Chapter 8. To
support timing features, timers can be used, see Chapter 9. Flexible communication
of arbitrary expressions between components can be achieved by using receivers and
message passing, see Chapter 10.

All of the above objects are elements of one interactive process. The object I/O
library enables the programmer to split up a large interactive program into several
interactive processes that can be created and closed dynamically. This is presented
in Chapter 11.

Two �nal chapters remain that deal with issues that are also related to graphical
user interface applications. In Chapter 12 we discuss clipboard handling, a simple
user driven mechanism to transfer data between interactive applications. In Chapter
13, we demonstrate the means that exist to send output to a printer.

In Chapter 10 communication of arbitrary Clean expressions between interactive
objects is discussed. In Chapter 14 it is demonstrated how Clean programs can
communicate with arbitrary programs using TCP.

Appendix A contains the de�nition modules of the Clean object I/O library, version

9

10 CHAPTER 1. PREFACE

1.1. in alphabetic order.

The Clean object I/O library is maintained by Peter Achten. Martin Wierich wrote
the chapters on printing (Chapter 13) and TCP (Chapter 14) and also developed
the corresponding library modules.

Chapter 2

Introduction

In this chapter we give a brief overview of the main features of the object I/O
library. We �rst discuss what the basic components are and how they can be used
to construct more complex components (Section 2.1). When these elements have
been constructed, they must be opened to create an actual working image on the
underlying platform. Elements can be opened and closed dynamically, but it is of
course also possible to change them dynamically (Section 2.2). Once we know how
to construct graphical user interfaces we can start an interactive program. This
is explained in Section 2.3. Finally, to wrap things up Section 2.4 presents the
�rst complete interactive Clean object I/O program of this tutorial, the ubiquitous
\Hello world!".

2.1 What are interactive objects

One way of looking at the object I/O library is to regard it as a collection of building
blocks, the interactive objects, that the programmer can use to construct graphical
user interfaces. For instance, Figure 2.1 summarises the standard set of control
objects that can be placed in a window object.

All interactive objects are de�ned by means of algebraic data types. As an example,
to de�ne the button control element in the table of Figure 2.1 one would write:

button = ButtonControl "Button" []

The constituents of this expression are the data constructor ButtonControl, applied
to the string "Button", and an empty list [] of control attributes. This is de�ned
more concisely by the library type de�nition of a button control element:

:: ButtonControl lst pst

= ButtonControl String [ControlAttribute *(lst,pst)]

Note that the names of the type constructor and the data constructor are identical
(ButtonControl). This convention is used throughout the object I/O library.

The type de�nition of the button control is parameterised with two type variables:
lst and pst. These correspond to another fundamental characteristic of interactive
objects: an interactive object can have local state, and also have an e�ect on a
process state. The type of the local state is identi�ed by the lst type parameter,
while the type of the process state is identi�ed by the pst type parameter. The e�ect

11

12 CHAPTER 2. INTRODUCTION

Control object: What does it look like:
RadioControl

CheckControl

PopUpControl

SliderControl

TextControl

EditControl

ButtonControl

CustomButtonControl Program de�ned button
CustomControl Program de�ned button
CompoundControl Program de�ned combination of controls

Figure 2.1: The standard set of controls.

of an interactive object that has a local state of type lst and a process state of type
pst is de�ned by means of a function of type (lst; pst)! (lst; pst). Such a function
is called a callback function. For most interactive objects, the callback function is
an attribute of the object. Attributes are also de�ned by means of algebraic data
types. For instance, among many other control attributes, one can �nd the callback
function attribute of controls:

:: ControlAttribute state

= ... | ControlFunction (state->state) | ...

Note that the pair of local state and process state constitute the state of an element.
Themeaning of attributing a control element with a callback function f is that when
that element is selected by the user, and the current state is the value (l; p), then
the new state will be (f(l; p)). In other words, a callback function de�nes a state
transition.

Besides having a bag of interactive objects the object I/O library provides pro-
grammers glue to construct user interfaces. This glue serves two purposes: (a)
from primitive objects one can construct new composite objects, and (b) it puts
restrictions on what components are `glue compatible'.

The object I/O library has one universal glue :+: that can be used to connect two
interactive objects that operate on the same local state of type lst and process state
of type pst. Its type de�nition is as follows:

:: :+: t1 t2 lst pst

= (:+:) infixr 9 (t1 lst pst) (t2 lst pst)

In order to de�ne what components are compatible to be glued type constructor
classes are applied. The type constructor class Controls contains all control ele-
ments (see Figure 2.1) but also de�nes that only Controls members can be glued:

instance Controls RadioControl,

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 13

CheckControl,

PopUpControl,

SliderControl,

TextControl,

EditControl,

ButtonControl,

CustomButtonControl,

CustomControl,

CompoundControl c | Controls c

:+: c1 c2 | Controls c1 & Controls c2

The �rst nine instances are straightforward type constructor instances. The one
but last instance states that if the type c is a Controls instance, then the type
expression (CompoundControl c) is also a Controls instance. The last line of the
list states that if expressions e1 and e2 have types c1 and c2 which are Controls
instances, then the expression (e1:+:e2) has type ((:+:) c1 c2) and is also a
Controls instance. Let button and text below de�ne a button control and a text
control respectively:

button = ButtonControl "Button" []

text = TextControl "Just text" []

then the following expressions are all legal Controls instances: button :+: button,
button :+: text, text :+: button, and text :+: text.

The collection of interactive objects that is supported by the object I/O library is
ordered in four categories, called abstract devices.

Menus: Menus provide the set of commands that are available to the user of an
interactive program. A program can have an arbitrary number of menus.
Menus can be hierarchical, i.e. they can contain menus (sub menus) which can
contain sub menus as well. Menu items correspond with the menu commands
of the program.

Windows: Windows provide the primary interface element to the user of a pro-
gram. Windows can either be dialogues or general purpose windows. Win-
dows and dialogues can contain arbitrary collections of controls. Analogous
to menus, these control collections can be hierarchical, i.e. they can contain
collections of controls (compound controls), and so on.

Timers: Timers are used by a program to be able to softly synchronise actions.
A timer basically triggers a callback function every passing of a given time
interval.

Receivers: Receivers are the basic components that interactive objects can use to
communicate messages in a
exible way.

2.2 How to manage running interactive objects

In the previous section we have had a glimpse of how to de�ne (compositions of)
interactive objects. In the object I/O library every interactive object can be created
and destroyed dynamically, but we prefer to call this opening and closing which
sounds more peacefully. Once an interactive object is running the program will need
to modify it in several ways. Examples are to enable and disable menu elements,

14 CHAPTER 2. INTRODUCTION

and change the content of a window to re
ect the state of the program, and so
on. Closing an element is the ultimate modi�cation of a running interactive object.
So interactive objects have a life-cycle which consists of three consecutive phases:
opening, modi�cation, and closing. Below we discuss these phases.

2.2.1 Opening of interactive objects

For each abstract device a function is de�ned that will open an instance, given a
de�nition. Again type constructor classes are used to control what elements are
proper instances of each abstract device. As an example, dialogues are de�ned by
the following type de�nition:

:: Dialog c lst pst

= Dialog Title (c lst pst) [WindowAttribute *(lst,pst)]

Callback functions are state transition functions of type (lst; pst) ! (lst; pst), so
the window attribute type constructor is parameterised with (lst; pst).

The type constructor class Dialogs �xes the instances of dialogues. A (Dialog
c) is a proper instance of this class, provided that c is a proper instance of the
Controls type constructor class.

class Dialogs ddef where

openDialog :: .ls (ddef .ls (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

instance Dialogs (Dialog c) | Controls c

In Subsection 2.2.2 we will look more closely at the process state argument PSt.

Of each abstract device, the open function maps the de�nition of an abstract device
instance (a value parameterised with callback functions) to a concrete `physical'
graphical user interface element that can be modi�ed by the user (in case of windows,
dialogues, and menus) or by the program (in case of all abstract devices). As an
example we can open a very small and not very useful dialogue with the following
expression:

(error,new_process_state)

= openDialog

my_local_state

(Dialog "" (TextControl "Hello world!" []) [])

the_process_state

which will have the following e�ect (in case no error occurs):

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 15

2.2.2 Modi�cation of interactive objects

Once an interactive object has been opened and is in its running phase, it can
be modi�ed by the user and the program. For this purpose a running interactive
object must be stored somewhere, and it must be identi�ed by the program. Every
running interactive object is stored in the I/O state of a program. In Section 2.1
we explained that every interactive object has access to a local state and a process
state. The process state is a structured value de�ned by means of a record:

:: *PSt l p // The process state record type

= { ls :: l // The local process state

, ps :: p // The public process state

, io :: *IOSt l p // The I/O state

}

:: *IOSt l p // IOSt is an abstract data type

A value of abstract type IOSt is created speci�cally for each interactive process by
the object I/O system. In this special value the state of every running interactive
object is stored. (The purpose of the local process state and public process state
record �elds ls and ps will be discussed in Chapter 11.)

The modication operations require the IOSt value (although some functions such
as the abstract device open functions require the PSt record). But this is not
su�cient because in general the IOSt will contain an arbitrary number of windows,
dialogues, menus, timers, and receivers. So one has to specify which particular
interactive object one intends to modify. For this purpose interactive objects (and
their component structures) can be identi�ed by means of Ids. An Id is an abstract
type that is generated by the object I/O system. An interactive object is identi�ed
by means of a speci�c Id by adding this Id to the attribute list of the corresponding
object de�nition (see Section 2.1). As an example, for controls the corresponding
attribute is:

:: ControlAttribute state

= ... | ControlId Id | ...

The major part of the object I/O library de�nes the modi�cation functions that
the programmer can use to modify a running interactive object.

As an example suppose we want to change the content of the text control of the
\Hello world!" example to \Goodbye world!". To do this, we need to identify the
text control. A control is identi�ed uniquely by the Id of its parent window or
dialogue and its personal Id. So the de�nition of both the \Hello world" dialogue
as the text control need to be parameterised with an Id attribute. Let dialogid
be the Id of the dialogue, and textid the Id of the text control. Then the adapted
de�nition of opening the \Hello world!" dialogue is:

(error,new_process_state)

= openDialog

my_local_state

(Dialog ""

(TextControl "Hello world!" [ControlId textid])

[WindowId dialogid]

)

the_process_state

16 CHAPTER 2. INTRODUCTION

changeText process_state=:{io}

= {process_state & io=setWindow dialogid

(setControlTexts [(textid,"Goodbye world!")])

io

}

2.2.3 Closing of interactive objects

As explained in the previous two subsections, once an interactive object has been
opened it is in a running state and it will remain in that state until it is explicitly
closed by the program. Note that although it may seem to the user that he is able
to close a window, it is actually the program that responds to a user request to
really close a window. For all interactive objects there are close operations. A close
operation will remove the `physical' graphical user interface element and free system
resources that were required to operate the interactive object properly.

2.3 How to start an interactive program

The starting point of every Clean program (interactive or not) is the Start function.
The essence of an interactive program is that it is a function that can change the
world. So for interactive programs the Start function must have type *World !
*World. The typical appearance of an interactive program looks something like
this:

Start :: *World -> *World

Start world

= ... world

In the previous sections we have seen how to de�ne interactive objects and get them
running. The abstract device open functions require a PSt value, containing an IOSt
value. These are created by the object I/O system using the function startIO.

startIO :: !.l !.p !(ProcessInit (PSt .l .p))

![ProcessAttribute (PSt .l .p)] !*World -> *World

:: ProcessInit pst :== [IdFun pst]

:: IdFun pst :== pst->pst

The details of this function will be explained in Chapter 11. Brie
y, it creates an
initial process state given the initial local and public process state components of
type l and p. In particular this initial process state will contain a tailor-made IOSt
value. In this way one switches from the world environment to the process state
environment, and the interactive program can be initialised. This is done by the
initialisation function (of type ProcessInit).

After initialisation the interactive process will be evaluated. Evaluation means that
the object I/O system takes care that the proper process state transition functions
will be applied that are speci�ed by the program.

The evaluation of an interactive process terminates as soon as it becomes closed.
The only way for an interactive process to be closed is by means of the process
modi�cation function closeProcess:

2.4. MY FIRST CLEAN OBJECT I/O PROGRAM 17

closeProcess :: (PSt .l .p) -> PSt .l .p

This function closes all currently running interactive objects of the interactive pro-
cess and returns a process state that contains an empty IOSt value. All modi�cation
operations have no e�ect when applied to an empty IOSt value. Note that if an
interactive program does not close itself it will run on forever.

2.4 My �rst Clean object I/O program

To complete the introduction we present the Clean object I/O version of the well
known \Hello world!" program. Here it is:

module hello

// **

// Clean tutorial example program.

//

// This program creates a dialog that displays "Hello world!" text.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

where

initialise process

(error,process) = openDialog NoState hello process

| error<>NoError = closeProcess process

| otherwise = process

hello = Dialog ""

(TextControl "Hello world!" []

)

[WindowClose (noLS closeProcess)

]

This program creates an interactive process which opens the same dialogue as shown
earlier in Section 2.2.1. The singleton type NoState is applied to state that this
program has no interesting local and public process state components (the �rst
two arguments of startIO), and also no interesting local dialogue state (the �rst
argument of openDialog).

The dialogue has one attribute, the callback function that should be applied in case
the user wants to close the dialogue. In this case closing the dialogue will close
the \Hello world!" program. So the callback function can simply be closeProcess.
However, the type of a callback function of an interactive object also operates on
a local state (which is NoState in this case). To conveniently transform a function
of type (a! b) into a function of type (c; a)! (c; b), the library function noLS ::

(a! b) (c; a)! (c; b) is used.

18 CHAPTER 2. INTRODUCTION

Chapter 3

Global structure of the
object I/O library

The application programmer's interface of the Clean object I/O library currently
consists of fourty modules. All corresponding de�nition modules can be found in
Appendix A. These modules contain everything you need to create interactive Clean
programs with. No other modules and no other symbols should be imported from
the object I/O library. Violation of this rule can result in error-prone applications
at worst and non portability at least.

In this chapter the module structure of the api is discussed. This will help you to
�nd your way quickly in the object I/O library. As a global naming convention,
all de�nition modules have the pre�x Std. The module StdIO is a convenience
module that collects all modules that you normally need for graphical user interface
programs. The module StdTCP is a convenience module that collects all modules
required for TCP programming. The fourty modules can be divided roughly into
�ve major categories: the abstract devices, interactive processes, drawing, channels
and general. Below they will be handled in the same order.

3.1 Abstract devices

Abstract devices have been introduced in Section 2.1 (page 13). These are the menu,
window, timer, and receiver device. These devices occupy most of the modules and
type de�nitions of the object I/O library. The following naming conventions have
been employed for these modules:

� The names of the modules that contain type de�nitions to de�ne abstract
device instances have post�x Def. So menu de�nitions can be found in the
module StdMenuDef, receiver de�nitions can be found in the module Std-

ReceiverDef, and so on. Although controls are not an abstract device, a
de�nition module also exists for controls, namely StdControlDef.

� Abstract device instances that consist of elements use type constructor classes
to enumerate their elements. The corresponding type constructor classes and
standard instances are de�ned in the modules which names end with Class.
So menu elements can be found in the module StdMenuElementClass. The
controls can be found in StdControlClass.

19

20 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

� Receivers are non standard elements of some abstract device instances. Given
the name Object of the parent device instance, you can �nd the type con-
structor class instance declarations in the modules which names are formed
like StdObjectReceiver. So, receiver instances of timers can be found in
StdTimerReceiver.

� The operations on an object Object can be found in the module named Std-

Object. So window operations can be found in the module StdWindow, menu
element operations can be found in the module StdMenuElement, and so on.

Below we discuss the module structure of each of the abstract devices.

3.1.1 Menus

The api for menus and menu elements consists of six modules that are related as
schematised in Figure 3.1.

StdMenu

��	

?

@@R

StdMenuReceiver

����

?

StdMenuElement

@@R

StdMenuElementClass

����

StdMenuDef StdReceiverDef

Figure 3.1: The module structure of menus.

3.1.2 Windows

The api for windows, dialogues, and controls consists of eight modules that are
related as schematised in Figure 3.2.

3.1.3 Timers

The api for timers consists of six modules that are related as schematised in Figure
3.3.

3.1.4 Receivers

The api for receivers consists of two modules that are related as schematised in
Figure 3.4.

3.2 Interactive processes

As stated in Section 2.3, every interactive program has to be opened as an interactive
process. The api for interactive processes consists of two modules that are related
as schematised in Figure 3.5.

3.3. DRAWING 21

StdWindow

?
XXXXXXz

StdControlReceiver

����
HHHj

StdWindowDef

HHHHHHHHHHHHj

StdControlClass

?

StdReceiverDef

StdControl

����

StdControlDef

?

StdPicture

Figure 3.2: The module structure of windows.

StdTimer

����

?

HHHj

StdTimerReceiver

����

?

StdSystem StdTimerElementClass

����

StdTimerDef StdReceiverDef

Figure 3.3: The module structure of timers.

3.3 Drawing

In graphical user interface applications graphics play an important role. Virtually
every interface object has a visual representation that is drawn by the underlying
platform. Drawing operations will be required by most applications to give the
user visual feedback on the current documents that are being manipulated or the
status of controls. The manipulation of text is also an issue in drawing information.
Text can be presented in very di�erent fonts, sizes, and variations. Drawing on
screen and printing on paper is very analogous. With some care rendering can be
abstracted from the output device.

The api for drawing consists of �ve modules that are related as schematised in
Figure 3.6.

3.4 Channels

For communication via a network channels play an important role.

The api for using channels consists of �ve modules that are related as schematised

22 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

StdReceiver

?

StdReceiverDef

Figure 3.4: The module structure of receivers.

StdProcess

?

StdProcessDef

Figure 3.5: The module structure of interactive processes.

in Figure 3.7.

3.5 General

Finally, there are a number of modules that are less easily categorised. These are
the following eight modules:

StdClipboard: In this module clipboard operations are de�ned. Clipboard opera-
tions are de�ned in more detail in Chapter 12.

StdFileSelect: In this module two functions are de�ned by which a user can open
platform dependent directory browsing dialogues.

StdId: In this module the identi�cation value generating functions are de�ned.
This is discussed in more detail in Chapter 4.

StdPrintText

?

StdPrint

����

StdBitmap

?

StdPicture

?

StdPictureDef

Figure 3.6: The module structure of drawing operations.

3.5. GENERAL 23

StdEventTCP

HHHj

StdStringChannels

����

StdTCPChannels

?

STdTCPDef

?

StdChannels

Figure 3.7: The module structure for channels.

StdIOBasic and StdIOCommon: These modules provide a lot of type de�nitions and
functions that are needed by many of the abstract device modules introduced
in Section 3.1.

StdMaybe: In this module a type is introduced that is very useful for providing
optional results and optional arguments. It is used by many operations in the
abstract device modules.

StdPSt: In this module operations are collected on the process state that are not
related to any abstract device. It contains several type constructor class in-
stance declarations for �le and time access. Other frequently used functions
are the `lifting' functions de�ned on the process state. With these lifting func-
tions one can easily transform for instance an IOSt transition function to a
PSt transition function.

StdTime: In this module some time access operations can be found that can be
used independently of the timer device.

24 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

Chapter 4

Object identi�cation

Before we can really delve into the details of the object I/O library we �rst need
to learn how to identify running interactive objects. As we have brie
y discussed
in Section 2.2.2, all objects can have an identi�cation attribute. An identi�cation
attribute is a value of type Id. Because attributes are optional, the programmer
is not forced to provide a value for this attribute. Objects without identi�cation
attribute can not be modi�ed at run-time. If the program needs to modify an
interactive object, it must have been provided with an identi�cation attribute.

The type Id is an abstract data type, and you can import it via the module StdId.
All Ids are generated by the system. The type constructor class Ids de�nes the
creation functions. Ids can be created from the World environment and the IOSt

environment. Every new Id taken from these environments is guaranteed to be
fresh with respect to the other Ids generated by any of these functions.

:: Id

class Ids env where

openId :: !*env -> (! Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (! RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (! R2Id m r, !*env)

openR2Ids:: !Int !*env -> (![R2Id m r],!*env)

instance Ids World

instance Ids (IOSt .l .p)

As the Ids class de�nition shows, Id values are not the only identi�cation values
that are used in the object I/O system. Two special kinds of identi�cation values of
type (RId m) and (R2Id m r) are used to identify receivers that respond to messages
of type m in the �rst case, and in addition respond with a message of type r in the
second case. Receivers are discussed in Chapter 10.

The purpose of having Ids is to unambiguously identify running interactive objects.
When assigning Ids to interactive objects, a program must comply to the following
Id assignment rules:

� Within one abstract device element instance, the Ids assigned to its elements

25

26 CHAPTER 4. OBJECT IDENTIFICATION

must be unique.

� Within one abstract device, the Ids assigned to the abstract device element
instances must be unique.

For instance, the Ids assigned to windows must all be unique, and inside a window
the Ids assigned to its controls must be unique. But for two di�erent windows, the
Ids assigned to the controls may overlap. Also the Ids assigned to other abstract
device element instances such as menus and timers may overlap.

For RIds and R2Ids the assignment rules are more strict: at all times when a
program is running, the R(2)Ids assigned to open receivers must be unique. The
reason for this is explained in Chapter 10.

The abstract device open functions check whether the interactive object de�nition
argument is valid with respect to the Id assignment rules. If this is not the case,
the ErrorReport alternative ErrorIdsInUse is returned, and the interactive object
will not be opened. If the Id assignment rules were not violated, and no other error
occured, then the alternative NoError is returned.

Chapter 5

Drawing

In a graphical user interface most of the information that is presented to users is
drawn, from the shape of windows, dialogues, controls, but also handling of text.
This central issue is handled in this chapter. All drawing functions require an
environment of type *Picture. A Picture is created for each interactive object
that can be drawn in. The life-cycle of a Picture environment is equal to the life-
cycle of its parent object. Also for printing a Picture environment is used (printing
is discussed in detail in Chapter 13).

A Picture de�nes a coordinate system for drawing operations. Increasing x-axis
coordinates run from left to right. Increasing y-axis coordinates run from top to
bottom. The range for both axes is the full Clean Integer range.

-x

?

y

�231 0 231 � 1

�231

0

231 � 1

Figure 5.1: Picture coordinates.

Drawing operations on a Picture use the coordinate system to de�ne where objects
should be drawn. The objects themselves are made up of the pixels, lying between
the coordinates. Figure 5.2 zooms in on the coordinate system from zero and
increasing. The pixels on x-coordinates 0, 5, 10,. . . and y-coordinates 0, 5, 10,. . . are
displayed.

27

28 CHAPTER 5. DRAWING

25

20

15

10

5

0

0 5 10 15 20 25

Figure 5.2: Picture coordinates and pixels

5.1 Picture attributes

Like most other interactive objects in the object I/O library, pictures have at-
tributes. These are the following (they can be found in module StdPicture):

:: PictureAttribute

= PicturePenSize Int

| PicturePenPos Point

| PicturePenColour Colour

| PicturePenFont Font

PicturePenSize: This attribute de�nes the width and height of the drawing pen.
The default value is 1, which means that drawing a point will �ll an area of 1
pixel wide and 1 pixel high. Negative or zero values are always set to 1.

PicturePenPos: This attribute determines the current position of the drawing pen.
Its default value is zero (both �elds are zero). The type de�nition of Point
is:

:: Point = {x::!Int,y::!Int}

PicturePenColour: This attribute determines the colour that is used when drawing
any element. The Colour data type is de�ned in module StdPictureDef:

:: Colour

= Black | DarkGrey | Grey | LightGrey | White

| Red | Green | Blue

| Cyan | Magenta | Yellow

| RGB RGBColour

:: RGBColour

= {r::!Int, g::!Int, b::!Int}

A colour can range between black and white (�rst �ve alternatives de�ning
100%, 75%, 50%, 25%, and 0% blackness), be one of red, green, blue, be one of

5.2. DRAWING CLASSES 29

cyan, magenta, yellow, or some custom de�ned combination of red, green, blue
components. Currently the library does not support colour tables or palette
management operations, so the use of RGB colours tends to be speculative.

PicturePenFont: This attribute sets the current font that will be used when draw-
ing text. Drawing text is not a�ected by the current width and height of the
pen.

For each picture attribute there are functions to get and set them individually.

5.2 Drawing classes

The drawing operations are divided into three groups, ordered by means of type
constructor classes:

Drawables draws (draw and drawAt) or erases (undraw and undrawAt) its in-
stances. These are characters, strings, vectors, ovals, curves, boxes, rectangles,
polygons, and bitmaps.

class Drawables figure where

draw :: !figure !*Picture -> *Picture

drawAt :: !Point !figure !*Picture -> *Picture

undraw :: !figure !*Picture -> *Picture

undrawAt:: !Point !figure !*Picture -> *Picture

Fillables �lls (fill and fillAt) or erases (unfill and unfillAt) its instances.
These are ovals, curves, boxes, rectangles, and polygons.

class Fillables figure where

fill :: !figure !*Picture -> *Picture

fillAt :: !Point !figure !*Picture -> *Picture

unfill :: !figure !*Picture -> *Picture

unfillAt:: !Point !figure !*Picture -> *Picture

Hilites �lls the interior of its instances in such a way that the current picture
content remains visible. Its instances are boxes and rectangles.

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt:: !Point !figure !*Picture -> *Picture

Each of these type constructor classes allows its elements to be drawn at the current
pen position or at an absolute pen position. Because of this reason the data type
de�nition of most of these elements do not specify their location. Exceptions are
rectangles, lines, and points.

5.3 Font and text handling

When working with text you frequently will want to know the dimensions of the
text for layout purposes or simply to calculate the size of an element containing
that text. The dimensions of a piece of text depends on two parameters:

30 CHAPTER 5. DRAWING

� The font is an abstract value that describes the shape of a text. The usual
way to identify a font is by its name, point size, and style variations.

� The drawing environment (Picture) determines the actual size in terms of a
resolution dependent unit. The resolution of the screen is usually a lot smaller
than the resolution of a laser writer.

Because there is a great variance of available fonts and drawing environments per
machine writing a program that handles fonts properly requires some care. Font
operations are ordered in three groups.

The �rst group of font operations return information about the currently available
fonts. The function getFontNames returns a list of the names of all available fonts.
Given an element of this list, the functions getFontStyles and getFontSizes

return for that particular font the available style variations and sizes. Because in
modern font management systems for many fonts no restriction exists on the size,
the function getFontSizes is also parameterised with two bounding size arguments.
Their type de�nitions are:

getFontNames :: !*Picture ->(![FontName], !*Picture)

getFontStyles:: !FontName

!*Picture ->(![FontStyle],!*Picture)

getFontSizes ::!Int !Int !FontName

!*Picture ->(![FontSize], !*Picture)

The second group of font operations opens fonts. The function openFont creates
a value of type Font given a font de�nition. A font de�nition is a record of type
FontDef and is de�ned as follows:

:: FontDef

= { fName :: !FontName

, fStyles :: ![FontStyle]

, fSize :: !FontSize

}

Because there are so many di�erent font systems and style variations both font
names and style variations are of type String. If you want to be sure that you are
selecting an existing font use the functions of the �rst group. In any case, if the
font de�nition argument of openFont does not correspond with an installed font,
then it returns a False Boolean and a font value that is supposed to be the closest
matching font available. If it succeeds to �nd a matching font it will return a True

Boolean and that font. The type of openFont is:

openFont :: !FontDef !*Picture -> (!(!Bool,!Font),!*Picture)

There are two functions that open the font that is used by default in a document
window (openDefaultFont) and the font that is used by the system for dialogs,
controls, window titles and so on (openDialogFont). These fonts are of course
always available. Their types are:

openDefaultFont :: !*Picture -> (!Font,!*Picture)

openDialogFont :: !*Picture -> (!Font,!*Picture)

5.3. FONT AND TEXT HANDLING 31

The last group of font operations is related to font and text metrics. Font metrics
are retrieved by the functions getPenFontMetrics and getFontMetrics. The �rst
retrieves the metrics of the current pen Font, while the second retrieves the metrics
of the argument Font.

getPenFontMetrics:: !*Picture -> (!FontMetrics,!*Picture)

getFontMetrics :: !Font !*Picture -> (!FontMetrics,!*Picture)

The metrics of a font consists of three height related values related (leading, ascent,
and descent), illustrated in Figure 5.3.

?

6
descent

baseline?

6

ascent

?6 leading

Figure 5.3: Font metrics.

The width related value (max. width) is the maximum width of all characters in
that particular font. For non-proportional fonts such as Courier this implies that
the width of all characters is identical, so \iii" is just as wide as \mmm". For
proportional fonts such as this text the width of characters can vary a lot. Compare
for instance the width of the text \iii" with \mmm". The metrics of a font are
collected in a record of type FontMetrics:

:: FontMetrics

= { fAscent :: !Int // The ascent of the font

, fDescent :: !Int // The descent of the font

, fLeading :: !Int // The leading of the font

, fMaxWidth:: !Int // The max. width of the font

}

The �nal functions in the last group of font operations are used for calculating the
width of a (list of) character(s), and a (list of) string(s). As with the font metrics
functions, these functions also come in pairs, one using the current pen Font, and
the other using the argument Font.

getPenFontCharWidth :: ! Char !*Picture ->(! Int, !*Picture)

getPenFontCharWidths :: ![Char] !*Picture ->(![Int],!*Picture)

getPenFontStringWidth :: ! String !*Picture ->(! Int, !*Picture)

32 CHAPTER 5. DRAWING

getPenFontStringWidths:: ![String] !*Picture ->(![Int],!*Picture)

getFontCharWidth :: !Font ! Char !*Picture ->(! Int, !*Picture)

getFontCharWidths :: !Font ![Char] !*Picture ->(![Int],!*Picture)

getFontStringWidth :: !Font ! String !*Picture ->(! Int, !*Picture)

getFontStringWidths:: !Font ![String] !*Picture ->(![Int],!*Picture)

There is a subtle di�erence in calculating the width of one character versus the
width of one string. The width of a character is determined by the character only.
The width of a string can depend on the order of the characters it contains. A
font system can take advantage of the fact that some adjacent characters can be
placed more closely together to obtain a better looking result when drawing the
string. This is called kerning. In the object I/O system, the programmer can rely
on the fact that if a piece of text is drawn character by character then the character
width function returns the correct width of the drawn character. If a piece of text
is drawn by using a string, then the string width function returns the correct width
of the drawn string.

Because there is wide variety of fonts available the StdPictureDefmodule provides
a number of macros that help you make a program less dependent on the set of
available fonts. The following macros provide a number of font de�nitions that are
guaranteed to be available on the platform:

Font macros: Example:
SerifFontDef Garamond, Times
SansSerifFontDef Helvetica

SmallFontDef \This is a small text"
NonProportionalFontDef Courier

SymbolFontDef 8 9 � � ()

The following macros provide a number of standard font variations that are guar-
anteed to be available on the platform:

Style macros: Example:
ItalicsStyle Madam, I'm Adam
BoldStyle Madam, I'm Adam
UnderlinedStyle Madam, I'm Adam

5.4 Examples

In this section we give small examples of all of the drawable elements. Each of the ex-
amples is de�ned by a drawing function example of type *Picture -> *Picture. To
actually get something on the screen one can use the following drawing framework
program drawingframe. Figure 5.4 gives a snapshot of the framework program.

module drawingframe

// **

// Clean tutorial example program.

//

// This program defines a framework in which one can test drawing functions.

// The program relies on a function, example, of type *Picture -> *Picture.

// **

5.4. EXAMPLES 33

Figure 5.4: The framework window.

import StdEnv,StdIO

:: NoState = NoState

Start :: *World -> *World

Start world

= startIO NoState

NoState

[snd o openWindow NoState testwindow]

[ProcessClose closeProcess]

world

testwindow

= Window "Test Drawing" NilLS

[WindowSize size

, WindowClose (noLS closeProcess)

, WindowLook (_ _->example)

, WindowResize

, WindowViewDomain {corner1=origin,corner2=maxdomain}

]

where

size = {w=200,h=50}

origin = {x=(-20),y=(-20)}

maxdomain = {x=origin.x+size.w,y=origin.y+size.h}

// Here, example draws the string "Pop" at zero

example = drawAt zero "Pop"

5.4.1 Pen size and position

Given a pen position {x,y}, drawing a point, line, always occurs to the right and
below the pen position. Figure 5.5 illustrates these cases: from left to right the
following example functions are applied respectively:

example = drawPointAt zero o (setPenSize 1)

example = drawPointAt zero o (setPenSize 2)

example = drawPointAt zero o (setPenSize 3)

5.4.2 Drawing lines

The shape of a line is in
uenced by the PicturePenSize attribute in the same way
as the shape of points are changed. Figure 5.6 shows the result of drawing lines
with pen sizes 1, 2, and 3 respectively:

example = drawLine zero {x=5,y=5} o (setPenSize 1)

example = drawLine zero {x=5,y=5} o (setPenSize 2)

example = drawLine zero {x=5,y=5} o (setPenSize 3)

34 CHAPTER 5. DRAWING

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.5: Drawing a point at zero with di�erent pen sizes.

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.6: Drawing a line from zero to fx=5,y=5g with di�erent pen sizes.

There are several ways to draw lines. The function drawLineTo draws a line from
the current pen position to the argument point. If these happen to be equal, then
the result is the same as drawPointAt with the same argument. The new pen
position is the same as the target point. The function drawLine draws a line from
the �rst argument point to the second argument point without changing the pen
position.

Lines can also be drawn using the Vector instance functions from the Drawables

type constructor class. The function draw applied to a vector {vx,vy} draws a line
from the current pen position {x,y} to the point {x=x+vx,y=y+vy}. The function
drawAt applied to a point {x,y} and a vector {vx,vy} draws a line from {x,y} to
the point {x=x+vx,y=y+vy}.

5.4.3 Drawing text

Given a pen position {x,y}, drawing a piece of text (Char or String) will always
draw the text using the current PicturePenFont. The shape of the drawn characters
relies only on the font information, not on the current PicturePenSize. Text can be
drawn in any of the available colours. The baseline of the particular font determines
the position of the �rst character, which is drawn with its left baseline starting at
{x,y}. Figure 5.7 shows the result of the following example function:

example = drawAt zero "Pop"

The new pen position is, in this case, {x=24,y=0}. One might expect the new
pen position to be {x=22,y=0}, but usually the horizontal character space is also
included. This facilitates drawing text character by character. But some caution
should be taken. One might expect that the function

example = draw "p" o (draw "o") o (draw "P")

5.4. EXAMPLES 35

5

0

-5

-10

0 5 10 15 20 25

Figure 5.7: Drawing the text \Pop" at zero.

produces the same result, but this depends on the font (as explained in Section 5.3),
so in general one should not assume that this is the case. The only certain way to
know how much the pen position will change in case of text is by calculating the
width of the same text, or by comparing the pen positions before and after drawing.

5.4.4 Drawing ovals

An Oval is a transformed unit circle de�ned by a horizontal radius, oval_rx and a
vertical radius, oval_ry. For each point {x,y} on a unit circle, its corresponding
point on the oval is given by {x=x*oval_rx,y=y*oval_ry}. The type de�nition of
an Oval is:

:: Oval = {oval_rx::!Int, oval_ry::!Int}

Both radius values are always taken to be at least zero. If any of these values is neg-
ative, then zero is used instead. Ovals are drawn using the Oval instance functions
from the Drawables type constructor class. The function draw uses the current pen
position as the center of the oval. The function drawAt uses the argument Point
as the center of the oval. Drawing an oval does not change the pen position. In
case one of the radius values is taken to be zero drawing the oval displays nothing.
Figure 5.8 shows the result of drawing three ovals at zero de�ned as follows:

example = drawAt zero {oval_rx=5,oval_ry=3}

example = drawAt zero {oval_rx=5,oval_ry=5}

example = drawAt zero {oval_rx=3,oval_ry=5}

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.8: Three oval shapes drawn at zero.

36 CHAPTER 5. DRAWING

The shape of an oval is also a�ected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the oval. The only pixels
that are a�ected are inside the oval. Figure 5.9 shows the center oval of Figure 5.8
when drawn with pen size of 1, 2, and 3.

example = drawAt zero {oval_rx=5,oval_ry=3} o (setPenSize 1)

example = drawAt zero {oval_rx=5,oval_ry=5} o (setPenSize 2)

example = drawAt zero {oval_rx=3,oval_ry=5} o (setPenSize 3)

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.9: Three oval shapes drawn with increasing pen sizes.

Ovals are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the oval. Filling an oval includes its outline
and its interior. Figure 5.10 shows the same three ovals as given in Figure 5.8, but
now �lled.

example = fillAt zero {oval_rx=5,oval_ry=3}

example = fillAt zero {oval_rx=5,oval_ry=5}

example = fillAt zero {oval_rx=3,oval_ry=5}

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.10: Three �lled oval shapes.

5.4.5 Drawing curves

A Curve is a section of an Oval. A curve is de�ned by the source oval, curve_oval,
a starting angle, curve_from and an ending angle, curve_to, both taken in radians,
and the direction in which the section should be taken, curve_clockwise which is
a Boolean value. The type de�nition of a Curve is:

:: Curve

= { curve_oval :: !Oval

, curve_from :: !Real

5.4. EXAMPLES 37

, curve_to :: !Real

, curve_clockwise :: !Bool

}

The start and end point of the section are again derived from the unit circle.
Given an angle alpha, and a source oval de�ned by {oval rx, oval ry}, then
the point on the curve (oval) corresponding with alpha is {x=oval rx*cos alpha,

y=oval ry*sin alpha}. If curve clockwise is True then the section is taken clock-
wise from the start point to the end point, otherwise it is taken counter clockwise.
Figure 5.11 shows two sections of an Oval. In both cases the curve from angle is �

6

and the curve to angle is 3�

2
. The left section is taken counter clockwise, and the

right section is taken clockwise. For your convenience, the value � is approximated
in the module StdPictureDef by the macro PI.

example = drawAt zero { curve_oval = oval

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = True

}

example = drawAt zero { curve_oval = oval

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = False

}

oval = {oval_rx=5,oval_ry=3}

5

0

-5

-5 0 5

5

0

-5

-10 -5 0

Figure 5.11: Two curves taken clockwise and counter clockwise.

Figure 5.11 not only shows the curve sections that are taken from an oval, but
also what happens when these sections are drawn at a speci�c position. In both
cases the curves are drawn at zero. The starting point, indicated by the starting
angle, is determined by the current pen position in case of the draw function of the
Drawables type constructor class, and is determined by the Point argument of the
drawAt function of the Drawables type constructor class.

Drawing a Curve with varying PicturePenSizes is the same as taking the section of
the corresponding Oval drawn with that pen size. Figure 5.12 shows three times the
same curve taken but drawn with pen sizes 1,2, and 3 respectively. The source oval
is the same as the one drawn in Figure 5.9. The section is taken counter clockwise
from �

4
to 1 3

4
�.

example = drawAt zero oval o (setPenSize 1)

example = drawAt zero oval o (setPenSize 2)

example = drawAt zero oval o (setPenSize 3)

38 CHAPTER 5. DRAWING

oval = { curve_oval = {oval_rx=5,oval_ry=5}

, curve_from = PI/4.0

, curve_to = 1.75*PI

, curve_clockwise = False

}

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.12: Three curves drawn with increasing pen sizes.

Curves are also an instance of the Fillables type constructor class. When �lling
a curve, the interior formed by the drawn curve and two lines connecting the center
of the source oval and the end points of the curve is �lled. Figure 5.13 shows the
two curves of Figure 5.11, but now using fill rather than draw.

example = fillAt zero { curve_oval = oval

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = True

}

example = fillAt zero { curve_oval = oval

, curve_from = PI/6.0

, curve_to = 3.0*PI/2.0

, curve_clockwise = False

}

oval = {oval_rx=5,oval_ry=3}

5

0

-5

-5 0 5

5

0

-5

-10 -5 0

Figure 5.13: Two �lled curves taken clockwise and counter clockwise.

5.4.6 Drawing rectangles

A Rectangle is a shape of four connected lines that is de�ned by two diagonally
oriented corner Points, corner1 and corner2. The type de�nition of a Rectangle

is as follows:

5.4. EXAMPLES 39

:: Rectangle = {corner1::!Point, corner2::!Point}

The Rectangle type constructor is an instance of the Drawables type constructor
class. The drawAt function is not very useful because it ignores its Point argument
and proceeds as draw. Any two Points are valid corner points of a Rectangle. In
case a Rectangle has a zero width or zero height drawing that rectangle will show
nothing. It does not matter in what order the two corner points are given. This is
illustrated by the following Rectangle de�nitions, displayed in Figure 5.14.

example = draw {zero & corner2={x=10,y=6}}

example = draw {zero & corner2={x=6, y=6}}

example = draw {zero & corner1={x=10,y=6}}

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.14: Three rectangle shapes.

The shape of a rectangle is also a�ected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the rectangle. The only
pixels that are a�ected are inside the rectangle. Figure 5.15 shows the Rectangle

{corner1=zero, corner2={x=10,y=10}} when drawn with pen size 1, 2, and 3.

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 1)

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 2)

example = draw {zero & corner2={x=10,y=10}} o (setPenSize 3)

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.15: A rectangle drawn with increasing pen size.

Rectangles are also an instance of the Fillables type constructor class. The
function fill and fillAt �ll rather than draw the rectangle. Filling a rectangle
includes its outline and its interior. Figure 5.16 shows the same three rectangles as
given in Figure 5.14, but now �lled.

example = fill {zero & corner2={x=10,y=6}}

example = fill {zero & corner2={x=6, y=6}}

example = fill {zero & corner1={x=10,y=6}}

40 CHAPTER 5. DRAWING

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.16: Three �lled rectangles.

5.4.7 Drawing boxes

A Box is a Rectangle but without �xing a position. It is therefore only de�ned by
a width, box_w and height, box_h. The type de�nition of a Box is:

:: Box = {box_w::!Int, box_h::!Int}

The position of a Box is determined by the drawing functions of the type construc-
tor class Drawables. In case of draw, the current pen position is the base point.
In case of drawAt, the Point argument is the base point. Given this base point
base={x,y}, and a Box {box w,box h}, drawing the Box is the same as drawing
the Rectangle {corner1=base, corner2={x=x+box w,y=y+box h}}. Any value
for box_w or box_h is permitted (so also zero or negative values).

Boxes are drawn and �lled in the same way as Rectangles are. So the e�ect of
using di�erent PicturePenSizes is the same as well as �lling boxes.

5.4.8 Drawing polygons

A Polygon is an object which shape is formed by a number of Vectors, such as
triangles, rectangles, but also more exotic shapes. The type de�nition of a Polygon
is:

:: Polygon = {polygon_shape::![Vector]}

A Polygon is always a closed shape. A shape polygon shape is closed if the fol-
lowing equation holds:

foldr (+) zero polygon shape = zero

The object I/O library will always close the polygon shape if this is not the case,
so you don't have to worry about this. Drawing a polygon of shape polygon shape

is simply drawing the closed list of vectors in sequence:

seq (map draw polygon shape)

Similar to Boxes, Polygons do not specify their location. Again, this is determined
by the drawing functions of the type constructor class Drawables. In case of draw,
the base point is de�ned by the current pen position. In case of drawAt, the base
point is de�ned by the Point argument. Figure 5.17 shows three polygons de�ned
by the following shapes:

5.4. EXAMPLES 41

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=(-4),vy=8}]}

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=0, vy=8}

,{vx=(-8),vy=0}]}

example = drawAt zero {polygon_shape=[{vx=8,vy=0},{vx=(-8),vy=8}

,{vx=8, vy=0}]}

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.17: Three polygon shapes.

Because a polygon is a collection of vectors, its shape is a�ected by the current
PicturePenSize attribute. Figure 5.18 shows the three polygons of Figure 5.17
drawn with pen size 2.

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.18: Three polygons drawn with pen size 2.

Polygons are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the polygon. Filling a polygon includes its
outline and its interior. Figure 5.19 shows the same three polygons as given in
Figure 5.17, but now �lled.

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.19: Three �lled polygons.

5.4.9 Drawing bitmaps

Using the drawing operations discussed so far one can produce images that have an
`algorithmic' nature: they consist of text, lines, curves, and polygons. Not every

42 CHAPTER 5. DRAWING

image can be expressed (easily) in this way (consider for instance the image in
Figure 5.20). To produce more complex images bitmaps are very useful. A bitmap
is a prefabricated image of a certain size (in pixels) that is stored in the �le system.

Figure 5.20: A non algorithmic image.

You can use your favourite drawing package and create and store images as a bitmap.
The �le format depends on the platform. Currently the following formats are sup-
ported:

Platform: Format:
Macintosh pict

Windows(95/NT) bmp

The bitmap operations can be found in module StdBitmap (Appendix A.1). Bit-
maps can be read from �le using the function openBitmap:

openBitmap::!{#Char} !*env -> (!Maybe Bitmap,!*env) | FileSystem env

Given the full path name of a bitmap �le, openBitmap reads the bitmap in mem-
ory. If this is successful, (Just bitmap) is returned. Reasons for failure are ille-
gal �le name arguments, wrong �le formats, lack of heap space (in case of Win-
dows(95/NT)), or lack of extra memory (in case of Macintosh1).

A Bitmap is an abstract data type. Bitmaps can be drawn in any size you like. For
this purpose you can change its size by using resizeBitmap. The only information
one can retrieve from a Bitmap value is its size.

resizeBitmap :: !Bitmap !Size -> Bitmap

getBitmapSize :: !Bitmap -> Size

Bitmaps are instances of the Drawables type constructor class. Given a current
pen position pos={x,y} and a bitmap bitmap of size {w,h}, the functions (draw
bitmap) and (drawAt pos bitmap) both place the bitmap exactly inside the rect-
angle {corner1=pos, corner2={x=x+w,y=y+h}}.

1In the current Macintosh implementation bitmaps are not garbage collected. This puts a
restriction on the number of bitmaps that can be used inside one application. In a future version
bitmaps will become garbage collected.

5.4. EXAMPLES 43

5.4.10 Drawing in xor mode

For many programs it is sometimes useful to be able to temporarily draw �gures
over an existing drawing, and being able to remove them without a�ecting the
source picture. Examples are
ashing cursors, selection track boxes, and selection
anchor points. For this purpose drawing in xor mode is supported. The func-
tions appXorPicture and accXorPicture handle this. Both apply their argument
function to the argument picture in xor mode. The latter function also allows its
argument function to return a result.

appXorPicture:: !(IdFun *Picture) !*Picture -> *Picture

accXorPicture:: !(St *Picture .x) !*Picture -> (.x,!*Picture)

Drawing in xor mode has the important property that drawing the same �gure
twice results in the same picture. Given a picture, and a drawing function f, the
following equations hold:

(appXorPicture f) o (appXorPicture f) = id

(snd o (accXorPicture f)) o (snd o (appXorPicture f)) = id

Let's explain what happens in the Picture when one uses xor mode. Consider a
source picture, source, shown left in Figure 5.21, which is a circle. Next to the
source picture is the picture to be drawn in xor mode, a fat rectangle, drawn by a
drawing function f.

5

0

-5

-5 0 5

5

0

-5

-5 0 5

5

0

-5

-5 0 5

Figure 5.21: A source picture, the �gure to be drawn in xor mode, and the result.

If one interprets the white pixels of both pictures as False, and the black pixels of
both pictures as True then the result of drawing f in xor mode in source is the
same as taking the Boolean exclusive or on all such interpreted pixels on the same
coordinates. So all pixels that have the same colour become white (False), while
all pixels of di�erent colour become black (True). The result of this is shown in the
right picture of Figure 5.21. Applying f once more in xor mode to this new picture
yields a picture equal to source.

What happens when using more interesting colours than black and white is basically
the same thing. In one way or another, the exclusive or is taken from the source
picture and the drawing operations in such a way that repeating it gives the source
picture again. What the colours of the `xor-ed' picture are depends on the platform,
and is not speci�ed by the object I/O library.

5.4.11 Drawing in Hilite mode

Programs that want to indicate selections (for instance text segments in a word
processor, or image components in a drawing program) can do this by drawing the

44 CHAPTER 5. DRAWING

selected area in hilite mode. For this purpose the type constructor class Hilites is
used. Its type de�nition is:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt :: !Point !figure !*Picture -> *Picture

The instances of Hilites are Box and Rectangle. The pixels that are a�ected by
hilite and hiliteAt are the same as for fill and fillAt. Drawing in hilite mode
has the same property as drawing in xor mode that drawing the same �gure twice
on a source picture leaves the source picture unchanged. Given a picture, and a
�gure figure, the following equations hold:

hilite figure (hilite figure picture) = picture

hiliteAt figure (hiliteAt figure picture) = picture

The visual e�ect of hiliting these areas depends on the platform. On some platforms
hiliting an area will change the colour of all pixels that have the background colour
to a special hilite colour, ignoring all other pixels. Hiliting the area once more
will revert the hilite colours back to the background colour. If a platform does not
support hilite mode, the area will be drawn in xor mode (shown in Figure 5.22).
The source picture is the text \Pop" of Figure 5.7.

example = hilite {corner1={x=0,y=2},corner2={x=24,y=(-10)}}

o (drawAt zero "Pop")

5

0

-5

-10

0 5 10 15 20 25

Figure 5.22: Hiliting a rectangular area using xor mode.

5.4.12 Drawing in Clipping mode

Drawing in clipping mode is a powerful technique to create graphics that can not
be drawn (or using much more complicated expressions) using only the drawing
primitives discussed before. In clipping mode, the programmer speci�es a region
that works like a mask: drawing proceeds as described above, but only those pixels
that are inside the clipping region are actually drawn.

A region is an abstract data type, Region. Regions are created by composing
Rectangles and Polygons, using the type constructor class toRegion. When com-
posing regions, using the list and :^: instance, the union of the argument regions
is taken.

5.4. EXAMPLES 45

class toRegion area :: !area -> Region

:: PolygonAt

= { polygon_pos :: !Point

, polygon :: !Polygon

}

instance toRegion Rectangle

instance toRegion PolygonAt

instance toRegion [r] | toRegion r

instance toRegion (:^: r1 r2) | toRegion r1 & toRegion r2

Clipping is done using the functions appClipPicture and accClipPicture:

appClipPicture::!Region !(IdFun *Picture) !*Picture-> *Picture

accClipPicture::!Region !(St *Picture .x) !*Picture-> (.x,!*Picture)

Suppose we have the following drawing function, f, which draws a number of hori-
zontal lines with a result as shown in Figure 5.23:

f = seq [drawLine {x=0,y=y} {x=9,y=y} \\ y<-[0,2..8]]

10

5

0

0 5 10

Figure 5.23: The source picture.

As clipping regions the polygons shown in Figure 5.17 are used. Figure 5.24 shows
the result of the following clipping functions:

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=(-4),vy=8}]

}

) f

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=0, vy=8}

,{vx=(-8),vy=0}]

}

) f

example = appClipPicture

(toRegion { polygon_pos =zero

, polygon_shape=[{vx=8,vy=0},{vx=(-8),vy=8}

,{vx=8, vy=0}]

}

) f

46 CHAPTER 5. DRAWING

10

5

0

0 5 10

10

5

0

0 5 10

10

5

0

0 5 10

Figure 5.24: The clipped source picture.

Chapter 6

Windows and dialogues

Windows and dialogues are the major top level interactive objects of the object
I/O library. In some aspects they are very similar. For instance, they can contain
the same set of controls, and virtually all operations on windows and dialogues
are similar. Dialogues di�er from windows because they usually o�er a special,
enhanced, user interface to users. Another di�erence is that dialogues can be opened
modally. In this mode the user can be forced by the program to handle the dialogue
completely before continuing with the program. To emphasize the similarities of
windows and dialogues, their algebraic type de�nitions are almost identical (these
can be found in module StdWindowDef, Appendix A.39):

:: Window c lst pst

= Window Title (c lst pst) [WindowAttribute *(lst,pst)]

:: Dialog c lst pst

= Dialog Title (c lst pst) [WindowAttribute *(lst,pst)]

Before delving into details, we �rst introduce basic terminology for windows and
dialogues in Section 6.1 and discuss the WindowAttribute alternatives in Section
6.2. Opening and closing of windows and dialogues is handled in Section 6.3. We
then discuss the ways to handle the components windows and dialogues are made of
in the Sections 6.4, 6.5, and 6.6. Handling keyboard and mouse input is presented in
Section 6.7. Finally, this chapter is concluded with a treatment on modal dialogues
in Section 6.8.

6.1 Basic terminology

The main purpose of a window is to present to the user a view on a document,
graphically represented as an object of type Picture. Pictures have been discussed
in Chapter 5. By using the mouse and keyboard, the user can manipulate the
document. Controls in a window can add further manipulation functionality.

The main purpose of a dialogue is to present to the user a structured way of passing
information to perform actions. This structured communication is realised by means
of controls.

47

48 CHAPTER 6. WINDOWS AND DIALOGUES

6.1.1 Anatomy of windows and dialogues

Although from an application user's perspective windows and dialogues appear to
be `solid' objects (Figure 6.1) it is illustrative to have a look at a window from a
di�erent perspective.

Figure 6.1: A window seen from the user perspective.

A window is composed of three layers, see Figure 6.2. The bottom layer, the
document layer, is formed by the rendered document, the Picture. The middle
layer, the control layer, contains all controls of the window. The top layer, the
window frame, typically consists of a title bar, and window components to close
and resize the window. The window frame can have any size and is restricted only
by the screen size and a platform dependent minimum size. The window frame
serves as a clipping area of the document layer. Windows usually contain scrollbars
to help the user change the current view on the document layer. The default drawing
domain of the document layer Picture ranges from 0 to 231�1 in both axes. This is
in general to large for rendering the document. A window can limit the displayable
range of a Picture by setting a picture domain.

window frame

control layer

document layer

Figure 6.2: A di�erent perspective at a window.

6.2. WINDOW AND DIALOGUE ATTRIBUTES 49

In contrast with windows, a dialogue is composed of only two layers, the control
layer and the window frame, or also called the dialogue frame. Instead of a document
layer, a dialogue has a platform dependent background. The program can not draw
into nor navigate the background. The dialogue frame can not be resized by the
user and is usually big enough to display the whole control layer.

For both windows and dialogues, the programmer has full control over the view
frame, control layer, and document layer. Section 6.4 discusses how to handle the
document layer. Handling the control layer is discussed in Section 6.5. The window
and dialogue frame are controlled by the platform, see Section 6.6.

6.1.2 Stacking order

In general, a program can have an arbitrary number of windows and dialogues
opened at the same time. These elements appear in a stacking order, seen by
the application user in top to bottom order. For normal windows and dialogues
the stacking order is not �xed. Modal dialogues however always appear topmost.
Windows and modeless dialogues that are opened while (several) modal dialogues
are open always appear below the bottom most modal dialogue.

6.1.3 Active window or dialogue

When a user works with a program, exactly one window or dialogue receives all
keyboard and mouse input. This element is called the active window/dialogue
and it has the input focus. With the exception of modal dialogues, the active
window/dialogue does not necessarily occupy the top most stacking position.

6.2 Window and dialogue attributes

WindowAttribute is the type of window and dialogue attributes. The table below
shows which attributes are valid for which element.

Window attributes
For windows and dialogues: For windows only:
WindowCancel WindowActivate

WindowClose WindowCursor

WindowHide WindowDeactivate

WindowHMargin WindowHScroll

WindowId WindowKeyboard

WindowIndex WindowLook

WindowInit WindowMinimumSize

WindowItemSpace WindowMouse

WindowOk WindowOrigin

WindowPos WindowResize

WindowSize WindowSelectState

WindowVMargin WindowViewDomain

WindowVScroll

6.2.1 Window and Dialog attributes

WindowCancel, WindowOk: These attributes indicate which control should act con-
form the platform user interface `con�rm' control and `cancel' control respec-

50 CHAPTER 6. WINDOWS AND DIALOGUES

tively. If such an attribute is not provided, then no control is selected.

WindowClose: This attribute adds the platform dependent close control to the win-
dow/dialogue. The associated function will be evaluated in case this control
is triggered. Actually closing the window/dialogue is the responsibility of this
function. In case no WindowClose attribute is provided, the window/dialogue
can not be closed in that way.

WindowHide: This attribute makes the given window/dialogue initially invisible.
This attribute is ignored for modal dialogues. If the WindowHide attribute is
not provided, then the window/dialogue will be opened visible.

WindowHMargin, WindowVMargin: These attributes determine the left-right, and
top-bottom margin of a window/dialogue respectively. Their default value
in case of windows is zero, and platform dependent for dialogues.

WindowId: This attribute identi�es the window/dialogue to which it is associated.
If you do not provide a WindowId, the object I/O system open function creates
a fresh Id for the window/dialogue.

WindowIndex: This attribute determines the initial stacking position of the win-
dow/dialogue (see also 6.1.2). If no WindowIndex attribute is provided, then
the window/dialogue will be opened frontmost. Modal dialogues are always
opened frontmost.

WindowInit: This attribute de�nes an action that should be performed immedi-
ately after opening the window/dialogue. This is equivalent to the process
initialisation action (see Section 2.3 and Chapter 11). If no WindowInit at-
tribute is provided, no additional action is performed.

WindowItemSpace: This attribute determines the space between controls if no fur-
ther o�sets are provided in the layouts of controls. The default values are
identical for windows and dialogues.

WindowPos: This attribute determines the initial position of the window/dialogue
(see also Section 7.3). Relative Ids that occur in the ItemPos refer to other
windows/dialogues. The object I/O system will always place a window/dia-
logue visibly on the current screen. If you do not provide a WindowPos to a
window, then the window will be placed at the left top of the screen. If you
do not provide a WindowPos to a dialogue, then the dialogue will be placed at
a position conform the platform user interface (typically centered).

WindowSize: This attribute determines the initial size of the window/dialogue. If
no WindowSize attribute is provided, then the system will derive a proper size.
In case of dialogues the size is determined by the set of controls, margins, and
item spaces. In case of windows the object I/O system exposes as much as
possible of the view domain.

6.2.2 Window attributes

WindowActivate, WindowDeactivate: These attributes de�ne the behaviour of the
window in case the window becomes the active window (WindowActivate),
and is no longer the active window (WindowDeactivate) respectively (see also
6.1.3). If no attribute is provided, this information will not be passed to the
program.

6.3. OPENING AND CLOSING OF WINDOWS AND DIALOGUES 51

WindowCursor: This attribute de�nes the shape of the cursor in case the mouse is
over the window and not inside a control that may overrule this shape. In case
no attribute is provided moving the mouse over the window will not change
its shape.

WindowHScroll, WindowVScroll: These attributes add a horizontal scrollbar and
a vertical scrollbar to the window. If no attribute is given, no scrollbars are
added.

WindowKeyboard, WindowMouse: These attributes allow a window to respond to
user actions with the mouse (WindowMouse) and keyboard (WindowKeyboard).
If no attribute is provided, then this information will not be passed to the
program. Both attributes can de�ne an additional �lter to ignore some input
actions. If the SelectState of the window is Unable then neither function
will obtain input.

WindowLook: This attribute de�nes a function that, given the current SelectState
of the window and information about which part of the window should be
displayed, de�nes what the window should look like. The default look �lls the
window with the platform dependent background colour. (The Look function
also plays a role for CustomButtonControls (Section 7.1.9), CustomControls
(Section 7.1.10), and CompoundControls (Section 7.1.11. It can also be used
for printing (Chapter 13)).

WindowMinimumSize: This attribute determines the minimum size the window can
obtain by resizing. If no attribute is given, a platform dependent minimum
size is used.

WindowOrigin: This attribute determines the initial position of the ViewFrame,
the rectangular part of the ViewDomain that is currently visible in the win-
dow. This position is always veri�ed to be within the given ViewDomain. If
no WindowOrigin attribute is provided, then the left-top coordinates of the
ViewDomain are used.

WindowResize: This attribute allows the user to resize the window. If the attribute
is not provided, then the window can not be resized. The size of a window
may exceed the size of its ViewDomain. The area that is not part of the
ViewDomain will be �lled with a platform dependent background.

WindowSelectState: This attribute de�nes whether the window can be used by the
user (Able) or not (Unable). The default value is Able. Note that although a
window can be active, it can also be disabled. This only means that all input
is ignored by the window.

WindowViewDomain: This attribute de�nes the drawing coordinate system of the
document layer (see also 6.1.1). Drawing operations outside this area will
be clipped. If no ViewDomain is provided, then the window will obtain the
ViewDomain fcorner1=zero, corner2=fx=maxint,y=maxintgg.

6.3 Opening and closing of windows and dialogues

Windows and dialogues are opened using the appropriate instances of the respec-
tive type constructor classes Windows and Dialogs (module StdWindow, Appendix
A.39).

52 CHAPTER 6. WINDOWS AND DIALOGUES

class Windows wdef where

openWindow :: .lst !(wdef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

...

class Dialogs ddef where

openDialog :: .lst !(ddef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

...

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

To close windows and dialogues the function closeWindow has to be used.

closeWindow :: !Id !(PSt .l .p) -> PSt .l .p

6.4 Handling the document layer

The document layer of a window is used to present visual feedback to the user on
the current status of the document that is being manipulated. Only windows have
a document layer. Below we discuss two ways of drawing into the document layer.
The �rst method, indirect rendering (Section 6.4.1), uses the look function, the
second method, direct rendering (Section 6.4.2), draws directly into the document
layer. Some programming pragmatics are discussed in Section 6.4.3. We conclude
with an example in Section 6.4.4.

6.4.1 Indirect rendering

Two WindowAttributes play a paramount role with respect to the document layer:
WindowViewDomain and WindowLook. Let's have a closer look at them.

The document layer is rendered using a Picture. As we have seen in Section 6.2,
the default drawing range of a Picture is (0; 231 � 1) in both axes. This range can
be changed by the WindowViewDomain attribute. It has a ViewDomain argument
which is de�ned as a Rectangle. A Rectangle is a record:

:: Rectangle

= { corner1 :: !Point

, corner2 :: !Point

}

:: Point

= { x :: !Int

, y :: !Int

}

consisting of the two diagonally opposite corner points of the new drawing range. It
is illegal to have identical x or y coordinates. This will cause a run-time error of the
application. All drawing that occurs outside of the view domain of the document
layer will be clipped.

The Picture of the document layer is rendered using the WindowLook attribute.
This attribute has a Look function argument. It is de�ned as follows:

6.4. HANDLING THE DOCUMENT LAYER 53

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Whenever it is necessary to render (part of) the visible document layer, the object
I/O system will apply the look function of the WindowLook attribute. It will be pa-
rameterised with the current SelectState of the window and detailed information
about which part of the current view frame needs to be rendered. This information
is presented by means of the UpdateState record:

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

This record consists of three �elds:

oldFrame: If the size or orientation of the window was changed, then this �eld
contains the view frame before that change. If this is not the cause, then this
�eld contains the current view frame.

newFrame: If the size or orientation of the window was changed, then this �eld
contains the view frame after that change (so, the current view frame). If this
is not the cause, then this �eld contains the current view frame.

updArea: This �eld contains a list of Rectangles (not necessarily disjoint) that
de�ne the parts of the visible current view frame that need to be drawn. This
list always consists of at least one element. Each of its elements is always
completely inside the current view frame.

Given the current SelectState of the window and the UpdateState, the look
function is applied to the current Picture of the document layer. For this reason,
the look function must be written in such a way that it works correctly for any
argument Picture. Before the look function is applied, the object I/O system
erases the rectangles of the updArea �eld.

The purpose of the WindowLook attribute function is to describe the look of the
current state of the document layer. If the document does not change, then this
function always correctly renders the document. However, it is very likely that the
state of the document changes during the life-cycle of the window. The WindowLook
attribute can be changed using the StdWindow function setWindowLook (Appendix
A.39):

setWindowLook :: !Id !Bool !Look !(IOSt .l .p) -> IOSt .l .p

setWindowLook changes the current WindowLook attribute of the window indicated
by the Id argument with the new Look function provided this window is present
and does not refer to a dialogue. If the Bool argument is False then that's all. If
the Bool argument is True, then the look function will be applied to the window in
the way described above.

54 CHAPTER 6. WINDOWS AND DIALOGUES

Figure 6.3: The bitmap program in action.

6.4.2 Direct rendering

Instead of using only the Look function of a window, one can also draw directly
in the document layer Picture. This is done using the function drawInWindow

(StdWindow, Appendix A.39):

drawInWindow :: !Id ![DrawFunction] !(IOSt .l .p) -> IOSt .l .p

drawInWindow applies a sequence of drawing functions to the Picture in the doc-
ument layer of the window indicated by the Id argument if this window is present
and does not refer to a dialogue. For some visual feedback such as drawing blinking
cursors or track boxes this method is more suitable than the indirect way of using
the Look function. The timer example in Section 9.1.1 shows a window in which
the direct rendering method is applied.

6.4.3 Pragmatics

The WindowLook function is used by the object I/O system for all cases that the
content of the window needs to rendered. Among others, causes are when the view
frame, size, stacking order, or selectstate of a window changes. It is very annoying
for the application user when these actions take to much time. Therefore it is
worth your while to spend some e�ort in getting a good performance out of the list
of drawing functions.

6.4.4 Example: displaying a bitmap

In this example we create a program that allows the user to select an arbitrary
bitmap which will be displayed in a window (see Figure 6.3).

The �rst thing to do is to give the user the opportunity to select a bitmap. For
this purpose the library function selectInputFile in module StdFileSelect (Ap-
pendix A.9) has been made. Applying this function opens the platform standard
�le selector dialogue. When a �le has been selected by the user the return value
contains the full pathname of the selected �le. If no �le has been selected, then
Nothing is returned. It belongs to the FileSelectEnv type constructor class which
contains one other function, selectOutputFile, that allows a user to select a (new)
output �le.

class FileSelectEnv env where

6.4. HANDLING THE DOCUMENT LAYER 55

selectInputFile :: !*env -> (!Maybe String,!*env)

selectOutputFile:: !String !String !*env -> (!Maybe String,!*env)

The �rst part of the program looks as follows (if no �le was selected the program
simply terminates):

Start :: *World -> *World

Start world

(maybeFile,world) = selectInputFile world

| isNothing maybeFile

= world

Given a selected input �le pathname, the function openBitmap (StdBitmap, Ap-
pendix A.1) can be used to read in the bitmap (see also Section 5.4.9).

openBitmap:: !{#Char} !*env-> (!Maybe Bitmap,!*env) | FileSystem env

openBitmap returns a bitmap if it could be read in successfully, otherwise it returns
Nothing (in that case we also let the program terminate). This part of the program
is as follows:

bitmapfile = fromJust maybeFile

(maybeBitmap,world) = accFiles (openBitmap bitmapfile) world

| isNothing maybeBitmap

= world

Having successfully read in the bitmap, we can determine its size using the Std-

Bitmap function getBitmapSize.

bitmap = fromJust maybeBitmap

bitmapsize = getBitmapSize bitmap

The window that displays the bitmap has the same initial size as the bitmap (set-
ting the (WindowSize bitmapsize) attribute). In this example we use the indi-
rect rendering method. This is done by setting the (WindowLook (_ _-> drawAt

zero bitmap) attribute. Finally, when the user requests closing of the window, the
application simply terminates. This is done by setting the (WindowClose (noLS

closeProcess)) attribute. So we obtain the following window de�nition:

window = Window "Bitmap" NilLS

[WindowSize bitmapsize

, WindowLook (_ _->drawAt zero bitmap)

, WindowClose (noLS closeProcess)

]

The �nal step is to create an interactive process that contains the window by ap-
plying the startIO function (StdProcess, Appendix A.24). The only initialisation
action of the process is to open the window. In case the user requests the process
to terminate, the application obeys. This is done by setting the (ProcessClose
closeProcess) attribute.

56 CHAPTER 6. WINDOWS AND DIALOGUES

= startIO NoState

NoState

[snd o openWindow NoState window]

[ProcessClose closeProcess]

world

This completes the program. Here is the complete program code.

module showbitmap

// **

// Clean tutorial example program.

//

// This program creates a window that displays a user selected bitmap.

// Make sure that this application has sufficient heap or extra memory.

// **

import StdIO, StdEnv

:: NoState

= NoState

Start :: *World -> *World

Start world

(maybeFile,world) = selectInputFile world

| isNothing maybeFile

= world

bitmapfile = fromJust maybeFile

(maybeBitmap,world) = accFiles (openBitmap bitmapfile) world

| isNothing maybeBitmap

= world

bitmap = fromJust maybeBitmap

bitmapsize = getBitmapSize bitmap

window = Window "Bitmap" NilLS

[WindowSize bitmapsize

, WindowLook (_ _->drawAt zero bitmap)

, WindowClose (noLS closeProcess)

]

= startIO NoState NoState [snd o openWindow NoState window]

[ProcessClose closeProcess] world

6.5 Handling the control layer

The control layer contains the controls of a window or dialogue. Windows and
dialogues can have the same set of controls. As we have seen in Section 6.3, this
has been made explicit by the type constructor class instance declarations of the
respective type constructor classes.

The standard set of Controls instances is de�ned in the module StdControlClass
(Appendix A.5). Many operations with respect to the control layer are identical to
operations on controls that are element of CompoundControls. Controls and their
operations are discussed in detail in Chapter 7.

6.6 Handling the window and dialogue frame

The window and dialogue frame are the `physical' borders of windows and dialogues.
A user can grab them using the mouse or some keyboard interface and drag them
around, change the size (in case of windows), or dispose of them. The program

6.7. HANDLING KEYBOARD AND MOUSE INPUT 57

has very limited in
uence on both the appearence and functionality of the frame.
When opening a window or dialogue, the WindowAttributes are important. This
is discussed in Section 6.6.1. User actions on the window or dialogue frame are
handled by the program via the callback function mechanism. The program can
also change frame properties. This is discussed in Section 6.6.2.

6.6.1 Opening a window or dialogue frame

The attributes of a window and dialogue de�nition that in
uence the window and
dialogue frame are of course the Title and the following WindowAttributes:

WindowSize: This value gives the prefered size of the view frame of the window or
dialogue. Be aware that this is not exterior size, which is in general larger
and depends on the underlying platform.

WindowClose: If this attribute is present, then the window or dialogue frame is
provided with a platform dependent interface element to allow the user to
request the program to close that window or dialogue.

WindowHScroll and WindowVScroll: Although the horizontal and vertical scroll-
bar of a window are element of the control layer (Figure 6.2), their behaviour
is intimately connected with the size of the view frame and therefore also with
the size of the window and dialogue frame.

WindowResize: If this attribute is present, then the window is provided with a
platform dependent interface element to allow the user to change the size of
the window view frame.

6.6.2 Changing a window and dialogue frame

The two most apparant changes to the window or dialogue frame are changes of
orientation and size. In case of windows, these can be caused by the application
user, depending on the attributes as explained in Section 6.6.1.

The program can also change the size of the frame for both windows and dialogues.
For dialogues this can be done only indirectly by opening or closing controls. For
windows this can also be done directly. If the program changes the view frame
(either its size or orientation) then the layout of controls is changed in the same
way as if the user had caused this change.

6.7 Handling keyboard and mouse input

Of all windows and dialogues that are in control by an application, at most one
receives the keyboard and mouse input. This window is the active window.

Except when modal dialogues are open, the application user can always select
one of the visible windows or dialogues to become the new active window. Dia-
logues are not noti�ed of these changes. Windows can be noti�ed by adding two
WindowAttributes: WindowActivate and WindowDeactivate. Both attributes are
parameterised with a function that will be applied by the object I/O system as
soon as that window becomes active or has become inactive respectively. It is
guaranteed that the WindowDeactivate attribute function is applied before the
WindowActivate function.

58 CHAPTER 6. WINDOWS AND DIALOGUES

The underlying platform always gives visual clues to the application user about
which window or dialogue is currently active. The program can retrieve this in-
formation using the getActiveWindow function (Appendix A.39). One should be
aware that it is not correct to assume that the active window or dialogue has the top-
most stack order position. As an example, one might try to get the Id of the active
window by taking the Id from the �rst element of the result list of getWindowStack,
but this only returns the top most window and not the active window.

The program can also activate windows and dialogues. This is done with the
activateWindow function (Appendix A.39). Because modal dialogues are always
front-most and the front most modal dialogue is active, one can not activate a win-
dow or modeless dialogue while modal dialogues are open. Instead, activateWindow
restacks such a window or dialogue immediately behind the bottom most modal di-
alogue without making it the active window.

The active window receives all keyboard and mouse input. If this window contains
controls it can be the case that the input is channelled to one of these controls. That
particular control then has the input focus. If no control has the input focus, then
all input is handled by the active window. In case the active window is a dialogue its
response to input is de�ned entirely by the underlying platform. In case of windows
the program can customise the behaviour by adding a WindowKeyboard attribute for
keyboard input (Section 6.7.1) and by adding a WindowMouse attribute for mouse
input (Section 6.7.2). Both attributes have a �lter function (KeyboardStateFilter
and MouseStateFilter respectively) which is applied before the actual callback
function is evaluated. Only if the �lter returns True then the callback function is
evaluated.

6.7.1 Keyboard input

Every keyboard sensitive interface object has a KeyboardFunction which is a pro-
cess state transition function that receives, as a �rst argument, a value of type
KeyboardState. This value represents one keyboard event. Keyboard events are
always generated in sequences that are characterised by a value of type KeyState

in the following order:

(KeyDown False) f(KeyDown True)g� KeyUp

A keyboard event is either an ascii character (CharKey alternative) or a special key
(SpecialKey alternative).

:: KeyboardState

= CharKey Char KeyState

| SpecialKey SpecialKey KeyState Modifiers

The special keys are imported via the module StdIOCommon (Appendix A.13).
Among others they de�ne the function keys, arrow keys, page and line keys. The
Modifiers type is also de�ned in StdIOCommon. It is a record that refers to the
state of the meta keys of the keyboard. Because some ascii characters are gener-
ated using these meta keys they are not provided at the CharKey alternative. So
shift `a' simply generates the CharKey alternative with Char value 'A'.

The object I/O system guarantees that at all times only one keyboard alternative
is being handled. Assume that a user is pressing the `a' key on the keyboard. This
generates a character `a' key down event (CharKey 'a' (KeyDown False)), and
then a sequence of character `a' repeat key events (CharKey 'a' (KeyDown True)).

6.7. HANDLING KEYBOARD AND MOUSE INPUT 59

Figure 6.4: The keyspotting program in action.

If the user now also presses the `b' key, the object I/O system inserts two virtual
events that force the program to believe that the user �rst released the `a' key with
a character `a' key up event (CharKey 'a' KeyUp), and then pressed the `b' key
with a character `b' key down event (CharKey 'b' (KeyDown False)). These are
followed by character `b' repeat key events.

Example: keyspotting

To illustrate the use of keyboard handling we create a program that has a window
in which the last keyboard input is displayed. Figure 6.4 presents a snapshot of the
program.

To allow the window track keyboard input, it must have the WindowKeyboard at-
tribute. Because we intend to monitor every keyboard input the attribute's key-
board �lter function argument must accept every KeyboardState. This can be
de�ned conveniently by (const True), using the StdFunc library function const.
Of course the keyboard function must handle keyboard input, so the SelectState
attribute is Able. The keyboard function, spotting is not interested in the local
state of the window which can be ignored by using the lifting function noLS1. The
keyboard function is parameterised with the Id of the window, wid. This gives us
the following de�nition of the WindowKeyboard attribute:

WindowKeyboard (const True) Able (noLS1 (spotting wid))

The keyboard function spotting uses the indirect rendering method (discussed in
Section 6.4.1) to display the last keyboard input. It applies the setWindowLook

function (StdWindow, Appendix A.39) to change the Look function of the window
each time new keyboard input reaches the window. For this reason, spotting is
parameterised with the Id of the window. We assume there exists a toString

instance for the KeyboardState type. The type of spotting can be generalised
so that it works for any second argument for which an instance of the overloaded
function toString exists.

spotting :: Id x (PSt .l .p) -> PSt .l .p | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (look (toString x))) pst

The Look function of the window is parameterised with the string that should be
displayed. It simply centers this string in the current view frame. The size of the
view frame (a value of type Rectangle) can be determined using the StdIOBasic

function rectangleSize. The size of the string, when drawn with the current pen,
can be determined using the StdPicture function getPenFontStringWidth (see
also Section 5.3).

60 CHAPTER 6. WINDOWS AND DIALOGUES

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

Setting up look in this way has the advantage that the window's appearance
adapts itself to its actual size. If we also make the window resizable (using the
WindowResize attribute) this allows us to ignore to specify or calculate an initial
size because the user can set the window size at wish.

The only things that need to be done to get a complete program is to create an Id

value for the window, and start an interactive process that opens the window. This
is shown below in the complete code of the keyspotting example.

module keyspotting

// **

// Clean tutorial example program.

//

// This program monitors keyboard input that is sent to a Window.

// **

import StdEnv,StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

(wid,world) = openId world

window = Window "keyspotting" NilLS

[WindowKeyboard (const True) Able (noLS1 (spotting wid))

, WindowId wid

, WindowClose (noLS closeProcess)

, WindowResize

]

= startIO NoState NoState [snd o openWindow NoState window]

[ProcessClose closeProcess] world

where

spotting :: Id x (PSt .l .p) -> PSt .l .p | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (look (toString x))) pst

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

6.7.2 Mouse input

Every mouse sensitive interface object has a MouseFunctionwhich is a process state
transition function that receives, as a �rst argument, a value of type MouseState.
This value represents one mouse event.

:: MouseState

6.7. HANDLING KEYBOARD AND MOUSE INPUT 61

= MouseMove Point Modifiers

| MouseDown Point Modifiers Int

| MouseDrag Point Modifiers

| MouseUp Point Modifiers

The Point and Modifiers types are de�ned in the module StdIOCommon (Appendix
A.13). The Point type constructor states the position of the mouse at the mouse
event in terms of the view frame coordinates of the interactive object that contains
the speci�c MouseFunction. The Modifiers type constructor is a record that refers
to the state of the meta keys of the keyboard that were pressed at the mouse event.

Mouse events are always generated in sequences that are characterised by the alter-
native constructor of the MouseState type constructor:

fMouseMoveg� [MouseDown fMouseDragg� MouseUp]

The Int argument of the MouseDown alternative gives the number of times the
mouse was down within the mouse double down time. The mouse double down time
is a platform dependent time interval that distinguishes two sequential mouse down
events from a double click event. Although an integer is used for this count, its
maximum value is usually three. If a mouse down event with count i has occured
and a new mouse down event is generated within the mouse double down time, then
the next mouse down event has count i + 1. If the next mouse down event is not
generated within the mouse double down time, then the next mouse down event
has count 1.

The object I/O system guarantees that every MouseFunction of a mouse sensitive
interface object is applied to a sequence of mouse events as characterised above.
Assume that a certain window is active and the user is pressing the mouse. This
generates �rst a mouse down event (MouseDown alternative), followed by a sequence
of mouse drag events (MouseDrag alternative). If for some reason another window
is being activated, the object I/O system inserts a virtual event that forces the
program to believe that the user has released the mouse button with a mouse up
event (MouseUp alternative). If the new window is also mouse sensitive, then its
MouseFunction is applied to a new virtual event that forces the program to believe
that the user has pressed the mouse again with a mouse down event (MouseDown
alternative). These are followed again by mouse drag events.

Example: mousespotting

To illustrate the use of mouse handling we create a program that monitors the
mouse input of a window (see Figure 6.5). This program is almost identical to the
keyspotting example in the Section 6.7.1. The only di�erences are the title of the
window and the replacement of the WindowKeyboard attribute by a WindowMouse

attribute. Here we take advantage of the fact that the spotting function is over-
loaded. We assume there is an instance of toString for MouseState values. For
completeness, the mousespotting example is shown here.

module mousespotting

// **

// Clean tutorial example program.

//

// This program monitors mouse input that is sent to a Window.

// **

62 CHAPTER 6. WINDOWS AND DIALOGUES

Figure 6.5: The mousespotting program in action.

import StdEnv,StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

(wid,world) = openId world

window = Window "mousespotting" NilLS

[WindowMouse (const True) Able (noLS1 (spotting wid))

, WindowId wid

, WindowClose (noLS closeProcess)

, WindowResize

]

= startIO NoState NoState [snd o openWindow NoState window]

[ProcessClose closeProcess] world

where

spotting :: Id x (PSt .l .p) -> PSt .l .p | toString x

spotting wid x pst

= appPIO (setWindowLook wid True (look (toString x))) pst

look :: String SelectState UpdateState *Picture -> *Picture

look text _ {newFrame} picture

picture = unfill newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

6.8 Modal dialogues

Windows and dialogues have many aspects in common. One important di�erence,
which was also mentioned in the introduction of this chapter, is that dialogs can
also be opened modally. When a program opens a modal dialog, the user is forced
to completely handle the dialogue before any other operation can occur. When
a modal dialogue is open, other modal dialogues can also be opened, but these
must also be completely handled. In this way a stack of modal dialogues can be
created. An example of such a situation is the behaviour of the platform dependent
output �le selector dialog (which can be created by the StdFileSelect function
selectOutputFile), see Figure 6.6. If the user selects an existing �le, another
modal dialog is opened that asks the user if it is OK to overwrite that �le. The
user must answer this dialog before the output �le selector dialog can be closed.

The type constructor class Dialogs contains an additional function to create dialogs

6.8. MODAL DIALOGUES 63

Figure 6.6: Two modal dialogues created by the selectOutputFile function.

in a modal way:

class Dialogs ddef where

...

openModalDialog :: .lst !(ddef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

...

Although the types of openModalDialog and openDialog are identical, their be-
haviour is di�erent. The function openDialog opens its argument dialogue (if no
errors occur) and terminates immediately. The function openModalDialog opens
its argument dialogue (if no errors occur) and terminates only when its argument
dialogue is closed. This situation can only be reached by applying closeWindow

(StdWindow, Appendix A.39) or by terminating the parent interactive process using
closeProcess (StdProcess, Appendix A.24).

6.8.1 Example: a notice extension

In this example we show the use of modal dialogues by making new Dialogs class
instances for notices. A notice is a very simple dialog, containing only some line(s)
of text, and a (number of) button(s) that close the notice. Notices can be used
by programs to brie
y inform the user about some situation. The con�rmation
dialogue in Figure 6.6 is an example of such a notice. We will �rst make the notice
module which contains the new Dialogs instance in Section 6.8.1. Using this new
interactive object we can rephrase the \Hello world" program (Section 2.4). This
is done in Section 6.8.1.

The notice module

We want to make a special instance of the Dialogs type constructor class that
speci�es a notice. As said, a notice is a dialog that contains some line(s) of text,
and a (number of) button(s). As done for every object I/O element, a notice will
be de�ned by means of an algebraic data type:

:: Notice lst pst

= Notice [TextLine] (NoticeButton *(lst,pst))

64 CHAPTER 6. WINDOWS AND DIALOGUES

[NoticeButton *(lst,pst)]

:: NoticeButton st

= NoticeButton TextLine (IdFun st)

The �rst argument of a Notice is a list of text lines. These will be shown below
each other. By using one additional NoticeButton argument we can make sure
that a notice always consists of at least one notice button. This mandatory notice
button is placed to the right of the notice. The notice buttons will appear from
right to left. A notice button is de�ned by NoticeButton. It is parameterised with
the title and a program de�ned function. This function is applied after the button
has been pressed and the notice has been closed.

The Notice type constructor will become an instance of the Dialogs type con-
structor class. This would actually be su�cient to allow a program to create both
non modal and modal notices, using the class member functions openDialog and
openModalDialog. To simplify creation of notices even further, we want to make
the following additional function with a simpler type:

openNotice :: (Notice .lst (PSt .l .p)) (PSt .l .p) -> PSt .l .p

This speci�cation is bundled in the notice de�nition module, which now looks as
follows:

definition module notice

// **

// Clean tutorial example program.

//

// This program defines a new instance of the Dialogs class to create notices.

// **

import StdWindow

:: Notice lst pst

= Notice [TextLine] (NoticeButton *(lst,pst)) [NoticeButton *(lst,pst)]

:: NoticeButton st

= NoticeButton TextLine (IdFun st)

instance Dialogs Notice

openNotice :: (Notice .lst (PSt .l .p)) (PSt .l .p) -> PSt .l .p

Let's work out the notice implementation module. Because a notice is a specialised
dialog, it is su�cient to map a notice de�nition into a dialog de�nition. This
mapping is done by the function noticeToDialog. For programming convenience,
we will convert the text lines into text controls, and the notice buttons into button
controls. Although controls are not properly introduced yet, we hope this does not
frustate your attempt to understand what's going on here.

Each notice text line is mapped to a text control. A text control is parameterised
with a string, and can have a position attribute. All texts will be left-aligned. This
is expressed by setting the (ControlPos (Left,zero)) attribute. For any list of
strings texts this mapping can be conveniently expressed via a list comprehension
(the ListLS data constructor is required for reasons explained in Chapter 7):

ListLS [TextControl text [ControlPos (Left,zero)] \\ text<-texts]

We want to place the lines together in a box without additional item space (the
default item space and margin values of a dialog are platform dependent). To

6.8. MODAL DIALOGUES 65

make sure that we get our preferred values we override the dialogue item space and
margin attributes with our own (using zero margins and an item space of three in
both directions). This is done via a CompoundControl. The �nal mapping of the
text lines results in:

texts`= CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-texts

]

)

[ControlHMargin 0 0,ControlVMargin 0 0,ControlItemSpace 3 3]

Let's �rst introduce a function noticebutton that maps one notice button to a
button control. When a notice button is selected, it should �rst close the notice
(using closeWindow), and then apply the argument function. This action is handled
by the argument function of the ControlFunction attribute. We assume that wid
refers to the Id of the notice dialog. We allow other attributes such as placement
and so on to be appended to the button control by passing it as an additional
argument of noticebutton.

noticebutton (NoticeButton text f) atts

= ButtonControl text [ControlFunction f`:atts]

where

f` (lst,pst) = f (lst,closeWindow wid pst)

Using noticebuttonwe can map the notice buttons to button controls. The manda-
tory notice button is mapped to the \con�rm" control using the window attribute
WindowOk (Section 6.2.1). We assume that okid refers to this Id. In addition, the
mandatory button is right-aligned in the dialog. So, if ok is the mandatory notice
button, then it is mapped to the following button control:

ok` = noticebutton ok [ControlPos (Right,zero),ControlId okid]

The optional notice buttons each must appear to the left of the previous notice
button. Again, we can use a list comprehension to do this mapping for a list of
notice buttons buttons:

buttons`= ListLS [noticebutton button [ControlPos (LeftOfPrev,zero)]

\\ button<-buttons

]

Given a Notice value (Notice texts ok buttons), noticeToDialog creates a ti-
tleless Dialog and glues the mapped notice controls using the expression (texts`
:+: ok` :+: buttons`) (glueing controls is also discussed in the next chapter):

noticeToDialog wid okid (Notice texts ok buttons)

= Dialog "" (texts`:+:ok`:+:buttons`)

[WindowId wid

, WindowOk okid

]

Given the mapping function noticeToDialog it has become a trivial task to de�ne
the new instance declaration of the type constructor class Dialogs:

66 CHAPTER 6. WINDOWS AND DIALOGUES

instance Dialogs Notice where

openDialog :: .lst (Notice .lst (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

openDialog lst notice pst

(wId, pst) = accPIO openId pst

(okId,pst) = accPIO openId pst

= openDialog lst (noticeToDialog wId okId notice) pst

openModalDialog :: .lst (Notice .lst (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

openModalDialog lst notice pst

(wId, pst) = accPIO openId pst

(okId,pst) = accPIO openId pst

= openModalDialog lst (noticeToDialog wId okId notice) pst

getDialogType :: (Notice .lst .pst) -> WindowType

getDialogType _

= "Notice"

Also the de�nition of the convenience function openNotice now becomes trivial:

openNotice :: (Notice .lst (PSt .l .p)) (PSt .l .p) -> PSt .l .p

openNotice notice pst

= snd (openModalDialog undef notice pst)

For completeness, the notice implementation module is given here.

implementation module notice

// **

// Clean tutorial example program.

//

// This program defines a new instance of the Dialogs class to create notices.

// **

import StdTuple, StdMisc, StdFunc

import StdId, StdPSt, StdWindow

:: Notice lst pst

= Notice [TextLine] (NoticeButton *(lst,pst)) [NoticeButton *(lst,pst)]

:: NoticeButton st

= NoticeButton TextLine (IdFun st)

instance Dialogs Notice where

openDialog :: .lst (Notice .lst (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

openDialog lst notice pst

(wId, pst) = accPIO openId pst

(okId,pst) = accPIO openId pst

= openDialog lst (noticeToDialog wId okId notice) pst

openModalDialog :: .lst (Notice .lst (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

openModalDialog lst notice pst

(wId, pst) = accPIO openId pst

(okId,pst) = accPIO openId pst

= openModalDialog lst (noticeToDialog wId okId notice) pst

getDialogType :: (Notice .ls .ps) -> WindowType

getDialogType _

6.8. MODAL DIALOGUES 67

Figure 6.7: The hello world program, now using a notice.

= "Notice"

openNotice :: (Notice .lst (PSt .l .p)) (PSt .l .p) -> PSt .l .p

openNotice notice pst

= snd (openModalDialog undef notice pst)

noticeToDialog :: Id Id !(Notice .lst (PSt .l .p))

-> Dialog (:+: (CompoundControl (ListLS TextControl))

(:+: ButtonControl (ListLS ButtonControl)

)) .lst (PSt .l .p)

noticeToDialog wid okid (Notice texts ok buttons)

= Dialog "" (texts`:+:ok`:+:buttons`)

[WindowId wid

, WindowOk okid

]

where

texts` = CompoundControl

(ListLS

[TextControl text [ControlPos (Left,zero)]

\\ text<-texts

]

) [ControlHMargin 0 0,ControlVMargin 0 0,ControlItemSpace 3 3]

ok` = noticebutton ok [ControlPos (Right,zero),ControlId okid]

buttons` = ListLS

[noticebutton button [ControlPos (LeftOfPrev,zero)]

\\ button<-buttons

]

noticebutton (NoticeButton text f) atts

= ButtonControl text [ControlFunction f`:atts]

where

f` (lst,pst) = f (lst,closeWindow wid pst)

Hello world revisited

We can now use our new notice instance to make another implementation of the
\Hello world" program. It is very similar to the original version in Section 2.4 but
instead of a Dialog it now uses a Notice. Figure 6.7 shows the notice. The program
code is given below.

module usenotice

// **

// Clean tutorial example program.

//

// This program shows "Hello world!" using a Notice.

// **

68 CHAPTER 6. WINDOWS AND DIALOGUES

import StdEnv, StdIO

import notice

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [openNotice hello] [] world

where

hello = Notice ["Hello world!"] (NoticeButton "Quit" (noLS closeProcess)) []

Chapter 7

Control handling

The previous chapter introduced windows and dialogues. These top level interface
elements can contain controls, which are handled in this chapter. Control structures
can be hierarchical, i.e. they can be composed of controls themselves. Using controls
helps a program to provide a consistent and structured user interface. There are a
lot of issues involved when working with controls.

First of all we introduce each standard control object in Section 7.1. Then the
glue is introduced to build larger control structures in Section 7.2. An important
aspect of controls is to manage their layout, presented in Section 7.3. Related to
layout is what should happen in case a window containing controls is resized. This
is discussed in Section 7.4. Finally, Section 7.5 contains a number of examples that
demonstrate the use of controls.

7.1 The standard controls

Table 2.1 (page 12) shows the standard set of object I/O library controls. They can
be divided into three groups:

Platform standard controls: these are the controls that exist on all platforms
and that have a well-de�ned behaviour and look that is platform de�ned. In
the table these are the �rst seven controls (RadioControl . . . ButtonControl).

Customised controls: the look and feel of these controls is completely or partially
de�ned by the program. In the table these are the CustomButtonControl

(look is de�ned by the program, but it feels like a button) and CustomControl

(look and feel de�ned by the program).

Hierarchical controls: there is actually only one such control, the CompoundCon-
trol. It contains other controls which will be positioned relative to this
control. Except that it is hierarchical it can also have a look and feel.

There is an extensive set of control attributes that are shared by most controls.
CompoundControls have an additional set of attributes that are strongly related to
window and dialogue attributes. These will be discussed in Section 7.1.11. Before
we discuss each of the controls individually we pay some attention to the shared
control attributes.

69

70 CHAPTER 7. CONTROL HANDLING

7.1.1 The shared control attributes

The ControlId attribute identi�es the control to which it is associated. If you do
not provide a ControlId, the control can not be modi�ed.

The ControlPos attribute determines its layout position (see Section 7.3). If you
do not provide a ControlPos, the control will be placed right next to the previous
control (if it happens to be the �rst control, it will be positioned at the left-top).

The ControlSize attribute provides the initial size of the control. For all plat-
form standard controls except the slider control, the size can be derived from their
demanded attributes. So if you do not provide a ControlSize, then this is calcu-
lated by the system. If you do provide one then this value will override the system
calculated size (again, except for slider controls). For customised controls the size
is mandatory. For compound controls the size can be calculated given the control
elements of the compound control. So, if no ControlSize is given, the compound
control will exactly �t its element controls. If a ControlSize is given, then this
value overrides the system calculated size.

The ControlMinimumSize attribute de�nes the minimum size of the control. This
value is relevant in case of resizing (see Section 7.4). If no ControlMinimumSize is
provided, the default value zero is chosen.

The ControlResize attribute de�nes that the control is resizeable. If no Control-
Resize is provided, the control is not resizeable. See Section 7.4 about the resizing
behaviour of controls.

The ControlSelectState attribute de�nes whether the control can be used by the
user (Able) or not (Unable). Usually this will a�ect the look of the control. The
default value is Able.

The ControlHide attribute de�nes that the control is initially invisible. It does
occupy space. If you do not provide this attribute then the control is visible.

The ControlFunction and ControlModsFunction attributes are the primary call-
back function attributes of controls. The di�erence between these two attributes
is that the former is simply evaluated whenever the control is selected, and that
the latter also provides the callback function with the modi�er keys that have been
pressed at the moment of selecting the control (for the de�nition of the modi�er
keys, see de�nition module StdIOCommon). In an attribute list the �rst of the two
attributes is chosen.

The ControlMouse and ControlKeyboard attributes add mouse and keyboard han-
dling callback functions to the control. This is only possible for non platform stan-
dard controls because platform standard controls have a prede�ned behaviour.

7.1.2 The RadioControl

A radio control is a group of radio control items of which exactly one item is selected.
All alternatives are visible. The de�nition of a radio control is as follows:

:: RadioControl lst pst

= RadioControl [RadioControlItem *(lst,pst)] RowsOrColumns Index

[ControlAttribute *(lst,pst)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: RadioControlItem st :== (TextLine,IdFun st)

:: IdFun st :== st -> st

7.1. THE STANDARD CONTROLS 71

:: TextLine :== String

:: Index :== Int

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected item is
indicated by the Index value. As a convention in the object I/O library, when in-
dicating elements indices range from 1 upto the number of elements. So n elements
are indexed by 1. . .n. In case the index is out of range, i.e. less than 1 or larger
than n, it is set to 1 and n respectively. Valid radio control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

When a radio control item is selected the previously selected radio control item will
be unchecked, and the new radio control item gets the check mark. The correspond-
ing callback function is then evaluated. The callback function is also evaluated if
the currently selected radio control item is selected.

Example This RadioControl consists of �ve items, laid out in two rows. The �rst
item is initially selected.

radiocontrol

= RadioControl

[("Radio item "+++toString i,id)\\i<-[1..5]] (Rows 2) 1 []

7.1.3 The CheckControl

A check control is a group of check control items of which an arbitrary number of
items can be selected. All alternatives are visible. The de�nition of a check control
is as follows:

:: CheckControl lst pst

= CheckControl [CheckControlItem *(lst,pst)] RowsOrColumns

[ControlAttribute *(lst,pst)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: CheckControlItem st :== (TextLine,MarkState,IdFun st)

:: IdFun st :== st -> st

:: TextLine :== String

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected items are
indicated by their MarkState value (Mark if checked, Nomark if not checked). Valid
control attributes are:

72 CHAPTER 7. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

When a check control item is selected its mark state will be toggled (from Mark to
NoMark and vice versa). No other check control items are a�ected. The correspond-
ing callback function is then evaluated.

Example This CheckControl consists of �ve items, laid out in two columns. Each
odd numbered item has a check mark.

checkcontrol

= CheckControl

[("Check item "+++toString i,if (isOdd i) Mark NoMark,id)

\\i<-[1..5]

] (Columns 2) []

7.1.4 The PopUpControl

A pop up control is a group of pop up control items of which exactly one item is
selected. The items of a pop up control are presented in a pop up menu. Usually
only the currently selected item is displayed in the title of that pop up menu. For this
reason pop up controls consume much less space than the functionally equivalent
radio controls. The de�nition of a pop up control is as follows:

:: PopUpControl lst pst

= PopUpControl [PopUpControlItem *(lst,pst)] Index

[ControlAttribute *(lst,pst)]

:: PopUpControlItem st :== (TextLine,IdFun st)

:: IdFun st :== st -> st

:: TextLine :== String

The initially selected item is indicated by the Index value. As a convention in the
object I/O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1. . .n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid control
attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

7.1. THE STANDARD CONTROLS 73

When a pop up control item is selected the previously selected item is unchecked
and the new item becomes the selected item. The corresponding callback function
is then evaluated. The callback function is also evaluated if the currently selected
radio control item is selected.

Example This PopUpControl consists of �ve items. The �rst item is the initially
selected item.

popupcontrol

= PopUpControl

[("PopUp item "+++toString i,id)\\i<-[1..5]] 1 []

7.1.5 The SliderControl

Slider controls are used to change the view to space consuming visual data in one
particular dimension. The de�nition of a slider control is as follows:

:: SliderControl lst pst

= SliderControl Direction Length SliderState

(SliderAction *(lst,pst))

[ControlAttribute *(lst,pst)]

:: Direction

= Horizontal | Vertical

:: Length :== Int

:: SliderState

= { sliderMin :: !Int

, sliderMax :: !Int

, sliderThumb:: !Int

}

:: SliderAction st :== SliderMove -> st -> st

:: SliderMove

= SliderIncSmall | SliderDecSmall

| SliderIncLarge | SliderDecLarge

| SliderThumb Int

A slider control can be laid out in a horizontal direction (the Horizontal alternative
of Direction) or a vertical direction (the Vertical alternative of Direction). In
this direction it can have a certain length. Its width is platform dependent.

The scrolling range of a slider control is de�ned by the SliderState record. The
initial slider state determines the integer range: sliderMin gives the minimum
value, sliderMax gives the maximum value. In case these values are given in the
wrong order, they will be ordered properly. The initially chosen value is given by
the sliderThumb value. This value must be inclusively between sliderMin and
sliderMax. If a value smaller than the minimum range is given, then it is set to
the minimum. If a value larger than the maximum range is given, then it is set to
the maximum.

Valid control attributes for the SliderControl are:

74 CHAPTER 7. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize
p

ControlKeyboard

ControlSelectState
p

A slider control typically has �ve regions that can be selected by the user. These
regions are shown in Figure 7.1

decrement
arrow

?

increment
arrow

?

page
decrement

?

page
increment

?

thumb
move

?

SliderDecSmall

6

SliderIncSmall

6

SliderDecLarge

6

SliderIncLarge

6

SliderThumb

6

Figure 7.1: The regions of the SliderControl.

When the user is working with the slider control, its callback function is evaluated.
The algebraic data type SliderMove has an alternative constructor for each of the
regions of the slider control:

SliderDecSmall decrement arrow
SliderIncSmall increment arrow
SliderDecLarge page down region
SliderIncLarge page up region
SliderThumb thumb move

The program can decide what to do with this information. It is the responsibility
of the programmer that the application responds the way the user expects.

Example This SliderControl is orientied horizontally and has a length of 200
pixels.

7.1. THE STANDARD CONTROLS 75

slidercontrol

= SliderControl Horizontal 200

{sliderMin=(-100),sliderMax=100,sliderThumb=0}

(_ st->st) []

7.1.6 The TextControl

A text control displays one line of text that can not be changed by the user. The
de�nition of a text control is as follows:

:: TextControl lst pst

= TextControl TextLine [ControlAttribute *(lst,pst)]

:: TextLine

:== String

If the textline contains newlines then these are interpreted as line breaks. This
implies that only the initial part of the text is displayed, since text controls consist
of one line only. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

ControlPos
p

ControlFunction

ControlSize
p

ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

The initial size of a text control is determined by its initial text line. If the text
control has a ControlSize attribute that is larger than its initial size, then that
value becomes its initial size. A text control is not resizeable, and it will also not
change in size in case its text line is modi�ed.

Example A text control that contains a text with newline characters.

textcontrol

= TextControl "This is a TextControl" []

7.1.7 The EditControl

The edit control is applied to provide the user with an interface to edit (typically
small amounts of) textual data. The de�nition of an edit control is as follows:

:: EditControl lst pst

= EditControl TextLine Width NrLines

[ControlAttribute *(lst,pst)]

:: TextLine :== String

:: Width :== Int

:: NrLines :== Int

76 CHAPTER 7. CONTROL HANDLING

An edit control initially displays some text line. If the textline contains newlines
then these are interpreted as line breaks. The edit control has an initial interior
width (in terms of pixels) and shows an integral number of lines. Valid control
attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
p

ControlSelectState
p

If the SelectState of an edit control is Unable, the user can not type in text.
The current content of an edit control can be retrieved using the getControlTexts
function of module StdControl (Appendix A.4). The program can also keep track
of the inserted text by setting the control keyboard attribute. For each typed key
the keyboard function is evaluated.

Example An EditControl that contains text with newline characters. Its interior
width is 80 pixels and it shows three lines of text.

editcontrol

= EditControl "This is an \nEditControl" 80 3 []

7.1.8 The ButtonControl

The button control represents an action that should occur given the current state
of the window or dialogue. The de�nition of a button control is as follows:

:: ButtonControl lst pst

= ButtonControl TextLine [ControlAttribute *(lst,pst)]

:: TextLine :== String

A button control has a title, given by a text line. If the textline contains newlines
then these are interpreted as line breaks. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

p
ControlSize

p
ControlModsFunction

p
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

The initial size of a button control is determined by its initial text line. If the
button control has a ControlSize attribute that is larger than its initial size, then
that value becomes its initial size. The callback function of a button control is the

7.1. THE STANDARD CONTROLS 77

function that is evaluated in case the button control was selected by the user and
its SelectState was Able. If the name of the button control is modi�ed to a new
text line, then its size is not changed.

A button control can be the con�rm or cancel button of a window or dialogue by
setting their WindowOk or WindowCancel attribute (see Section 6.2.1).

Example A ButtonControl with a title that contains newlines.

buttoncontrol

= ButtonControl "This is a ButtonControl" []

7.1.9 The CustomButtonControl

A custom button control is a control which feels like a button control, but which
look is customised by the program. The de�nition of a custom button control is as
follows:

:: CustomButtonControl lst pst

= CustomButtonControl Size Look [ControlAttribute (lst,pst)]

:: Size

= {w::!Int,h::!Int}

:: SelectState

= Able | Unable

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Both the initial size and look of a custom button control are de�ned by the program.
The look of a custom button control is identical to the look of a window as discussed
in Section 6.4.1. The UpdateState argument contains zero based rectangles of the
same size as the custom button control itself. Every custom button control has
a *Picture environment to which the look drawing functions are applied. Valid
control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

p
ControlSize ControlModsFunction

p
ControlMinimumSize

p
ControlMouse

ControlResize
p

ControlKeyboard

ControlSelectState
p

The callback function of a custom button control is the function that is evaluated
in case the custom button control was selected by the user and its SelectState

was Able.

78 CHAPTER 7. CONTROL HANDLING

A custom button control can be the con�rm or cancel button of a window or dialogue
by setting their WindowOk or WindowCancel attribute (see Section 6.2.1).

Example A CustomButtonControl which look depends on its SelectState. The
picture on the left shows the custom button control in Able state, the picture
on the right in Unable state.

custombuttoncontrol

= CustomButtonControl {w=50,h=50} look []

where

look :: SelectState UpdateState *Picture -> *Picture

look Able {newFrame} picture

picture = fill newFrame (setPenColour DarkGrey picture)

picture = draw newFrame (setPenColour Black picture)

= picture

look Unable {newFrame} picture

= fill newFrame (setPenColour LightGrey picture)

7.1.10 The CustomControl

A custom control is a control of which both the look and feel are program de�ned.
The de�nition of a custom control is as follows:

:: CustomControl lst pst

= CustomControl Size Look [ControlAttribute *(lst,pst)]

:: Size

= {w::!Int,h::!Int}

:: SelectState

= Able | Unable

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

Both the initial size and look of a custom control are de�ned by the program. The
look of a custom control is identical to the look of a window as discussed in Section
6.4.1. The UpdateState argument contains zero based rectangles of the same size
as the custom control itself. Every custom control has a *Picture environment to
which the look drawing functions are applied. Valid control attributes are:

7.1. THE STANDARD CONTROLS 79

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize
p

ControlMouse
p

ControlResize
p

ControlKeyboard
p

ControlSelectState
p

The feel of a custom control is de�ned by its mouse and keyboard callback functions.
If the user selects the custom control with the mouse, then the mouse callback
function handles all feedback. If the custom control has the keyboard input focus,
and the user is typing, then the keyboard callback function handles all feedback.

Example A CustomControl which look depends on its SelectState. The picture
on the left shows the custom control in Able state, the picture on the right in
Unable state.

customcontrol

= CustomControl {w=50,h=50} look []

where

look :: SelectState UpdateState *Picture -> *Picture

picture = fill newFrame (setPenColour DarkGrey picture)

picture = draw newFrame (setPenColour Black picture)

= picture

look Unable {newFrame} picture

= fill newFrame (setPenColour LightGrey picture)

7.1.11 The CompoundControl

The compound control is a control that contains other controls. A compound con-
trol is actually a window within a window. It introduces a new layout scope: i.e.
controls inside it are positioned relative to the bounds of the compound control.
The compound control can have an additional look and feel. The de�nition of a
compound control and its Controls class instance declaration is as follows:

:: CompoundControl c lst pst

= CompoundControl (c lst pst) [ControlAttribute *(lst,pst)]

instance Controls (CompoundControl c) | Controls c

The c parameter of the CompoundControl type constructor is a type constructor
variable that corresponds with the control elements of the compound controls. Any
composition of controls that is an instance of the Controls type constructor class
is a valid argument of CompoundControl.

Compared with the previous controls, compound controls have an additional number
of control attributes that are irrelevant to the other controls. These attributes are
similar to some attributes of windows and dialogues, and of course they intend to
have the same meaning. Valid control attributes are:

80 CHAPTER 7. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlItemSpace

p
ControlPos

p
ControlHMargin

p
ControlSize

p
ControlVMargin

p
ControlMinimumSize

p
ControlLook

p
ControlResize

p
ControlViewDomain

p
ControlSelectState

p
ControlOrigin

p
ControlHide

p
ControlHScroll

p
ControlFunction ControlVScroll

p
ControlModsFunction

ControlMouse
p

ControlKeyboard
p

The size of a compound control, if not provided as a ControlSize attribute, is de-
rived by the system from its control elements (see Section 7.3 for more information
on the layout of controls). Related to the size of a compound control and layout
of its elements are a number of attributes. The ControlMinimumSize attribute de-
termines the minimum size of the compound control (see resizing controls, Section
7.4), the ControlResize attribute controls the resize behaviour (see also Section
7.4), the ControlItemSpace, ControlHMargin, and ControlVMargin attributes de-
�ne the distance between the elements themselves and the horizontal and vertical
distance of the elements to the border of the compound control respectively. If
a compound control does not specify any of these attributes, it obtains the same
attribute values as its parent object (which can be a compound control, a window,
or a dialogue).

The compound control anatomy is the same as that of a window (Section 6.1.1). It
consists of the same three layers as a window except that we call its top layer the
compound frame rather than window frame. The compound frame has no title nor
features like resize controls and so on.

Analogous to windows, compound controls have a view domain if the Control-

ViewDomain is given. Otherwise they obtain the same default view domain. As
explained in Section 6.1.1, a view domain de�nes a �nite area in which can be
drawn (Chapter 5), it can also be used as an area to place controls (Section 7.3).
Also for compound controls scrolling attributes can be added: ControlHScroll and
ControlVScroll. These attributes control the current view frame orientation of the
compound control. The left top point of the view frame that is currently visible is
called the origin. This value can be set initially with the ControlOrigin attribute.

The document layer of a CompoundControl can be drawn into only if a ControlLook
attribute is given. In that case the system provides the compound control with a
Picture drawing environment. If a ControlLook is absent, then the compound
control is transparant.

The feel of a compound control is of course partially determined by its element con-
trols. If the ControlMouse (ControlMouse) attribute is given, then the compound
control can handle all mouse (keyboard) events that are directed to it.

7.2 Control glue

In the previous section the standard set of controls has been discussed. This list
does not cover all controls class instances. In the library module StdControlClass
(Appendix A.5) a number of additional instances are de�ned, namely the type
constructors :+:, ListLS, NilLS, and AddLS, NewLS (their de�nition can be found

7.2. CONTROL GLUE 81

in module StdIOBasic, Appendix A.12). These additional instances are required
to glue controls. They are treated below.

7.2.1 :+:

The most common constructor to glue controls is :+:. Its type constructor de�nition
and Controls class instance declaration are as follows:

:: :+: t1 t2 local context

= (:+:) infixr 9 (t1 local context) (t2 local context)

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

Given two Controls instances c1 and c2, working on the same local state of type
local and context state context, the expression c1:+:c2 is also a Controls in-
stance working on the same local state and context state. Because :+: is right
associative, the expression c1:+:c2:+:c3 should be read as c1:+:(c2:+:c3).

7.2.2 ListLS and NilLS

In principle the :+: glue is su�cient to create all required control structures. In
case of working with a number of control instances of the same type, it is much
more convenient to use lists and list comprehensions. This glue is provided by the
type constructor ListLS. The type constructor NilLS is a shorthand for ListLS

[]. It can also be conveniently used to state that a CompoundControl or window
or dialogue has no controls. Their type constructor de�nitions and Controls class
instance declarations are as follows:

:: ListLS t local context = ListLS [t local context]

:: NilLS local context = NilLS

instance Controls (ListLS c) | Controls c

instance Controls NilLS

Given a list of Controls instances cs = [c1 ...cn], working on the same local
state of type local and context state context, the expression ListLS cs is also a
Controls instance working on the same local state and context state.

7.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue controls that work
on the same local state and context state. Two other glueing constructors are
de�ned to extend and change the local state, AddLS and NewLS.

Given a Controls instance c1 that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
c1 :+: {addLS=x, addDef=c2}.

:: AddLS t local context

= E..add:

82 CHAPTER 7. CONTROL HANDLING

{ addLS :: add

, addDef:: t *(add,local) context

}

instance Controls (AddLS c) | Controls c

Given a Controls instance c1 that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expression c1 :+: {newLS=x,

newDef=c2}.

:: NewLS t local context

= E..new:

{ newLS :: new

, newDef:: t new context

}

instance Controls (NewLS c) | Controls c

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.

7.2.4 Example: a counter control

In this section we show an example of glueing controls to form a new Controls class
instance. A CompoundControl is de�ned that consists of three other controls. It
implements a manually incrementable counter. To display the current count value
it uses an Unable EditControl. Two ButtonControls are used to decrement and
increment the counter.

counter windowid displayid

= { newLS =initcount

, newDef=CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,pst)

= (count+dx, setText windowid displayid (count+dx) pst)

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

7.3. CONTROL LAYOUT 83

setText wid cid x pst

= appPIO

(setWindow wid (setControlTexts [(cid,toString x)])) pst

Figure 7.2 shows the counter after some user manipulations that resulted in the
counter value -15.

Figure 7.2: The counter control.

7.3 Control layout

The object I/O library o�ers the programmer an expressive layout mechanism to
de�ne the layout of controls. Controls can be element of windows, dialogues, and
compound controls. The layout rules that are discussed in this section are followed
in all these cases. Some layout rules refer to the view domain and frame of the
parent object. In case of dialogues these two are identical. They are zero based
rectangles with a size equal to the dialogue interior.

As we have seen, every control can have a ControlPos attribute. This attribute is
de�ned as follows:

:: ControlAttribute ps

= ... | ControlPos ItemPos | ...

:: ItemPos

:== (ItemLoc,ItemOffset)

:: ItemLoc

= Fix Point

| LeftTop | RightTop | LeftBottom | RightBottom

| Left | Center | Right

| LeftOf Id | RightTo Id | Above Id | Below Id

| LeftOfPrev | RightToPrev | AbovePrev | BelowPrev

:: ItemOffset

:== Vector

The layout position of a control consists of two values: an ItemLoc value and an
ItemOffset value which is a vector. The ItemLoc actually determines the location
of the control, the ItemOffset value adds an o�set to this position (which of course
in
uences the position of other controls). The ItemLoc values can be divided into
four groups:

Fixed position: this is only the Fix alternative of ItemLoc. Fix point places
the left top corner of the control of which it is the attribute at the speci�ed
point. The point is given in the coordinate system of the view domain of
the parent object.

Boundary aligned: these are the alternatives LeftTop, RightTop, LeftBottom,
and RightBottom. When applied their control is placed at the left-top, right-

84 CHAPTER 7. CONTROL HANDLING

top, left-bottom, or right-bottom of the current view frame of the parent
object.

Line aligned: these are the alternatives Left, Center, and Right. When applied
their control is placed below all previous line aligned controls and either left-
aligned, centered, or right-aligned with respect to the current view frame of
the parent object.

Relative position: these are the alternatives LeftOf, RightTo, Above, Below,
LeftOfPrev, RightToPrev, AbovePrev, and BelowPrev. The �rst four alter-
natives must be parameterised with the Id of a control that is element of
the same parent object, otherwise a runtime error will occur. The latter four
alternatives can be de�ned in terms of the �rst four but have the advantage
that you do not have to think of Ids for controls that you only want to rel-
atively place other controls to. Placing controls relatively to other controls
must construct a tree of related controls: cyclic references are not allowed and
result also in a runtime error.

Controls that are laid out relatively form a layout tree with one layout root control.
The layout attribute of the layout root control determines the layout positions of
the whole layout tree. If it is at a �xed position, the layout tree obtains a �xed
position. If it is boundary aligned, the layout tree is aligned at the same boundary.
If it is line aligned, the layout tree is line aligned.

Except for the �rst layout root control the default layout attribute for controls
is (RightToPrev,zero). For the �rst layout root control the default attribute is
(Left,zero). Consequently, the default layout order is from left to right in one
single row.

Controls are allowed to overlap partially or completely. This is particularly useful
in case of combinations of hidden and visible controls when at all times only one
is visible. It allows the program to change the control structure in an easy way by
hiding and showing controls.

In the remaining part of this section a number of examples are given to illustrate
control layout. In each of the examples we assume that the controls that are being
laid out are placed in a parent object with a view domain and view frame as given
in Figure 7.3. The x axis (the horizontal arrow) and y axis (the vertical arrow)
intersect at the coordinate zero.

Controls are being displayed as boxes. The control con�guration shown in Figure 7.4
occurs frequently in the examples. It consists of �ve equally sized controls, c0...c4.
The layout root control is c0. The controls c1...c4 are laid out relatively to c0 and
have the layout attributes LeftOf, RightTo, Above, and Below respectively with
zero o�sets.

7.3.1 Layout at �xed position

Controls and layout trees that have a Fix layout attribute are being placed relative
to the view domain of the parent object. So their visibility depends on the current
orientation of the parent view frame (recall that the view frame clips everything
that is outside of it). Figure 7.5 shows the control con�guration of Figure 7.4 when
the layout root control has the attribute (Fix zero,zero).

7.3. CONTROL LAYOUT 85

?

-

view domain

view frame

Figure 7.3: View domain and view frame.

c0c1 c2

c3

c4

Figure 7.4: A layout tree of �ve controls.

7.3.2 Layout at view frame boundary

Controls and layout trees that are laid out relative to the parent view frame bound-
ary will always be visible, provided of course that the view frame is su�ently large.
If the view frame is not large enough, these controls may become overlapped. Figure
7.6 shows the positions of the control con�guration of Figure 7.4 when positioned
at every corner of the view frame (using LeftTop, RightTop, LeftBottom, and
RightBottom with zero o�sets.

7.3.3 Layout in lines

Laying out controls and layout trees in lines is similar to writing characters in
an English piece of text: each new character is placed right next to the previous
character until a new line is started. A new line starts below the previous line. This
new line can be left aligned, centered, or right aligned. The layout attributes Left,
Center, and Right introduce both a new line and its alignment. Figure 7.7 shows
the positions of the control con�guration of Figure 7.4 when positioned at Left,
Center, and Right respectively, using zero o�sets. It also illustrates that if the
view frame is not big enough, controls may become partially invisible.

7.3.4 Layout o�sets

So far we have used zero o�sets in the layout attribute examples. The layout
position of a control is changed by an o�set vector value v = {vx,vy} as follows:
�rst, the layout position of the control is calculated as explained above, using a
zero o�set. Now assume that this results in the exact location pos = {x,y}. Then

86 CHAPTER 7. CONTROL HANDLING

?

-
c0c1 c2

c3

c4

Figure 7.5: The layout tree at (Fix zero,zero).

?

-

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

Figure 7.6: The layout tree at LeftTop, RightTop, LeftBottom, and RightBottom.

the real position of the control is {x=x+vx, y=y+vy}. Figure 7.8 illustrates this.
Given two controls c0 and c1 it shows the result of placing c1 at RightTo control c0
with an o�set value v = {vx,vy}. The dashed box shows the location of c1 using
a zero o�set.

7.3.5 Layout relative to the previous control

As explained earlier in this section, the default layout attribute of a control is
(RightToPrev,zero). The other layout attributes that refer to the previous control
are LeftOfPrev, AbovePrev, and BelowPrev. In this section we explain what the
previous control is.

Section 7.2 introduced the glue to create control structures. The best way to look at
such a control structure is to have a look at its numbered graph structure. Consider
the following expression: (a:+:b:+:c) with a, b, and c standard Controls class
instances as introduced in Section 7.1. Figure 7.9 shows the graph structure (recall
that :+: is right associative).

7.3. CONTROL LAYOUT 87

?

-

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

Figure 7.7: The layout tree at Left, Center, and Right.

c0

c1

@
@
@R

-vx

?

vy

Figure 7.8: Laying out controls using an o�set vector.

Each node in the graph has an index. If a node is a glue node, then �rst number
the left sub tree, then the node itself, then the right sub tree. If a node is a
standard Controls class instance, then number it. The nodes of the sub tree of
a CompoundControl are not numbered. Proceeding in this way, one obtains the
index �gures at each of the nodes in Figure 7.9. If a node in the graph with index
i represents one of the standard Controls class instances then its previous control
is represented by that node in the graph that has the highest index less than i

and represents also one of the standard Controls class instances. So the previous
control of c is not :+:4 but b3 because we assumed that b is an instance of the
standard Controls class. Analogously, the previous element of b is neither one of
the two :+: nodes, but a1. Finally, a has no previous control.

a
1

��	

:+:
2

@@R
:+:

4

��	
b 3

@@R
c

5

Figure 7.9: The numbered graph of (a:+:b:+:c).

88 CHAPTER 7. CONTROL HANDLING

7.4 Resizing controls

The object I/O system has a simple mechanism to let controls respond to resize
actions of their parent interface element (window, dialogue, or compound control).
If a control wants to respond to resize events, it should have a ControlResize

attribute. It is de�ned as follows:

:: ControlAttribute st

= ... | ControlResize ControlResizeFunction | ...

:: ControlResizeFunction

:== Size -> Size -> Size -> Size

The control resize function is applied to its current size, old size of its parent,
and the new size of its parent. It returns its own new size. This calculation is
performed for all controls that are part of the control that is being resized. If
a CompoundControl has a resize function, and the new size is di�erent from its
previous size, then this computation continues recursively, otherwise the layout of
its elements is not recalculated. Given the new sizes of the controls, the layout
is recalculated and adjusted accordingly. The e�ect of this strategy is that the
relative layout of controls is never changed in case of resizing a window, dialogue,
or compound control.

As an example, consider one wants to have a CompoundControl that always dis-
plays three CustomControls next to each other at the top of its view frame. The
CompoundControl takes care that it always has a width dividable by 3, using its
own ControlResize function compoundresize. Its ControlLook function draws a
rectangle �tting its current view frame.

compound = CompoundControl

(ListLS [custom,custom,custom])

[ControlResize compoundresize

,ControlSize compoundsize

,ControlLook (_ {newFrame}->draw newFrame)

,CompoundHMargin 0 0

,CompoundVMargin 0 0

,CompoundItemSpace 0 0

]

compoundsize = {w=60,h=75}

compoundresize _ _ newparentsize=:{w}

= {newparentsize & w=w/3*3}

The CustomControls resize their widths according to the new width of their par-
ent control, using the ControlResize function customresize. The look of the
CustomControl simply draws a rectangle �tting its current view frame and the two
diagonals.

custom

= CustomControl {w=compoundsize.w/3,h=6} look

[ControlResize customresize]

customresize customsize _ {w}

= {customsize & w=w/3}

look _ {newFrame} picture

picture = draw newFrame picture

picture = drawLine newFrame.corner1 newFrame.corner2 picture

7.5. EXAMPLES 89

= drawLine {newFrame.corner1 & y=newFrame.corner2.y}

{newFrame.corner2 & y=newFrame.corner1.y} picture

Figure 7.10 shows what happens with the controls when the parent object is resized.
At the left the initial state of the CompoundControl and its CustomControls is
displayed. As explained in Section 7.3, the three custom controls form a layout
tree with the layout root control having the layout attribute (Left,zero) and the
other CustomControls (RightToPrev,zero). In the middle, the CompoundControl
is resized to the right and bottom. This resize action causes �rst recalculation of
the size of the CompoundControl, using compoundresize. Because this value di�ers
from the old size, recalculation continues for each CustomControl. The �nal result
is shown at the right.

���PPP���PPP���PPP ���PPP���PPP���PPP

Q
QQs

���
�XXXX���

�XXXX���
�XXXX

Figure 7.10: Resizing a CompoundControl with three CustomControls.

7.5 Examples

In this section a number of examples are given to clarify the use of controls.

7.5.1 Keyspotting revisited

In this example we extend the keyspotting example in Section 6.7.1 with the pos-
sibility to monitor also the keyboard input of controls. We create a Window that
contains a CompoundControl that contains a CustomControl. Before we discuss
each of the components below, we have a look at the way they handle keyboard
input. A screenshot of the program is given in Figure 7.11.

Each of the components is keyboard sensitive and uses the same KeyboardFunction
spotting. This function is almost identical to the one presented in Section 6.7.1.
The only di�erence is that the keyboard input is now shown in the CustomControl
instead of the window. For this purpose spotting is also parameterised with the
Id of the CustomControl. It is also parameterised with a string that states who
currently has the input focus. Now spotting changes the Look function of the
CustomControl and forces its update (by using a True boolean).

spotting (wid,cid) who x pst

=appPIO (setWindow wid [setControlLooks [(cid,True,look text)]]) pst

where

text = who+++":"+++toString x

90 CHAPTER 7. CONTROL HANDLING

Figure 7.11: The keyspotting program in action.

The Look function look of the CustomControl is almost identical to the original
look function: except that it centers its argument string it also draws a framed box
around it, so that we can easily see where the components are.

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

The CustomControl custom displays which component is currently receiving what
keyboard input. The control is identi�ed by cid. It parameterises its Keyboard-
Function spotting with the required Ids and the string "Control". Its initial
look draws a box around itself. The control is resizable, speci�ed by adding the
ControlResize attribute. Whenever the parent object is resized, custom changes
its size in exactly the same amount.

custom

= CustomControl customsize (look "")

[ControlKeyboard (const True) Able

(noLS1 (spotting ids "Control"))

,ControlId cid

,ControlResize resize

]

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

The CompoundControl compound contains only custom. It parameterises its Key-
boardFunction spotting with the required Ids and the string "Compound". Its
initial size is chosen such that it is large enough to display custom completely. It
conveniently uses the look function to draw a box around itself. The compound
control is also resizable, and uses the same resize function as custom.

compound

= CompoundControl custom

7.5. EXAMPLES 91

[ControlKeyboard (const True) Able

(noLS1 (spotting ids "Compound"))

,ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

,ControlResize resize

,ControlLook (look "")

]

Finally, the Window window contains only compound. It parameterises its spotting
function with the required Ids and the string "Window". Its initial size is chosen
such that it is large enough to display compound completely. For this purpose also
the margin layout attributes are set. Termination of the program is taken care of
by having the program quit when the user closes the window.

window

= Window "keyspotting" compound

[WindowKeyboard (const True) Able (noLS1 (spotting ids "Window"))

,WindowId windowid

,WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

,WindowResize

,WindowHMargin margin margin

,WindowVMargin margin margin

,WindowClose (noLS closeProcess)

]

Remaining details that need to be de�ned are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
keyspotting below.

module keyspotting

// **

// Clean tutorial example program.

//

// This program monitors keyboard input that is sent to a Window which consists

// of a CompoundControl which consists of a CustomControl.

// **

import StdEnv,StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

(wid,world) = openId world

(cid,world) = openId world

ids = (wid,cid)

custom = CustomControl customsize (look "")

[ControlKeyboard (const True) Able

(noLS1 (spotting ids "Control"))

, ControlId cid

, ControlResize resize

]

compound = CompoundControl custom

[ControlKeyboard (const True) Able

92 CHAPTER 7. CONTROL HANDLING

(noLS1 (spotting ids "Compound"))

, ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlResize resize

, ControlLook (look "")

]

window = Window "keyspotting" compound

[WindowKeyboard (const True) Able

(noLS1 (spotting ids "Window"))

, WindowId wid

, WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowResize

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

= startIO NoState NoState [snd o openWindow NoState window]

[ProcessClose closeProcess] world

where

customsize = {w=550,h=100}

margin = 10

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

spotting (wid,cid) who x pst

= appPIO (setWindow wid [setControlLooks [(cid,True,look text)]]) pst

where

text = who+++":"+++toString x

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture) = getPenFontStringWidth text picture

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

7.5.2 Mousespotting revisited

In this example we extend the mouse spotting example of Section 6.7.2. Just like
then, the revised mouse spotting example is almost identical to the revised keyspot-
ting example discussed above. The only di�erences are the title of the window and
the replacement of the keyboard attributes by mouse attributes. A screenshot of
the program is given in Figure 7.12. For completeness, we show the code of the
revised mouse spotting example below.

module mousespotting

// **

// Clean tutorial example program.

//

// This program monitors mouse input that is sent to a Window which consists

// of a CompoundControl which consists of CustomControl.

// **

import StdEnv,StdIO

:: NoState

= NoState

Start :: *World -> *World

7.5. EXAMPLES 93

Figure 7.12: The mousespotting program in action.

Start world

(wid,world) = openId world

(cid,world) = openId world

ids = (wid,cid)

custom = CustomControl customsize (look "")

[ControlMouse (const True) Able

(noLS1 (spotting ids "Control"))

, ControlId cid

, ControlResize resize

]

compound = CompoundControl custom

[ControlMouse (const True) Able

(noLS1 (spotting ids "Compound"))

, ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlResize resize

, ControlLook (look "")

]

window = Window "mousespotting" compound

[WindowMouse (const True) Able

(noLS1 (spotting ids "Window"))

, WindowId wid

, WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowResize

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

= startIO NoState NoState [snd o openWindow NoState window]

[ProcessClose closeProcess] world

where

customsize = {w=550,h=100}

margin = 10

resize oldCSize oldParentSize newParentSize

= { w = oldCSize.w+newParentSize.w-oldParentSize.w

, h = oldCSize.h+newParentSize.h-oldParentSize.h

}

spotting (wid,cid) who x pst

= appPIO (setWindow wid [setControlLooks [(cid,True,look text)]]) pst

where

text = who+++":"+++toString x

look text _ {newFrame} picture

picture = unfill newFrame picture

picture = draw newFrame picture

(width,picture) = getPenFontStringWidth text picture

94 CHAPTER 7. CONTROL HANDLING

= drawAt {x=(w-width)/2,y=h/2} text picture

where

{w,h} = rectangleSize newFrame

Chapter 8

Menus

Many interactive applications allow a user to manipulate a number of documents.
As we saw in the previous chapter, the user can issue these manipulations by means
of the keyboard and mouse. Another common source of manipulations is by issueing
commands to the application. This is where menus come in. Menus help a program
to structure the set of available commands. To the user of an application, the use
of menus provides a consistent and easily browsable graphical display of the set
of available commands. For these reasons it is recommended to use menus in a
program.

In Section 8.1 we introduce the standard set of menu de�nitions that are at a
programmers disposal. Then the glue is introduced to create larger menu structures
in Section 8.2. One special menu is available for interactive processes that have
the multiple document interface (MDI) attribute, the windows menu. This menu
enumerates the current open and visible windows of that process and give some
commands to organise them. This is treated in Section 8.3. Menus provide a
consistent graphical interface to users. To enhance the consistency, a number of
programming conventions have evolved. These are discussed in Section 8.4.

8.1 Menus and menu elements

Menus and menu elements can be de�ned by means of the type de�nitions in module
StdMenuDef (Appendix A.16). Analogous to Windows, Dialogs, and Compound-

Controls, the type constructor class Menus is parameterised with a type constructor
variable.

class Menus mdef where

openMenu :: .lst !(mdef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

instance Menus (Menu m) | MenuElements m

The admissable instances have to belong to the MenuElements type constructor
class. Below we introduce each of the components.

95

96 CHAPTER 8. MENUS

8.1.1 The menu attributes

The menu attributes are used by both menus and menu elements. They are the
following:

:: MenuAttribute st

= MenuId Id

| MenuSelectState SelectState

| MenuIndex Int

| MenuShortKey Char

| MenuMarkState MarkState

| MenuFunction (IdFun st)

| MenuModsFunction (ModifiersFunction st)

The MenuId attribute identi�es the menu or menu element to which it is associated.
If you do not provide a MenuId the menu (element) can not be modi�ed.

The MenuSelectState attribute de�nes whether the menu (element) can be used
by the user (Able) or not (Unable). Usually this will a�ect the look of the menu
(element). The default value is Able.

The MenuIndex attribute de�nes the index position of a menu. Index positions
range from one (for the �rst menu) upto the number of menus. A negative or zero
MenuIndex attribute value will place the menu in front of all current menus. A
MenuIndex attribute value that is larger than the current number of menus will
place the menu behind all current menus. Other MenuIndex attribute values place
the menu behind the menu with that index value.

The MenuShortKey attribute de�nes a character that can be used by user to select
the menu element to which the character is associated by means of the keyboard.
The menu element can be selected by pressing that character and some special,
platform dependent meta key.

The MenuMarkState attribute can add a check mark symbol (Mark) or leave it out
(NoMark) to a menu element. The default value is NoMark.

The MenuFunction and MenuModsFunction attributes add callback functions to
menu elements that are evaluated when the menu element to which they are as-
sociated is selected by the user. The di�erence between these two attributes is
that the former is simply evaluated whenever the menu element is selected, and
that the latter also provides the callback function with the modi�er keys that have
been pressed at the moment of selecting the menu element (for the de�nition of the
modi�er). In a MenuAttribute list, the �rst of these two attributes is chosen.

8.1.2 The Menu

A menu is a top level interface element that contains a group of related commands.
The de�nition of a menu is as follows:

:: Menu m lst pst

= Menu Title (m lst pst) [MenuAttribute *(lst,pst)]

The usual appearance of a menu is by its title. The user can browse through its
commands by mouse or by a platform dependent keyboard interface. Valid menu
attributes are:

8.1. MENUS AND MENU ELEMENTS 97

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

p
MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

Example The left picture shows the menu when not selected by the user, the right
picture when selected by the user.

menu

= Menu "Menu"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

8.1.3 The MenuItem

The menu item is the standard element that refers to a command. The de�nition
of a menu item is as follows:

:: MenuItem lst pst = MenuItem Title [MenuAttribute *(lst,pst)]

The title of a menu element is displayed as a member of its parent menu. When
the user selects the menu item its Menu(Mods)Function attribute is evaluated if the
menu item, and all of its parent menus are Able. The appearence of the menu item
re
ects this state. Valid menu item attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey
p

MenuMarkState
p

MenuFunction
p

MenuModsFunction
p

An example of a menu item is given in the previous section.

98 CHAPTER 8. MENUS

8.1.4 The MenuSeparator

Themenu separator is a menu element that is only used to separate groups of related
menu elements within a parent menu. Graphically, a menu separator usually inserts
some vertical space and a horizontal divider within a menu. Menu separators have
no further functionality. The de�nition of a menu separator is as follows:

:: MenuSeparator lst pst = MenuSeparator [MenuAttribute *(lst,pst)]

Because menu separators have no other purpose than providing some `white space'
between menu elements, the only valid menu separator attribute is the MenuId

(which can be used to remove a separator dynamically):

MenuAttribute: Valid:
MenuId

p
MenuSelectState

MenuIndex

MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

In the menu example of Section 8.1.2 a menu separator has been used.

8.1.5 The RadioMenu

A radio menu element is a group of menu items of which exactly one menu item is
selected. All alternatives are visible. The de�nition of a radio menu is as follows:

:: RadioMenu lst pst = RadioMenu [MenuRadioItem *(lst,pst)] Index

[MenuAttribute *(lst,pst)]

:: MenuRadioItem st :== (Title,Maybe Id,Maybe Char,IdFun st)

The initially selected item is indicated by the Index value. As a convention in the
object I/O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1. . .n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid radio menu
attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey
p

MenuMarkState

MenuFunction

MenuModsFunction

When an item of the radio menu is selected the previously selected radio menu
item will be unchecked, and the new radio menu item gets the check mark. The
corresponding callback function is then evaluated. The callback function is also
evaluated if the currently selected radio menu item is selected.

8.1. MENUS AND MENU ELEMENTS 99

Example A radio menu and its initial look (it is instructive to compare this with
the radio control example at page 71).

radiomenu

= RadioMenu

[("Radio item "+++toString i,Nothing,Just (iChar i),id)

\\ i<-[1..5]

] 1 []

where

iChar i = toChar (toInt '1'+i-1)

8.1.6 The SubMenu

The sub menu is a menu element that contains other menu elements. So it is a
menu within a menu, and of course can contain sub menus as well. The de�nition
of a sub menu is as follows:

:: SubMenu m lst pst

= SubMenu Title (m lst pst) [MenuAttribute *(lst,pst)]

The usual appearance of a sub menu is by its title. The user can browse through
its elements by mouse or by a platform dependent keyboard interface. Valid sub
menu attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

Example This sub menu has the same de�nition as the menu at page 97 except
that it has a SubMenu data constructor rather than the Menu data constructor
and a di�erent title. The left picture shows the sub menu when not selected
by the user, the right picture when selected by the user.

submenu

= SubMenu "Sub Menu"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

100 CHAPTER 8. MENUS

8.2 Menu glue

In the previous section the standard set of menus and menu elements has been
discussed. This list is not complete. In the library module StdMenuElementClass

(Appendix A.18) a number of additional instances are de�ned, namely the type
constructors :+:, ListLS, NilLS, and AddLS, NewLS (their de�nition can be found
in Appendix A.13). These additional instances are required to glue menus. They
are treated below.

8.2.1 :+:

The most common constructor to glue menu elements is :+:. Its type constructor
de�nition and MenuElements class instance declaration are as follows:

:: :+: t1 t2 local context

= (:+:) infixr 9 (t1 local context) (t2 local context)

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2

Given two MenuElements instances m1 and m2, working on the same local state
of type local and context state context, the expression m1:+:m2 is also a Menu-

Elements instance working on the same local state and context state. Because :+: is
right associative, the expression m1:+:m2:+:m3 should be read as m1:+:(m2:+:m3).

8.2.2 ListLS and NilLS

In principle the :+: glue is su�cient to create all required menu element structures.
In case of working with a number of menu instances of the same type, it is much more
convenient to use lists and list comprehensions. This glue is provided by the type
constructor ListLS. The type constructor NilLS is a shorthand for ListLS []. It
can also be conveniently used to state that a SubMenu or Menu has no menu elements.
Their type constructor de�nitions and MenuElements class instance declarations are
as follows:

:: ListLS t local context = ListLS [t local context]

:: NilLS local context = NilLS

instance MenuElements (ListLS m) | MenuElements m

instance MenuElements NilLS

Given a list of MenuElements instances ms = [m1 ...mn], working on the same
local state of type local and context state context, the expression ListLS ms is
also a MenuElements instance working on the same local state and context state.

8.3. THE WINDOWS MENU 101

8.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue menu elements that
work on the same local state and context state. Two other glueing constructors are
de�ned to extend and change the local state, AddLS and NewLS.

:: AddLS t local context

= E..add:

{ addLS :: add

, addDef:: t *(add,local) context

}

instance MenuElements (AddLS m) | MenuElements m

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
m1 :+: {addLS=x, addDef=m2}.

:: NewLS t local context

= E..new:

{ newLS :: new

, newDef:: t new context

}

instance MenuElements (NewLS m) | MenuElements m

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expression m1 :+: {newLS=x,

newDef=m2}.

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.

8.3 The Windows menu

For programs using interactive processes that have the multiple document interface
(MDI processes, see Section 11.1) one special menu is added by the object I/O
system to the menu system of such an interactive process. This is the Windows
menu. This menu contains a number of commands to arrange the current set of
visible windows, and a list of all window titles. The set of arrange commands is
platform dependent, but contains at least the following three commands:

Cascade: this command arranges all windows to have equal size. They will be
placed in diagonal order: from the left top to the right bottom of the process
window. The windows will always be shown completely inside the process
window. If there are to many windows, the arrangements starts over again
for the remaining windows, which will therefore overlap the other windows.

Tile Horizontally: this command arranges all windows in rows without overlap-
ping. It is tried to give all windows the same size.

102 CHAPTER 8. MENUS

Tile Vertically: this command arranges all windows in columns without overlap-
ping. It is tried to give all windows the same size.

Separated from the window arrange commands by a MenuSeparator follows the list
of open windows in lexicographical order on the window title. The currently active
window is checked. Selecting any of these windows makes that window the active
window. (This causes the previously active window to become deactivated, and the
new window to become active.)

8.4 Menu conventions

The use of menus provides application users with a consistent and uniform access to
the available set of commands. In this section we discuss a number of conventions
that are usually followed to increase the level of consistency.

8.4.1 Subsetting the available commands

In general when using an interactive application, the application will move through
several states. In each state a particular subset of the complete set of available
commands will be applicable to the user while the remaining commands should
not be selected. A well designed application should make this clear to the user by
subsetting the available commands.

The easiest way to subset commands is by disabling and enabling the menu elements
that should be unselectable and selectable respectively. For this purpose the func-
tions enableMenuElements and disableMenuElements (module StdMenuElement,
Appendix A.17) are available to enable and disable individual menu elements. Com-
plete menus can be enabled and disabled using the functions enableMenus and
disableMenus (module StdMenu (Appendix A.15). This module also contains two
functions to enable and disable the whole current set of menus: enableMenuSystem
and disableMenuSystem.

8.4.2 Command conventions

In this section we discuss some conventions that are found frequently in many
applications with respect to commands.

Clipboard commands

Applications that support the use of the clipboard (Chapter 12) to cut, copy, and
paste private and external data usually are found in an "Edit" menu. Conventions
are:

cut This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing
this command should remove that object from its context and place it in the
clipboard. Its name should be "Cut" and it should have the shortkey attribute
'x'.

copy This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing this
command should place it in the clipboard, but not remove it from its context.
Its name should be "Copy" and it should have the shortkey attribute 'c'.

8.4. MENU CONVENTIONS 103

paste This command should be enabled only if the clipboard contains an object
that can be currently incorporated in the application. Issueing this command
should read the clipboard and put that object in the application. Its name
should be "Paste" and it should have the shortkey attribute 'v'.

Undo command

Applications that allow users to manipulate documents by sequences of commands
can support an undo command. The undo command can also be undone by the redo
command. These commands are usually found in an "Edit" menu. Conventions
are:

undo This command should be enabled only if the user has issued a sequence of
commands that can be undone. The number of undoable commands depends
on the sophistication of the application. The name of this command is "Undo"
and it has the shortkey attribute 'z'.

redo This command should be enabled only if a (sequence of) undo command has
been issued. At each selection it restores the changes of the undo command.
The name of this command is "Redo" and it has the shortkey attribute 'y'.

Document commands

The document commands are frequently found commands to create new documents,
open existing documents, and save and close open documents. These commands
are usually found in a "File" menu. Conventions are:

new This command should be enabled only if the application can modify a new
document. Issueing this command should create or reuse a window containing
the new document. Its name should be "New" and it should have the shortkey
attribute 'n'.

open This command should be enabled only if the application can modify an ad-
ditional, existing document. Issueing this command should give the user the
opportunity to search for a �le that will be opened by the application. For
this purpose the StdFileSelect function selectInputFile can be used (Ap-
pendix A.9). The name of the command should be "Open..." and it should
have the shortkey attribute 'o'.

close This command should be enabled only if the application has an open docu-
ment window or dialogue. Issueing this command should close the currently
active window or dialogue. It is good programming practice to check if the
document has been recently saved. If this is not the case, then the user should
be asked if the document should be saved before closing. The name of this
command should be "Close" and it should have the shortkey attribute 'w'.

save This command should be enabled only if the currently active document win-
dow version di�ers from a (possibly not present) �le version. Issueing this
command should save the current state of the document in the active window
to �le. If there is no �le associated yet, then the application should �rst ask for
a �le name. For this purpose the StdFileSelect function selectOutputFile

can be used (Appendix A.9). The name of the command should be "Save"

and it should have the shortkey attribute 's'.

104 CHAPTER 8. MENUS

save as This command should be enabled only if the application has an open
document window. Issueing this command should give the user the possi-
bility to browse the �le system and provide a �le name. For this purpose
the StdFileSelect function selectOutputFile can be used (Appendix A.9).
The name of the command should be "Save As..."

Quit command

Users can leave an application using the quit command. A user should always be
allowed to quit the application. It is good programming practice to check if there are
any unsaved documents in the application. If this is the case then the user should
be asked if these documents should be saved before closing. The name of the quit
command is usually "Quit" and has the shortkey attribute 'q'. This command is
usually found in a "File" menu.

8.5 Example: a small menu system

In this section we show a program that creates an interactive process with a multi-
ple document interface. It can serve as a framework for writing your own multiple
document interface programs. The interactive process contains one menu, titled
"File", which consists of three commands: a command to open a new window, ti-
tled "New"; a command to close the active window, titled "Close"; and a command
to terminate the interactive process, titled "Quit". The "New" and "Quit" com-
mands are always available, the "Close" command will be subsetted (as described
in Section 8.4.1). We start with the commands, and proceed with the menu and
process de�nition.

The "New" command is a MenuItem with a local state of type Int. We use it to
give every new window a new title by appending its current value to the string
"Window". The initial value is one. Here is the de�nition of the command:

{ newLS = 1

, newDef = MenuItem "New" [MenuShortKey 'n',MenuFunction new]

}

The callback function of the "New" command, new, uses the local integer state. For
each successfully created window the value is incremented. In addition, the "Close"
command is enabled. If the window can not be created a notice is opened, using
the notice library developed in Section 6.8.1.

new :: (Int,PSt .l .p) -> (Int,PSt .l .p)

new (i,pst)

(error,pst) = openWindow 0 window pst

| error<>NoError

notice = Notice ["MDI could not open new window"]

(NoticeButton "Ok" id

) []

= (i,openNotice notice pst)

| otherwise

= (i+1,appPIO (setMenu fileid [enableMenuElements [closeid]]) pst)

The window itself is kept very simple. If the user requests to close the window, the
"Close" command callback function close is evaluated. This is done by setting

8.5. EXAMPLE: A SMALL MENU SYSTEM 105

the (WindowClose (noLS close)) attribute. The look of the window draws the
current view frame rectangle and the lines between the diagonally opposite corner
points.

window = Window ("Window "+++toString i)

NilLS

[WindowClose (noLS close)

, WindowSize {w=300,h=300}

, WindowLook look

]

look :: SelectState UpdateState *Picture -> *Picture

look _ {newFrame=frame=:{corner1,corner2}} picture

picture = draw frame picture

picture = drawLine corner1 corner2 picture

= drawLine {corner1 & x=corner2.x} {corner2 & x=corner1.x} picture

The "Close" command is identi�ed by the Id closeid. Because the application
initially has no open windows, the initial SelectState is Unable:

MenuItem "Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

The callback function of the "Close" command, close, has to close the active
window. It retrieves the Id of the active window using the StdWindow function
getActiveWindow and closes that window using closeWindow. If the active window
was the last open window, then close should disable the "Close" command. The
function getWindowsStack returns the list of Ids of all currently open windows. So
if this list is empty, then there are no more windows open. In that case the "Close"
command is disabled. We get the following de�nition:

close :: (PSt .l .p) -> PSt .l .p

close pst

(maybeId,pst) = accPIO getActiveWindow pst

| isNothing maybeId

= abort "Fatal error in MDI: getActiveWindow returned Nothing."

pst = closeWindow (fromJust maybeId) pst

(rest,pst) = accPIO getWindowsStack pst

| isEmpty rest

= appPIO (setMenu fileid [disableMenuElements [closeid]]) pst

| otherwise

= pst

It should be noted that because of subsetting the "Close" command, it is not
possible that getActiveWindow returns Nothing. It is good programming practice
to check this situation and handle it even though it should not occur. In this case
we have chosen to abort the program.

The "Quit" command has a straightforward de�nition:

MenuItem "Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

The callback function of "Quit", quit, asks the user to con�rm this choice. For this
purpose we again use a notice. If the user con�rms his choice, then the application
is terminated, otherwise nothing happens. Figure 8.1 shows the notice.

106 CHAPTER 8. MENUS

Figure 8.1: The termination notice.

Figure 8.2: The initial menu.

quit :: (PSt .l .p) -> PSt .l .p

quit pst

= openNotice notice pst

where

notice = Notice ["Do you really want to quit?"]

(NoticeButton "Ok" (noLS closeProcess))

[NoticeButton "Cancel" id

]

The de�nition of the "File" menu simply glues the de�nitions of the commands as
described above into one menu de�nition (Figure 8.2 shows the menu when opened).

menu

= Menu "File"

({ newLS = 1

, newDef= MenuItem "New"

[MenuShortKey 'n',MenuFunction (noLS new)]

}

:+: MenuItem "Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

)

[MenuId fileid

]

The remaining details that need to be arranged are the creation of the two Id

values fileid and closeid, the creation of the menu, and the creation of the
parent interactive process of the menu. We conveniently reuse the quit function to
handle user requests to close the interactive process by setting the (ProcessClose
quit) attribute. Here is the full program code.

module MDI

8.5. EXAMPLE: A SMALL MENU SYSTEM 107

// **

// Clean tutorial example program.

//

// This program creates a Multiple Document Interface process with a Window menu.

// **

import StdEnv, StdIO

import notice

:: NoState

= NoState

Start :: *World -> *World

Start world

(ids,world) = openIds 2 world

= startIO NoState NoState [initialise ids] [ProcessClose quit] world

quit :: (PSt .l .p) -> PSt .l .p

quit pst

= openNotice notice pst

where

notice = Notice ["Do you really want to quit?"]

(NoticeButton "Ok" (noLS closeProcess))

[NoticeButton "Cancel" id

]

initialise :: [Id] (PSt .l .p) -> PSt .l .p

initialise ids=:[fileid,closeid] pst

(error,pst) = openMenu 0 menu pst

| error<>NoError= abort "MDI could not open File Menu"

| otherwise = pst

where

menu= Menu "File"

({ newLS = 1

, newDef = MenuItem "New" [MenuShortKey 'n',MenuFunction new]

}

:+: MenuItem "Close" [MenuShortKey 'w',MenuFunction (noLS close)

,MenuId closeid, MenuSelectState Unable

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q',MenuFunction (noLS quit)]

)

[MenuId fileid

]

new :: (Int,PSt .l .p) -> (Int,PSt .l .p)

new (i,pst)

(error,pst) = openWindow 0 window pst

| error<>NoError

notice = Notice ["MDI could not open new window"]

(NoticeButton "Ok" id

) []

= (i,openNotice notice pst)

| otherwise

= (i+1,appPIO (setMenu fileid [enableMenuElements [closeid]]) pst)

where

window = Window ("Window "+++toString i)

NilLS

[WindowClose (noLS close)

, WindowSize {w=300,h=300}

, WindowLook look

]

look :: SelectState UpdateState *Picture -> *Picture

look _ {newFrame=frame=:{corner1,corner2}} picture

picture = draw frame picture

108 CHAPTER 8. MENUS

picture = drawLine corner1 corner2 picture

= drawLine {corner1 & x=corner2.x} {corner2 & x=corner1.x} picture

close :: (PSt .l .p) -> PSt .l .p

close pst

(maybeId,pst) = accPIO getActiveWindow pst

| isNothing maybeId

= abort "Fatal error in MDI: getActiveWindow returned Nothing."

pst = closeWindow (fromJust maybeId) pst

(rest,pst) = accPIO getWindowsStack pst

| isEmpty rest

= appPIO (setMenu fileid [disableMenuElements [closeid]]) pst

| otherwise

= pst

Chapter 9

Timers

Timers provide interactive programs with a tool to let actions occur at regular
time intervals. These actions respond to timer events, and so they can be properly
de�ned as callback functions. Typical examples of timer uses are blinking cursors,
clocks, and time-out mechanisms.

The de�nition types of timers can be found in module StdTimerDef, Appendix
A.36. The main type de�nitions are as follows:

:: Timer t lst pst

= Timer TimerInterval (t lst pst) [TimerAttribute *(lst,pst)]

:: TimerInterval

:== Int

:: TimerAttribute st

= TimerId Id

| TimerSelectState SelectState

| TimerFunction (TimerFunction st)

:: TimerFunction st

:== NrOfIntervals->st->st

A TimerInterval is an integer value that must be at least zero. The time unit
is platform dependent and is de�ned by the function ticksPerSecond (module
StdSystem, Appendix A.30).

The TimerAttributes are the following:

TimerId This attribute identi�es the timer. If you do not provide a TimerId the
timer can not be modi�ed.

TimerSelectState This attribute de�nes whether the timer will respond to timer
events (Able) or not (Unable). The default value is Able.

TimerFunction This attribute is the callback function that is evaluated when a
timer event is handled. Its �rst argument is the number of whole timer inter-
vals that have elapsed since its previous evaluation, so this value is at least 1.
If the timer interval is zero, then this number is always 1. Enabling a timer
from a disabled state resets the last evaluation time.

The Timer type constructor is parameterised with a type constructor variable. Anal-
ogous to menus that contain menu elements, timers can contain timer elements. The

109

110 CHAPTER 9. TIMERS

instances must be member of the TimerElements class. This is expressed by the
Timers timer creation member function, openTimer which can be found in module
StdTimer (Appendix A.35):

class Timers tdef where

openTimer :: .lst !(tdef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

instance Timers (Timer t) | TimerElements t

Currently, the instances of the TimerElements class are receivers and the usual
glueing type constructors that we have already encountered in controls (Section
7.2) and menu elements (Section 8.2), namely :+:, ListLS, NilLS, and AddLS,
NewLS. The receiver instances are declared in module StdTimerReceiver (Appendix
A.38). Receivers are handled in Chapter 10. The glueing constructors are declared
in the same module StdTimerElementClass that contains the TimerElements class
(Appendix A.37).

9.1 Examples

In this section we give some examples to illustrate the use of timers.

9.1.1 Expanding circles

In this example we create a program that uses a timer to draw a number of growing
concentric circles in a window periodically. It also opens a menu containing only the
quit command. Figure 9.1 shows the program in action. We discuss these object
I/O components in reverse order (menu, window, timer).

Figure 9.1: The circles program in action.

The menu de�nition is very simple, as it contains only one command to termi-
nate the example program. Recall that to terminate an interactive process the
StdProcess function closeProcess must be used. The StdIOBasic function noLS

suitably turns closeProcess into the desired type. Here is the menu de�nition.

mdef = Menu "Circles"

9.1. EXAMPLES 111

(MenuItem "Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

The initial size of the window in which the circles are to be drawn is windowEdge
by windowEdge (200 in the example). To ease drawing, we take care that the view
domain of the window has the origin zero exactly in the center of the view domain.
This can be done conveniently by de�ning the WindowViewDomain attribute to be:

viewDomain

= { corner1 = {x= ~windowEdge/2,y= ~windowEdge/2}

, corner2 = {x= windowEdge/2,y= windowEdge/2}

}

The window does not contain controls (expressed by the Controls type instance
NilLS) and is identi�ed by the value wid. The window de�nition is as follows:

wdef = Window "Circles" NilLS

[WindowId wid

,WindowSize (rectangleSize viewDomain)

,WindowViewDomain viewDomain

]

The timer draws a number of concentric circles that have an increasing radius. For
this purpose it uses a local state of the following type and initial value:

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

initTimerState = { nrCircles=4, equiDistance=2, minRadius=0 }

The nrCircles �eld contains the number of circles that are drawn. The equi-

Distance �eld is the di�erence of radius between two neighbouring circles. The
minRadius �eld keeps track of the radius of the smallest visible circle.

The timer interval is set to a twentieth of a second (ticksPerSecond/20). The
timer contains no timer elements. Its de�nition is as follows:

tdef = Timer (ticksPerSecond/20) NilLS [TimerFunction timer]

The timer function timerwill be evaluated by the object I/O system every twentieth
of a second (if possible). The timer function actually ignores the number of elapsed
intervals and simply draws the next sequence of circles. There are two cases to
distinguish:

If the smallest circle still �ts entirely inside the window (tested by minRadius <

windowEdge/2), then timer undraws the smallest circle and draws the new circle
which should have a radius equal to minRadius + nrCircles * equiDistance.
Finally, the minRadius �eld is changed to re
ect the fact that the smallest visible
circle now has radius minRadius + equiDistance.

If the smallest circle does not �t entirely inside the window, then timer completely
un�lls the window. By setting the new local TimerState back to initTimerState

the circles are drawn again from the center.

112 CHAPTER 9. TIMERS

timer _ (lst=:{nrCircles,equiDistance,minRadius},pst)

| minRadius<windowEdge/2

lst = {lst & minRadius=minRadius+equiDistance}

newRadius= minRadius+nrCircles*equiDistance

pst = appPIO

(appWindowPicture wid

[undraw {oval_rx=minRadius,oval_ry=minRadius}

, draw {oval_rx=newRadius,oval_ry=newRadius}

]

) pst

= (lst,pst)

| otherwise

pst = appPIO (appWindowPicture wid [unfill viewDomain]) pst

= (initTimerState,pst)

The last details that remain to be de�ned are the actual opening of the menu,
window, and timer, the opening of the interactive process, and the creation of wid.
For completeness we show the complete program code.

module circles

// **

// Clean tutorial example program.

//

// This program creates a window that displays growing concentric circles.

// For this purpose it uses a timer.

// **

import StdEnv, StdIO

:: NoState = NoState

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

Start :: *World -> *World

Start world

= circles (openId world)

circles :: (Id,*World) -> *World

circles (wid,world)

= startIO NoState

NoState

[snd o seqList [openWindow NoState wdef

,openMenu NoState mdef

,openTimer initTimerState tdef

]

] []

world

where

windowEdge = 200

viewDomain = { corner1={x= ~windowEdge/2,y= ~windowEdge/2}

, corner2={x= windowEdge/2,y= windowEdge/2}

}

wdef = Window "Circles" NilLS

[WindowId wid

, WindowSize (rectangleSize viewDomain)

, WindowViewDomain viewDomain

]

mdef = Menu "Circles"

9.1. EXAMPLES 113

(MenuItem "Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

tdef = Timer (ticksPerSecond/20) NilLS

[TimerFunction timer

]

initTimerState = { nrCircles = 4

, equiDistance= 2

, minRadius = 0

}

timer _ (lst=:{nrCircles,equiDistance,minRadius},pst)

| minRadius<windowEdge/2

lst = {lst & minRadius=minRadius+equiDistance}

newRadius = minRadius+nrCircles*equiDistance

pst = appPIO

(drawInWindow wid

[undraw {oval_rx=minRadius,oval_ry=minRadius}

, draw {oval_rx=newRadius,oval_ry=newRadius}

]

) pst

= (lst,pst)

| otherwise

pst = appPIO (drawInWindow wid [unfill viewDomain]) pst

= (initTimerState,pst)

9.1.2 Internal clock

In this example we create a program that uses three timers to track the elapsed
time since program startup. The timers track the elapsed seconds, minutes, and
hours respectively. A dialogue is used to provide visual feedback. Figure 9.2 shows
the application in action. We �rst have a look at the dialogue, and then the three
timers.

Figure 9.2: The timing program in action.

The dialogue ddef simply uses TextControls to display the hours, minutes, and
seconds. These controls are identi�ed by the Id values hoursId, minutesId, and
secondsId respectively. The dialogue itself is identi�ed by the value dialogId.
CompoundControls are used to get the layout in the desired way. Observe the use
of list comprehensions and the ListLS Controls class instance. In this example
closing the dialogue also terminates the application. Here is the dialogue de�nition:

ddef

= Dialog "Stopwatch"

(CompoundControl

114 CHAPTER 9. TIMERS

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

Because the operation of each of the three timers is very similar, we use one function
tdef to de�ne them and parameterise it with their respective TimerIntervals.
The timers do not contain any timer elements. Each timer has a local integer
state (initially zero) that keeps the current number of evaluated time units modulo
their maximum number. This number is derived from the TimerInterval using
the straightforward function maxunit. The timerfunction tick now relies on the
NrOfIntervals parameter. Given the current number of evaluated time units in
its local integer state, each timer function adds the NrOfIntervals value to it.
Depending on the TimerInterval value, the proper modulo value is taken (using
maxunit). This new value is the new local state and is also drawn in the dialogue,
using a local convenience function setText and textid to determine the Id of the
corresponding text control.

tdef timerInterval

= Timer timerInterval NilLS [TimerFunction tick]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) pst)

setText id text pst

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) pst

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId

maxunit interval

| interval==second = 60

| interval==minute = 60

| interval==hour = 24

The last details that remain to be de�ned are the actual opening of the three timers,
the dialogue, the opening of the interactive process, and the creation of the proper
Ids. For completeness we show the complete program code.

module stopwatch

9.1. EXAMPLES 115

// **

// Clean tutorial example program.

//

// This program creates a window that tracks the elapsed time since startup.

// For this purpose it uses three timers to track the seconds, minutes, and hours

// separately.

// **

import StdEnv,StdIO

:: NoState

= NoState

:: DialogInfo

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

, dialogId :: Id

}

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogInfo :: *env -> (DialogInfo,*env) | Ids env

openDialogInfo env

([secondsid,minutesid,hoursid,dialogid:_],env) = openIds 4 env

= ({ secondsId=secondsid

, minutesId=minutesid

, hoursId =hoursid

, dialogId =dialogid

}

,env

)

Start :: *World -> *World

Start world

(dialogInfo,world) = openDialogInfo world

= startIO NoState NoState [initialise dialogInfo] [] world

initialise :: DialogInfo (PSt .l .p) -> (PSt .l .p)

initialise {secondsId,minutesId,hoursId,dialogId} pst

(errors,pst) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-[second,minute,hour]

] pst

| any ((<>) NoError) errors

= closeProcess pst

(error,pst) = openDialog NoState ddef pst

| error<>NoError= closeProcess pst

| otherwise = pst

where

tdef timerInterval

= Timer timerInterval NilLS [TimerFunction tick]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) pst)

setText id text pst

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) pst

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId

maxunit interval

| interval==second = 60

| interval==minute = 60

116 CHAPTER 9. TIMERS

| interval==hour = 24

ddef= Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

Chapter 10

Receivers

All the interactive object I/O components discussed so far have in common that the
events to which they respond are abstract. In this context abstract means that it is
not speci�ed in detail what concrete events cause a speci�c callback function to be
evaluated. For instance, a callback function associated with a MenuItem (Section
8.1.3) is evaluated when it has been selected by the user. How this selection takes
place is not speci�ed.

In this section we discuss an interactive object I/O component that responds to
program de�ned events, or rather messages. This component is the receiver. It
plays an important role in the construction of interactive components. There are
no restrictions on the kind of messages that can be sent or received, provided that
they are type correct. The latter is obtained by using special identi�cation values
for receivers, the receiver ids (Chapter 4).

There are also receivers that are able to receive data from other programs via a
network. These receivers are not topic of this chapter but of Chapter 14.

We will �rst have a look at the de�nition of receivers in Section 10.1. Receivers can
be opened as top level object I/O components, but also as elements of windows,
dialogues, menus, and timers. This is discussed in Section 10.2. Knowing how to
de�ne and open receivers, we show which functions are available to send messages
in Section 10.3. Section 10.4 contains a number of examples to demonstrate the use
of receivers.

10.1 Receiver de�nitions

There are two kinds of receivers. Uni-directional receivers respond only to mes-
sages. Bi-directional receivers respond to messages and also reply with a message.
The types needed to de�ne receivers can be found in the module StdReceiverDef,
Appendix A.28.

A uni-directional receiver that responds to messages of type msg and which has a
local state of type lst and process state of type pst) is de�ned by an expression of
type (Receiver msg lst pst):

:: Receiver msg lst pst

= Receiver (RId msg) (ReceiverFunction msg *(lst,pst))

[ReceiverAttribute *(lst,pst)]

:: ReceiverFunction msg st

117

118 CHAPTER 10. RECEIVERS

:== msg -> st -> st

A bi-directional receiver that responds to messages of type msg and returns a re-
sponse message of type resp and which has a local state of type lst and process
state pst) is de�ned by an expression of type (Receiver2 msg resp lst pst):

:: Receiver2 msg resp lst pst

= Receiver2 (R2Id msg resp) (Receiver2Function msg resp *(lst,pst))

[ReceiverAttribute *(lst,pst)]

:: Receiver2Function msg resp st

:== msg -> st -> (resp,st)

The set of receiver attributes is currently limited to the ReceiverSelectState

which default value is Able.

:: ReceiverAttribute ps

= ReceiverSelectState SelectState

10.2 Receiver creation

Receivers can be opened as top level interface elements. This is done in the usual,
overloaded way (module StdReceiver, Appendix A.27) :

class Receivers rdef where

openReceiver :: .lst !(rdef .lst (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

...

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

Receivers can also be opened as elements of windows, dialogues, menus, and timers.
So, in a window or dialogue one can not only add the set of controls as discussed
in Chapter 7 but also receivers. This is accomplished by declaring receivers to be
instances of the Controls type constructor class in module StdControlReceiver

(Appendix A.7). Analogously, receivers can be menu elements (module StdMenu-

Receiver, Appendix A.19), and timer elements (module StdTimerReceiver, Ap-
pendix A.38).

In all cases, when opening a receiver, its R(2)Id value must not be used by another
receiver (Chapter 4).

10.3 Message passing

In contrast with the previously discussed object I/O components, receivers must
have an identi�cation value. The message passing functions require this identi�ca-
tion value to ensure that a message of the correct type is sent. The message passing
functions can be found in module StdReceiver, Appendix A.27.

All message passing functions return a report about the message passing action.
This report is an algebraic type SendReport, which has the following alternatives:

10.3. MESSAGE PASSING 119

:: SendReport

= SendOk

| SendUnknownReceiver

| SendUnableReceiver

| SendDeadlock

For all functions, the alternative value SendOk is returned in case message pass-
ing was successful. The alternative SendUnknownReceiver is returned in case the
indicated receiver is not open at the moment of sending the message. The other
SendReport alternatives are discussed below.

We start with message passing to uni-directional receivers in Section 10.3.1. Bi-
directional message passing is discussed in Section 10.3.2.

10.3.1 Uni-directional message passing

There are two functions a programmer can use to send a message to a uni-directional
receiver: asyncSend and syncSend which have the same function types:

asyncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport,!PSt .l .p)

syncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport,!PSt .l .p)

Using asyncSend, a message is placed at the end of the asynchronous message queue
of the indicated receiver and will, at some point, be handled by that receiver. It
is unspeci�ed when that event occurs. Asynchronous messages that are sent in
sequence will be evaluated in that sequence. Asynchronous message passing only
fails in case the indicated receiver is not open, as discussed above. One should
observe that successfully queueing an asynchronous message does not guarantee
that the message will be handled. The receiver might be disabled or closed before
all of its messages have been handled.

If one wants to enforce a receiver to handle a message, one should use syncSend.
This function does not place the message in the message queue of the indicated
receiver, but evaluates its receiver function given the message. This implies that
syncSend has to switch context because the indicated receiver may be part of an-
other object I/O component. Another consequence is that synchronous messages
may overtake asynchronous messages. However, synchronous messages that are sent
in sequence will be evaluated in that sequence.

Sending a synchronous message fails in case the indicated receiver does not ex-
ist. If the indicated receiver does exist, but its ReceiverSelectState attribute is
Unable, then the message is also not handled. In this case, the SendReport al-
ternative SendUnableReceiver is returned. Finally, even if the indicated receiver
exists and is Able communication can still fail. This is possible when the indi-
cated receiver itself is involved in a synchronous message passing transaction and
waiting for termination. If this transaction involves the original receiver, then a
deadlock situation is detected. In that case, syncSend also fails and returns with
SendDeadlock.

Examples of uni-directional message passing are given in Section 10.4. The �rst
example, in Section 10.4.1, demonstrates the use of asynchronous message passing,
while the second example, in Section 10.4.2, demonstrates synchronous message
passing.

120 CHAPTER 10. RECEIVERS

10.3.2 Bi-directional message passing

Bi-directional message passing is synchronous. A message is sent using the function
syncSend2:

syncSend2 :: !(R2Id msg resp) msg !(PSt .l .p)

-> (!(!SendReport,!Maybe resp), !PSt .l .p)

Analogous to syncSend, syncSend2 locates the indicated bi-directional receiver and
applies the argument message immediately to the corresponding receiver function.
If this receiver could be found and happens to be Able, evaluation of the receiver
function will yield a response message resp. In this case the SendReport result of
syncSend2 is SendOk, and the response value is returned as (Just resp). In all
exceptional cases, there is no response value and Nothing is returned. To evaluate
the receiver function, syncSend2 has to switch context as well.

Bi-directional receivers can be used to retrieve local encapsulated data. Example
10.4.3 demonstrates this.

10.4 Examples

In this section we give some examples to illustrate the use of receivers.

10.4.1 Talk windows

In this example we create a program that uses receivers to send keyboard input
from one window to another window, and vice versa. This results in a talk like
application (although it is not very useful as a talk application because it runs on
one computer). Figure 10.1 shows the application in action.

Figure 10.1: The talk program in action.

The initialisation action of the talk program, de�ned by the function initialise,
�rst creates a menu that has only one quit menu item. Then two RId values are gen-
erated that will be used to identify the two receivers. The function openTalkWindow

10.4. EXAMPLES 121

is then applied twice to create the two windows. Its parameters are the name of
the window and the two receiver ids. The �rst receiver id parameter identi�es the
private receiver, while the second identi�es the other receiver.

initialise :: (PSt .l .p) -> PSt .l .p

initialise pst

menu = Menu "Talk"

(MenuItem "Quit" [MenuShortKey 'q'

,MenuFunction (noLS closeProcess)

]

) []

(error,pst) = openMenu undef menu pst

| error<>NoError

= abort "talk could not open menu."

| otherwise

(a,pst) = accPIO openRId pst

(b,pst) = accPIO openRId pst

pst = openTalkWindow "A" a b pst

pst = openTalkWindow "B" b a pst

= pst

openTalkWindow creates a window in which the user can type text and see the mes-
sages of the other talk window. The window consists of three components: in the
�rst EditControl, identi�ed by inId, the user can type text. The ControlKeyboard
attribute takes care that the program can respond to keyboard input. The second
EditControl, identi�ed by outId, is used to present the messages coming from the
other talk window. To prevent the user from typing text in this control its initial
ControlSelectState attribute is Unable. The Receiver component is the one to
which the messages are being sent.

openTalkWindow :: String (RId String) (RId String) (PSt .l .p)

-> PSt .l .p

openTalkWindow name me you pst

(wId, pst)= accPIO openId pst

(inId, pst)= accPIO openId pst

(outId,pst)= accPIO openId pst

input = EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

output = EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

(size,pst) = accPIO (controlSize (input:+:output) True

Nothing Nothing Nothing) pst

receiver = Receiver me (noLS1 (receive wId outId)) []

wdef = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowId wId

, WindowSize size

]

(error,pst)= openWindow undef wdef pst

122 CHAPTER 10. RECEIVERS

| error<>NoError

= abort "talk could not open window."

| otherwise

= pst

The input EditControl has a keyboard �lter, inputfilter, that accepts only
KeyDown keyboard input.

inputfilter :: KeyboardState -> Bool

inputfilter keystate = getKeyboardStateKeyState keystate<>KeyUp

For accepted keyboard input value of type KeyboardState, the callback func-
tion input is evaluated. It �rst gets the current state of the window, using the
StdControl library function getWindow (Appendix A.4). From this value the
current content of the input EditControl can be retrieved, using the function
getControlTexts. This new content, which is a String, is being sent asyn-
chronously to the other receiver. Note that input assumes that both getWindow

and asyncSend never fail.

input :: Id Id (RId String) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ pst

(Just wst,pst)

= accPIO (getWindow wId) pst

text = fromJust (snd (hd (getControlTexts [inId] wst)))

= snd (asyncSend you text pst)

For every string message received from the other talk window, the receiver func-
tion receive is evaluated. It simply replaces the current content of the output
EditControl with the new text. This is done using the function setControl-

Texts. The function setEditControlCursor makes sure that the end of the text
is visible.

receive :: Id Id String (PSt .l .p) -> PSt .l .p

receive wId outId text pst

= appPIO (setWindow wId [setControlTexts [(outId,text)]

,setEditControlCursor outId (size text)

]) pst

For completeness the whole program is shown here.

module talk

// **

// Clean tutorial example program.

//

// This program creates two windows that communicate with each other using message

// passing. Text that has been typed in one window is being sent to the other, and

// vice versa.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

10.4. EXAMPLES 123

Start world

= startIO NoState NoState [initialise] [] world

where

initialise :: (PSt .l .p) -> PSt .l .p

initialise pst

menu = Menu "Talk"

(MenuItem "Quit" [MenuShortKey 'q'

, MenuFunction (noLS closeProcess)

]

) []

(error,pst) = openMenu undef menu pst

| error<>NoError

= abort "talk could not open menu."

| otherwise

(a,pst) = accPIO openRId pst

(b,pst) = accPIO openRId pst

pst = openTalkWindow "A" a b pst

pst = openTalkWindow "B" b a pst

= pst

openTalkWindow :: String (RId String) (RId String) (PSt .l .p) -> PSt .l .p

openTalkWindow name me you pst

(wId, pst) = accPIO openId pst

(inId, pst) = accPIO openId pst

(outId,pst) = accPIO openId pst

input = EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

output = EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

(size,pst) = accPIO (controlSize (input:+:output)

Nothing Nothing Nothing) pst

receiver = Receiver me (noLS1 (receive wId outId)) []

wdef = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowId wId

, WindowSize size

]

(error,pst) = openWindow undef wdef pst

| error<>NoError= abort "talk could not open window."

| otherwise = pst

where

inputfilter :: KeyboardState -> Bool

inputfilter keystate

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id Id (RId String) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ pst

(Just wst,pst) = accPIO (getWindow wId) pst

text = fromJust (snd (hd (getControlTexts [inId] wst)))

= snd (asyncSend you text pst)

receive :: Id Id String (PSt .l .p) -> PSt .l .p

receive wId outId text pst

= appPIO (setWindow wId [setControlTexts [(outId,text)]

, setEditControlCursor outId (size text)

]) pst

124 CHAPTER 10. RECEIVERS

10.4.2 Resetting the counter

In this example we extend the example counter in Section 7.2.4 (page 82) with a
means to reset the counter to zero. We proceed in a bottom-up style: the counter
control is a compound control extended with a receiver that, when it receives a
message, will reset the counter to zero. This control encapsulates its local counter
state. Then a button control is de�ned that, when selected, sends a message to the
receiver component of the counter control. The whole is being placed in a dialogue.
Figure 10.2 gives a snapshot of the program.

Figure 10.2: The counter control with reset button.

The main component is of course the counter control, de�ned by counter. It
encapsulates an integer local state with initial value initcount. Its de�nition is
almost identical to the one shown on page 82 except that a Receiver has been
added.

counter

= {newLS = initcount

,newDef= CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

) []

}

The only purpose of the receiver is to reset the current local counter value to
initcount and show this by changing the content of the EditControl. Note that
the receiver function reset is not interested at all in the message.

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,ps)

= (initcount,setText windowid displayid initcount ps)

The reset button is a straightforward ButtonControl. It is centered below the
counter control. Its ControlFunction is just to send a message synchronously to

10.4. EXAMPLES 125

the receiver component of the counter control. Because this component does not
care about the message, the button function can be as bold to send the StdMisc

library function undef. This function, when evaluated, aborts the application. This
demonstrates that message passing is truely lazy in the message argument.

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

The �nal details of the program are to generate the proper identi�cation values and
to create the initial process and dialogue. For completeness, the program code is
given here.

module counterreset

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter. A receiver is used to add a reset option.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startNDI NoState NoState initialise [] world

where

initialise ps

(windowid, ps) = accPIO openId ps

(displayid,ps) = accPIO openId ps

(resetid, ps) = accPIO openRId ps

(error,ps) = openDialog NoState

(dialog windowid displayid resetid) ps

| error<>NoError

= abort "counter could not open Dialog."

| otherwise

= ps

dialog windowid displayid resetid

= Dialog "Counter"

(counter

:+: resetbutton

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

counter

= { newLS = initcount

, newDef = CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

126 CHAPTER 10. RECEIVERS

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,ps)

= (count+dx,setText windowid displayid (count+dx) ps)

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,ps)

= (initcount,setText windowid displayid initcount ps)

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

setText wid cid x ps

= appPIO (setWindow wid (setControlTexts [(cid,toString x)])) ps

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

10.4.3 Reading the counter

In this example we extend the counter example once more and add a dialogue that
reads the local counter value. To be able to do this a bi-directional receiver is added
to the counter. Figure 10.3 gives a snapshot of the program.

Figure 10.3: Reading the counter control with reset button.

The �rst change is to extend the counter component with a bi-directional receiver
component de�ned by the expression (Receiver2 readid read []), where readid
is a R2Id identi�cation value. The receiver function read is very straightforward:
it returns the current local counter value without changing anything (also in this
case read is not interested in the input message type):

read :: m (Int,PSt .l .p) -> (Int,(Int,PSt .l .p))

read _ (count,pst)

= (count,(count,pst))

The initialisation action opens another dialogue de�ned by display that obtains
and shows the counter value on request. This request can be done by a user by

10.4. EXAMPLES 127

pressing the ButtonControl labeled "Read". Again, an Unable EditControl is
used to display the read value.

display windowid displayid readid

= Dialog "Read"

(EditControl "" (hmm 50.0) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

]

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

When the "Read" button has been selected, its callback function read is evaluated.
It sends a message to the bi-directional receiver component of the counter control
using syncSend2. If this action fails it aborts the program. Although this situation
will never occur, this check has been added for program hygiene. In a success-
full communication, value will be (Just count), and it is this value that is then
displayed in the EditControl of the dialogue.

read pst

((error,value),pst) = syncSend2 readid undef pst

| error<>SendOk

= abort "could not read counter value"

| otherwise

= setText windowid displayid (fromJust value) pst

The initialisation action creates the necessary identi�cation values. Because of the
Id assignment rules (Chapter 4) the Id displayid can be used in both dialogues.
Here is the complete program code.

module counterread

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter.

// A bi-directional receiver is added to give external access to the counter value.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

initialise pst

(windowid, pst)= accPIO openId pst

(displayid,pst)= accPIO openId pst

(resetid, pst)= accPIO openRId pst

128 CHAPTER 10. RECEIVERS

(readid, pst)= accPIO openR2Id pst

(error, pst)= openDialog NoState

(dialog windowid displayid resetid readid) pst

| error<>NoError

= abort "counter could not open counter dialog."

(windowid, pst)= accPIO openId pst

(error, pst)= openDialog NoState (display windowid displayid readid) pst

| error<>NoError = abort "counter could not open display dialog."

| otherwise = pst

where

dialog windowid displayid resetid readid

= Dialog "Counter"

(counter

:+: resetbutton

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

counter

= { newLS = initcount

, newDef = CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

:+: Receiver2 readid read []

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,pst)

count = count+dx

= (count,setText windowid displayid count pst)

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,pst)

= (initcount,setText windowid displayid initcount pst)

read :: m (Int,PSt .l .p) -> (Int,(Int,PSt .l .p))

read _ (count,pst)

= (count,(count,pst))

resetbutton

= ButtonControl "Reset" [ControlFunction (noLS reset)

,ControlPos (Center,zero)

]

where

reset pst

= snd (syncSend resetid undef pst)

display windowid displayid readid

= Dialog "Read"

(EditControl "" (hmm 50.0) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

10.4. EXAMPLES 129

]

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

read pst

((error,value),pst) = syncSend2 readid undef pst

| error<>SendOk

= abort "could not read counter value"

| otherwise

= setText windowid displayid (fromJust value) pst

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

setText wid cid x pst

= appPIO (setWindow wid [setControlTexts [(cid,toString x)]]) pst

130 CHAPTER 10. RECEIVERS

Chapter 11

Interactive processes

The examples discussed so far used the StdProcess library function startIO. This
function creates one interactive process that engages in some graphical user in-
terface actions with a user and then terminates, using the StdProcess function
closeProcess. In this chapter we show how an interactive process can spawn new
interactive processes that will run interleaved. It is also possible to create a number
of processes at once.

We start the discussion by looking at the ways to de�ne interactive processes in
Section 11.1. This is followed by the functions to open interactive processes. Finally
we give some examples to illustrate their application.

11.1 De�ning interactive processes

The types to de�ne interactive processes can be found in the module StdProcessDef
(Appendix A.25). In the object I/O library, interactive processes are distinguished
by their document interface. There are three kinds of document interfaces, and there
are also three corresponding type constructors to de�ne an individual interactive
process:

No Document Interface (NDI): An interactive process with this document in-
terface does not present a document to a user. It has no menus. It is typically
used for `background' interactive processes. The interactive process is allowed
to open dialogues, timers, and receivers. The type constructor that de�nes a
NDI process is NDIProcess:

:: NDIProcess p

= E. .l: NDIProcess l (ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

Single Document Interface (SDI): An interactive process with this document
interface presents exactly one document to the user. All menu commands are
associated with this document. The interactive process is allowed to open
dialogues, timers, and receivers. The type constructor that de�nes a SDI
process is SDIProcess:

:: SDIProcess wdef p

= E. .l lst: SDIProcess l lst (wdef lst (PSt l p))

131

132 CHAPTER 11. INTERACTIVE PROCESSES

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

Multiple Document Interface (MDI): An interactive process with this docu-
ment interface can present an arbitrary number of documents to the user
(even zero). In its menu system all available commands are presented. The
interactive process is allowed to open dialogues, timers, and receivers. The
type constructor that de�nes a MDI process is MDIProcess:

:: MDIProcess p

= E. .l: MDIProcess l (ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

The function startIO that we have used so far in our examples actually
creates a MDI process.

The type constructor de�nitions of each of the three kinds of interactive processes
are identical in case of NDI and MDI processes. A SDI process has two additional
parameters: lst and (wdef lst (PSt l p)). The type constructor variable wdef
must be a Windows type constructor class instance. The variable lst is the local
state of that window. A SDI process can not close this window.

The interactive process type constructors are polymorphic in the public process state
p. Each constructor introduces an initial local process state l and encapsulates it
using existential quanti�cation. The initialisation action is given by a process state
transition function:

:: ProcessInit pst :== [IdFun pst]

:: IdFun st :== st -> st

Process de�nitions can be attributed with the following alternatives (de�ned in
module StdIOCommon):

ProcessWindowPos, ProcessWindowSize, ProcessWindowResize: A pro-
cess window is the root window in which all top-level user interface elements
are created. On a Macintosh the process window is simply the screen. On
Windows(95/NT) it is also the screen in case of NDI processes. For SDI and
MDI processes it is a window that can be resized by the user1. If this happens,
and a ProcessWindowResize attribute has been speci�ed, then a function of
type ProcessWindowResizeFunction is evaluated:

:: ProcessWindowResizeFunction pst

:== Size -> Size -> pst -> pst

The two Size parameters are the size of the process window before and after
resizing.

ProcessHelp, ProcessAbout: These two attributes contain callback functions
that are evaluated whenever the user issues a request for help or wants infor-
mation about your application.

1This has not yet been implemented in this version of the object I/O library.

11.2. INTERACTIVE PROCESS CREATION 133

ProcessActivate, ProcessDeactivate: These two attributes correspond closely
to the WindowActivate and WindowDeactivate attributes. Recall that key-
board and mouse input is always directed to the active window. The parent
interactive process that contains this window is the active process. If the input
focus is moved to a window that is not owned by the interactive process then
the ProcessDeactivate attribute function is evaluated to inform the pro-
gram that the interactive process has become inactive. If an inactive process
obtains the input focus, its ProcessActivate attribute function is evaluated
to inform the program that it has become active again.

ProcessClose: This attribute corresponds closely to the WindowClose attribute. If
for some reason the interactive process is requested to be closed, its Process-
Close attribute function is evaluated. It can take the opportunity to save
data to disk and to ask the user if the process can be closed safely. It is
however the responsibility of the program to terminate the process. It is good
programming practice to always include this attribute because the user of
your program expects to be able to close your application in this way.

ProcessShareGUI: When this attribute is set, the interactive process shares the
graphical user interface elements with its parent. This means that the windows
and dialogues share the window stack of the parent, and menus share the
menu area. By default, this attribute is not set. This means that normally
an interactive process behaves like a separate program.

ProcessNoWindowMenu: This attribute is valid only for MDI processes. In the
default case every MDI process has a special \Windows" menu (discussed in
Section 8.3). If this attribute is set, then this menu is not added to the menu
system of the interactive process (which is the case for MDI processes created
by startIO).

11.2 Interactive process creation

As mentioned brie
y in the beginning of this chapter, interactive processes can be
created one by one, or by groups. In this section we will �rst discuss individual
creation of interactive processes in Section 11.2.1, and then have a look at the
creation of multiple interactive processes in Section 11.2.2. Finally, we discuss the
relations between interactive processes in Section 11.2.3.

11.2.1 Creating single processes

The basic function to create individual processes from a World environment is
startIO, which we have encountered many times. For completeness we repeat
its type de�nition once more:

startIO ::!.l !.p !(ProcessInit (PSt .l .p))

![ProcessAttribute (PSt .l .p)] !*World -> *World

Interactive processes can also create individual processes. They can not use startIO
because the World environment is not retrievable from their context, which is PSt.
For this purpose the overloaded function shareProcesses is available:

class shareProcesses pdef :: !(pdef .p) !(PSt .l .p) -> PSt .l .p

134 CHAPTER 11. INTERACTIVE PROCESSES

instance shareProcesses NDIProcess

instance shareProcesses (SDIProcess wdef) | Windows wdef

instance shareProcesses MDIProcess

When applied to a NDI, SDI, or MDI process de�nition, shareProcesses adds an
initial version of that interactive process to the process state administration. At
some point in time that interactive process will be initialised and joins the game.
So process creation is asynchronous.

From the type de�nition of shareProcesses one can see that the public process
state components of the process states have the same type. One should also observe
that no new public process state value is introduced. Interactive processes that are
created by shareProcesses share the public state component of the process that
spawned them. Interactive processes that share the same public process state value
constitute a process group. Because interactive processes run interleaved, the public
process state component can be changed in turn by each of the members of that
group. This explains why it is called `public'.

If one wants to spawn an interactive process that has a public process state of its
own using only the shareProcesses class instances is not su�cient because they
assume a public process state is already given. For this purpose the ProcessGroup
type constructor (module StdProcessDef) can be used:

:: ProcessGroup pdef

= E. .p: ProcessGroup p (pdef p)

ProcessGroup introduces a public process state value and encapsulates it using
existential quanti�cation. The type constructor variable pdef can be any of the
instances of the shareProcesses class de�ned above. In this way we obtain two
overloaded functions that can spawn an interactive process with an independent
public process state:

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l .p) -> PSt .l .p

instance Processes (ProcessGroup pdef) | shareProcesses pdef

The two constructor class functions spawn an interactive process that does not share
its public process state with the process that created it (in case of openProcesses).
We also see the other process creation function that operates on a World environ-
ment, startProcesses. It is this function that is used by startIO to do its job.
Here is its implementation:

startIO local public init atts world

= startProcesses (ProcessGroup public

(MDIProcess local init [ProcessNoWindowMenu:atts])

) world

11.2.2 Creating multiple processes

In the previous section we have shown all functions that are needed to create indi-
vidual interactive processes. Because these functions are overloaded they are also
suited to create a number of processes within one function application. This is

11.2. INTERACTIVE PROCESS CREATION 135

achieved by declaring suitable glueing instances for the type constructor classes
Processes (:^: and []) and shareProcesses (:~:, and ListCS). Except for lists,
these type de�nitions can be found in module StdIOBasic (Appendix A.12).

:^: The type constructor :^: glues two arbitrary type constructors. Its type con-
structor de�nition and Processes class instance declaration are as follows:

:: :^: t1 t2 = (:^:) infixr 9 t1 t2

instance Processes (:^: pdef1 pdef2) | Processes pdef1

& Processes pdef2

Given two Processes instances p1 and p2, then the expression p1:^:p2 is
also a Processes instance. Because :^: is right associative, an expression
such as p1 :^: p2 :^: p3 should be read as p1 :^: (p2 :^: p3).

[] In principle the :^: glue is su�cient to create all required process structures.
In case of working with a number of process instances of the same type, it
is much more convenient to use lists and list comprehensions. Because the
process type constructors are not parameterised we can use the normal lists
for this purpose. So we get the following Processes class instance declaration:

instance Processes [pdef] | Processes pdef

Given a list of Processes instances ps = [p1 ...pn], then the expression
ps itself is also a Processes instance.

:~: The type constructor :~: glues two type constructors that work on the same
context. Its type constructor de�nition and shareProcesses class instance
declaration are as follows:

:: :~: t1 t2 context = (:~:) infixr 9 (t1 context) (t2 context)

instance shareProcesses (:~: pdef1 pdef2) | shareProcesses pdef1

& shareProcesses pdef2

Given two shareProcesses instances p1 and p2 working on the same con-
text state of type context, then the expression p1 :~: p2 is also a share-

Processes instance working on the same context state. Because :~: is right
associative, an expression such as p1 :~: p2 :~: p3 should be read as p1

:~: (p2 :~: p3).

ListCS In principle the :~: glue is su�cient to create all required process group
structures. In case of working with a number of process group instances of the
same type, it is much more convenient to use lists and list comprehensions.
This glue is provided by the type constructor ListCS. Its type constructor
de�nition and shareProcesses class instance declaration is as follows:

:: ListCS t context = ListCS [t context]

instance shareProcesses (ListCS pdef) | shareProcesses pdef

Given a list of shareProcesses instances ps = [p1 ...pn], working on the
same context state of type context, then the expression ListCS ps is also a
shareProcesses instance working on the same context state.

136 CHAPTER 11. INTERACTIVE PROCESSES

11.2.3 Process relations

An interactive program in general consists of a number of process groups, each of
which consists of a number of interactive processes. As explained above, interactive
processes and process groups can be created dynamically.

Except for interactive processes created with the ProcessShareGUI attribute, there
is no special parent-child relationship between an interactive process and the in-
teractive processes that it creates. For instance, termination of one process (using
closeProcess) has no consequence for the other processes. Termination of a process
also terminates all child processes that have been created with the ProcessShareGUI
attribute.

Process groups exist by virtue of their element processes. As soon as all interactive
processes of one process group have been closed, the process group vanishes and the
shared public state becomes garbage.

The process creation functions that work on the World environment, startProces-
ses and its derived function startIO, terminate as soon as all of the process groups
that have been created during their life cycle have been closed.

11.3 Examples

In this section we give some examples of the use of interactive processes.

11.3.1 Talk revisited

In this example we have a new look at the talk example of Section 10.4.1. In that
version, the program created one interactive process, using startIO, which opened
the two talk windows. In the new version for each talk window we create a SDI
process. Receivers are still used to send the user typed messages to each of the
talk windows. The menu is now created for both processes. Below we discuss the
di�erences.

The initialisation of the new talk program is of course di�erent. The function talk

de�nes the SDI process that contains the talk window and menu. The two talk
processes are going to be created in one process group. This implies that the RIds
are also created earlier. We obtain the following Start rule:

Start :: *World -> *World

Start world

(a, world) = openRId world

(b, world) = openRId world

(talkA,world) = talk "A" a b world

(talkB,world) = talk "B" b a world

= startProcesses (ProcessGroup NoState (ListCS [talkA,talkB])) world

The menu de�nition that is moved to talk is almost identical to the old version.
The only di�erence is termination of the application. In the old version termination
was no issue because there was only one interactive process. In the new version,
closing one talk process does not close the other. Instead, before closing its parent
process, the quit function sends a new message to the other process to request
termination. To do this the message type needs to be changed. The message type
is now the following algebraic data type:

11.3. EXAMPLES 137

:: Message

= NewLine String

| Quit

Instead of sending a String s in the old version we send the value (NewLine s) in
the new version. The request to terminate is done by sending the Quit message.
The quit function is now de�ned as:

quit :: (RId Message) (PSt .l .p) -> PSt .l .p

quit you pst

= closeProcess (snd (syncSend you Quit pst))

Of course the de�nition of the receiver function receive must be changed accord-
ingly:

receive :: Id Id Message (PSt .l .p) -> PSt .l .p

receive wId outId (NewLine text) pst=:{io}

= {pst & io=setWindow wId [setControlTexts [(outId,text)]

, setEditControlCursor outId (size text)

] io}

receive _ _ Quit pst

= closeProcess pst

On receipt of the Quit message, the receiver only needs to terminate its parent
process, knowing that the requesting process will terminate itself.

These are the major di�erences. Below is the complete program.

module talk

// **

// Clean tutorial example program.

//

// This program creates two interactive processes that communicate via message

// passing.

// In a future distributed version this program can be used as a graphical talk

// application.

//

// **

import StdEnv, StdIO

:: Message

= NewLine String // Transmit a line of text

| Quit // Request termination

:: NoState

= NoState // The singleton data type

Start :: *World -> *World

Start world

(a, world) = openRId world

(b, world) = openRId world

(talkA,world) = talk "A" a b world

(talkB,world) = talk "B" b a world

= startProcesses (ProcessGroup NoState (ListCS [talkA,talkB])) world

talk :: String (RId Message) (RId Message) *env

-> (SDIProcess (Window (:+: EditControl

(:+: EditControl

(Receiver Message)

))) .p,*env)

138 CHAPTER 11. INTERACTIVE PROCESSES

| Ids env

talk name me you env

(wId, env) = openId env

(outId,env) = openId env

(inId, env) = openId env

input = EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

output = EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

receiver = Receiver me (noLS1 (receive wId outId)) []

talkwindow = Window ("Talk "+++name) (input:+:output:+:receiver)

[WindowId wId

, WindowSize {w=hmm 50.0,h=120}

]

menu = Menu ("&Talk "+++name)

(MenuItem "&Quit"

[MenuShortKey 'q',MenuFunction (noLS (quit you))]

) []

= (SDIProcess NoState

undef

talkwindow

[snd o openMenu undef menu]

[ProcessClose (quit you)]

, env

)

inputfilter :: KeyboardState -> Bool

inputfilter keystate

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id Id (RId Message) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ pst

(Just window,pst) = accPIO (getWindow wId) pst

text = fromJust (snd (hd (getControlTexts [inId] window)))

= snd (asyncSend you (NewLine text) pst)

receive :: Id Id Message (PSt .l .p) -> PSt .l .p

receive wId outId (NewLine text) pst=:{io}

= {pst & io=setWindow wId [setControlTexts [(outId,text)]

, setEditControlCursor outId (size text)

] io}

receive _ _ Quit pst

= closeProcess pst

quit :: (RId Message) (PSt .l .p) -> PSt .l .p

quit you pst

= closeProcess (snd (syncSend you Quit pst))

11.3.2 Clock revisited

In this example we are going to turn the clock example of Section 9.1.2 into a
stopwatch component that can be added in an arbitrary interactive process. The
stopwatch commands will be to reset timing, pause timing, continue timing, and
close the stopwatch component. All stopwatch de�nitions are placed in the module
stopwatch.icl. The function stopwatch de�nes the stopwatch component. A
main module, usestopwatch.icl that opens and controls the stopwatch is also
de�ned. We �rst look at the stopwatch and then at the main program.

11.3. EXAMPLES 139

The stopwatch component

The original clock program created an interactive process with three timers and
a dialogue. Each of the three timers changes a local state that keeps track of the
elapsed seconds, minutes, and hours. This situation is schematised in Figure 11.1.

Timer hours

Timer minutes

Timer seconds

Dialog

clock process

Figure 11.1: The structure of the clock process.

The stopwatch process is controlled by sending messages to a `gateway' receiver.
The timers are extended with a receiver component that handle the commands
reset, pause, and continue. These commands will be sent to them by the gateway
receiver. This gateway receiver handles the close command. Finally, the stopwatch
process creates the same dialogue as the original clock program. The stopwatch
process is schematised in Figure 11.2.

- Receiver �
�
��

-
A
A
AU Timer hours

Receiver

Timer minutes

Receiver

Timer seconds

Receiver

Dialog

stopwatch process

Figure 11.2: The structure of the stopwatch process.

So the new components are the gateway receiver and the receiver components of
the timers. We �rst look at the gateway receiver and then timer receivers. Both
receivers accept messages of the following type:

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

The alternatives of the algebraic type StopwatchCommands correspond of course
with the stopwatch commands reset, pause, continue, and close. The gateway re-
ceiver function receive, on receiving the Close message simply terminates the

140 CHAPTER 11. INTERACTIVE PROCESSES

interactive process by applying closeProcess to its process state. Every other
message is routed to the timer receiver components which are identi�ed by the list
timerinfos. Here is the function de�nition of receive:

receive :: StopwatchCommands (PSt .l .p) -> PSt .l .p

receive Close pst

= closeProcess pst

receive msg pst

= snd (seqList [syncSend timerRId msg\\{timerRId}<-timerinfos] pst)

The timer receiver components receive only the StopwatchMessage alternatives
Reset, Pause, and Continue. In the clock example, the timer was parameterised
with its timer interval. In this example, we also need to identify both the timer and
its receiver component. So the de�nition of a stopwatch timer now is:

tdef :: TimerInfo

-> Timer (Receiver StopwatchCommands) Int (PSt .l .p)

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval (Receiver timerRId receive [])

[TimerId timerId

, TimerFunction tick

]

The reset command should set the timer back to zero. One might suppose that
it is su�cient to change only the value of the local state to zero, but that is not
completely true. Resetting the stopwatch can occur at any moment. At that mo-
ment the timer should be synchronised with its local state. This can be done by
�rst disabling and then enabling the timer. For this purpose the StdTimer func-
tions disableTimer and enableTimer should be used. The reason that it works
is because enableTimer, when applied to a disabled timer, synchronises the timer
with the moment of evaluation. It does nothing in case the indicated timer was
already enabled. Finally, on receiving the Reset message, the timer receiver com-
ponent must set the corresponding text �eld of the dialogue to zero. This gives the
following de�nition of the Reset alternative.

receive Reset (time,pst)

pst = appListPIO [disableTimer timerId,enableTimer timerId] pst

pst = setText (textid timerInterval) "00" pst

= (0,pst)

The pause command should halt the timer until further notice (either reset or con-
tinue). This is easily done by disabling the timer:

receive Pause (time,pst)

= (time,appPIO (disableTimer timerId) pst)

The continue command should let the timer continue from where it was paused.
This is easily done by enabling the timer:

receive Continue (time,pst)

= (time,appPIO (enableTimer timerId) pst)

11.3. EXAMPLES 141

The �nal details of the stopwatch component are to create the proper identi�cation
values for the timers and their receiver components, and to export its de�nition
as an interactive process. This is done by the function stopwatch. The stopwatch
process is de�ned as a process group with no interesting local or public process state
(using the ubiquitous NoState singleton type constructor). Its initialisation action
�rst creates the required Ids for the dialogue, and then the parameters required for
the timers. Then initialisation proceeds as described above.

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

stopwatch rid

= ProcessGroup NoState (NDIProcess NoState [initialise`] [])

where

initialise` pst

(dialogIds, pst) = accPIO openDialogIds pst

(timerInfos,pst) = accPIO openTimerInfos pst

= initialise rid dialogIds timerInfos pst

For completeness, the de�nition module and implementation module of the stop-
watch component are given below.

implementation module stopwatch

// **

// Clean tutorial example program.

//

// This program defines a stopwatch process component.

// It uses three timers to track the seconds, minutes, and hours separately.

// Message passing is used to reset, pause, and continue timing.

// The current time is displayed using a dialogue.

// **

import StdEnv,StdIO

:: NoState

= NoState

:: DialogIds

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

, dialogId :: Id

}

:: TimerInfo

= { timerId :: Id

, timerRId :: RId StopwatchCommands

, timerInterval :: TimerInterval

}

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogIds :: *env -> (DialogIds,*env) | Ids env

openDialogIds env

([secondsid,minutesid,hoursid,dialogid:_],env) = openIds 4 env

= ({ secondsId=secondsid

, minutesId=minutesid

, hoursId =hoursid

142 CHAPTER 11. INTERACTIVE PROCESSES

, dialogId =dialogid

}

, env

)

openTimerInfos :: *env -> ([TimerInfo],*env) | Ids env

openTimerInfos env

(tids,env) = openIds 3 env

(rids,env) = openRIds 3 env

intervals = [second,minute,hour]

= ([{timerId=tid,timerRId=rid,timerInterval=i}

\\ tid<-tids & rid<-rids & i<-intervals

]

, env

)

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

stopwatch rid

= ProcessGroup NoState (NDIProcess NoState [initialise`] [])

where

initialise` pst

(dialogIds, pst) = accPIO openDialogIds pst

(timerInfos,pst) = accPIO openTimerInfos pst

= initialise rid dialogIds timerInfos pst

initialise :: (RId StopwatchCommands) DialogIds [TimerInfo]

(PSt .l .p) -> (PSt .l .p)

initialise rid {secondsId,minutesId,hoursId,dialogId} timerinfos pst

(errors,pst) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-timerinfos

] pst

| any ((<>) NoError) errors

= closeProcess pst

(error,pst) = openDialog NoState ddef pst

| error<>NoError

= closeProcess pst

(error,pst) = openReceiver NoState rdef pst

| error<>NoError

= closeProcess pst

| otherwise

= pst

where

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval (Receiver timerRId receive [])

[TimerId timerId

, TimerFunction tick

]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) pst)

setText id text pst

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) pst

receive Reset (time,pst)

pst = appListPIO [disableTimer timerId,enableTimer timerId] pst

pst = setText (textid timerInterval) "00" pst

= (0,pst)

receive Pause (time,pst)

= (time,appPIO (disableTimer timerId) pst)

receive Continue (time,pst)

= (time,appPIO (enableTimer timerId) pst)

textid interval

| timerInterval==second = secondsId

| timerInterval==minute = minutesId

11.3. EXAMPLES 143

| timerInterval==hour = hoursId

maxunit interval

| timerInterval==second = 60

| timerInterval==minute = 60

| timerInterval==hour = 24

ddef = Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

rdef = Receiver rid (noLS1 receive) []

where

receive Close pst

= closeProcess pst

receive msg pst

= snd (seqList [syncSend timerRId msg \\ {timerRId}<-timerinfos] pst)

implementation module stopwatch

// **

// Clean tutorial example program.

//

// This program defines a stopwatch process component.

// It uses three timers to track the seconds, minutes, and hours separately.

// Message passing is used to reset, pause, and continue timing.

// The current time is displayed using a dialogue.

// **

import StdEnv,StdIO

:: NoState

= NoState

:: DialogIds

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

, dialogId :: Id

}

:: TimerInfo

= { timerId :: Id

, timerRId :: RId StopwatchCommands

, timerInterval :: TimerInterval

}

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogIds :: *env -> (DialogIds,*env) | Ids env

openDialogIds env

144 CHAPTER 11. INTERACTIVE PROCESSES

([secondsid,minutesid,hoursid,dialogid:_],env) = openIds 4 env

= ({ secondsId=secondsid

, minutesId=minutesid

, hoursId =hoursid

, dialogId =dialogid

}

, env

)

openTimerInfos :: *env -> ([TimerInfo],*env) | Ids env

openTimerInfos env

(tids,env) = openIds 3 env

(rids,env) = openRIds 3 env

intervals = [second,minute,hour]

= ([{timerId=tid,timerRId=rid,timerInterval=i}

\\ tid<-tids & rid<-rids & i<-intervals

]

, env

)

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

stopwatch rid

= ProcessGroup NoState (NDIProcess NoState [initialise`] [])

where

initialise` pst

(dialogIds, pst) = accPIO openDialogIds pst

(timerInfos,pst) = accPIO openTimerInfos pst

= initialise rid dialogIds timerInfos pst

initialise :: (RId StopwatchCommands) DialogIds [TimerInfo]

(PSt .l .p) -> (PSt .l .p)

initialise rid {secondsId,minutesId,hoursId,dialogId} timerinfos pst

(errors,pst) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-timerinfos

] pst

| any ((<>) NoError) errors

= closeProcess pst

(error,pst) = openDialog NoState ddef pst

| error<>NoError

= closeProcess pst

(error,pst) = openReceiver NoState rdef pst

| error<>NoError

= closeProcess pst

| otherwise

= pst

where

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval (Receiver timerRId receive [])

[TimerId timerId

, TimerFunction tick

]

where

tick nrElapsed (time,pst)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) pst)

setText id text pst

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) pst

receive Reset (time,pst)

pst = appListPIO [disableTimer timerId,enableTimer timerId] pst

pst = setText (textid timerInterval) "00" pst

= (0,pst)

receive Pause (time,pst)

= (time,appPIO (disableTimer timerId) pst)

receive Continue (time,pst)

= (time,appPIO (enableTimer timerId) pst)

11.3. EXAMPLES 145

Figure 11.3: The stopwatch menu.

textid interval

| timerInterval==second = secondsId

| timerInterval==minute = minutesId

| timerInterval==hour = hoursId

maxunit interval

| timerInterval==second = 60

| timerInterval==minute = 60

| timerInterval==hour = 24

ddef = Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

rdef = Receiver rid (noLS1 receive) []

where

receive Close pst

= closeProcess pst

receive msg pst

= snd (seqList [syncSend timerRId msg \\ {timerRId}<-timerinfos] pst)

Using the stopwatch

Given the stopwatch component module stopwatch, we can create a program that
opens, uses, and closes the stopwatch. The program will be as simple as possible. As
its initialisation action it will create a RId needed to open the stopwatch component.
It also opens a menu, mdef, that triggers the stopwatch commands reset, pause,
continue, and close. Finally, it contains the quit command to terminate the whole
program. Its de�nition is as follows (Figure 11.3 shows the menu in its initial state):

mdef

= Menu "&Stopwatch"

(MenuItem "&Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "&Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "C&ontinue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "&Close" [MenuFunction (noLS (send Close))]

146 CHAPTER 11. INTERACTIVE PROCESSES

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuFunction (noLS (closeProcess o

(send Close)))]

) []

Each of the stopwatch command menu functions is de�ned by the send function
which is parameterised with the corresponding StopwatchCommandsmessage alter-
native. Its purpose is to send its argument message to the gateway receiver of the
stopwatch process, identi�ed by stopwatchid. If this fails it also emits a system
beep. Here is its de�nition:

send msg pst

(error,pst) = syncSend stopwatchid msg pst

| error<>SendOk = appPIO beep pst

| otherwise = pst

Here is the complete code of the main program.

module usestopwatch

// **

// Clean tutorial example program.

//

// This program creates a simple program that uses the stopwatch process.

// The program only has a menu to open the stopwatch and control it.

// **

import StdEnv, StdIO

import stopwatch

:: NoState

= NoState

Start :: *World -> *World

Start world

(stopwatchid,world) = openRId world

= startIO NoState NoState [initialise stopwatchid] [] world

initialise :: (RId StopwatchCommands) (PSt .l .p) -> PSt .l .p

initialise stopwatchid pst

pst = openProcesses (stopwatch stopwatchid) pst

(error,pst) = openMenu NoState mdef pst

| error<>NoError= closeProcess pst

| otherwise = pst

where

mdef = Menu "&Stopwatch"

(MenuItem "&Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "&Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "C&ontinue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "&Close" [MenuFunction (noLS (send Close))]

:+: MenuSeparator []

:+: MenuItem "&Quit" [MenuFunction (noLS (closeProcess o

(send Close)))]

) []

send msg pst

(error,pst) = syncSend stopwatchid msg pst

| error<>SendOk = appPIO beep pst

| otherwise = pst

Chapter 12

Clipboard handling

The clipboard is a universal simple communication metaphor between applications
and within applications. An application can write some data to the clipboard
(typically text or pictures) which can be read at a later point of time by the same or
another application. This mechanism is supported by the functions in the de�nition
module StdClipboard. At the moment only text can be handled. Because we
intend to incorporate pictures as well in the near future the current version is set
up in such a way that it can be extended upward compatibly. For this purpose an
abstract data type, ClipboardItem, is de�ned. Two overloaded functions from the
type constructor class Clipboard take care that data types can be converted to and
from ClipboardItems:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

instance Clipboard {#Char}

A convention of using the clipboard is that applications should provide several
`popular' data formats for the same content in descending order of accuracy. For
instance, a text processor can �rst store its private format for the laid out text
including font and style information, followed by an ascii version of the same text,
followed by a picture of the laid out text. For this reason the function setClipboard

that writes the clipboard is not applied to one single clipboard data item but a list
of them. The previous content will be destroyed completely. Because programs are
supposed to provide only one data item of each format from this list duplicate types
of clipboard items are removed. Note that providing setClipboard with an empty
list will clear the clipboard.

setClipboard :: ![ClipboardItem] !(PSt .l .p) -> PSt .l .p

The function that reads the clipboard, getClipboard, simply gets a list of the cur-
rent content of the clipboard in descending order of accuracy. With the conversion
function fromClipboard an application can determine easily if some data item is
present that it can handle.

getClipboard :: !(PSt .l .p) -> (![ClipboardItem],!PSt .l .p)

147

148 CHAPTER 12. CLIPBOARD HANDLING

Finally, because reading in a complete clipboard can be time-consuming or space-
consuming the function clipboardHasChanged is provided that checks whether the
clipboard has been updated since the last time the program checked it.

clipboardHasChanged :: !(PSt .l .p) -> (!Bool,!PSt .l .p)

12.1 Example: a clipboard editor

To illustrate the use of the clipboard, we construct a small program that shows the
current content of the clipboard and that can write some text to the clipboard (see
the picture below). It will create only one dialogue with two text �elds. In the �rst
text �eld, the show �eld, the content of the clipboard can be loaded by pressing a
button. In the second text �eld, the set �eld, the content of the clipboard can be
stored by pressing a button.

The show text �eld and its activating button can be de�ned as follows:

showclip

= EditControl "" width nrlines [ControlSelectState Unable

,ControlId showid

,ControlPos (Left,zero)

]

:+:

ButtonControl "Show" [ControlFunction (noLS show)]

The show text �eld is an edit text control that will not respond to keyboard input
(because its SelectState attribute is Unable). It is identi�ed by some Id of value
showid. It will have some width and a height de�ned by the number of lines
nrlines. The \Show" button, when selected, must read the content of the clipboard
and �gure out if there was a text clipboard item. It then sets the text of the show
text �eld to the loaded clipboard content (an empty string if nothing was found).
This action can be de�ned as follows:

12.1. EXAMPLE: A CLIPBOARD EDITOR 149

show pst

(content,pst) = getClipboard pst

text = getString content

= appPIO (setWindow viewid [setControlTexts [(showid,text)]]) pst

getString [clip:clips]

| isNothing item= getString clips

| otherwise = fromJust item

where

item = fromClipboard clip

getString []

= ""

The set text �eld and its activating button are de�ned as follows:

setclip

= EditControl "" width nrlines [ControlId setid

,ControlPos (Left,zero)

]

:+:

ButtonControl "Set" [ControlFunction (noLS set)]

The set text �eld is an edit text control which accepts keyboard input. It is identi�ed
by some Id of value setid. It has the same dimensions as the show text control.
The \Set" button, when selected, must get the content of the set text control and
write this to the clipboard. This action is de�ned as follows:

set pst

(wst,pst)= accPIO (getWindow viewid) pst

text = fromJust (snd (hd (getControlTexts [setid]

(fromJust wst))))

= setClipboard [toClipboard text] pst

The de�nition of the clipboard viewing dialogue simply summaries these elements
and adds a \Quit" button to terminate the program:

clipview = Dialog "Clipboard Viewer"

(showclip :+: setclip :+: quit)

[WindowId viewid]

quit = ButtonControl "Quit"

[ControlFunction (noLS closeProcess)

,ControlPos (Center,zero)

]

The last details that remain to be de�ned are the opening of the interactive program
which is very analogous to the \Hello world!" of Section 2.4. For completeness we
show the complete program code.

module clipboardview

// **

// Clean tutorial example program.

//

// This program creates a dialog to display and change the current content of the

150 CHAPTER 12. CLIPBOARD HANDLING

// clipboard.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

(ids,world) = openIds 3 world

= startProcesses (ProcessGroup NoState

(NDIProcess NoState [initialise ids] [])

) world

initialise ids pst

(error,pst) = openDialog NoState clipview pst

| error<>NoError= closeProcess pst

| otherwise = pst

where

(viewid,showid,setid) = (ids!!0,ids!!1,ids!!2)

clipview= Dialog "Clipboard Viewer"

(showclip :+: setclip :+: quit)

[WindowId viewid]

showclip= EditControl "" width nrlines [ControlSelectState Unable

, ControlId showid

, ControlPos (Left,zero)

]

:+:

ButtonControl "Show" [ControlFunction (noLS show)

]

setclip = EditControl "" width nrlines [ControlId setid

, ControlPos (Left,zero)

]

:+:

ButtonControl "Set" [ControlFunction (noLS set)

]

quit = ButtonControl "Quit" [ControlFunction (noLS closeProcess)

, ControlPos (Center,zero)

]

width = hmm 100.0

nrlines = 5

show pst

(content,pst) = getClipboard pst

text = getString content

= appPIO (setWindow viewid [setControlTexts [(showid,text)]]) pst

set pst

(wst,pst) = accPIO (getWindow viewid) pst

text = fromJust (snd (hd (getControlTexts [setid]

(fromJust wst))))

= setClipboard [toClipboard text] pst

getString [clip:clips]

| isNothing item= getString clips

| otherwise = fromJust item

where

item = fromClipboard clip

getString []

= ""

Chapter 13

Printing

In this chapter we introduce two modules that enable Clean programs to print:
the StdPrint module (Appendix A.22) and the StdPrintText module (Appendix
A.23). At �rst we will discuss the dialogues with whom the user is confronted when
he wants to print something (Section 13.1). The StdPrint module can be used
to print any arbitrary output. It is illustrated in the Sections 13.2 to 13.5. The
StdPrintText module can be used when only text should be printed. It's use is
explained in Section 13.6.

13.1 The User Interface for Printing

When a user wants to get some printed output, he has to specify several parameters
for printing. These parameters can be divided into two groups: the print setup
parameters determine the printer and the paper format that are used and the page
orientation (portrait or landscape). The print job parameters include the number
of copies and the range of pages to print. According to these two sets there are two
dialogues to specify these parameters and two Clean types for objects that store
this information. The dialogues are the print setup dialogue (Figure 13.1) and the
print job dialogue (Figure 13.2). The types are the abstract data type PrintSetup
and the JobInfo record (see Section 13.2). The print job dialogue launches the
print job if the user does not cancel. In most applications the user has to answer
this dialogue just before printing, but using the print setup dialogue is optional.

Figure 13.1: a print setup dialogue

There is always a default PrintSetup which is returned by the defaultPrintSetup

151

152 CHAPTER 13. PRINTING

Figure 13.2: a print job dialogue

function. Such a PrintSetup can be edited with the print setup dialogue when it
is applied to the printSetupDialog function. Both these functions are members of
the PrintSetupEnvironments class:

:: PrintSetup

class PrintSetupEnvironments env where

defaultPrintSetup :: !*env -> (!PrintSetup,!*env)

printSetupDialog :: !PrintSetup !*env -> (!PrintSetup,!*env)

The env parameter can either be the World or the IOSt.

On Macintosh computers the print setup dialogue and the print job dialogue are
typically reachable from two di�erent menu items. On Windows(95/NT) it is typ-
ical, that the print setup dialogue can only be reached by clicking on a button in
the print job dialogue. The StdSystem module's function printSetupTypical can
be used to determine whether a seperate menu item for the print setup dialogue is
typical on the used platform.

13.2 The print function

The print function in the StdPrint module has the following signature:

print :: !Bool !Bool

.(PrintInfo !*Picture -> ([IdFun *Picture],!*Picture))

!PrintSetup !*printEnv

-> (!PrintSetup,!*printEnv)

| PrintEnvironments printEnv

:: PrintInfo

= { printSetup :: PrintSetup

, jobInfo :: JobInfo

}

:: JobInfo

= { range :: !(!Int,!Int)

, copies :: !Int

}

13.2. THE PRINT FUNCTION 153

The parameters of

print doDialog emulateScreen pages printSetup printEnv

have the following meaning:

1. doDialog: if True, the print job dialogue will pop up, otherwise printing will
happen in the default way.

2. emulateScreen: i� True, the screen resolution will be emulated, see Section
13.3.

3. pages: this function determines the printed output. Therefore it generates
a list of drawing functions. Each drawing function corresponds to one page.
The function can access a PrintInfo record and a Picture. The Picture

parameter can be used to retrieve information like font metrics or string widths
from a printer Picture.

4. printSetup: the print setup. As mentioned before, the user can change this
print setup from the print job dialogue under Windows(95/NT).

5. printEnv: a print environment is either the PSt or the Files sub world.
If the print environment is the PSt, then the print function can update the
contents of windows during printing (to be more exact: between the rendering
of two pages). This is important on the Windows(95/NT) platforms, since
printing can take some time. On the Macintosh platform printing is a blocking
operation, so no window updating is necessary. If the print environment is
the Files sub world, then no window updating will happen, and, on the
Windows(95/NT) platform, no cancel dialogue for printing will pop up.

Figure 13.3: Page measurements

The PrintInfo record contains information that will be needed for generating the
list of drawing functions. The �elds of the JobInfo part of this record have the
following meaning:

154 CHAPTER 13. PRINTING

1. range: this �eld contains the numbers of the �rst and last page which the
user has chosen via the print dialogue. If the user has chosen \all pages", then
the �rst page will be one, and the last page will be 9999.

2. copies: the number of copies to generate. This will not necessarily be equal
to the number of copies as speci�ed in the print job dialogue. Some printer
drivers take themselves care of producing the appropriate number of copies.
In that case the contents of this �eld will be one.

The PrintInfo record also contains a PrintSetup �eld. This print setup will be
used for printing The printSetup �eld can be passed to the getPageDimensions

function:

getPageDimensions :: !PrintSetup !Bool-> PageDimensions

:: PageDimensions

= { page :: !Size

, margins :: !Rectangle

, resolution :: !(!Int,!Int)

}

The record �elds have the following meaning:

1. page: this �eld contains the size of the drawable area of a sheet in pixels, see
Figure 13.3. The print function sets the origin of such a Picture to (0,0).
So any drawing in a rectangle from (0,0) to (page.w-1,page.h-1) will be
seen on the printed paper.

2. margins: this �eld contains information about the size of a whole sheet of
paper. This is not only the area in which the printer can draw, but also
the margins of the paper. Both coordinates of corner1 are negative and the
coordinates of corner2 are greater than the corresponding values of the page
�eld, see Figure 13.3.

3. resolution: the horizontal and vertical resolution of the printer in dpi (dots
per inch).

These measurements of a printer picture depend on whether the screen resolution
is emulated or not. I� the Boolean parameter of the getPageDimensions function
is True, then the values for a printer picture that emulates the screen resolution are
returned.

The print function returns the PrintSetup that is stored in the PrintInfo record.

Here is an easy example program, printExample1, that uses the print function:

module printExample1

// **

// Clean tutorial example program.

//

// This program demonstrates the use of the "print" function.

// It prints two pages, one with the text "Hello Printer", and one, that informs

// about the printer's resolution.

// **

import StdEnv, StdPrint

13.3. REUSING DRAWING FUNCTIONS 155

Start world

(defaultPS, world) = defaultPrintSetup world

= snd (accFiles (print True False pages defaultPS) world)

where

pages :: PrintInfo *Picture -> ([IdFun *Picture],*Picture);

pages { printSetup, jobInfo={ range=(first,last), copies } } picture

{resolution=(xRes,_)} = getPageDimensions printSetup False

bothPages

= [drawAt { x=100, y=100 } "Hello Printer",

drawAt { x=100, y=100 }

("horizontal Resolution: "+++toString xRes

+++" dpi.")]

oneCopy = bothPages % (first-1,last-1)

= (flatten (repeatn copies oneCopy), picture)

On the Macintosh platform, a Clean program needs additional \extra memory" for
printing. In the \Application Options" dialogue of the CleanIDE, this value should
be set to about 200K, otherwise the program may crash.

If printExample1 is executed, the print job dialogue will pop up. Let's assume
that the user chooses to print only one copy of the �rst two pages. These values
will be passed to the pages function, via its �rst argument of type PrintInfo.
So the values of first and copies are one, and the value of last is two. The
list of drawing functions, which is returned by the pages function is then equal to
bothPages. It contains two drawing functions, so two pages will be printed. The
�rst printed page will contain the text \Hello Printer", and the second page will
contain the printer resolution.

If the user choses to print only the �rst page, then the value of last is also one.
The % operator selects only the �rst element of bothPages and so only one page
is printed. If the user choses to print all pages, then the value of last is 9999.
The % operator then selects both pages, which would subsequently be printed. The
application of repeatn ensures that the right number of copies is generated.

In general, printing is done similar like drawing on the screen, namely by applying
drawing functions on a Picture. In the rest of this chapter printer Pictures and
screen Pictures are distinguished. There are two di�erences between these two
kinds of Pictures:

1. Functions which hilite parts of a Picture, or perform a xor operation, will
have no e�ect on a printer Picture.

2. Bitmapped fonts cannot be drawn on both kinds of Pictures with the same
sizes. This is because the pixel resolutions of both output devices are, in
general, di�erent. TrueType fonts work well for both kinds.

13.3 Reusing drawing functions

In many cases an application should be able to draw a certain content on printer
Pictures as well as on screen Pictures. Ideally, such a program should use the
same code for both output devices. But a problem arises, because in Clean two
di�erent units of measurement are used for drawing, namely Points and Pixels (see
also Chapter 5).

The physical extent and position of a graphical object on the paper or on the screen
always depends on Int values, which are passed to a drawing function. These values
are interpreted either as point values or as pixel values. Point values occur only
when the size of a font is speci�ed. In all other cases pixel values are used, e.g. in
drawAt fx=100, y=100g....

156 CHAPTER 13. PRINTING

A point is approximately 1

72
of an inch. A pixel has of course also a physical extent,

which can be measured in inches. But unlike a point, the size of a pixel varies from
output device to output device: the size of a printer pixel can be about 3 to 4 times
smaller than the size of a screen pixel. This implies that the result of applying a
drawing function on a printer Picture will result in smaller images compared with
screen Pictures. Only when text is drawn, this shrinking does not happen, because
the size of the used font is speci�ed in points, a resolution independent speci�cation
of physical extent.

Consider for example the following function:

myDrawfunction picture

string = "This text is boxed"

box = {box_w=120,box_h=15}

picture = drawAt {x=20,y=80} string picture

picture = drawAt {x=18,y=68} box picture

= picture

could cause a screen to contain the following:

This text is boxed

but the printed output could look like this:

This text is boxed

The reason is that the upper code uses constants to express pixel values. There a
two ways to deal with this problem: implicit and explicit scaling.

Implicit scaling Setting the print function's second Boolean argument to True

enables implicit scaling. This causes printer Pictures to emulate the screen
resolution, so that the shrinking does not occur. This approach has the ad-
vantage that it's very easy to write a function that can be used for drawing on
both a screen and printer Picture. But not everything can be printed very
well by using this option. For instance lines on the paper can not be thinner
than on the screen. Further problems arise when the printer resolution is not
a whole multiple of the screen resolution. This causes rounding errors in the
emulation process. If the ratio between printer and screen resolution is for
instance 3:5, then the emulation of line drawing with a pen size of one screen
pixel will result in a line on the paper that is only 3 printer pixels thick. The
following drawing function draws �ve hundred horizontal lines:

seq [drawAt {x=0,y=y} {vx=500,vy=0} \\ y<-[0..500]]

On paper space appears between the lines, but not on the screen.

Explicit scaling If the disadvantages of implicit scaling are not acceptable, the
application has to perform the scaling itself. One way to obtain this is to
avoid constant pixel values. Consider for instance a program that draws a
string on a certain place in a window or sheet. The position of the string could
be speci�ed by using values that are related to string widths or font metrics.
Since string width and font metrics always depend on a Picture, they will
re
ect the resolution of the output device. The upper myDrawfunction on
page 156 could be rewritten to:

13.4. THE PRINTUPDATEFUNCTION FUNCTION 157

myDrawfunction picture

(metrics,picture)= getPenFontMetrics picture

(mwidth,descent) = (metrics.fMaxWidth,metrics.fDescent)

height = fontLineHeight metrics

(swidth,picture) = getPenFontStringWidth string picture

string = "This text is boxed"

box = {box_w=swidth+12*mwidth/10,box_h=0-height}

picture = drawAt {x=20, y=80} string picture

picture = drawAt {x=20-2*mwidth/10,y=80+descent} box picture

= picture

The constants in this example are not pixel values, because they are multiplied
with pixel values like height. This example also shows that writing resolution
independent drawing functions results in more complex code.

Another way to perform scaling is to use the printer and screen resolution
explicitly. Then the code fragment on page 156 could be rewritten to:

myDrawfunction (sclNom,sclDenom) picture

string = "This text is boxed"

box = {box_w=scl 120,box_h=scl 15}

picture = drawAt {x=scl 20,y=scl 80} string picture

picture = drawAt {x=scl 18,y=scl 68} box picture

= picture

where

scl x = sclNom*x/sclDenom

For printing, sclNom should be the printer resolution, and sclDenom should
be the resolution of the screen. For drawing on the screen, both values should
be one. The StdPicture module's function getResolution will return the
horizontal and vertical resolution of a screen or printer picture:

getResolution :: !*Picture -> (!(!Int,!Int),!*Picture)

The accScreenPicture function (see Appendix A.26) can be handy in this
context. The printer resolution can of course also be found in the PageDimen-
sions record.

13.4 The printUpdateFunction function

The printUpdateFunction function in StdPrint is a good example of using implicit
scaling. This function o�ers a very easy way to print the contents of a window. It
has the following signature:

printUpdateFunction ::

Bool

(UpdateState -> *Picture -> *Picture)

[Rectangle]

!PrintSetup

*printEnv

-> (!PrintSetup, !*printEnv)

| PrintEnvironments printEnv

158 CHAPTER 13. PRINTING

The �rst and the last two parameters are identical to the �rst and last two pa-
rameters of the print function. Also the result has the same semantics as shown
with the print function. Let's assume that an application has opened a window.
The contents of the window is de�ned by its WindowLook attribute. This attribute
contains a Look function which updates the contents of a window everytime this is
required (see also Section 6.4.1). The Look is de�ned as:

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

If such a Look function is curried with a SelectState, it can be passed to the
printUpdateFunction function as the second argument.

The list of rectangles parameter speci�es the parts of the view domain that should
be printed. If such a rectangle is too big for one sheet of paper, then it will be
distributed on several pages.

13.5 The printPagePerPage function

The third function in the StdPrint module is the printPagePerPage function.
The printUpdateFunction and the print functions are both specialisations of
this function. This function performs a state transition function on a polymorphic
state. The state transition function itself has to be passed to the printPagePerPage
function. With each application of this state transition function the contents of the
actually printed page is drawn. Furtheron this state transition function returns a
Boolean value which indicates whether there are further pages to print. So it will
be applied repeatedly, until this value becomes True.

printPagePerPage has the following signature (slightly altered for simplicity):

printPagePerPage :: !Bool !Bool

.unq

(.unq PrintInfo *Picture -> ((Bool,Point),(.state,*Picture)))

((.state, *Picture) -> ((Bool,Point),(.state,*Picture)))

!PrintSetup

!*printEnv

-> (Alternative .unq .state,!*printEnv)

| PrintEnvironments printEnv

:: Alternative unq state = Cancelled unq | StartedPrinting state

instance PrintEnvironments (PSt .l .p)

instance PrintEnvironments Files

The arguments of

printPagePerPage doDialog emulateScreen unq prepare stateTrans

printEnv

have the following meaning:

doDialog, emulateScreen, printSetup and printEnv: analogous to those in the
print function.

13.6. PRINTING TEXT 159

unq: if a unique object unq, e.g. a text �le, has to be accessed and passed back
by printPagePerPage it should be passed via this parameter. If the user
cancels printing via the print job dialogue, (Cancelled unq) will be returned.
Otherwise the prepare function is applied to this object.

prepare: calculates the initial state. In order to do so it can access the PrintInfo
record and a printer Picture. Drawing in that Picture will have no e�ect on
the printed output. The prepare also returns a Boolean and a Point value.
The Boolean value is False i� there is another page to print. The Point will
be the origin of the next page, if there is one.

stateTrans: is the state transition function that generates the pages to be printed.
Like the prepare function, each application of stateTrans returns a Boolean
and a Point value with the same meaning. If the user did not cancel printing
via the cancel dialogue, the printPagePerPage function will return the �nal
state in the StartedPrinting alternative constructor of Alternative. Since
this state is polymorphic, any arbitrary value can be returned, e.g. the
PrintInfo record.

13.6 Printing text

The module StdPrintText (Appendix A.23) o�ers functions to print text. These
functions are overloaded in the argument that speci�es the text to print. In this
way the source of the text can be an arbitrary data structure, e.g. a text�le or a
list of characters.

The printText1 function has the following signature:

printText1 :: !Bool !WrapMode

!FontDef !Int

!*charStream

!PrintSetup !*printEnv

-> ((!*charStream,!PrintSetup),!*printEnv)

| CharStreams charStream & PrintEnvironments printEnv

class CharStreams cs where

getChar :: !*cs -> (!Bool,!Char,!*cs)

savePos :: !*cs -> *cs

restorePos :: !*cs -> *cs

eos :: !*cs -> (!Bool,!*cs)

:: WrapMode :== Int

NoWrap :== 0

LeftJustify :== 1

RightJustify :== 2

This function simply prints the text contained in the charStream object.

The �rst and the two last parameters are identical to the �rst and last parameters
of the print function. Also the returned PrintSetup and print environment have
their usual semantics. The other parameters have the following meaning:

WrapMode: this parameter determines how lines are handled that are too long
to �t on the paper. NoWrap suppresses wrapping, while LeftJustify and

160 CHAPTER 13. PRINTING

RightJustify wrap long lines and adjust the rest of the line to the left and
right margin respectively.

FontDef: this parameter determines the font of the text.

Int: this parameter controls the tab width, measured in the number of space char-
acters.

A CharStreams object contains the text to print. Its functionality is analogous to
the behaviour of a text �le. So a CharStream contains a �nite sequence of characters
and a position pointer which points to the actual character. Applying getChar re-
trieves this actual character and increases the position pointer. The Boolean return
value is True i� this operation was successful. Characters can be read sequen-
tially, until the eos (end of stream) function returns True. The actual position of a
CharStream can be saved with the savePos function, and the restorePos function
resets the position pointer to the previously saved position.

The following example illustrates how to print a text that is stored in a list of
characters. Therefore the CharStreams class is instanciated with a proper type
ListCharStream.

module printCharList

// **

// Clean tutorial example program.

//

// This program demonstrates the use of the function "printText1".

// It instantiates the CharStreams class with the ListCharStream type. Objects

// of type ListCharstream contain a list of characters, which should be printed.

// **

import StdEnv, StdPrintText

:: *ListCharStream = { list :: [Char] , savedPos :: [Char] }

instance CharStreams ListCharStream

where

getChar sc=:{list}

empty = isEmpty list

= (not empty, if empty ' ' (hd list),

{ sc & list=if empty list (tl list) })

savePos sc

= { sc & savedPos=sc.list }

restorePos sc

= { sc & list=sc.savedPos }

eos sc=:{list}

= (isEmpty list,sc)

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(defaultPS, world) = defaultPrintSetup world

= accFiles (printText1 True NoWrap fontDef 4

{ list=['Hello printer again'], savedPos=[] }

defaultPS)

world

The StdPrintTextmodule instanciates the CharStreams class with the *FileChar-
Stream type. The following example illustrates how to print a text �le, and how to
use the functions fileToCharStream and charStreamToFile.

module printFile

13.6. PRINTING TEXT 161

// **

// Clean tutorial example program.

//

// This program demonstrates to print a text file by using the function

// "printText1".

// **

import StdEnv, StdPrintText

fileName = "printFile08.icl"

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(ok,file,world) = fopen fileName FReadData world

| not ok

= abort ("file "+++fileName+++" not found")

(defaultPS,world) = defaultPrintSetup world

((charStream,_),world)

= accFiles (printText1 True NoWrap fontDef 4

(fileToCharStream file) defaultPS)

world

(ok,world) = fclose (charStreamToFile charStream) world

| not ok

= abort "can't close file"

= world

The printText2 function allows you to print text with a header on each page.
This function expects the same parameters as printText1, but takes in addition
two strings. The �rst string will appear on the left corner of each header, and the
second string, concatenated with the current page number, will appear on the right
side of each header. The previous example can be altered with:

module printFileWithHeader

// **

// Clean tutorial example program.

//

// This program demonstrates to print a text file by using the function

// "printText2".

// **

import StdEnv, StdPrintText

fileName = "printFileWithHeader.icl"

fontDef = { fName="Courier New", fStyles=[], fSize=9 }

Start world

(ok,file,world) = fopen fileName FReadData world

| not ok

= abort ("file "+++fileName+++" not found")

(defaultPS,world) = defaultPrintSetup world

((charStream,_),world)

= accFiles (printText2 "Deze file is geprint door Clean"

"pagina "

True NoWrap fontDef 4

(fileToCharStream file)

defaultPS)

world

(ok,world) = fclose (charStreamToFile charStream) world

| not ok

= abort "can't close file"

= world

// Deze file is geprint door Clean = This file is printed with Clean

162 CHAPTER 13. PRINTING

// pagina = page

Finally, the function printText3 permits full control over the look of a header
and/or trailer (or footer) on each page. It's signature is:

printText3 ::!Bool !WrapMode !FontDef !Int

(PrintInfo *Picture -> (userInfo, (Int,Int), *Picture))

(userInfo Int PrintInfo *Picture -> *Picture)

!*charStream

!PrintSetup !*printEnv

-> (!(!*charStream,!PrintSetup),!*printEnv)

| CharStreams charStream & PrintEnvironments printEnv

The �fth and sixth parameter of

printText3 doDialog wrapMode fontParams spacesPerTab

textRangeFunc

eachPageDrawFunc

charStream

printSetup

printEnv

have the following meaning:

textRangeFunc: this function takes a PrintInfo record and a printer Picture and
returns a triple. The �rst result can be any data of arbitrary type. This data
will be passed by printText3 to eachPageDrawFunc. The second triple result
is a pair (top,bottom), where top < bottom. (printText3 aborts if this is
not the case.) The printed text will appear within these y-coordinates only,
leaving you room to print a header and a trailer for each page.

eachPageDrawFunc: this function is responsible for drawing a header and trailer.
As parameters it takes the data produced by textRangeFunc, the actual page
number, the PrintInfo record and a Picture. This function will be called
from printText3 for each page. It should return the Picture in which the
header and/or trailer for the current page are drawn. Drawing is not restricted
to any particular area on the printer Picture.

Chapter 14

TCP

In this chapter we cover Clean's TCP interface. Blocking is an inherent problem
with network I/O: A function blocks, when it can not be reduced further, until
some external condition changes. A program can not do anything, while a function
blocks1. An example of blocking is a program, that tries to receive some data. Such
a program could block until the data arrives.

It makes a di�erence whether a Clean program engages in event driven I/O or
not. The event driven part will be started up by functions like startIO or start-
Processes. If a program calls this function then we call it an \I/O" program,
otherwise it is a \World" program. Principally it does not matter when a World
program blocks. But care has to be taken with I/O programs: they should not block,
or at least not block a \long" time. The \ 1

10
second rule" says, that an I/O program

should not take longer than 1

10
second to process an event. Hence an I/O program

should not block longer than this time (if the programmer respects that rule). The
reason for this rule is, that the user of an I/O program should have the impression,
that the program immediately responds to his actions. Furtheron, window update
events should also be handled by the program immediately. Otherwise the windows
might get looking ugly.

After a short introduction to TCP in Section 14.1 some basic ideas are discussed
in Section 14.2. Section 14.3 is about the blocking approach, which is applicable
in World programs. The non blocking approach for I/O programs is discussed in
Section 14.4.

14.1 Introduction to TCP

TCP (Transmission Control Protocol) o�ers a possibility to transfer data between
programs which are running on di�erent computers via a network. TCP is a con-
nection oriented protocol. Before data can be transferred a connection between
two running programs has to be established. A TCP connection is always a duplex
connection. That means, that both sides can send and receive data when they are
connected. After all data has been sent and received, the connection has to be teard
down.

Two programs that establish a connection with each other are categorized due to
their role in establishing the connection: one program is the server and the other one

1The Clean compiler produces sequential code. This is the reason, why a program can not do
anything else, while it is blocking. If the Clean compiler would be able to produce non sequential
code, blocking would be much less of a problem.

163

164 CHAPTER 14. TCP

the client. The client has to know the address of the server. The address consists
of two parts: an IP address and a port number. The IP address uniquely identi�es
every computer on the internet. An IP address is a 32 bit quantity, which is often
written down in \dotted decimal form" like e.g. \131.174.33.11". It is possible to
establish di�erent connections to one computer at the same time. The port number
discriminates these connections. The port number is a 16 bit quantity. For some
services some port numbers are reserved. E.g. \HTTP" is reachable via the port
number 80 and \telnet" via port number 23. When a connection is established, the
following happens: �rst the server has to listen on a certain port. Listening on a
port means being prepared for receiving connection requests from clients. The client
knows both this port number and the IP address of the computer, where the server
is running. So he issues a connection request, which will reach the server via the
internet. If the server accepts the connection request, the connection is established.

Now data can be transferred. The sent data will reach the other side without being
duplicated or altered in its chronological order.

A service called DNS (Dynamic Name System) helps us human beings to avoid
having to remind IP addresses. The DNS service translates alphanumerical aliases
like \www.cs.kun.nl" into IP adresses.

14.2 Basic Ideas

In Clean's TCP interface channels play an important role. Intuitively a channel is
like a pipe: What you �ll in on one side comes out on the other end after a while.
We do not transport material goods like water or gas with our pipes, but rather
information. So we call the things that we stu� in our channels messages. It is well
possible, that many messages reside within a channel at the same time while they
are on their way to the other end. But it is not possible, that they come out in
another order than they were put in (we do not support out of band data). The
most important things we can do with a channel are of course sending and receiving.

In our approach each channel type has a message type. This means, that we can
only send and receive messages with that message type on a certain channel. But
of course it is possible to de�ne several channel types. For instance the following
channel type is de�ned:

:: *TCP_RCharStream :== TCP_RCharStream_ Char

The TCP RCharStream type is a channel type with the message type Char. It is not
necessary here to know, how TCP RCharStream is de�ned (note that underscore).
Generally a channel type is a type constructor with one argument, the message
type. If we wanted to receive on such a channel we could apply the receive function:

receive :: !*(*ch .a) !*env

-> (!.a, !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

To help understanding that seemingly weird de�nition we give an example, how
this type could be specialized. It is necessary to know that TCP CharStream is an
instance of the Receive class, and that a ChannelEnv can be either the World,
the IOSt or the PSt. We de�ned the type of receive as general as possible. The
following function de�nition has a type that is more restrictive than it could be:

14.3. BLOCKING TCP IN WORLD PROGRAMS 165

receive2 :: TCP_RCharStream *World

-> (Char, TCP_RCharStream, *World)

receive2 ch env = receive ch env

We gain the type of receive2 by uniform substitution of !*(*ch .a) with TCP -

RCharStream and !.a with Char. From the type of receive2 we see that we can
receive a Char, if we apply the receive2 function on a TCP RCharStream in a World.

Channel types are uniquely attributed.

14.3 Blocking TCP in World programs

Since this section is about blocking use of TCP, the described methods are appli-
cable for World programs. Section 14.4 discusses non blocking use of TCP in I/O
programs.

The library modules that are relevant for this section are StdChannels, StdTCPDef
and StdTCPChannels (see Appendixes A.2, A.33 and A.32). The module StdTCP
imports all these modules similar to the StdEnv and StdIO modules.

Generally a TCP session is divided into three phases: the connection establishment
phase, the data transfer phase and the disconnect phase. These three phases will be
covered in the Sections 14.3.1 to 14.3.3. In these sections small example functions
are described. These functions are combined to give an example for a client and
a server program in Section 14.3.4. The technique of multiplexing is discussed in
Section 14.3.5 which includes a fancy chat server example program. Section 14.3.6
introduces some further channels that can be used.

14.3.1 Establishing a connection

We show the process of establishing a connection �rst for client programs, and
afterwards for server programs.

The client program has to know the IP address and port number of the server
program. There is a function that uses the DNS to get an IP Address:

lookupIPAddress :: !String !*env

-> (!Maybe IPAddress, !*env)

| ChannelEnv env

The String that is passed can be an alphanumerical internet address like "mart-
inpc.cs.kun.nl", but also a dotted decimal notation like "131.174.33.11". To estab-
lish a new connection, the client simply calls the connectTCP MT function:

connectTCP_MT :: !(Maybe !Timeout) !(!IPAddress,!Port) !*env

-> (!TimeoutReport, !Maybe TCP_DuplexChannel, !*env)

| ChannelEnv env

:: Port :== Int

:: Timeout :== Int

:: TimeoutReport

= TR_Expired

| TR_Success

| TR_NoSuccess

166 CHAPTER 14. TCP

The optional Timeout value is measured in (platform dependent) ticks. The Time-
outReport informs about success or failure of the attempt to connect. I� this value
is TR Success then Just a TCP DuplexChannel is returned. A TCP DuplexChannel

is a record that contains two channels: one TCP channel to send and one to receive:

:: *TCP_DuplexChannel

:== DuplexChannel *TCP_SChannel_ *TCP_RChannel_ ByteSeq

:: DuplexChannel sChannel rChannel a

= { sChannel :: sChannel a

, rChannel :: rChannel a

}

:: *TCP_SChannel :== TCP_SChannel_ ByteSeq

:: *TCP_RChannel :== TCP_RChannel_ ByteSeq

The TCP SChannel and the TCP RChannel types are channel types. The type of
the messages, which can be received is the abstract data type ByteSeq. This type
resembles sequences of bytes. So with one message a sequence of bytes can be sent
or received (see Appendix A.33).

Example We de�ne a function, that looks up an IP address and tries to connect
to that machine on port 2000. For simplicity we let the program abort, if any
of the operations fails. Otherwise the result is a TCP DuplexChannel.

clientConnect :: !*World -> (!TCP_DuplexChannel, !*World)

clientConnect world

(mbIPAddr, world) = lookupIPAddress "martinpc.cs.kun.nl"

world

| isNothing mbIPAddr

= abort "DNS lookup failed"

ipAddr = fromJust mbIPAddr

(tReport, mbDuplex, world)

= connectTCP_MT Nothing (ipAddr, 2000)

world

| tReport<>TR_Success

= abort "can't connect to port 2000"

duplexChannel = fromJust mbDuplex

= (duplexChannel, world)

Now we discuss the process of establishing a connection for a server program.

The server has to call the openTCP Listener function to listen on a given port:

openTCP_Listener :: !Port !*env

-> (!OkBool, !Maybe TCP_Listener, !*env)

| ChannelEnv env

:: *TCP_Listener :== TCP_Listener_ (IPAddress, TCP_DuplexChannel)

:: OkBool :== Bool

The Port parameter should be the desired port number. I� listening on the given
port succeeds, then the OkBool result will be True and the Maybe result will be Just
a TCP Listener. If another program on the same machine already listens on the
given port, this attempt will fail. A TCP Listener is a channel on which connection

14.3. BLOCKING TCP IN WORLD PROGRAMS 167

requests from remote clients can be received. So the server does this by applying
the receive function on the TCP Listener:

receive :: !*(*ch .a) !*env

-> (!.a, !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

From the type de�nition of TCP Listener we see, that the message type a is a pair,
which consists of an IPAddress and a TCP DuplexChannel. Receiving a message
of such a type establishes a new connection. The IPAddress is the IP address of
the remote client, which wants to connect. The TCP DuplexChannel is the new
connection itself.

So a TCP Listener is a channel on which channels can be received. With one
receive on a TCP Listener a TCP SChannel (to send) and a TCP RChannel (to
receive) are gained. (People familiar with the sockets API will recognize that a
receive on a TCP Listener resembles the accept call.)

Example The following function listens on port 2000 and accepts one connection:

serverConnect :: !*World -> (!TCP_DuplexChannel, !*World)

serverConnect world

(ok, mbListener, world)

= openTCP_Listener 2000 world

| not ok

= abort "can't open Listener on port 2000"

listener = fromJust mbListener

((_, duplexChannel), listener, world)

= receive listener world

world = closeRChannel listener world

= (duplexChannel, world)

The closeRChannel function is discussed in Section 14.3.3.

14.3.2 Basic Operations on Channels

In the previous section we came in contact with three channel types: the TCP -

Listener, the TCP SChannel and the TCP RChannel. These types are instances of
type constructor classes, which are de�ned in the module StdChannels (Appendix
A.2). The TCP Listener and the TCP RChannel are instances of the Receive class:

class Receive ch

where

receive_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Maybe !.a,!*(*ch .a), !*env)

| ChannelEnv env

available :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

eom :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

...

168 CHAPTER 14. TCP

Each of these functions gets and returns a channel and an environment. \MT" is a
shorthand for \Maybe Timeout". The receive MT function tries to receive a mes-
sage of type a on the channel. This function might block until the message arrives.
A timeout value can be given to limit this time. The timeout value is given in
(platform dependent) ticks. The returned TimeoutReport determines whether the
receive was succesful (TR Success), whether the timeout expired (TR Expired) or
whether the other side teard down the connection (TR NoSuccess). The available
function polls on the channel, whether a message is currently available. The eom

(\End of Messages") returns True, i� it is sure that available will never become True
anymore. To understand these functions, the following model of receive channels is
handy:

A receive channel consists of a message queue and is always in one of three states:
the \idle" state, the \available" state, or the \EOM" state, as shown in Figure 14.1.

available

idle

EOM

m1 m2 m3 m4 m. . .
n

messages
arrive from
somewhere

first message

Figure 14.1: model of a receive channel

I� the receive channel is in the available state, then there is a message in the message
queue. I� the channel is in the idle or EOM state, then the message queue is empty.
If a message arrives, then the state can change from idle to available, but if the
channel is in the EOM state, no message will arrive anymore. In this case the state
can not change anymore, and this happens, when the other side tears down the
connection.

To ease programming there are some specialisations of the functions above:

receive :: !*(*ch .a) !*env

-> (!.a, !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

nreceive :: !Int !*(*ch .a) !*env

-> (![.a], !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

receive receives one message from the channel and (nreceive n) receives n mes-
sages. These functions are only partially de�ned. If the receive channel state is
EOM or becomes EOM while the function blocks, then the program will abort!
These functions should only be used if it is sure that the speci�ed amount of data
will be received.

14.3. BLOCKING TCP IN WORLD PROGRAMS 169

Example The following function receives a byte sequence and compares it with a
given string. If the strings are di�erent, the program aborts.

serverReceive :: String TCP_RChannel *World

-> (TCP_RChannel, *World)

serverReceive expectedMessage rChannel world

(message, rChannel, world) = receive rChannel world

| toString message<>expectedMessage

= abort "received wrong message"

= (rChannel, world)

A special role play channels on which channels can be received, currently only the
TCP Listener. If a message is available on such a channel it might be possible
that a following receive MT will return Nothing. This happens when a client tries
to connect to a server, but disconnects again before the connection is accepted
(received) from the server. Furtheron eom will never get True for this kind of
channels.

On all other channels it holds, that if available is True, receiving on that channel
will not block and will return Just a message.

Before we discuss the basic operations on send channels, we introduce a model for
these channels, see Figure 14.2.

sendable

full

disconnected

buffer of unsent bytes

Figure 14.2: model of a send channel

A send channel has also three states: the \sendable" state, the \full" state and the
\disconnected" state. Furtheron there is a bu�er of unsent bytes. If the channel is
in the disconnected state, then no sending of data is possible. This happens, when
the remote side tears down the connection. The disconnected state is the �nal state
(similar to the EOM state for receive channels).

Sending on a channel might block as well as receiving does. Since this is not as
obvious as in the receive case, here is a scenario where sending becomes blocking:
Let's assume a TCP connection, where data is sent only in one direction, from
a \producer" program to a \consumer" program. Let's assume further, that the
producer sends much faster than the consumer, e.g. the producer sends one MByte
per second but the consumer receives only one KByte per second, because he doesn't
want to receive faster. It is obvious, that this does not work forever! At a certain
point in time all bu�ers in the two participating computers and in the computers

170 CHAPTER 14. TCP

between them get full. The producer has to be stopped in his overproduction then,
which means, that the producer's sending operation will block.

This is the reason, why there are the sendable and the full states and the message
queue. I� a channel is in the full state, then trying to send will not pump any data
into the internet, the data will be queued locally in the channels internal bu�er
instead. I� the channel state changes from full to sendable then it's reasonable to

ush this bu�er. The bu�er is a part of the Clean heap and does not have a limited
size (apart from the usual memory limitations).

Now let's have a look at the basic operations on send channels:

class Send ch

where

send_MT :: !(Maybe !Timeout) !.a !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

nsend_MT :: !(Maybe !Timeout) ![.a] !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

flushBuffer_MT:: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

disconnected :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

bufferSize :: !*(*ch .a)

-> (!Int, !*(*ch .a))

...

The send MT function sends a message and the nsend MT function sends a list of
messages. Both functions take a (Maybe Timeout) argument. If not all of the
data could be sent within the timeout period, the rest will be queued in the send
channels internal bu�er. This internal bu�er will not be sent automatically, it can
be sent (
ushed) with the flushBuffer MT function. This function tries to send
as much as possible from the internal bu�er. The Int value that is returned by
these three functions is the number of sent bytes. If the timeout expires before
everything could be sent, then the returned TimeoutReport will be TR Expired.
If the send channel's state changed to disconnected during the send operation the
TimeoutReport will be TR NoSucces. Only if all data was sent, this value will be
TR Success. The size of the internal bu�er in bytes is returned by the bufferSize
function. The disconnected function is used to poll whether the channel is in the
disconnected state.

The following functions are to avoid having to specify timeouts for sending. They
are specialisations of the functions in the Send class.

send :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

nsend :: ![.a] !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & nsend_MT ch

Example The following function sends the message \hello server".

14.3. BLOCKING TCP IN WORLD PROGRAMS 171

clientSend :: TCP_SChannel *World -> (TCP_SChannel, *World)

clientSend sChannel world

= send (toByteSeq "hello server") sChannel world

The MaxSize class allows to limit the size of the received byte sequences for receive
channels. For further details see the StdChannels module.

Any object whose type is an instance of the toString class can be converted into
a ByteSeq:

toByteSeq :: x -> ByteSeq | toString x

And vice versa: ByteSeqs can be converted into strings, because they are an instance
of toString.

14.3.3 Tearing down a connection

Using TCP there are principally two ways to tear down a connection: graceful
and abortive disconnects. The abortive disconnect will happen when the abort-

Connection function is applied on a send channel. If the channel should be closed
gracefully, then the closeChannel MT function should be applied. These two func-
tions are both members of the Send class:

class Send ch

where

closeChannel_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*env)

| ChannelEnv env

abortConnection :: !*(*ch .a) !*env

-> !*env

| ChannelEnv env

...

The closeChannel MT function takes a (Maybe Timeout) argument, because it tries
to send the channel's internal bu�er before closing the channel. This function has
also a specialized version without a timeout:

closeChannel :: !*(*ch .a) !*env -> !*env

| ChannelEnv env & Send ch

The internal bu�er will not be sent, when the abortConnection function is used.
Furtheron it is possible that data that is already sent will not reach the other side,
when this function is used.

To close receive channels the closeRChannel function should be used:

class closeRChannel ch :: !*(*ch .a) !*env -> !*env

| ChannelEnv env

This function will not block.

172 CHAPTER 14. TCP

14.3.4 Putting it together

The example functions that were introduced in Section 14.3.1 and 14.3.2 are now
assembled together into two programs: a client and a server program. The
client will attempt to connect to the server and send the message \hello server".
The server will check, whether the received message matches that text. Both sides
will close the connection gracefully afterwards. It is assumed that the server runs
on a machine called \martinpc.cs.kun.nl".

Here is the client program:

module client

// **

// Clean tutorial example program.

//

// This program implements a minimal TCP session (client).

//

// **

import StdEnv, StdTCP

clientConnect :: !*World -> (!TCP_DuplexChannel, !*World)

clientConnect world

(mbIPAddr, world) = lookupIPAddress "martinpc.cs.kun.nl" world

| isNothing mbIPAddr

= abort "DNS lookup failed"

ipAddr = fromJust mbIPAddr

(tReport, mbDuplex, world) = connectTCP_MT Nothing (ipAddr, 2000) world

| tReport<>TR_Success

= abort "can't connect to port 2000"

duplexChannel = fromJust mbDuplex

= (duplexChannel, world)

clientSend :: TCP_SChannel *World -> (TCP_SChannel, *World)

clientSend sChannel world

= send (toByteSeq "hello server") sChannel world

Start world

({sChannel, rChannel}, world) = clientConnect world

(sChannel, world) = clientSend sChannel world

world = closeChannel sChannel world

world = closeRChannel rChannel world

= world

And here is the server:

module server

// **

// Clean tutorial example program.

//

// This program implements a minimal TCP session (server).

//

// **

import StdEnv, StdTCP

serverConnect :: !*World -> (!TCP_DuplexChannel, !*World)

serverConnect world

(ok, mbListener, world) = openTCP_Listener 2000 world

| not ok

= abort "can't open Listener on port 2000"

listener = fromJust mbListener

((_, duplexChannel), listener, world) = receive listener world

14.3. BLOCKING TCP IN WORLD PROGRAMS 173

world = closeRChannel listener world

= (duplexChannel, world)

serverReceive :: String TCP_RChannel *World -> (TCP_RChannel, *World)

serverReceive expectedMessage rChannel world

(message, rChannel, world) = receive rChannel world

| toString message<>expectedMessage

= abort "received wrong message"

= (rChannel, world)

Start world

({sChannel, rChannel}, world) = serverConnect world

(rChannel, world) = serverReceive "hello server" rChannel world

world = closeChannel sChannel world

world = closeRChannel rChannel world

= world

14.3.5 Multiplexing

The selectChannel MT function allows to determine, on which of a set of channels
operations can be used in a non blocking way. This is very useful to determine the
channel in the set, for which data has arrived �rst. It's signature is:

selectChannel_MT :: !(Maybe !Timeout)

!*r_channels !*s_channels !*World

-> (![(!Int, !SelectResult)],

!*r_channels, !*s_channels, !*World)

| SelectReceive r_channels & SelectSend s_channels

:: SelectResult

= SR_Available

| SR_EOM

| SR_Sendable

| SR_Disconnected

The r_channels parameter can be a set of lists of receive channels. These lists
can be combined with the :^: constructor (Appendix A.13). For instance there are
de�ned:

:: *TCP_RChannels = TCP_RChannels [TCP_RChannel]

:: *TCP_Listeners = TCP_Listeners [TCP_Listener]

If tcp_RChannels is a list of TCP RChannels and tcp Listeners is a list of type
TCP Listener then the following expression is a valid value for the r_channels

parameter:

TCP_RChannels tcp_RChannels :^: TCP_Listeners tcp_Listeners

The :^: constructor allows us to combine lists of channels with di�erent types.
Similar sets of send channels can be created for the s_channels argument. To
specify an empty set of channels, it's also possible to pass

Void

as a value for r_channels or s_channels.

174 CHAPTER 14. TCP

If the timeout expires, the function will return an empty list. Otherwise the Int part
of each result pair will identify one of the channels out of r_channels or s_channels
for which the SelectResult holds. For an example let's suppose that both lists
tcp_RChannels and tcp Listeners contain two elements. In the fragment

r_channels = TCP_RChannels tcp_RChannels

:^: TCP_Listeners tcp_Listeners

([(who, what):_], r_channels, _, world)

= selectChannel_MT Nothing r_channels

Void world

(TCP_RChannels tcp_RChannels

:^: TCP_Listeners tcp_Listeners)

= r_channels

a set of four receive channels is passed via the r_channels parameter to the se-
lect function. So the who value will be inbetween zero and three. Let's assume
here for simplicity that the list that is returned by the selectChannel MT function
only contains one element. If at �rst some data would have arrived for the �rst
channel in the tcp_RChannels list, then who would equal zero, for the other ele-
ment of that list who would equal one. Since the TCP Listeners data constructor
is the right argument of :^:, the who value would be two or respectively three,
if at �rst a connection request would have arrived for one of the listeners. In all
these cases the value for what would have been SR Available. But if at �rst one
of the TCP RChannels would get into the EOM state, then the result would be
SR EOM. Since only receive channels are passed to the selectChannel MT function,
the SelectResult result can only be SR Available or SR EOM. The SR Sendable

and the SR Disconnected values can only be returned, if some send channels are
part of the s_channels parameter. As an example we pass a list tcp SChannels of
TCP SendChannels to the selectChannel MT function.

([(who, what):_], _,

TCP_SChannels tcp_SChannels,

world

) = selectChannel_MT Nothing Void

(TCP_SChannels tcp_SChannels)

world

The who value will identify one of the send channels in the list (tcp SChannels !!

who). Since no receive channels were passed to the selectChannel MT function, the
what value can only be SR Sendable, or SR Disconnected. These values indicate,
that the channel is in the sendable respectively disconnected state.

Of course it is also possible to pass receive channels and send channels to select-

Channel MT. The SelectResult result determines, whether a receive channel or a
send channel is identi�ed by the Int result. The numbering of channels begins with
zero for receive channels and for send channels. If more than one channel could be
selected by selectChannel MT, then priority is given from left to right.

As an example program we'll discuss a server for a chat application. A chat client
program (see Figure 14.3) will ask it's user for a nickname and the address of
the host, where the server is running. After connecting to that server the client
application will pop up a window with two edit controls. In the upper �eld the user
can input some text, which will be broadcasted via the server to all other people,
who are currently connected to the server. The client program is not a topic here,

14.3. BLOCKING TCP IN WORLD PROGRAMS 175

Havanna

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

I'll show you arou

Tunis

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

Why don't you come to Tun

Bangkok

Fernando: How is weather in Tunis ?
Ali: Hot, and in Bangkok ?
Supinda: Fine. This summer I'll

 come to Cuba.

server

Figure 14.3: chatting via the internet

because it is an I/O program, but it is incorporated in the examples part of the
Object I/O library.

The server program at �rst opens a listener on the chosen port 2000. It uses a
list of ChanInfo records. Each element of this list corresponds to one connection
to a client. Apart from the two channels for the communication, the nickname
for the connection is stored in a ChanInfo record. The set of receive channels
which is passed to the selectChannel MT function consists of the listener and the
receive channels for each open connection. There are three cases to handle: a new
connection is made, data has been sent, a connection is closed.

module chatServer

// **

// Clean tutorial example program.

//

// This program demonstrates the usage of the selectChannel_MT function

//

// **

import StdEnv, StdTCPChannels, StdMaybe

chatPort :== 2000

:: *ChanInfo

= { sndChan :: TCP_SChannel

, rcvChan :: TCP_RChannel

, nickname :: String

}

Start world

(ok, mbListener, world) = openTCP_Listener chatPort world

| not ok

176 CHAPTER 14. TCP

= abort ("chatServer: can't listen on port "+++toString chatPort)

(console, world) = stdio world

= loop (fromJust mbListener) [] console world

loop :: !TCP_Listener ![ChanInfo] !*File !*World -> *World

loop listener channels console world

(sChans, rChans, nicknames)

= unzip3 channels

glue = (TCP_Listeners [listener]) :^: (TCP_RChannels rChans)

([(who,what):_],glue, _, world)

= selectChannel_MT Nothing glue Void world

(TCP_Listeners [listener:_]) :^: (TCP_RChannels rChans)

= glue

channels = zip3 sChans rChans nicknames

// case 1: someone wants to join the chatroom

| who==0

(tReport, mbNewMember, listener, world)

= receive_MT (Just 0) listener world

| tReport<>TR_Success // the potential new member changed his mind

= loop listener channels console world

(_,{sChannel,rChannel}) = fromJust mbNewMember

(byteSeq, rChannel, world)

= receive rChannel world

nickname = toString byteSeq

message = "*** "+++nickname+++" joined the group."

console = fwrites (message+++"\n") console

channel = {sndChan=sChannel,rcvChan=rChannel,nickname=nickname}

channels = [channel:channels]

(channels, world) = broadcastString message channels [] world

| nickname % (0,3)=="quit"

= quit listener channels world

= loop listener channels console world

// case 2: somebody has something to say

| what==SR_Available

(channel=:{rcvChan, nickname}, channels)

= selectList (who-1) channels

(byteSeq, rcvChan, world)

= receive rcvChan world

message = toString byteSeq

channels = channels++[{channel & rcvChan=rcvChan}]

(channels,world) = broadcastString (nickname+++": "+++message)

channels [] world

= loop listener channels console world

// case 3: somebody leaves the group

| what==SR_EOM

({sndChan, rcvChan, nickname}, channels)

= selectList (who-1) channels

message = "*** "+++nickname+++" left the group"

console = fwrites (message+++"\n") console

(channels,world) = broadcastString message channels [] world

world = seq [closeChannel sndChan,closeRChannel rcvChan] world

= loop listener channels console world

broadcastString :: !String ![ChanInfo] ![ChanInfo] !*World -> ([ChanInfo],!*World)

broadcastString string [] akku world

= (u_reverse akku, world)

broadcastString string [channel=:{sndChan}:channels] akku world

(sndChan, world) = send (toByteSeq string) sndChan world

= broadcastString string channels [{channel & sndChan=sndChan}:akku] world

14.3. BLOCKING TCP IN WORLD PROGRAMS 177

selectList :: !Int [.a] -> (!.a,![.a])

selectList n l

(left, [element:right]) = splitAt n l

= (element, left++right)

quit listener channels world

world = closeRChannel listener world

= closeChannels channels world

closeChannels [] world

= world

closeChannels [{sndChan, rcvChan}: channels] world

world = seq [closeChannel sndChan, closeRChannel rcvChan] world

= closeChannels channels world

unzip3 :: ![!ChanInfo] -> (![TCP_SChannel], ![TCP_RChannel], ![String])

unzip3 [] = ([],[],[])

unzip3 [{sndChan, rcvChan, nickname}:t]

(a,b,c) = unzip3 t

= ([sndChan:a], [rcvChan:b], [nickname:c])

zip3 :: ![TCP_SChannel] ![TCP_RChannel] ![String] -> [!ChanInfo]

zip3 [] [] [] = []

zip3 [sndChan:a] [rcvChan:b] [nickname:c]

= [{sndChan=sndChan, rcvChan=rcvChan, nickname=nickname} : zip3 a b c]

u_reverse list = reverse_ list []

where

reverse_ [hd:tl] list = reverse_ tl [hd:list]

reverse_ [] list = list

Server processes typically run in the backgroud. Macintosh users should be aware
that the MacOS was not designed as a multitasking operating system. Hence it
is not a default property of programs to be able to run in the background. But
the desired behaviour can be achieved if the \Can Backgroud" bit of the \SIZE"
resource of the executable �le is set. The program that allows to edit these resources
of �les is called "ResEdit".

14.3.6 More Channels

Sometimes it is very handy, if every single byte can be sent or received atomically.
For this purpose we implemented the following two channels:

:: *TCP_SCharStream :== TCP_SCharStream_ Char

:: *TCP_RCharStream :== TCP_RCharStream_ Char

On a TCP_S(R)CharStream characters can be sent (received). The functions to-

SCharStream and toRCharStream convert TCP_S(R)Channels into TCP_S(R)Char-
Streams. The nsend and nreceive functions are handy to use with this kind of
channels. The following function takes a TCP SChannel, converts it into a character
stream, and sends the characters \hello partner".

s :: !TCP_SChannel !*World -> (!TCP_SCharStream, !*World)

s tcp_SChannel world

sCharStream = toSCharStream tcp_SChannel

= nsend ['hello partner'] sCharStream world

If rCharStream is the corresponding TCP RCharStream and world the World, then
the other side could receive these thirteen characters with the following function
application:

178 CHAPTER 14. TCP

nreceive 13 rCharStream world

Another kind of channels are the so called string channels. One handicap in using
raw TCP is, that the ByteSeq packets are not atomic. That means, that sending
two byte sequences with sizes of e.g. 10 and 14 bytes could be received on the
other side as one byte sequence with a size of 24 bytes. String channels use their
own protocol, which is built on top of the TCP protocol. If a string is sent on a
string channel, then at �rst a representation of the size of that string is sent, and
afterwards the contents. In this way it is possible to send empty strings as well as
strings with sizes of several megabytes. On the corresponding receive channel these
strings will be received as a whole. String channels should communicate only with
other string channels, since these channels use their very own protocol. It is possible
to use the setMaxSize function of the MaxSize class to limit the size of receivable
strings. In this way an application can be protected against bogus programs, which
claim to send strings that are to huge to �t in the memory of the used computer.

The de�nitions and instanciations for string channels can be found in the module
StdStringChannels (Appendix A.29). We only show here the following:

:: *StringSChannel :== StringSChannel_ String

:: *StringRChannel :== StringRChannel_ String

The character streams and the string channels can be passed to the selectChan-

nel MT function. The naming convention is, that the data constructors for the
objects that are passed to the selectChannel MT function end with an additional
\s". E.g. it is possible to pass TCP RCharStreams and StringRChannels to the
selectChannel MT function:

selectChannel_MT

Nothing

(TCP_RCharStreams [ch0,ch1] :^: StringRChannels [ch2,ch3])

Void

world

14.4 Non Blocking TCP in I/O Programs

As said before, I/O programs should not block for a \long" time. To explain, how
this condition can be solved we take a look at a very similar method of handling
input: handling keybord input. In World programs we simply can write something
like

(line, console) = freadline console

The program would block until the user presses the \Enter" key. In an I/O pro-
gram we should not use the freadline function to get keyboard input. We have
seen in Section 6.7.1 that we should specify a callback function as a part of the
WindowKeyboard attribute. When the user presses a key, the runtime system will
look up this callback function (which is stored in the PSt) and apply it on the key
code and the PSt. The callback function performs the necessary actions on the
program state as a reaction on the user's keyboard input.

With TCP connections similar things happen. One obvious di�erence is, that a
callback function for TCP is not speci�ed as a part of a WindowAttribute. Instead

14.4. NON BLOCKING TCP IN I/O PROGRAMS 179

it is speci�ed as a ReceiverFunction which is a part of a receiver de�nition (see
Chapter 10). To receive data we have to open a receiver. If via a TCP connection
some data arrives, the ReceiverFunction of a receiver will be applied to this data.
But not only the receiving of data will cause a ReceiverFunction to be applied.
Generally, if a channel's state changes, the runtime system will generate a certain
event, on which a ReceiverFunction will be applied. There are two events for
receive channels:

:: ReceiveMsg m = Received m | EOM

and two events for send channels:

:: SendEvent = Sendable | Disconnected

A ReceiveMsg m event informs the application, that the message m has arrived. The
EOM event informs about closure of the channel. The two SendEvents inform the
application, that the state of a send channel changed to sendable or disconnected.

Another underlying idea is the following: When receivers are opened, receive chan-
nels are eaten but send channels are not eaten!

Eating has to do with our uniqueness typing system. We say a function eats an
object if the type of that object is uniquely attributed, and not returned.

Example Let's have a look on the following two functions:

sum_eating :: *{Int} -> Int

sum_eating {[0]=a0, [1]=a1}

= a0+a1

sum_not_eating :: *{Int} -> (Int, *{Int})

sum_not_eating a=:{[0]=a0, [1]=a1}

= (a0+a1, a)

sum eating eats it's unique array argument, but sum not eating does not
eat it. As a consequence, the passed array can not be used anymore if it is
passed to sum eating. The following application would be rejected by the
type system:

Start = (sum_eating a) + a.[0]

where

a = {47,11}

a is not unique on the right hand of the equal sign, because it is used twice.
It was tried to use a in the expression a.[0], although sum eating has eaten
a.

Fortunately we can calculate the desired sum with the following rule:

Start

(s1, a`) = sum_not_eating a

= s1 + a`.[0]

where

a = {47,11}

180 CHAPTER 14. TCP

As a consequence, it is impossible to apply any function to a receive channel, after
a receiver was opened for such a channel.

Let's examine, how we can open receivers for receive channels.

For each receive channel there is an algebraic receiver de�nition type, which is used
for opening a receiver. An object of such a type is passed to the openReceiver

function, as shown in Chapter 10. For TCP RChannels there is a TCP Receiver:

:: *TCP_Receiver ls ps

= TCP_Receiver

Id TCP_RChannel

(ReceiverFunction (ReceiveMsg ByteSeq) *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: ReceiverFunction m ps :== m -> ps -> ps

To open such a receiver, an Id, a TCP RChannel, a ReceiverFunction and Re-

ceiverAttributes have to be speci�ed. The Id can be used to disable or close
the receiver. If data has arrived on the channel, the ReceiverFunction will be
called with the Received alternative. If the connection is teard down by the
remote peer, then the ReceiverFunction will be called with the EOM alterna-
tive. Similar de�nitions are the TCP ListenerReceiver (for TCP Listeners), the
TCP CharReceiver (for receiving character by character) and the StringChannel-
Receiver (for StringRChannels) (see Appendixes A.33 and A.29).

Example We show a function f that opens a receiver for string channels. The
ReceiverFunction rcvFun will store the received strings in a �le, which is
also passed to f and which is stored in the local state of the receiver. When
the EOM event happens, the receiver will be closed by the runtime system after
evaluation of the EOM alternative. It is not necessary to close such a receiver
explicitly.

f :: StringRChannel *File (PSt .l .p) -> (PSt .l .p)

f stringChannel file pSt

(rId, pSt) = openRId pSt

(errReport, pSt) = openReceiver

file

(StringChannelReceiver rId

stringChannel rcvFun [])

pSt

| errReport<>NoError

= abort "an error occurred"

= pSt

where

rcvFun (Received string) (file, pSt)

= (fwrites string file, pSt)

rcvFun EOM (file, pSt)

= (undef, snd (accFiles (fclose file) pSt))

Now we turn our focus on receivers for send channels.

Receivers for send channels are called SendNotifiers. To open a SendNotifierwe
use the function openSendNotifier, which does not eat it's channel argument:

14.4. NON BLOCKING TCP IN I/O PROGRAMS 181

openSendNotifier :: .ls !(SendNotifier *(*ch .a) .ls (PSt .l .p))

!(PSt .l .p)

-> (!ErrorReport,!*(*ch .a),!PSt .l .p)

| accSChannel ch & Send ch

:: SendNotifier sChannel ls ps

= SendNotifier

sChannel

(ReceiverFunction SendEvent *(ls,ps))

[ReceiverAttribute *(ls,ps)]

We see, that no Id is used. Indeed we do not need an Id. The only thing we want
to do with a SendNotifier is closing it. This is done automatically, when we close
the corresponding send channel.

Since the send channel will not be eaten, it has to be stored somewhere in the
program state.

To send some data we can apply the following functions, which are de�ned in the
StdChannels module. These functions simply call their MT counterpart with a
timeout of zero:

send_NB :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

flushBuffer_NB :: !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

\NB" is a shorthand for \non blocking".

Typically an I/O program uses the send_NB function to send in a non blocking
way. If not all of the data can be sent immediately because the send channel's
state changed to full, the send NB function will store the unsent data in the send
channel's internal bu�er. When the
ow conditions again allow sending, the runtime
system will apply the SendNotifier's ReceiverFunction on the Sendable event.
The ReceiverFunction should try to
ush the internal bu�er then by using the
flushBuffer NB function.

As an example we will discuss a server program, that accepts one connection and
echoes the incoming data. Therefore it opens two receivers in it's initialization
function: for the receive channel a receiver will be opened to receive the incoming
data and for the send channel a send noti�er will be opened. The send noti�er allows
the application to perform
ow control. It should be possible, that the remote side
wants to receive the echoed data much slower than it wants to send. The echo
server monitors the size of the internal bu�er of the send channel. If this bu�er
size is greater than zero, then the receiver which receives the incoming data will
be disabled. This receiver will be enabled only, when due to a Sendable event the
bu�er can be
ushed again.

module echoServer

// **

// Clean tutorial example program.

//

// This program demonstrates the usage of functions for event driven TCP.

// It listens on port 7, accepts a connection and echoes the input

//

182 CHAPTER 14. TCP

// **

import StdEnv, StdTCP, StdIO

echoPort :== 7

:: *PState :== PSt TCP_DuplexChannel Bool

// The Boolean value stores, whether EOM happened on the receive channel.

Start world

(_, mbListener, world) = openTCP_Listener echoPort world

((_,duplexChan), listener, world)

= receive (fromJust mbListener) world

world = closeRChannel listener world

= startIO duplexChan False [initialize] [] world

///

//// initialize - the function to initialze the PSt ////

///

initialize :: PState -> PState

initialize pSt=:{ ls={rChannel,sChannel}, io }

(tcpRcvId, io) = openId io

pSt = { pSt & ls = { rChannel=undef, sChannel=undef }, io=io }

// open a receiver for the receive channel

(errReport1, pSt) = openReceiver tcpRcvId

(TCP_Receiver tcpRcvId rChannel rcvFun []) pSt

// open a receiver for the send channel

(errReport2, sChannel, pSt)

= openSendNotifier tcpRcvId

(SendNotifier sChannel sndFun []) pSt

| errReport1<>NoError || errReport2<>NoError

= abort "error: can't open receiver"

= { pSt & ls={ rChannel=undef, sChannel=sChannel } }

///

//// rcvFun - the callback function for the receive channels receiver ////

///

rcvFun :: (ReceiveMsg ByteSeq) (Id,PState) -> (Id,PState)

rcvFun (Received byteSeq) (tcpRcvId, pSt=:{ ls=ls=:{sChannel}, io})

(sChannel, io) = send_NB byteSeq sChannel io

(buffSize,sChannel) = bufferSize sChannel

// disable this receiver, if the send channel is full

io = case buffSize of

0 -> io

_ -> disableReceivers [tcpRcvId] io

= (tcpRcvId, { pSt & ls={ ls & sChannel=sChannel}, io=io })

rcvFun EOM (tcpRcvId, pSt=:{ ls=ls=:{sChannel}, io})

(buffSize,sChannel) = bufferSize sChannel

pSt = { pSt & ls = { ls & sChannel=sChannel}, ps=True, io=io }

// close program only, if all data in the send channel's internal buffer has been

// sent

pSt = case buffSize of

0 -> closeProcess (close pSt)

_ -> pSt

= (tcpRcvId, pSt)

//

14.4. NON BLOCKING TCP IN I/O PROGRAMS 183

//// sndFun - the callback function for the send channels receiver ////

//

sndFun :: SendEvent (Id,PState) -> (Id,PState)

sndFun Sendable (tcpRcvId, pSt=:{ ls=ls=:{sChannel}, ps=eomHappened ,io})

(sChannel, io) = flushBuffer_NB sChannel io

(buffSize,sChannel) = bufferSize sChannel

pSt = { pSt & ls = { ls & sChannel=sChannel}, io=io }

// enable the receive channel's receiver again, if the send channel is still

// sendable

pSt = case (buffSize,eomHappened) of

(0, False) -> { pSt & io = enableReceivers [tcpRcvId] pSt.io }

(0, True) -> close pSt

_ -> pSt

= (tcpRcvId, pSt)

sndFun Disconnected (ls, pSt)

= (ls, closeProcess pSt)

close :: PState -> PState

close pSt=:{ls=ls=:{sChannel}, io}

io = closeChannel sChannel io

= { pSt & ls={ ls & sChannel=undef}, io=io }

Is it forbidden to use blocking functions in I/O programs? This question arises
because using blocking functions mostly results in nicer programs. The answer is:
of course it is not forbidden. The only problem that arises when blocking functions
are used is, that the program will simply do not anything else while it blocks. In
particular it will not update the contents of windows. The programmer has to
estimate himself whether this is acceptable or not. Furtheron it depends on many
factors, whether the functions will block or not. For example there is no problem to
send data in a blocking way to a program which is known to receive fast enough.

184 CHAPTER 14. TCP

Appendix A

I/O library

A.1 StdBitmap

definition module StdBitmap

// **

// Clean Standard Object I/O library, version 1.1

//

// StdBitmap contains functions for reading bitmap files and drawing bitmaps.

// **

import StdMaybe

from StdFile import FileSystem

from osbitmap import Bitmap

import StdPicture

export FileSystem World

openBitmap :: !{#Char} !*env -> (!Maybe Bitmap,!*env) | FileSystem env

/* openBitmap reads in a bitmap from file.

The String argument must be the file name of the bitmap.

If the bitmap could be read, then (Just bitmap) is returned, otherwise Nothing

is returned.

*/

getBitmapSize :: !Bitmap -> Size

/* getBitmapSize returns the size of the given bitmap.

In case the bitmap is the result of an erroneous openBitmap, then the size is

zero.

*/

resizeBitmap :: !Bitmap !Size -> Bitmap

/* zooms or stretches a bitmap. The second argument is the size

of the resulting bitmap

*/

instance Drawables Bitmap

/* draw bitmap

draws the given bitmap with its left top at the current pen position.

drawAt pos bitmap

draws the given bitmap with its left top at the given pen position.

undraw(At)

equals unfill(At) the box {box_w=w,box_h=h} with {w,h} the size of bitmap.

*/

185

186 APPENDIX A. I/O LIBRARY

A.2 StdChannels

definition module StdChannels

// **

// Clean Standard Object I/O library, version 1.1

//

// StdChannels defines operations on channels

// **

import StdMaybe

from StdOverloaded import ==, toString

from channelenv import ChannelEnv

instance ChannelEnv World

// other instances are IOSt & PSt (see StdPSt)

///////////////////////////////// receive channels /////////////////////////////////

class Receive ch

where

receive_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Maybe !.a,!*(*ch .a), !*env)

| ChannelEnv env

receiveUpTo :: !Int !*(*ch .a) !*env

-> (![.a], !*(*ch .a), !*env)

| ChannelEnv env

available :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

eom :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

/* receive_MT

tries to receive on a channel. This function will block, until data can be

received, eom becomes true or the timeout expires.

receiveUpTo max ch env

receives messages on a channel until available becomes False or max

messages have been received.

available

polls on a channel, whether some data is ready to be received. If the

returned Boolean is True, then a following receive_MT will not block and

return TR_Success.

eom ("end of messages")

polls on a channel, whether data can't be received anymore.

*/

class closeRChannel ch :: !*(*ch .a) !*env -> !*env | ChannelEnv env

// closes the channel

//////////////////////////////// send channels /////////////////////////////////////

class Send ch

where

send_MT :: !(Maybe !Timeout) !.a !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

nsend_MT :: !(Maybe !Timeout) ![.a] !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

flushBuffer_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*(*ch .a), !*env)

| ChannelEnv env

closeChannel_MT :: !(Maybe !Timeout) !*(*ch .a) !*env

-> (!TimeoutReport, !Int, !*env)

| ChannelEnv env

abortConnection :: !*(*ch .a) !*env

A.2. STDCHANNELS 187

-> !*env

| ChannelEnv env

disconnected :: !*(*ch .a) !*env

-> (!Bool, !*(*ch .a), !*env)

| ChannelEnv env

bufferSize :: !*(*ch .a)

-> (!Int, !*(*ch .a))

/* send_MT mbTimeout a ch env

adds the data a to the channels internal buffer and tries to send this buffer

nsend_MT mbTimeout l ch env

adds the data l to the channels internal buffer and tries to send this buffer

flushBuffer_MT

tries to send the channels internal buffer

closeSChannel_MT

first tries to send the channels internal buffer and then closes the channel

abortConnection

will cause an abortive disconnect (sent data can be lost)

disconnected

polls on a channel, whether data can't be sent anymore. If the returned

Boolean is True, then a following send_MT will not block and return

TR_NoSuccess

bufferSize returns the size of the channels internal buffer in bytes

The integer value that is returned by send_MT, nsend_MT, flushBuffer_MT &

closeSChannel_MT is the number of sent bytes.

*/

////////////////////////////////// miscellaneous ///////////////////////////////////

class MaxSize ch

where

setMaxSize :: !Int !*(*ch .a) -> *(*ch .a)

getMaxSize :: !*(*ch .a) -> (!Int, !*(*ch .a))

clearMaxSize :: !*(*ch .a) -> *(*ch .a)

// to set,get or clear the maximum size of the data that can be received

:: DuplexChannel sChannel rChannel a

= { sChannel :: sChannel a

, rChannel :: rChannel a

}

:: TimeoutReport

= TR_Expired

| TR_Success

| TR_NoSuccess

:: Timeout :== Int // timeout in ticks

:: ReceiveMsg m = Received m

| EOM

// receiving "EOM" will automatically close the receiver

:: SendEvent = Sendable

| Disconnected

// receiving "Disconnected" will automatically close the

// receiver

instance == TimeoutReport

instance toString TimeoutReport

//////////////////////////////// derived functions /////////////////////////////////

nreceive_MT :: !(Maybe !Timeout) !Int !*(*ch .a) !*env

-> (!TimeoutReport, ![.a], !*(*ch .a), !*env)

| Receive ch & ChannelEnv env

/* nreceive_MT mbTimeout n ch env

tries to call receive_MT n times. If the result is (tReport, l, ch2, env2),

then the following holds:

188 APPENDIX A. I/O LIBRARY

tReport==TR_Succes <=> length l==n

tReport==TR_NoSuccess => length l<n

*/

// the following two receive functions call their "_MT" counterpart with no

// timeout. If the data can't be received because eom became True the function will

// abort.

receive :: !*(*ch .a) !*env

-> (!.a, !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

nreceive :: !Int !*(*ch .a) !*env

-> (![.a], !*(*ch .a), !*env)

| ChannelEnv env & Receive ch

// the following three send functions call their "_MT" counterpart with no timeout.

send :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

nsend :: ![.a] !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & nsend_MT ch

closeChannel :: !*(*ch .a) !*env

-> !*env

| ChannelEnv env & Send ch

// the following two send functions call their "_MT" counterpart with timeout == 0.

// "NB" is a shorthand for "non blocking"

send_NB :: !.a !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

flushBuffer_NB :: !*(*ch .a) !*env

-> (!*(*ch .a), !*env)

| ChannelEnv env & Send ch

A.3. STDCLIPBOARD 189

A.3 StdClipboard

definition module StdClipboard

// **

// Clean Standard Object I/O library, version 1.1

//

// StdClipboard specifies all functions on the clipboard.

// **

import StdMaybe

from iostate import PSt, IOSt

// Clipboard data items:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

/* toClipboard

makes an item transferable to the clipboard.

fromClipboard

attempts to retrieve an item of the instance type from the clipboard item.

If this fails, the result is Nothing, otherwise it is (Just item).

*/

instance Clipboard {#Char}

// Access to the current content of the clipboard:

setClipboard :: ![ClipboardItem] !(PSt .l .p) -> PSt .l .p

getClipboard :: !(PSt .l .p) -> (![ClipboardItem],!PSt .l .p)

/* setClipboard

replaces the current content of the clipboard with the argument list.

Of the list only the first occurence of a ClipboardItem of the same type

will be stored in the clipboard.

Note that setClipboard [] erases the clipboard.

getClipboard

gets the current content of the clipboard without changing the content.

*/

clipboardHasChanged :: !(PSt .l .p) -> (!Bool,!PSt .l .p)

/* clipboardHasChanged holds if the current content of the clipboard is different

from the last access to the clipboard.

*/

190 APPENDIX A. I/O LIBRARY

A.4 StdControl

definition module StdControl

// **

// Clean Standard Object I/O library, version 1.1

//

// StdControl specifies all control operations.

// Changing controls in a window/dialogue requires a *WState.

// Reading the status of controls requires a WState.

// **

import StdControlDef, StdMaybe

from iostate import IOSt

:: WState

getWindow :: !Id !(IOSt .l .p) -> (!Maybe WState, !IOSt .l .p)

/* getWindow returns a read-only WState for the indicated window.

In case the indicated window does not exist Nothing is returned.

*/

setWindow :: !Id ![IdFun *WState] !(IOSt .l .p) -> IOSt .l .p

/* Apply the control changing functions to the current state of the indicated

window.

In case the indicated window does not exist nothing happens.

*/

/* Functions that change the state of controls.

When applied to unknown Ids these functions have no effect.

*/

showControls :: ![Id] !*WState -> *WState

hideControls :: ![Id] !*WState -> *WState

/* (show/hide)Controls makes the indicated controls visible/invisible.

Hiding a control overrides the visibility of its elements, which become

invisible.

Showing a hidden control re-establishes the visibility state of its elements.

*/

enableControls :: ![Id] !*WState -> *WState

disableControls :: ![Id] !*WState -> *WState

/* (en/dis)ableControls (en/dis)ables the indicated controls.

Disabling a control overrides the SelectStates of its elements, which become

unselectable.

Enabling a disabled control re-establishes the SelectStates of its elements.

*/

markCheckControlItems :: !Id ![Index] !*WState -> *WState

unmarkCheckControlItems :: !Id ![Index] !*WState -> *WState

/* (unm/m)arkCheckControlItems unmarks/marks the indicated check items of the given

CheckControl. Indices range from 1 to the number of check items. Illegal indices

are ignored.

*/

selectRadioControlItem :: !Id !Index !*WState -> *WState

/* selectRadioControlItem marks the indicated radio item of a RadioControl, causing

the mark of the previously marked radio item to disappear. The item is given by

the Id of the RadioControl and its index position (counted from 1).

*/

selectPopUpControlItem :: !Id !Index !*WState -> *WState

/* selectPopUpControlItem marks the indicated popup item of a PopUpControl, causing

A.4. STDCONTROL 191

the mark of the previously marked popup item to disappear. The item is given by

the Id of the PopUpControl and its index position (counted from 1).

*/

moveControlViewFrame :: !Id Vector !*WState -> *WState

/* moveControlViewFrame moves the orientation of the CompoundControl over the given

vector, and updates the control if necessary. The control frame is not moved

outside the ViewDomain of the control. MoveControlViewFrame has no effect if the

indicated control has no ControlDomain attribute.

*/

setControlTexts :: ![(Id,String)] !*WState -> *WState

/* setControlTexts sets the text of the indicated (Text/Edit/Button)Controls.

If the indicated control is a (Text/Button)Control, then AltKey are interpreted

by the system.

If the indicated control is an EditControl, then the text is taken as it is.

*/

setEditControlCursor :: !Id !Int !*WState -> *WState

/* setEditControlCursor sets the cursor at position @2 of the current content of

the EditControl.

In case @2<0, then the cursor is set at the start of the current content.

In case @2>size content, then the cursor is set at the end of the current

content.

*/

setControlLooks :: ![(Id,Bool,Look)] !*WState -> *WState

/* setControlLooks applied to a CompoundControl turns it into a non-transparant

CompoundControl.

Setting the Look only redraws the indicated controls if the corresponding

Boolean is True.

*/

setSliderStates :: ![(Id,SliderState->SliderState)] !*WState -> *WState

setSliderThumbs :: ![(Id,Int)] !*WState -> *WState

/* setSliderStates

applies the function to the current SliderState of the indicated

SliderControl and redraws the settings if necessary.

setSliderThumbs

sets the new thumb value of the indicated SliderControl and redraws the

settings if necessary.

*/

drawInControl :: !Id ![DrawFunction] !*WState -> *WState

/* Draw in a (Custom(Button)/Compound)Control. If the CompoundControl is

transparant then this operation has no effect.

*/

getControlTypes :: !WState -> [(ControlType,Maybe Id)]

getCompoundTypes :: !Id !WState -> [(ControlType,Maybe Id)]

/* getControlTypes

yields the list of ControlTypes of the component controls of this window.

getCompoundTypes

yields the list of ControlTypes of the component controls of this

CompoundControl.

For both functions (Just id) is yielded if the component control has a

(ControlId id) attribute, and Nothing otherwise. Component controls are not

collected recursively through CompoundControls.

If the indicated CompoundControl is not a CompoundControl, then [] is yielded.

*/

getControlLayouts :: ![Id] !WState -> [(Bool,(Maybe ItemPos,ItemOffset))]

// (Nothing,zero)

getControlViewSizes :: ![Id] !WState -> [(Bool,Size)] // zero

getControlSelectStates :: ![Id] !WState -> [(Bool,SelectState)] // Able

192 APPENDIX A. I/O LIBRARY

getControlShowStates :: ![Id] !WState -> [(Bool,Bool)] // False

getControlTexts :: ![Id] !WState -> [(Bool,Maybe String)] // Nothing

getControlNrLines :: ![Id] !WState -> [(Bool,Maybe NrLines)] // Nothing

getControlLooks :: ![Id] !WState -> [(Bool,Maybe Look)] // Nothing

getControlMinimumSizes :: ![Id] !WState -> [(Bool,Maybe Size)] // Nothing

getControlResizes :: ![Id] !WState -> [(Bool,Maybe ControlResizeFunction)]

// Nothing

getRadioControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getRadioControlSelection:: ![Id] !WState -> [(Bool,Maybe Index)] // Nothing

getCheckControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getCheckControlSelection:: ![Id] !WState -> [(Bool,Maybe [Index])] // Nothing

getPopUpControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getPopUpControlSelection:: ![Id] !WState -> [(Bool,Maybe Index)] // Nothing

getSliderDirections :: ![Id] !WState -> [(Bool,Maybe Direction)] // Nothing

getSliderStates :: ![Id] !WState -> [(Bool,Maybe SliderState)] // Nothing

getControlViewFrames :: ![Id] !WState -> [(Bool,Maybe ViewFrame)] // Nothing

getControlViewDomains :: ![Id] !WState -> [(Bool,Maybe ViewDomain)] // Nothing

getControlItemSpaces :: ![Id] !WState -> [(Bool,Maybe (Int,Int))] // Nothing

getControlMargins :: ![Id] !WState -> [(Bool,Maybe ((Int,Int),(Int,Int)))]

// Nothing

/* Functions that return the current state of controls.

The result list is of equal length as the argument Id list. Each result list

element corresponds in order with the argument Id list. Of each element the

first Boolean result is False in case of invalid Ids (if so dummy values are

returned - see comment).

Important: controls with no ControlId attribute, or illegal ids, can not be

found in the WState!

getControlLayouts

Yields (Just ControlPos) if the indicated control had a ControlPos attribute

and Nothing otherwise. The ItemOffset offset is the exact current location

of the indicated control (LeftTop,offset).

getControlViewSizes

Yields the current view frame size of the indicated control. Note that for

any control other than the CompoundControl this is the exact size of the

control.

getControlSelectStates

Yields the current SelectState of the indicated control.

getControlShowStates

Yields True if the indicated control is visible, and False otherwise.

getControlTexts

Yields (Just text) of the indicated (Text/Edit/Button)Control.

If the control is not such a control, then Nothing is yielded.

getControlNrLines

Yields (Just nrlines) of the indicated EditControl.

If the control is not such a control, then Nothing is yielded.

getControlLooks

Yields the Look of the indicated (Custom/CustomButton/Compound)Control.

If the control is not such a control, or is a transparant CompoundControl,

then Nothing is yielded.

getControlMinimumSizes

Yields (Just minimumsize) if the indicated control had a ControlMinimumSize

attribute and Nothing otherwise.

getControlResizes

Yields (Just resizefunction) if the indicated control had a ControlResize

attribute and Nothing otherwise.

getRadioControlItems

Yields the TextLines of the items of the indicated RadioControl.

If the control is not such a control, then Nothing is yielded.

getRadioControlSelection

Yields the index of the selected radio item of the indicated RadioControl.

If the control is not such a control, then Nothing is yielded.

getCheckControlItems

Yields the TextLines of the items of the indicated CheckControl.

If the control is not such a control, then Nothing is yielded.

getCheckControlSelection

A.4. STDCONTROL 193

Yields the indices of the selected checkitems of the indicated CheckControl.

If the control is not such a control, then Nothing is yielded.

getPopUpControlItems

Yields the TextLines of the items of the indicated PopUpControl.

If the control is not such a control, then Nothing is yielded.

getPopUpControlSelection

Yields the Index of the indicated PopUpControl.

If the control is not such a control, then Nothing is yielded.

getSliderDirections

Yields (Just Direction) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

getSliderStates

Yields (Just SliderState) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

getControlViewFrames

Yields (Just ViewFrame) of the indicated CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlViewDomains

Yields (Just ViewDomain) of the indicated CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlItemSpaces

Yields (Just (horizontal space,vertical space)) of the indicated

CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlMargins

Yields (Just (ControlHMargin,ControlVMargin)) of the indicated

CompoundControl.

If the control is not such a control, then Nothing is yielded.

*/

194 APPENDIX A. I/O LIBRARY

A.5 StdControlClass

definition module StdControlClass

// **

// Clean Standard Object I/O library, version 1.1

//

// StdControlClass define the standard set of controls instances.

// **

import StdIOCommon, StdControlDef

from windowhandle import ControlState

from StdPSt import PSt, IOSt

class Controls cdef where

controlToHandles:: !(cdef .ls (PSt .l .p)) -> [ControlState .ls (PSt .l .p)]

getControlType :: (cdef .ls .ps) -> ControlType

instance Controls (AddLS c) | Controls c

instance Controls (NewLS c) | Controls c

instance Controls (ListLS c) | Controls c

instance Controls NilLS

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

instance Controls RadioControl

instance Controls CheckControl

instance Controls PopUpControl

instance Controls SliderControl

instance Controls TextControl

instance Controls EditControl

instance Controls ButtonControl

instance Controls CustomButtonControl

instance Controls CustomControl

instance Controls (CompoundControl c) | Controls c

A.6. STDCONTROLDEF 195

A.6 StdControlDef

definition module StdControlDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdControl contains the types to define the standard set of controls.

// **

import StdIOCommon

from StdPicture import DrawFunction, Picture

:: RadioControl ls ps

= RadioControl [RadioControlItem *(ls,ps)] RowsOrColumns Index

[ControlAttribute *(ls,ps)]

:: CheckControl ls ps

= CheckControl [CheckControlItem *(ls,ps)] RowsOrColumns

[ControlAttribute *(ls,ps)]

:: PopUpControl ls ps

= PopUpControl [PopUpControlItem *(ls,ps)] Index

[ControlAttribute *(ls,ps)]

:: SliderControl ls ps

= SliderControl Direction Length SliderState (SliderAction *(ls,ps))

[ControlAttribute *(ls,ps)]

:: TextControl ls ps

= TextControl TextLine [ControlAttribute *(ls,ps)]

:: EditControl ls ps

= EditControl TextLine Width NrLines [ControlAttribute *(ls,ps)]

:: ButtonControl ls ps

= ButtonControl TextLine [ControlAttribute *(ls,ps)]

:: CustomButtonControl ls ps

= CustomButtonControl Size Look [ControlAttribute *(ls,ps)]

:: CustomControl ls ps

= CustomControl Size Look [ControlAttribute *(ls,ps)]

:: CompoundControl c ls ps

= CompoundControl (c ls ps) [ControlAttribute *(ls,ps)]

:: TextLine :== String

:: NrLines :== Int

:: Width :== Int

:: Length :== Int

:: RowsOrColumns

= Rows Int

| Columns Int

:: RadioControlItem ps :== (TextLine, IOFunction ps)

:: CheckControlItem ps :== (TextLine, MarkState, IOFunction ps)

:: PopUpControlItem ps :== (TextLine, IOFunction ps)

:: Look :== SelectState -> UpdateState -> *Picture -> *Picture

:: SliderAction ps :== SliderMove -> ps -> ps

:: SliderMove

= SliderIncSmall

| SliderDecSmall

| SliderIncLarge

| SliderDecLarge

| SliderThumb Int

:: ControlAttribute ps // Default:

= ControlId Id // no id

| ControlPos ItemPos // (RightTo previous,zero)

| ControlSize Size // system derived/overruled

| ControlMinimumSize Size // zero

| ControlResize ControlResizeFunction // no resize

| ControlSelectState SelectState // control Able

196 APPENDIX A. I/O LIBRARY

| ControlHide // initially visible

| ControlFunction (IOFunction ps) // id

| ControlModsFunction (ModsIOFunction ps) // ControlFunction

| ControlMouse MouseStateFilter SelectState (MouseFunction ps)

// no mouse input/overruled

| ControlKeyboard KeyboardStateFilter SelectState (KeyboardFunction ps)

// no keyboard input/overruled

// For CompoundControls only:

| ControlItemSpace Int Int // system dependent

| ControlHMargin Int Int // system dependent

| ControlVMargin Int Int // system dependent

| ControlLook Look // control is transparant

| ControlViewDomain ViewDomain // {zero,max range}

| ControlOrigin Point // Left top of ViewDomain

| ControlHScroll ScrollFunction // no horizontal scrolling

| ControlVScroll ScrollFunction // no vertical scrolling

:: ControlResizeFunction

:== Size -> // current control size

Size -> // old window size

Size -> // new window size

Size // new control size

:: ScrollFunction

:== ViewFrame -> // current view

SliderState -> // current state of scrollbar

SliderMove -> // action of the user

Int // new thumb value of scrollbar

:: ControlType

:== String

A.7. STDCONTROLRECEIVER 197

A.7 StdControlReceiver

definition module StdControlReceiver

// **

// Clean Standard Object I/O library, version 1.1

//

// StdControlReceiver defines Receiver(2) controls instances.

// **

import StdReceiverDef, StdControlClass

instance Controls (Receiver m)

instance Controls (Receiver2 m r)

198 APPENDIX A. I/O LIBRARY

A.8 StdEventTCP

definition module StdEventTCP

// **

// Clean Standard Object I/O library, version 1.1

//

// StdEventTCP provides functions for using event driven TCP

// **

import StdChannels, StdTCPDef

import StdReceiver

from tcp_bytestreams import TCP_SCharStream_

instance Receivers TCP_ListenerReceiver

instance Receivers TCP_Receiver

instance Receivers TCP_CharReceiver

openSendNotifier :: .ls !(SendNotifier *(*ch .a) .ls (PSt .l .p))

!(PSt .l .p)

-> (!ErrorReport,!*(*ch .a),!PSt .l .p)

| accSChannel ch & Send ch

/* opens a send notifier, which informs the application, that sending on the

channel is again possible due to flow conditions. Possible error reports are

NoError and ErrorNotifierOpen

*/

closeSendNotifier :: !*(*ch .a) !(IOSt .l .p)

-> (!*(*ch .a), !IOSt .l .p)

| accSChannel ch

/* to close a send notifier. This function will be called implicitly if a send

channel is closed, so there is no need to do it explicitly then.

*/

lookupIPAddress_async :: !String !(InetLookupFunction (PSt .l .p)) !(PSt .l .p)

-> (PSt .l .p)

/* lookupIPAddress_async asynchronously looks up an IP address. The String can be

in dotted decimal form or alphanumerical. The InetLookupFunction will be called

with the IP address, if this address was found, otherwise with Nothing.

*/

connectTCP_async :: !(!IPAddress,!Port) !(InetConnectFunction (PSt .l .p))

!(PSt .l .p)

-> (PSt .l .p)

/* connectTCP_async asynchronously tries to establish a new connection. The

InetConnectFunction will be called with the new duplex channel if this attempt

was succesful, otherwise with Nothing

*/

class accSChannel ch :: (TCP_SChannel -> (x, TCP_SChannel)) *(*ch .a)

-> (x, *(*ch .a))

/* This overloaded function supports the openSendNotifier function. It applies an

access function on the underlying TCP_SChannel

*/

instance accSChannel TCP_SChannel_

instance accSChannel TCP_SCharStream_

A.9. STDFILESELECT 199

A.9 StdFileSelect

definition module StdFileSelect

// **

// Clean Standard Object I/O library, version 1.1

//

// StdFileSelect defines the standard file selector dialogue.

// **

import StdMaybe, StdString

class FileSelectEnv env where

selectInputFile :: !*env -> (!Maybe String,!*env)

selectOutputFile:: !String !String !*env -> (!Maybe String,!*env)

/* selectInputFile

opens a dialogue in which the user can browse the file system to select an

existing file.

If a file has been selected, the String result contains the complete

pathname of the selected file.

If the user has not selected a file, Nothing is returned.

selectOutputFile

opens a dialogue in which the user can browse the file system to save a

file.

The first argument is the prompt of the dialogue (default: "Save As:")

The second argument is the suggested filename.

If the indicated directory already contains a file with the indicated name,

selectOutputFile opens a new dialogue to confirm overwriting of the existing

file.

If either this dialogue is not confirmed or browsing is cancelled then

Nothing is returned, otherwise the String result is the complete pathname of

the selected file.

*/

instance FileSelectEnv World

200 APPENDIX A. I/O LIBRARY

A.10 StdId

definition module StdId

// **

// Clean Standard Object I/O library, version 1.1

//

// StdId specifies the generation functions for identification values.

// **

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

from iostate import IOSt

class Ids env where

openId :: !*env -> (!Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (!RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (!R2Id m r, !*env)

openR2Ids :: !Int !*env -> (![R2Id m r], !*env)

/* There are three types of identification values:

- RId m: for uni-directional message passing (see StdReceiver)

- R2Id m r: for bi-directional message passing (see StdReceiver)

- Id: for all other Object I/O library components

Of each generation function there are two variants:

- to create exactly one identification value.

- to create a number of identification values.

If the integer argument <=0, then an empty list of identification values

is generated.

*/

instance Ids World

instance Ids (IOSt .l .p)

A.11. STDIO 201

A.11 StdIO

definition module StdIO

// **

// Clean Standard Object I/O library, version 1.1

//

// StdIO contains all definition modules of the Object I/O library.

// **

import

StdId, // The operations that generate identification values

StdIOCommon, // Function and type definitions used in the library

StdMaybe, // The Maybe data type

StdPSt, // Operations on PSt that are not device related

StdSystem, // System dependent operations

StdFileSelect, // File selector dialogues

StdPictureDef, // Type definitions for picture handling

StdPicture, // Picture handling operations

StdBitmap, // Defines an instance for drawing bitmaps

StdProcessDef, // Type definitions for process handling

StdProcess, // Process handling operations

StdClipboard, // Clipboard handling operations

StdControlDef, // Type definitions for controls

StdControlClass, // Standard controls class instances

StdControlReceiver, // Receiver controls class instances

StdControl, // Control handling operations

StdMenuDef, // Type definitions for menus

StdMenuElementClass, // Standard menus class instances

StdMenuReceiver, // Receiver menus class instances

StdMenuElement, // Menu element handling operations

StdMenu, // Menu handling operations

StdReceiverDef, // Type definitions for receivers

StdReceiver, // Receiver handling operations

StdTimerDef, // Type definitions for timers

StdTimerElementClass, // Standard timer class instances

StdTimerReceiver, // Receiver timer class instances

StdTimer, // Timer handling operations

StdTime, // Time related operations

StdWindowDef, // Type definitions for windows

StdWindow, // Window handling operations

StdPrint, // for printing

StdPrintText // for printing text

202 APPENDIX A. I/O LIBRARY

A.12 StdIOBasic

definition module StdIOBasic

// **

// Clean Standard Object I/O library, version 1.1

//

// StdIOBasic defines basic types and access functions for the I/O library.

// **

import StdOverloaded, StdString

/* General type constructors for composing context-independent data structures.

*/

:: :^: t1 t2 = (:^:) infixr 9 t1 t2

/* General type constructors for composing context-dependent data structures.

*/

:: :~: t1 t2 cs = (:~:) infixr 9 (t1 cs) (t2 cs)

:: ListCS t cs = ListCS [t cs]

:: NilCS cs = NilCS

/* General type constructors for composing local and context-dependent

data structures.

*/

:: :+: t1 t2 ls cs = (:+:) infixr 9 (t1 ls cs) (t2 ls cs)

:: ListLS t ls cs = ListLS [t ls cs]

:: NilLS ls cs = NilLS

:: NewLS t ls cs = E..new: {newLS::new, newDef:: t new cs}

:: AddLS t ls cs = E..add: {addLS::add, addDef:: t *(add,ls) cs}

noLS :: (.a->.b) (.c,.a) -> (.c,.b) // Lift function a -> b

// to (c,a)->(c,b)

noLS1:: (.x->.a->.b) .x (.c,.a) -> (.c,.b) // Lift function x-> a -> b

// to x->(c,a)->(c,b)

:: Void = Void

:: Index :== Int

:: Title :== String

:: Vector = {vx::!Int,vy::!Int}

instance == Vector // @1-@2==zero

instance + Vector // {vx=@1.vx+@2.vx,vy=@1.vy+@2.vy}

instance - Vector // {vx=@1.vx-@2.vx,vy=@1.vy-@2.vy}

instance zero Vector // {vx=0,vy=0}

instance ~ Vector // zero-@1

instance toString Vector

class toVector x :: !x -> Vector

:: Size = {w ::!Int,h ::!Int}

instance == Size // @1.w==@2.w && @1.h==@2.h

instance zero Size // {w=0,h=0}

instance toVector Size // {w,h}->{vx=w,vy=h}

instance toString Size

:: Point

A.12. STDIOBASIC 203

= { x :: !Int

, y :: !Int

}

:: Rectangle

= { corner1 :: !Point

, corner2 :: !Point

}

instance == Point // @1-@2==zero

instance + Point // {x=@1.x+@2.x,y=@1.y+@2.y}

instance - Point // {x=@1.x-@2.x,y=@1.y-@2.y}

instance zero Point // {x=0,y=0}

instance toVector Point // {x,y}->{vx=x,vy=y}

instance toString Point

instance == Rectangle // @1.corner1==@2.corner1

// && @1.corner2==@2.corner2

instance zero Rectangle // {corner1=zero,corner2=zero}

instance toString Rectangle

rectangleSize :: !Rectangle -> Size // {w=abs (@1.corner1-@1.corner2).x,

// h=abs (@1.corner1-@1.corner2).y}

movePoint :: !Vector !Point -> Point // {vx,vy} {x,y} -> {vx+x,vy+y}

:: IdFun ps :== ps -> ps

204 APPENDIX A. I/O LIBRARY

A.13 StdIOCommon

definition module StdIOCommon

// **

// Clean Standard Object I/O library, version 1.1

//

// StdIOCommon defines common types and access functions for the

// Object I/O library.

// **

import StdOverloaded

import StdString

import StdIOBasic

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

from key import SpecialKey,

BeginKey,

ClearKey,

DeleteKey, DownKey,

EndKey, EnterKey, EscapeKey,

F1Key, F2Key, F3Key, F4Key, F5Key,

F6Key, F7Key, F8Key, F9Key, F10Key,

F11Key, F12Key, F13Key, F14Key, F15Key,

HelpKey,

LeftKey,

PgDownKey, PgUpKey,

RightKey,

UpKey

/* General type constructors for composing local and context-dependent

data structures.

*/

:: SelectState = Able | Unable

:: MarkState = Mark | NoMark

enabled :: !SelectState -> Bool // @1 == Able

marked :: !MarkState -> Bool // @1 == Mark

instance == SelectState // Constructor equality

instance == MarkState // Constructor equality

instance ~ SelectState // Able <-> Unable

instance ~ MarkState // Mark <-> NoMark

:: KeyboardState

= CharKey Char KeyState // ASCII character input

| SpecialKey SpecialKey KeyState Modifiers

// Special key input

:: KeyState

= KeyDown IsRepeatKey // Key is down

| KeyUp // Key goes up

:: IsRepeatKey // Flag on key down:

:== Bool // True iff key is repeating

:: Key

= IsCharKey Char

| IsSpecialKey SpecialKey

:: KeyboardStateFilter // Predicate on KeyboardState:

:== KeyboardState -> Bool // evaluate KeyFunction only if True

getKeyboardStateKeyState:: !KeyboardState -> KeyState

getKeyboardStateKey :: !KeyboardState -> Key

instance == KeyState // Equality on KeyState

:: MouseState

A.13. STDIOCOMMON 205

= MouseMove Point Modifiers // Mouse is up (position,modifiers)

| MouseDown Point Modifiers Int // Mouse goes down (and nr down)

| MouseDrag Point Modifiers // Mouse is down (position,modifiers)

| MouseUp Point Modifiers // Mouse goes up (position,modifiers)

:: ButtonState

= ButtonStillUp // MouseMove

| ButtonDown // MouseDown _ _ 1

| ButtonDoubleDown // _ _ 2

| ButtonTripleDown // _ _ >2

| ButtonStillDown // MouseDrag

| ButtonUp // MouseUp

:: MouseStateFilter // Predicate on MouseState:

:== MouseState -> Bool // evaluate MouseFunction only if True

getMouseStatePos :: !MouseState -> Point

getMouseStateModifiers :: !MouseState -> Modifiers

getMouseStateButtonState:: !MouseState -> ButtonState

instance == ButtonState // Constructor equality

:: SliderState

= { sliderMin :: !Int

, sliderMax :: !Int

, sliderThumb :: !Int

}

instance == SliderState // @1.sliderMin == @2.sliderMin

// @1.sliderMax == @2.sliderMax

// @1.sliderThumb == @2.sliderThumb

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewDomain :== Rectangle

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Modifiers

= { shiftDown :: !Bool // True iff shift down

, optionDown :: !Bool // True iff option down

, commandDown :: !Bool // True iff command down

, controlDown :: !Bool // True iff control down

, altDown :: !Bool // True iff alt down

}

// Constants to check which of the Modifiers are down.

NoModifiers :== {shiftDown = False

,optionDown = False

,commandDown= False

,controlDown= False

,altDown = False

}

ShiftOnly :== {NoModifiers & shiftDown = True}

OptionOnly :== {NoModifiers & optionDown = True}

CommandOnly :== {NoModifiers & commandDown = True}

ControlOnly :== {NoModifiers & controlDown = True}

AltOnly :== {NoModifiers & altDown = True}

/* The layout language used for windows and controls.

206 APPENDIX A. I/O LIBRARY

*/

:: ItemPos

:== (ItemLoc

, ItemOffset

)

:: ItemLoc

// Absolute:

= Fix Point

// Relative to corner:

| LeftTop

| RightTop

| LeftBottom

| RightBottom

// Relative in next line:

| Left

| Center

| Right

// Relative to other item:

| LeftOf Id

| RightTo Id

| Above Id

| Below Id

// Relative to previous item:

| LeftOfPrev

| RightToPrev

| AbovePrev

| BelowPrev

:: ItemOffset

:== Vector

instance == ItemLoc // Constructor and value equality

/* The Direction type.

*/

:: Direction

= Horizontal

| Vertical

instance == Direction // Constructor equality

/* Document interface type of interactive processes.

*/

:: DocumentInterface

= NDI // No Document Interface

| SDI // Single Document Interface

| MDI // Multiple Document Interface

instance == DocumentInterface // Constructor equality

/* Process attributes.

*/

:: ProcessAttribute ps // Default:

= ProcessWindowPos ItemPos // Platform dependent

| ProcessWindowSize Size // Platform dependent

| ProcessWindowResize (ProcessWindowResizeFunction ps)

// Platform dependent

| ProcessHelp (IOFunction ps) // No Help facility

| ProcessAbout (IOFunction ps) // No About facility

| ProcessActivate (IOFunction ps) // No action on activate

| ProcessDeactivate (IOFunction ps) // No action on deactivate

| ProcessClose (IOFunction ps) // Process is closed

| ProcessShareGUI // Process does not share parent GUI

// Attributes for MDI processes only:

| ProcessNoWindowMenu // Process has WindowMenu

A.13. STDIOCOMMON 207

:: ProcessWindowResizeFunction ps

:== Size // Old ProcessWindow size

-> Size // New ProcessWindow size

-> ps -> ps

/* Frequently used function types.

*/

:: IOFunction ps :== ps -> ps

:: ModsIOFunction ps :== Modifiers -> ps -> ps

:: MouseFunction ps :== MouseState -> ps -> ps

:: KeyboardFunction ps :== KeyboardState -> ps -> ps

/* Common error report types.

*/

:: ErrorReport // Usual cause:

= NoError // Everything went allright

| ErrorViolateDI // Violation against DocumentInterface

| ErrorIdsInUse // Object contains Ids that are bound

| ErrorUnknownObject // Object can not be found

| ErrorNotifierOpen // Second send notifier opened

instance == ErrorReport // Constructor equality

instance toString ErrorReport // Constructor as String

:: OkBool // True iff successful operation

:== Bool

208 APPENDIX A. I/O LIBRARY

A.14 StdMaybe

definition module StdMaybe

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMaybe defines the Maybe type.

// **

:: Maybe x

= Just x

| Nothing

isJust :: !(Maybe .x) -> Bool // case @1 of (Just _) -> True; _ -> False

isNothing :: !(Maybe .x) -> Bool // not o isJust

fromJust :: !(Maybe .x) -> .x // \(Just x) -> x

// for possibly unique elements

u_isJust :: !(Maybe .x) -> (!Bool, !Maybe .x)

u_isNothing :: !(Maybe .x) -> (!Bool, !Maybe .x)

A.15. STDMENU 209

A.15 StdMenu

definition module StdMenu

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMenu defines functions on menus.

// **

import StdMenuDef, StdMenuElementClass

from iostate import PSt, IOSt

// Operations on unknown Ids are ignored.

class Menus mdef where

openMenu :: .ls !(mdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getMenuType :: (mdef .ls .ps) -> MenuType

/* Open the given menu definition for this interactive process.

openMenu may not be permitted to open a menu depending on its DocumentInterface

(see the comments at the shareProcesses instances in module StdProcess).

In case a menu with the same Id is already open then nothing happens. In case

the menu has the WindowMenuId Id then nothing happens. In case the menu does

not have an Id, it will obtain an Id which is fresh with respect to the

current set of menus. The Id can be reused after closing this menu. In case

menu elements are opened with duplicate Ids, the menu will not be opened.

In case the menu definition does not have a MenuIndex attribute (see StdMenuDef)

it will be opened behind the last menu. In case the menu definition has a

MenuIndex attribute it will be placed behind the menu indicated by the

integer index.

The index of a menu starts from one for the first present menu. If the index

is negative or zero, then the new menu is added before the first menu. If

the index exceeds the number of menus, then the new menu is added behind the

last menu.

*/

instance Menus (Menu m) | MenuElements m

closeMenu :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeMenu closes the indicated Menu and all of its elements.

The WindowMenu can not be closed by closeMenu (in case the Id argument equals

WindowMenuId).

*/

openMenuElements :: !Id !Index .ls (m .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| MenuElements m

openSubMenuElements :: !Id !Id !Index .ls (m .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| MenuElements m

openRadioMenuItems :: !Id !Id !Index ![MenuRadioItem (PSt .l .p)] !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

/* Add menu elements to the indicated Menu, SubMenu, or RadioMenu.

openMenuElements:

adds menu elements to the Menu identified by the Id argument.

openSubMenuElements:

adds menu elements to the SubMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

openRadioMenuItems:

adds menu radio items to the RadioMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

210 APPENDIX A. I/O LIBRARY

If the RadioMenu was empty, then the first item in the list will be checked.

Menu elements are added after the item with the specified index. The index of a

menu element starts from one for the first menu element in the indicated

menu.

If the index is negative or zero, then the new menu elements are added

before the first menu element of the indicated menu.

If the index exceeds the number of menu elements in the indicated menu, then

the new menu elements are added behind the last menu element of the

indicated menu.

No menu elements are added if the indicated menu does not exist.

open(Sub)MenuElements have no effect in case menu elements with duplicate Ids

are opened.

*/

closeMenuElements :: !Id ![Id] !(IOSt .l .p) -> IOSt .l .p

/* closeMenuElements

closes menu elements of the Menu identified by the first Id argument by

their Ids. The elements of (Sub/Radio)Menus will be removed first.

*/

closeMenuIndexElements :: !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

closeSubMenuIndexElements :: !Id !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

closeRadioMenuIndexElements :: !Id !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

/* Close menu elements of the indicated Menu, SubMenu, or RadioMenu by their Index

position.

closeMenuIndexElements:

closes menu elements of the Menu identified by the Id argument.

closeSubMenuIndexElements:

closes menu elements of the SubMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

closeRadioMenuIndexElements:

closes menu items of the RadioMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

Analogous to openMenuElements and openRadioMenuItems indices range from one to

the number of menu elements in a menu. Invalid indices (less than one or

larger than the number of menu elements of the menu) are ignored.

If the currently checked element of a RadioMenu is closed, the first remaining

element of that RadioMenu will be checked.

Closing a (Sub/Radio)Menu closes the indicated (Sub/Radio)Menu and all of its

elements.

*/

enableMenuSystem :: !(IOSt .l .p) -> IOSt .l .p

disableMenuSystem:: !(IOSt .l .p) -> IOSt .l .p

/* Enable/disable the menu system of this interactive process. When the menu system

is re-enabled the previously selectable menus and elements will become

selectable again.

Enable/disable operations on the menu(element)s of a disabled menu system take

effect when the menu system is re-enabled.

enableMenuSystem has no effect in case the interactive process has a (number of)

modal dialogue(s).

*/

enableMenus :: ![Id] !(IOSt .l .p) -> IOSt .l .p

disableMenus:: ![Id] !(IOSt .l .p) -> IOSt .l .p

/* Enable/disable individual menus.

The WindowMenu can not be enabled/disabled.

Disabling a menu overrules the SelectStates of its elements, which become

unselectable.

Enabling a disabled menu re-establishes the SelectStates of its elements.

Enable/disable operations on the elements of a disabled menu take effect when

the menu is re-enabled.

*/

A.15. STDMENU 211

getMenuSelectState :: !Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* getMenuSelectState yields the current SelectState of the indicated menu. In case

the menu does not exist, Nothing is returned.

*/

getMenus :: !(IOSt .l .p) -> (![(Id,MenuType)],!IOSt .l .p)

/* getMenus yields the Ids and MenuTypes of the current set of menus of this

interactive process.

*/

getMenuPos :: !Id !(IOSt .l .p) -> (!Maybe Index,!IOSt .l .p)

/* getMenuPos yields the index position of the indicated menu in the current list

of menus.

In case the menu does not exist, Nothing is returned.

*/

setMenuTitle :: !Id !Title !(IOSt .l .p) -> IOSt .l .p

getMenuTitle :: !Id !(IOSt .l .p) -> (!Maybe Title,!IOSt .l .p)

/* setMenuTitle sets the title of the indicated menu.

In case the menu does not exist or refers to the WindowMenu, nothing

happens.

getMenuTitle retrieves the current title of the indicated menu.

In case the menu does not exist, Nothing is returned.

*/

212 APPENDIX A. I/O LIBRARY

A.16 StdMenuDef

definition module StdMenuDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMenu contains the types to define the standard set of menus and their

// elements.

// **

import StdIOCommon, StdMaybe

/* Menus: */

:: Menu m ls ps = Menu Title (m ls ps)

[MenuAttribute *(ls,ps)]

/* Menu elements: */

:: SubMenu m ls ps = SubMenu Title (m ls ps)

[MenuAttribute *(ls,ps)]

:: RadioMenu ls ps = RadioMenu [MenuRadioItem *(ls,ps)] Index

[MenuAttribute *(ls,ps)]

:: MenuItem ls ps = MenuItem Title

[MenuAttribute *(ls,ps)]

:: MenuSeparator ls ps = MenuSeparator [MenuAttribute *(ls,ps)]

:: MenuRadioItem ps :== (Title,Maybe Id,Maybe Char,IOFunction ps)

:: MenuAttribute ps // Default:

// Attributes for Menus and MenuElements:

= MenuId Id // no Id

| MenuSelectState SelectState // menu(item) Able

// Attributes only for Menus:

| MenuIndex Int // end of current menu list

// Attributes ignored by (Sub)Menus:

| MenuShortKey Char // no ShortKey

| MenuMarkState MarkState // NoMark

| MenuFunction (IOFunction ps) // \x->x

| MenuModsFunction (ModsIOFunction ps) // MenuFunction

:: MenuType :== String

:: MenuElementType :== String

A.17. STDMENUELEMENT 213

A.17 StdMenuElement

definition module StdMenuElement

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMenuElement specifies all functions on menu elements.

// Changing the status of menu elements requires a *MState.

// Reading the status of menu elements requires a MState.

// **

import StdMenuDef

from iostate import IOSt

:: MState

getMenu :: !Id !(IOSt .l .p) -> (!Maybe MState, !IOSt .l .p)

/* getMenu returns a read-only MState for the indicated menu.

In case the indicated menu does not exist Nothing is returned.

*/

setMenu :: !Id ![IdFun *MState] !(IOSt .l .p) -> IOSt .l .p

/* Apply the menu element changing functions to the current state of the indicated

menu.

In case the indicated menu does not exist nothing happens.

*/

/* Functions that change the state of menu elements.

When applied to unknown Ids none of these functions have effect.

*/

enableMenuElements :: ![Id] !*MState -> *MState

disableMenuElements :: ![Id] !*MState -> *MState

/* (en/dis)ableMenuElements set the SelectState of the indicated menu elements.

Disabling a (Sub/Radio)Menu overrules the SelectStates of its elements, which

become unselectable.

Enabling a disabled (Sub/Radio)Menu re-establishes the SelectStates of its

elements.

(En/Dis)able operations on the elements of a disabled (Sub/Radio)Menu take

effect when the (Sub/Radio)Menu is re-enabled.

*/

setMenuElementTitles :: ![(Id,Title)] !*MState -> *MState

/* setMenuElementTitles sets the titles of the indicated menu elements.

*/

markMenuItems :: ![Id] !*MState -> *MState

unmarkMenuItems :: ![Id] !*MState -> *MState

/* (un)markMenuItems sets the MarkState of the indicated MenuItems.

*/

selectRadioMenuItem :: !Id !Id !*MState -> *MState

selectRadioMenuIndexItem :: !Id !Index !*MState -> *MState

/* selectRadioMenu(Index)Item

selects the indicated MenuRadioItem of a RadioMenu, causing the mark of the

previously marked MenuRadioItem to disappear.

selectRadioMenuItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its Id.

selectRadioMenuIndexItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its index

214 APPENDIX A. I/O LIBRARY

position (counted from 1).

*/

/* Functions that read the state of menu elements.

*/

getMenuElementTypes :: !MState -> [(MenuElementType,Maybe Id)]

getCompoundMenuElementTypes :: !Id !MState -> [(MenuElementType,Maybe Id)]

/* getMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this menu.

getCompoundMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this

(Sub/Radio)Menu.

Both functions return (Just id) if the element has a MenuId attribute, and

Nothing otherwise.

Ids are not collected recursively through (Sub/Radio)Menus.

*/

getSelectedRadioMenuItem :: !Id !MState -> (!Index,!Maybe Id)

/* getSelectedRadioMenuItem

returns the Index and Id, if any, of the currently selected MenuRadioItem of

the indicated RadioMenu.

If the RadioMenu does not exist or is empyt, the Index is zero and the Id is

Nothing.

*/

getMenuElementSelectStates :: ![Id] !MState -> [(Bool,SelectState)] // Able

getMenuElementMarkStates :: ![Id] !MState -> [(Bool,MarkState)] // NoMark

getMenuElementTitles :: ![Id] !MState -> [(Bool,Maybe String)] // Nothing

getMenuElementShortKey :: ![Id] !MState -> [(Bool,Maybe Char)] // Nothing

/* The result list is of equal length as the argument Id list.

Each result list element corresponds in order with the argument Id list.

Of each element the first Boolean result is False in case of invalid id

(if so dummy values are returned - see comment).

- getMenuElementSelectStates

yield the SelectState of the indicated elements.

- getMenuElementMarkStates

yield the MarkState of the indicated elements.

- getMenuElementTitles

yields (Just title) of the indicated (SubMenu/MenuItem),

Nothing otherwise.

- getMenuElementShortKey

yields (Just key) of the indicated MenuItem, Nothing otherwise.

*/

A.18. STDMENUELEMENTCLASS 215

A.18 StdMenuElementClass

definition module StdMenuElementClass

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMenuElementClass defines the standard set of menu element instances.

// **

import StdMenuDef

from menuhandle import MenuElementState

class MenuElements m

where

menuElementToHandles :: !(m .ls .ps) -> [MenuElementState .ls .ps]

getMenuElementType :: (m .ls .ps) -> MenuElementType

instance MenuElements (AddLS m) | MenuElements m // getMenuElementType==""

instance MenuElements (NewLS m) | MenuElements m // getMenuElementType==""

instance MenuElements (ListLS m) | MenuElements m // getMenuElementType==""

instance MenuElements NilLS // getMenuElementType==""

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2 // getMenuElementType==""

instance MenuElements (SubMenu m) | MenuElements m

instance MenuElements RadioMenu

instance MenuElements MenuItem

instance MenuElements MenuSeparator

216 APPENDIX A. I/O LIBRARY

A.19 StdMenuReceiver

definition module StdMenuReceiver

// **

// Clean Standard Object I/O library, version 1.1

//

// StdMenuReceiver defines Receiver(2) menu element instances.

// **

import StdReceiverDef, StdMenuElementClass

// Receiver components:

instance MenuElements (Receiver m)

instance MenuElements (Receiver2 m r)

A.20. STDPICTURE 217

A.20 StdPicture

definition module StdPicture

// **

// Clean Standard Object I/O library, version 1.1

//

// StdPicture contains the drawing operations and access to Pictures.

// **

from StdFunc import St

from osfont import Font

from ospicture import Picture

import StdPictureDef

:: DrawFunction

:== *Picture -> *Picture

// The picture attributes:

:: PictureAttribute // Default:

= PicturePenSize Int // 1

| PicturePenPos Point // zero

| PicturePenColour Colour // Black

| PicturePenFont Font // DefaultFont

// Pen position attributes:

setPenPos :: !Point !*Picture -> *Picture

getPenPos :: !*Picture -> (!Point,!*Picture)

class movePenPos figure :: !figure !*Picture -> *Picture

// Move the pen position as much as when drawing the figure.

instance movePenPos Vector

instance movePenPos Curve

// PenSize attributes:

setPenSize :: !Int !*Picture -> *Picture

getPenSize :: !*Picture -> (!Int,!*Picture)

setDefaultPenSize :: !*Picture -> *Picture

// setDefaultPenSize = setPenSize 1

// Colour attributes:

setPenColour :: !Colour !*Picture -> *Picture

getPenColour :: !*Picture -> (!Colour,!*Picture)

setDefaultPenColour :: !*Picture -> *Picture

// setDefaultPenColour = setPenColour BlackColour

// Font attributes:

setPenFont :: !Font !*Picture -> *Picture

getPenFont :: !*Picture -> (!Font,!*Picture)

setDefaultPenFont :: !*Picture -> *Picture

/* Font operations:

*/

openFont :: !FontDef !*Picture -> (!(!Bool,!Font),!*Picture)

openDefaultFont :: !*Picture -> (!Font, !*Picture)

openDialogFont :: !*Picture -> (!Font, !*Picture)

/* openFont

creates the font as specified by the name, stylistic variations, and size.

The Boolean result is True only if the font is available and need not be

218 APPENDIX A. I/O LIBRARY

scaled.

In all other cases, an existing font is returned (depending on the system).

openDefaultFont

returns the font used by default by applications.

openDialogFont

returns the font used by default by the system.

*/

getFontNames :: !*Picture -> (![FontName], !*Picture)

getFontStyles :: !FontName !*Picture -> (![FontStyle], !*Picture)

getFontSizes :: !Int !Int !FontName !*Picture -> (![FontSize], !*Picture)

/* getFontNames

returns the FontNames of all available fonts.

getFontStyles

returns the FontStyles of all available styles of a particular FontName.

getFontSizes

returns all FontSizes in increasing order of a particular FontName that are

available without scaling. The sizes inspected are inclusive between the two

Integer arguments. (Negative values are set to zero.)

In case the requested font is unavailable, the styles or sizes of the

default font are returned.

*/

getFontDef :: !Font -> FontDef

/* getFontDef returns the name, stylistic variations and size of the argument Font.

*/

getPenFontCharWidth :: ! Char !*Picture -> (! Int, !*Picture)

getPenFontCharWidths :: ![Char] !*Picture -> (![Int], !*Picture)

getPenFontStringWidth :: ! String !*Picture -> (! Int, !*Picture)

getPenFontStringWidths :: ![String] !*Picture -> (![Int], !*Picture)

getPenFontMetrics :: !*Picture -> (!FontMetrics, !*Picture)

getFontCharWidth :: !Font ! Char !*Picture -> (!Int, !*Picture)

getFontCharWidths :: !Font ![Char] !*Picture -> (![Int], !*Picture)

getFontStringWidth :: !Font ! String !*Picture -> (!Int, !*Picture)

getFontStringWidths :: !Font ![String] !*Picture -> (![Int], !*Picture)

getFontMetrics :: !Font !*Picture -> (!FontMetrics, !*Picture)

/* get(Pen)Font(Char/String)Width(s)

return the width of the argument (Char/String)(s) given the Font argument

or current PenFont attribute.

get(Pen)FontMetrics

returns the FontMetrics of the Font argument or current PenFont attribute.

*/

/* Region functions.

A Region is defined by a collection of shapes.

*/

:: Region

// Basic access functions on Regions:

isEmptyRegion :: !Region -> Bool

getRegionBound :: !Region -> Rectangle

/* isEmptyRegion

holds if the argument region covers no pixels (it is empty).

getRegionBound

returns the smallest enclosing rectangle of the argument region.

If the region is empty, zero is returned.

*/

// Constructing a region:

class toRegion area :: !area -> Region

:: PolygonAt

A.20. STDPICTURE 219

= { polygon_pos :: !Point

, polygon :: !Polygon

}

instance toRegion Rectangle

instance toRegion PolygonAt

instance toRegion [area] | toRegion area

instance toRegion (:^: area1 area2) | toRegion area1 & toRegion area2

// Drawing and restoring picture attributes:

appPicture :: !(IdFun *Picture) !*Picture -> *Picture

accPicture :: !(St *Picture .x) !*Picture -> (.x,!*Picture)

/* (app/acc)Picture f pict

apply f to pict. After drawing, the picture attributes of the result

picture are restored to those of pict.

*/

// Drawing within in a clipping region:

appClipPicture :: !Region !(IdFun *Picture) !*Picture -> *Picture

accClipPicture :: !Region !(St *Picture .x) !*Picture -> (.x,!*Picture)

// Drawing in 'exclusive or' mode:

appXorPicture :: !(IdFun *Picture) !*Picture -> *Picture

accXorPicture :: !(St *Picture .x) !*Picture -> (.x,!*Picture)

/* (app/acc)XorPicture f pict

apply f to pict in the appropriate platform xor mode.

*/

// Drawing in 'hilite' mode:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt:: !Point !figure !*Picture -> *Picture

/* hilite

draws figures in the appropriate 'hilite' mode at the current pen position.

hiliteAt

draws figures in the appropriate 'hilite' mode at the argument pen position.

Both functions reset the 'hilite' mode after drawing.

*/

instance Hilites Box // Hilite a box

instance Hilites Rectangle // Hilite a rectangle (note: hiliteAt pos r = hilite r)

// Drawing points:

drawPoint :: !*Picture -> *Picture

drawPointAt :: !Point !*Picture -> *Picture

/* drawPoint

plots a point at the current pen position p and moves to p+{vx=1,vy=0}

drawPointAt

plots a point at the argument pen position, but retains the pen position.

*/

// Drawing lines:

drawLineTo :: !Point !*Picture -> *Picture

drawLine :: !Point !Point !*Picture -> *Picture

/* drawLineTo

draws a line from the current pen position to the argument point which

220 APPENDIX A. I/O LIBRARY

becomes the new pen position.

drawLine

draws a line between the two argument points, but retains the pen position.

*/

/* Drawing and filling operations.

These functions are divided into the following classes:

Drawables:

draw 'line-oriented' figures at the current pen position.

drawAt 'line-oriented' figures at the argument pen position.

undraw f = appPicture (draw f o setPenColour background)

undrawAt x f = appPicture (drawAt x f o setPenColour background)

Fillables:

fill 'area-oriented' figures at the current pen position.

fillAt 'area-oriented' figures at the argument pen position.

unfill f = appPicture (fill f o setPenColour background)

unfillAt x f = appPicture (fillAt x f o setPenColour background)

*/

class Drawables figure where

draw :: !figure !*Picture -> *Picture

drawAt :: !Point !figure !*Picture -> *Picture

undraw :: !figure !*Picture -> *Picture

undrawAt:: !Point !figure !*Picture -> *Picture

class Fillables figure where

fill :: !figure !*Picture -> *Picture

fillAt :: !Point !figure !*Picture -> *Picture

unfill :: !figure !*Picture -> *Picture

unfillAt:: !Point !figure !*Picture -> *Picture

// Text drawing operations:

// Text is always drawn with the baseline at the y coordinate of the pen.

instance Drawables Char

instance Drawables {#Char}

/* draw text:

draws the text starting at the current pen position.

The new pen position is directly after the drawn text including spacing.

drawAt p text:

draws the text starting at p.

*/

// Vector drawing operations:

instance Drawables Vector

/* draw v:

draws a line from the current pen position pen to pen+v.

drawAt p v:

draws a line from p to p+v.

*/

/* Oval drawing operations:

An Oval o is a transformed unit circle

with horizontal radius rx o.oval_rx

vertical radius ry o.oval_ry

Let (x,y) be a point on the unit circle:

then (x`,y`) = (x*rx,y*ry) is a point on o.

Let (x,y) be a point on o:

then (x`,y`) = (x/rx,y/ry) is a point on the unit circle.

*/

instance Drawables Oval

instance Fillables Oval

/* draw o:

draws an oval with the current pen position being the center of the oval.

A.20. STDPICTURE 221

drawAt p o:

draws an oval with p being the center of the oval.

fill o:

fills an oval with the current pen position being the center of the oval.

fillAt p o:

fills an oval with p being the center of the oval.

None of these functions change the pen position.

*/

/* Curve drawing operations:

A Curve c is a slice of an oval o

with start angle a c.curve_from

end angle b c.curve_to

direction d c.curve_clockwise

The angles are taken in radians (counter-clockwise).

If d holds then the drawing direction is clockwise, otherwise drawing occurs

counter-clockwise.

*/

instance Drawables Curve

instance Fillables Curve

/* draw c:

draws a curve with the starting angle a at the current pen position.

The pen position ends at ending angle b.

drawAt p c:

draws a curve with the starting angle a at p.

fill c:

fills the figure obtained by connecting the endpoints of the drawn curve

(draw c) with the center of the curve oval.

The pen position ends at ending angle b.

fillAt p c:

fills the figure obtained by connecting the endpoints of the drawn curve

(drawAt p c) with the center of the curve oval.

*/

/* Box drawing operations:

A Box b is a horizontally oriented rectangle

with width w b.box_w

height h b.box_h

In case w==0 (h==0), the Box collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Box collapses to a point.

*/

instance Drawables Box

instance Fillables Box

/* draw b:

draws a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

drawAt p b:

draws a box with left-top corner at p and right-bottom corner at p+(w,h).

fill b:

fills a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

fillAt p b:

fills a box with left-top corner at p and right-bottom corner at p+(w,h).

None of these functions change the pen position.

*/

/* Rectangle drawing operations:

A Rectangle r is always horizontally oriented

with width w abs (r.corner1.x-r.corner2.x)

height h abs (r.corner1.y-r.corner2.y)

In case w==0 (h==0), the Rectangle collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Rectangle collapses to a point.

*/

instance Drawables Rectangle

222 APPENDIX A. I/O LIBRARY

instance Fillables Rectangle

/* draw r:

draws a rectangle with diagonal corners r.corner1 and r.corner2.

drawAt p r:

draw r

fill r:

fills a rectangle with diagonal corners r.corner1 and r.corner2.

fillAt p r:

fill r

None of these functions change the pen position.

*/

/* Polygon drawing operations:

A Polygon p is a figure

with shape p.polygon_shape

A polygon p at a point base is drawn as follows:

drawPicture [setPenPos base:map draw shape]++[drawToPoint base]

*/

instance Drawables Polygon

instance Fillables Polygon

/* None of these functions change the pen position.

*/

getResolution :: !*Picture -> (!(!Int,!Int),!*Picture)

/* getResolution returns the horizontal and vertical resolution of a Picture in dpi

(dots per inch).

In case of a printer Picture:

the return values are the printer resolution (if it is not emulating the

screen resolution).

In case of a screen Picture:

the resolution is the number of pixels that fit in one "screen inch".

A "screen inch" is the physical size of a 72 point font on the screen.

Although some screens allow the user to alter the screen resolution,

getResolution always returns the same value for the same screen.

The reason is that if a user for instance increases the screen resolution,

not only the size of a pixel decreases, but also the size of a "screen

inch". So a 12 point font will not appear with 12 point size, but smaller

(A point is a physical unit, defined as 1 point is approximately 1/72 inch.)

*/

A.21. STDPICTUREDEF 223

A.21 StdPictureDef

definition module StdPictureDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdPictureDef contains the predefined figures that can be drawn.

// **

import StdIOBasic

:: Box // A box is a rectangle

= { box_w :: !Int // The width of the box

, box_h :: !Int // The height of the box

}

:: Oval // An oval is a stretched unit circle

= { oval_rx :: !Int // The horizontal radius (stretch)

, oval_ry :: !Int // The vertical radius (stretch)

}

:: Curve // A curve is a slice of an oval

= { curve_oval :: !Oval // The source oval

, curve_from :: !Real // Starting angle (in radians)

, curve_to :: !Real // Ending angle (in radians)

, curve_clockwise :: !Bool // Direction: True iff clockwise

}

:: Polygon // A polygon is an outline shape

= { polygon_shape :: ![Vector] // The shape of the polygon

}

:: FontDef

= { fName :: !FontName // Name of the font

, fStyles :: ![FontStyle] // Stylistic variations

, fSize :: !FontSize // Size in points

}

:: FontMetrics

= { fAscent :: !Int // Distance between top and base line

, fDescent :: !Int // Distance between bottom and base line

, fLeading :: !Int // Distance between two text lines

, fMaxWidth :: !Int // Max character width including spacing

}

:: FontName :== String

:: FontStyle :== String

:: FontSize :== Int

:: Colour

= RGB RGBColour

| Black | White

| DarkGrey | Grey | LightGrey // 75%, 50%, and 25% Black

| Red | Green | Blue

| Cyan | Magenta | Yellow

:: RGBColour

= { r :: !Int // The contribution of red

, g :: !Int // The contribution of green

, b :: !Int // The contribution of blue

}

// Colour constants:

BlackRGB :== {r=MinRGB,g=MinRGB,b=MinRGB}

WhiteRGB :== {r=MaxRGB,g=MaxRGB,b=MaxRGB}

MinRGB :== 0

MaxRGB :== 255

// Font constants:

SerifFontDef :== {fName="Times", fStyles=[],fSize=10}

SansSerifFontDef :== {fName="Arial", fStyles=[],fSize=10}

224 APPENDIX A. I/O LIBRARY

SmallFontDef :== {fName="Small Fonts",fStyles=[],fSize=7 }

NonProportionalFontDef :== {fName="Courier", fStyles=[],fSize=10}

SymbolFontDef :== {fName="Symbol", fStyles=[],fSize=10}

// Font style constants:

ItalicsStyle :== "Italic"

BoldStyle :== "Bold"

UnderlinedStyle :== "Underline"

// Standard lineheight of a font is the sum of its leading, ascent and descent:

fontLineHeight fMetrics :== fMetrics.fLeading + fMetrics.fAscent + fMetrics.fDescent

// Useful when working with Ovals and Curves:

PI :== 3.1415926535898

A.22. STDPRINT 225

A.22 StdPrint

definition module StdPrint

// **

// Clean Standard Object I/O library, version 1.1

//

// StdPrint specifies general printing functions.

// Related functions and modules:

// - getResolution (StdPicture)

// - resizeBitmap (StdBitmap)

// - StdPrintText to print text.

// **

import StdPicture, StdIOCommon

from StdOverloaded import ==

from osprint import PrintSetup, JobInfo, PrintInfo, Alternative,

Cancelled, StartedPrinting, PrintEnvironments

from iostate import IOSt, PSt

:: PageDimensions

= { page :: !Size // size of the drawable area of the page

, margins :: !Rectangle // This field contains information about the

// size of the margins on a sheet in pixels.

// Drawing can't occur within these margins.

// The margin Rectangle is bigger than the

// page size. Its values are:

// corner1.x<=0 && corner1.y<=0 &&

// corner2.x>=page.w && corner2.y>=page.h

, resolution :: !(!Int,!Int) // horizontal and vertical printer

// resolution in dpi

}

class PrintSetupEnvironments env

where

defaultPrintSetup :: !*env -> (!PrintSetup, !*env)

// returns a default print setup

printSetupDialog :: !PrintSetup !*env -> (!PrintSetup, !*env)

// lets the user choose a print setup via the print setup dialog

instance PrintSetupEnvironments World

instance PrintSetupEnvironments (IOSt .l .p)

getPageDimensions :: !PrintSetup !Bool-> PageDimensions

instance == PageDimensions

fwritePrintSetup :: !PrintSetup !*File -> *File

// writes PrintSetup to file (text or data)

freadPrintSetup :: !*File !*env -> (!Bool, !PrintSetup, !*File, !*env)

| PrintSetupEnvironments env

// reads PrintSetup from File (text or data). If resulting Boolean is True:success,

// otherwise the default PrintSetup is returned

print :: !Bool !Bool

.(PrintInfo !*Picture -> ([IdFun *Picture],!*Picture))

!PrintSetup !*printEnv

-> (!PrintSetup,!*printEnv)

| PrintEnvironments printEnv

/* print doDialog emulateScreen pages printSetup env

sends output to the printer and returns the used print setup, which can differ

from the input print setup

doDialog:

if True a dialog will pop up that lets the user choose all printing options,

226 APPENDIX A. I/O LIBRARY

otherwise printing will happen in the default way.

emulateScreen:

if True, the printing routine will emulate the resolution of the screen.

That means that a pixel on paper has the same dimension as on screen.

Otherwise, the used resolution will be the printer resolution, with the

effect that coordinates get much "tighter".

pages:

this function should calculate a list of functions, each function

representing one page to be printed. Each of these drawing functions is

applied to an initial printer Picture.

env:

a PrintEnvironment is either the PSt or the Files system.

*/

printUpdateFunction

:: !Bool (UpdateState -> *Picture -> *Picture) [Rectangle]

!PrintSetup !*printEnv

-> (!PrintSetup, !*printEnv)

| PrintEnvironments printEnv

/* printUpdateFunction doDialog update area printSetup env

sends the content of the update function of a given area to the printer:

doDialog:

identical to print.

update:

this function will be applied to an UpdateState of value

{oldFrame=area,newFrame=area,updArea=[area]}.

area:

the area to be sent to the printer. If a rectangle of this area does not

fit on one sheet, it will be distributed on several sheets.

printSetup,env,result value:

identical to print.

*/

printPagePerPage

:: !Bool !Bool

.x

.(.x -> .(PrintInfo -> .(*Picture -> ((.Bool,Point),(.state,*Picture)))))

((.state,*Picture) -> ((.Bool,Point),(.state,*Picture)))

!PrintSetup !*printEnv

-> (Alternative .x .state,!*printEnv)

| PrintEnvironments printEnv

/* printPagePerPage doDialog emulateScreen x prepare pages printSetup env

sends output to the printer.

This function can be used more efficiently than print. The major difference is

that the pages function is a state transition function instead of a page list

producing function. Each page transition function generates one page for the

printer. An additional feature of printPagePerPage is that it is possible to

set the origin of the printer Pictures.

doDialog:

identical to print.

emulateScreen:

identical to print.

x:

this value is passed to the prepare function.

prepare:

this function calculates the initial page print state.

Iff there are no pages to print, the return Boolean must be True.

The returned Point is the Origin of the first printer Picture.

pages:

this state transition function produces the printed pages.

The state argument consists of the state information and an initial printer

Picture which Origin has been set by the previous return Point value.

If there are no more pages to print, the return Boolean must be True. In

that case the result of printPagePerPage is (StartedPrinting state),

A.22. STDPRINT 227

with state the current state value. If printing should continue, the

return Boolean is False.

The returned Point is the Origin of the next printer Picture.

printSetup, env:

identical to print.

If printing is cancelled via the print dialog, then (Cancelled x) will be

returned, otherwise (StartedPrinting ...)

*/

instance PrintEnvironments World

// other instances are the Files subworld and PSt (see osprint.dcl)

228 APPENDIX A. I/O LIBRARY

A.23 StdPrintText

definition module StdPrintText

// **

// Clean Standard Object I/O library, version 1.1

//

// StdPrintText specifies functions to print text.

// **

import StdPicture,StdPrint

from StdString import String

:: WrapMode :== Int

NoWrap :== 0

LeftJustify :== 1

RightJustify :== 2

class CharStreams cs

where

getChar :: !*cs -> (!Bool,!Char,!*cs)

// returns the charstreams next character, and whether this operation was

// successful

savePos :: !*cs -> *cs

// saves actual position of charstream to be enable the restorePos function

// to restore it then.

restorePos :: !*cs -> *cs

eos :: !*cs -> (!Bool,!*cs)

// end of stream

instance CharStreams FileCharStream

:: *FileCharStream

fileToCharStream :: !*File -> *FileCharStream

charStreamToFile :: !*FileCharStream -> *File

printText1 :: !Bool !WrapMode !FontDef !Int !*charStream !PrintSetup !*printEnv

-> (!(!*charStream,!PrintSetup),!*printEnv)

| CharStreams charStream & PrintEnvironments printEnv

/* printText1 doDialog wrapMode font spacesPerTab charStream printSetup env

prints a CharStream:

doDialog:

identical to print (StdPrint)

wrapMode:

controls word wrapping in case lines do not fit. NoWrap suppresses wrapping.

LeftJustify and RightJustify wrap text to the left and right respectively.

font:

the text will be printed in this font.

spacesPerTab:

the number of spaces a tab symbol represents.

charStream:

the charStream to be printed.

printSetup, env:

identical to print (StdPrint)

*/

printText2 :: !String !String !Bool !WrapMode !FontDef !Int !*charStream !PrintSetup

A.23. STDPRINTTEXT 229

!*printEnv

-> (!(!*charStream,!PrintSetup),!*printEnv)

| CharStreams charStream & PrintEnvironments printEnv

/* printText2 titleStr pageStr doDialog wrapMode fontParams spacesPerTab charStream

printSetup env

prints a charStream with a header on each page.

titleStr:

this String will be printed on each page at the left corner of the header

pageStr:

this String and the actual page number are printed on the right corner of

the header

The other parameters are identical to printText1.

*/

printText3 ::!Bool !WrapMode !FontDef !Int

.(PrintInfo *Picture -> (state, (Int,Int), *Picture))

(state Int *Picture -> *Picture)

!*charStream

!PrintSetup !*printEnv

-> (!(!*charStream,!PrintSetup),!*printEnv)

| CharStreams charStream & PrintEnvironments printEnv

/* printText3 doDialog wrapMode font spacesPerTab textRange eachPageDraw charStream

printSetup env

prints a charStream with a header and trailer on each page.

textRange:

this function takes a PrintInfo record and the printer Picture on which the

text will be printed. It returns a triple (state,range,picture):

state:

a value of arbitrary type that can be used to pass data to the page

printing function pages.

range:

a pair (top,bottom), where top<bottom. The printed text will appear

within these y-coordinates only, so a header and a trailer can be

printed for each page.

eachPageDraw:

this function draws the header and/or trailer for the current page. Its

arguments are the data produced by textRange, the actual page number, and an

initial printer Picture. This function is applied by printText3 before each

new page receives its text.

The other parameters are identical to printText1.

*/

/* If a file is openend with FReadData, then all possible newline conventions

(unix,mac,dos) will be recognized. All these printing functions will replace

nonprintable characters of the font with ASCII spaces. Exceptions are: newline,

formfeed and tab. So the ASCII space has to be a printable character in the used

font. A form feed character will cause a form feed, and it will also end a line.

*/

230 APPENDIX A. I/O LIBRARY

A.24 StdProcess

definition module StdProcess

// **

// Clean Standard Object I/O library, version 1.1

//

// StdProcess contains the process creation and manipulation functions.

// **

import StdProcessDef, StdWindow

/* General process topology creation functions:

*/

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l .p) -> PSt .l .p

class shareProcesses pdef :: !(pdef .p) !(PSt .l .p) -> PSt .l .p

/* (start/open/share)Processes creates an interactive process topology specified by

the pdef argument.

All interactive processes can communicate with each other by means of the

file system or by message passing.

By default, processes obtain a private ProcessWindow. However, if a process

has the ProcessShareGUI attribute, then the process will share the

ProcessWindow of the current interactive process. Every interactive process

can create processes in this way. This results in a tree of processes (see

also the notes of termination at closeProcess).

startProcesses aborts the application if the argument world does not contain a

file system.

startProcesses terminates as soon as all interactive processes that are

created by startProcesses and their child processes have terminated. It

returns the final world, consisting of the final file system and event

stream.

shareProcesses adds the interactive processes specified by the pdef argument to

the process group of the current interactive process. The new interactive

processes can communicate with all interactive processes of the current

process group by means of the public process state component.

*/

instance Processes (ProcessGroup pdef) | shareProcesses pdef

instance Processes [pdef] | Processes pdef

instance Processes (:^: pdef1 pdef2) | Processes pdef1

& Processes pdef2

instance shareProcesses NDIProcess

instance shareProcesses (SDIProcess wdef) | Windows wdef

instance shareProcesses MDIProcess

instance shareProcesses (ListCS pdef) | shareProcesses pdef

instance shareProcesses (:~: pdef1 pdef2) | shareProcesses pdef1

& shareProcesses pdef2

// Convenience process creation functions:

startIO :: !.l !.p !(ProcessInit (PSt .l .p)) ![ProcessAttribute (PSt .l .p)]

!*World -> *World

/* startIO creates one process group of one interactive MDI process which is

initialised with the ProcessInit argument.

*/

A.24. STDPROCESS 231

// Process access operations:

closeProcess :: !(PSt .l .p) -> PSt .l .p

/* closeProcess removes all abstract devices that are held in the interactive

process.

If the interactive process has processes that share its GUI then these will also

be closed recursively. As a result evaluation of this interactive process

including GUI sharing processes will terminate.

*/

hideProcess :: !(IOSt .l .p) -> IOSt .l .p

showProcess :: !(IOSt .l .p) -> IOSt .l .p

/* If the interactive process is active, hideProcess hides the interactive process,

and showProcess makes it visible. Note that hiding an interactive process does

NOT disable the process but simply makes it invisible.

*/

getProcessWindowPos :: !(IOSt .l .p) -> (!Point,!IOSt .l .p)

/* getProcessWindowPos returns the current position of the ProcessWindow.

*/

getProcessWindowSize:: !(IOSt .l .p) -> (!Size,!IOSt .l .p)

/* getProcessWindowSize returns the current size of the ProcessWindow.

*/

232 APPENDIX A. I/O LIBRARY

A.25 StdProcessDef

definition module StdProcessDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdProcessDef contains the types to define interactive processes.

// **

import StdIOCommon

from iostate import PSt, IOSt

:: ProcessGroup pdef

= E..p:ProcessGroup p (pdef p)

:: NDIProcess p // DocumentInterface: NDI

= E..l: NDIProcess l

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

:: SDIProcess wdef p // DocumentInterface: SDI

= E..l ls:SDIProcess l ls

(wdef ls (PSt l p))

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

:: MDIProcess p // DocumentInterface: MDI

= E..l: MDIProcess l

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

/* NDIProcesses can't open windows and menus.

SDIProcesses can't open windows, except for their argument window.

MDIProcesses can open an arbitrary number of device instances.

*/

:: ProcessInit ps

:== [IdFun ps]

A.26. STDPST 233

A.26 StdPSt

definition module StdPSt

// **

// Clean Standard Object I/O library, version 1.1

//

// StdPSt defines operations on PSt and IOSt that are not abstract device related.

// **

import StdFunc, StdFile

import StdFileSelect, StdIOCommon, StdPicture, StdTime

from iostate import PSt, IOSt

from channelenv import ChannelEnv

/* PSt is an environment instance of the following classes:

- FileEnv (see StdFile)

- FileSelectEnv (see StdFileSelect)

- TimeEnv (see StdTime)

- ChannelEnv (see StdChannels)

*/

instance FileEnv (PSt .l .p)

instance FileSelectEnv (PSt .l .p)

instance TimeEnv (PSt .l .p)

instance ChannelEnv (PSt .l .p)

instance Ids (PSt .l .p)

/* IOSt is an environment instance of the following classes:

- FileEnv

- TimeEnv

- ChannelEnv

*/

instance FileEnv (IOSt .l .p)

instance ChannelEnv (IOSt .l .p)

instance TimeEnv (IOSt .l .p)

/* accScreenPicture provides access to an initial Picture as it would be created in

a window or control.

*/

class accScreenPicture env :: !(St *Picture .x) !*env -> (!.x,!*env)

instance accScreenPicture World

instance accScreenPicture (IOSt .l .p)

beep :: !(IOSt .l .p) -> IOSt .l .p

/* beep emits the alert sound.

*/

// Operations on the global cursor:

/* RWS ---

setCursor :: !CursorShape !(IOSt .l .p) -> IOSt .l .p

resetCursor :: !(IOSt .l .p) -> IOSt .l .p

obscureCursor :: !(IOSt .l .p) -> IOSt .l .p

/* setCursor overrules the shape of the cursor of all windows.

resetCursor removes the overruled cursor shape of all windows.

obscureCursor hides the cursor until the mouse is moved.

*/

234 APPENDIX A. I/O LIBRARY

// Operations on the DoubleDownDistance:

setDoubleDownDistance :: !Int !(IOSt .l .p) -> IOSt .l .p

/* setDoubleDownDistance sets the maximum distance the mouse is allowed to move to

generate a ButtonDouble(Triple)Down button state. Negative values are set to

zero.

*/

--- RWS */

// Operations on the DocumentInterface of an interactive process:

getDocumentInterface :: !(IOSt .l .p) -> (!DocumentInterface, !IOSt .l .p)

/* getDocumentInterface returns the DocumentInterface of the interactive process.

*/

// Operations on the attributes of an interactive process:

setProcessActivate :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

setProcessDeactivate:: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

setProcessHelp :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

setProcessAbout :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

/* These functions set the ProcessActivate, ProcessDeactivate, ProcessHelp, and

ProcessAbout attribute of the interactive process respectively.

*/

// Coercing PSt component operations to PSt operations.

appListPIO :: ![.IdFun (IOSt .l .p)] !(PSt .l .p) -> PSt .l .p

appListPLoc :: ![.IdFun .l] !(PSt .l .p) -> PSt .l .p

appListPPub :: ![.IdFun .p] !(PSt .l .p) -> PSt .l .p

appPIO :: !.(IdFun (IOSt .l .p)) !(PSt .l .p) -> PSt .l .p

appPLoc :: !.(IdFun .l) !(PSt .l .p) -> PSt .l .p

appPPub :: !.(IdFun .p) !(PSt .l .p) -> PSt .l .p

// Accessing PSt component operations.

accListPIO :: ![.St (IOSt .l .p) .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accListPLoc :: ![.St .l .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accListPPub :: ![.St .p .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accPIO :: !.(St (IOSt .l .p) .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

accPLoc :: !.(St .l .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

accPPub :: !.(St .p .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

A.27. STDRECEIVER 235

A.27 StdReceiver

definition module StdReceiver

// **

// Clean Standard Object I/O library, version 1.1

//

// StdReceiver specifies all receiver operations.

// **

import StdReceiverDef, StdMaybe

from iostate import PSt, IOSt

from id import RId, R2Id, RIdtoId, R2IdtoId, ==

// Operations on the ReceiverDevice.

// Open uni- and bi-directional receivers:

class Receivers rdef where

openReceiver :: .ls !*(*rdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getReceiverType :: *(*rdef .ls .ps)

-> ReceiverType

/* openReceiver

opens the given receiver if no receiver currently exists with the given

R(2)Id. The R(2)Id has to be used to send messages to this receiver.

getReceiverType

returns the type of the receiver (see also getReceivers).

*/

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

closeReceiver :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeReceiver closes the indicated uni- or bi-directional receiver.

Invalid Ids have no effect.

*/

getReceivers :: !(IOSt .l .p) -> (![(Id,ReceiverType)], !IOSt .l .p)

/* getReceivers returns the Ids and ReceiverTypes of all currently open uni- or

bi-directional receivers of this interactive process.

*/

enableReceivers :: ![Id] !(IOSt .l .p) -> IOSt .l .p

disableReceivers :: ![Id] !(IOSt .l .p) -> IOSt .l .p

getReceiverSelectState :: ! Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* (en/dis)ableReceivers

(en/dis)able the indicated uni- or bi-directional receivers.

Note that this implies that in case of synchronous message passing messages

can fail (see the comments of syncSend and syncSend2 below). Invalid Ids

have no effect.

getReceiverSelectState

yields the current SelectState of the indicated receiver. In case the

receiver does not exist, Nothing is returned.

*/

// Inter-process communication:

// Message passing status report:

:: SendReport

236 APPENDIX A. I/O LIBRARY

= SendOk

| SendUnknownReceiver

| SendUnableReceiver

| SendDeadlock

instance == SendReport

instance toString SendReport

asyncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport, !PSt .l .p)

/* asyncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to this process, the message is simply buffered.

asyncSend is asynchronous: the message will at some point be received by the

indicated receiver.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent.

Note that even though the message has been sent, it cannot be

guaranteed that the message will actually be handled by the

indicated receiver because it might become closed, forever disabled,

or flooded with synchronous messages.

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

Does not occur: the message is always buffered, regardless whether

the indicated receiver is Able or Unable. Note that in case the

receiver never becomes Able, the message will not be handled.

- SendDeadlock:

Does not occur.

*/

syncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport, !PSt .l .p)

/* syncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to the current process, the corresponding

ReceiverFunction is applied directly to the message argument and current process

state.

syncSend is synchronous: this interactive process blocks evaluation until the

indicated receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver.

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

The receiver exists, but its ReceiverSelectState attribute is Unable.

Message passing is halted. The message is not sent.

- SendDeadlock:

The receiver is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

*/

syncSend2 :: !(R2Id msg resp) msg !(PSt .l .p)

-> (!(!SendReport,!Maybe resp), !PSt .l .p)

/* syncSend2 posts a message to the receiver indicated by the argument R2Id. In

case the indicated receiver belongs to the current process, the corresponding

Receiver2Function is applied directly to the message argument and current

process state.

syncSend2 is synchronous: this interactive process blocks until the indicated

receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver. The response of the receiver is

returned as well as (Just response).

- SendUnknownReceiver:

The indicated receiver does not exist.

- SendUnableReceiver:

The receiver exists, but its ReceiverSelect attribute is Unable.

A.27. STDRECEIVER 237

Message passing is halted. The message is not sent.

- SendDeadlock:

The receiver is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

In all other cases than SendOk, the optional response is Nothing.

*/

238 APPENDIX A. I/O LIBRARY

A.28 StdReceiverDef

definition module StdReceiverDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdReceiverDef contains the types to define the standard set of receivers.

// **

import StdIOCommon

:: Receiver m ls ps = Receiver (RId m) (ReceiverFunction m *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: Receiver2 m r ls ps = Receiver2 (R2Id m r) (Receiver2Function m r *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: ReceiverFunction m ps :== m -> ps -> ps

:: Receiver2Function m r ps :== m -> ps -> (r,ps)

:: ReceiverAttribute ps // Default:

= ReceiverSelectState SelectState // receiver Able

| ReceiverConnectedReceivers [Id] // []

:: ReceiverType

:== String

A.29. STDSTRINGCHANNELS 239

A.29 StdStringChannels

definition module StdStringChannels

// **

// Clean Standard Object I/O library, version 1.1

//

// StdStringChannels provides channel instanciates to send and receive Strings

// These channels use their own protocol above TCP

// **

import StdString

import StdChannels, StdTCPDef, StdTCPChannels, StdReceiver, StdEventTCP

/* If a string via a StringChannel is sent, then first the length of the string is

sent, and then the string itself, e.g. sending the string "abc" will result in

"3 abc\xD"

*/

////////////////////// StringChannels to receive ///////////////////////////////////

:: *StringRChannel_ a

:: *StringRChannel :== StringRChannel_ String

:: *StringRChannels = StringRChannels [StringRChannel]

:: *StringChannelReceiver ls ps

= StringChannelReceiver

(RId (ReceiveMsg String)) StringRChannel

(ReceiverFunction (ReceiveMsg String) *(ls,ps))

[ReceiverAttribute *(ls,ps)]

toStringRChannel :: TCP_RChannel -> StringRChannel

instance Receivers StringChannelReceiver

instance Receive StringRChannel_

instance closeRChannel StringRChannel_

instance MaxSize StringRChannel_

////////////////////// StringChannels to send ////////////////////////////////////

:: *StringSChannel_ a

:: *StringSChannel :== StringSChannel_ String

:: *StringSChannels = StringSChannels [StringSChannel]

toStringSChannel :: TCP_SChannel -> StringSChannel

instance Send StringSChannel_

///

// for openSendNotifier, closeSendNotifier

instance accSChannel StringSChannel_

// for selectChannel

instance SelectSend StringSChannels

instance SelectReceive StringRChannels

instance getNrOfChannels StringRChannels

240 APPENDIX A. I/O LIBRARY

A.30 StdSystem

definition module StdSystem

// **

// Clean Standard Object I/O library, version 1.1

//

// StdSystem defines platform dependent constants and functions.

// **

import StdIOCommon

// System dependencies concerning the file system.

dirseparator :: Char // Separator between folder- and filenames in a pathname

homepath :: !String -> String

applicationpath :: !String -> String

newlineChars :: !String

/* dirseparator

is the separator symbol used between folder- and filenames in a file path.

homepath

prefixes the 'home' directory file path to the given file name.

applicationpath

prefixes the 'application' directory file path to the given file name.

Use these directories to store preference/options/help files of an application.

newlineChars

the newline characters in a textfile

*/

// System dependencies concerning the time resolution

ticksPerSecond :: Int

/* ticksPerSecond returns the maximum timer resolution per second.

*/

// System dependencies concerning the screen resolution.

mmperinch :== 25.4

hmm :: !Real -> Int

vmm :: !Real -> Int

hinch :: !Real -> Int

vinch :: !Real -> Int

/* h(mm/inch) convert millimeters/inches into pixels, horizontally.

v(mm/inch) convert millimeters/inches into pixels, vertically.

*/

maxScrollWindowSize :: Size

maxFixedWindowSize :: Size

/* maxScrollWindowSize

yields the range at which scrollbars are inactive.

maxFixedWindowSize

yields the range at which a window still fits on the screen.

*/

printSetupTypical :: Bool

A.31. STDTCP 241

A.31 StdTCP

definition module StdTCP

import StdChannels,

StdTCPChannels,

StdEventTCP,

StdStringChannels

242 APPENDIX A. I/O LIBRARY

A.32 StdTCPChannels

definition module StdTCPChannels

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTCPChannels provides instanciates to use TCP

// **

import StdTCPDef, StdChannels

from StdIOCommon import OkBool

from StdIOBasic import Void

from tcp_bytestreams import TCP_SCharStream_, TCP_RCharStream_

/////////////////////////////////// Listeners //////////////////////////////////////

instance Receive TCP_Listener_

instance closeRChannel TCP_Listener_

// receiving on a listener will accept a TCP_DuplexChannel. eom never becomes True

// for listeners.

//////////////////////////////// TCP send channels /////////////////////////////////

instance Send TCP_SChannel_

/////////////////////////////// TCP receive channels ///////////////////////////////

instance Receive TCP_RChannel_

instance closeRChannel TCP_RChannel_

instance MaxSize TCP_RChannel_

//////////////////////////// TCP char streams to receive ///////////////////////////

:: *TCP_RCharStream :== TCP_RCharStream_ Char

:: *TCP_RCharStreams = TCP_RCharStreams [TCP_RCharStream]

toRCharStream :: !TCP_RChannel -> TCP_RCharStream

instance Receive TCP_RCharStream_

instance closeRChannel TCP_RCharStream_

//////////////////////////// TCP char streams to send //////////////////////////////

:: *TCP_SCharStream :== TCP_SCharStream_ Char

:: *TCP_SCharStreams = TCP_SCharStreams [TCP_SCharStream]

toSCharStream :: !TCP_SChannel -> TCP_SCharStream

instance Send TCP_SCharStream_

/////////////////////////// establishing connections ///////////////////////////////

lookupIPAddress :: !String !*env

-> (!Maybe IPAddress, !*env)

| ChannelEnv env

connectTCP_MT :: !(Maybe !Timeout) !(!IPAddress,!Port) !*env

-> (!TimeoutReport, !Maybe TCP_DuplexChannel, !*env)

| ChannelEnv env

openTCP_Listener :: !Port !*env

-> (!OkBool, !Maybe TCP_Listener, !*env)

| ChannelEnv env

tcpPossible :: !*env

-> (!Bool, !*env)

| ChannelEnv env

/* lookupIPAddress

A.32. STDTCPCHANNELS 243

input String can be in dotted decimal form or alphanumerical. In the latter

case the DNS is called

connectTCP

tries to establish a TCP connection

openTCP_Listener

to listen on a certain port

tcpPossible

whether tcp can be started on this computer

*/

//////////////////////////////// multiplexing /////////////////////////////////////

selectChannel_MT :: !(Maybe !Timeout) !*r_channels !*s_channels !*World

-> (![(!Int, !SelectResult)],

!*r_channels, !*s_channels, !*World)

| SelectReceive r_channels & SelectSend s_channels

/* selectChannel_MT mbTimeout r_channels s_channels world

determines on which channels first "something happens". If the result is

an empty list, then the timeout expired. Otherwise each (who, what) element

of the result identifies one channel in r_channels or s_channels. The

what value determines whether available/eom/disconnected on the identified

channel would have returned True. what==SR_Sendable indicates, that it is

possible to send non blocking on the identified channel. If r_channels

contains r channels and if s_channels contains s channels, then the

following holds:

isMember what [SR_Available ,SR_EOM] => 0<=who<r

isMember what [SR_Sendable ,SR_Disconnected] => 0<=who<s

*/

instance == SelectResult

instance toString SelectResult

// the following classes support the selectChannel_MT function

class SelectReceive channels

where

accRChannels :: (PrimitiveRChannel -> (x, PrimitiveRChannel)) !*channels

-> (![x], !*channels)

getRState :: !Int !*channels !*World

-> (!Maybe !SelectResult, !*channels, !*World)

/* accRChannels f channels

applies a function on each channel in channels and returns a list, which

contains the result for each application

getRState

applies available and eom on the channel which is identified by the Int

parameter and returns SR_Available or SR_EOM or Nothing

*/

class SelectSend channels

where

accSChannels :: (TCP_SChannel -> (x, TCP_SChannel)) !*channels

-> (![x], !*channels)

appDisconnected :: !Int !*channels !*World

-> (!Bool, !*channels, !*World)

/* accSChannels

applies a function on each channel in channels and returns a list, which

contains the result for each application

appDisconnected

returns whether disconnected is True for the channel which is identified by

the Int parameter

*/

class getNrOfChannels channels :: !*channels

-> (!Int, !*channels)

// getNrOfChannels channels

// returns the number of channels in channels

244 APPENDIX A. I/O LIBRARY

instance SelectReceive TCP_RChannels, TCP_Listeners, TCP_RCharStreams, Void

instance SelectReceive (:^: *x *y) | SelectReceive, getNrOfChannels x

& SelectReceive y

instance SelectSend TCP_SChannels, TCP_SCharStreams, Void

instance SelectSend (:^: *x *y) | SelectSend, getNrOfChannels x

& SelectSend y

instance getNrOfChannels TCP_RChannels, TCP_Listeners, TCP_RCharStreams,

TCP_SChannels, TCP_SCharStreams, Void

instance getNrOfChannels (:^: *x *y) | getNrOfChannels x & getNrOfChannels y

A.33. STDTCPDEF 245

A.33 StdTCPDef

definition module StdTCPDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTCPDef provides basic definitions for using TCP

// **

import StdString

import StdReceiverDef, StdMaybe

from StdChannels import DuplexChannel, ReceiveMsg, SendEvent

from tcp import TCP_SChannel_,TCP_RChannel_,TCP_Listener_,IPAddress

:: *TCP_SChannel :== TCP_SChannel_ ByteSeq

:: *TCP_RChannel :== TCP_RChannel_ ByteSeq

:: *TCP_Listener :== TCP_Listener_ (IPAddress, TCP_DuplexChannel)

:: Port :== Int

:: *TCP_DuplexChannel :== DuplexChannel *TCP_SChannel_ *TCP_RChannel_ ByteSeq

:: ByteSeq

// a sequence of bytes

instance toString ByteSeq

instance == ByteSeq

toByteSeq :: !x -> ByteSeq | toString x

byteSeqSize :: !ByteSeq -> Int

// byteSeqSize returns the size in bytes

instance toString IPAddress

// returns ip address in dotted decimal form

/////////////////////////// for event driven processing ////////////////////////////

// to receive byte sequences

:: *TCP_Receiver ls ps

= TCP_Receiver

Id TCP_RChannel

(ReceiverFunction (ReceiveMsg ByteSeq) *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: SendNotifier sChannel ls ps

= SendNotifier

sChannel

(ReceiverFunction SendEvent *(ls,ps))

[ReceiverAttribute *(ls,ps)]

// to accept new connections

:: *TCP_ListenerReceiver ls ps

= TCP_ListenerReceiver

Id TCP_Listener

((ReceiveMsg (IPAddress,TCP_DuplexChannel)) -> *(*(ls,ps) -> *(ls,ps)))

[ReceiverAttribute *(ls,ps)]

// to receive characters

:: *TCP_CharReceiver ls ps

= TCP_CharReceiver

Id TCP_RChannel (Maybe NrOfIterations)

(ReceiverFunction (ReceiveMsg Char) *(ls,ps))

[ReceiverAttribute *(ls,ps)]

246 APPENDIX A. I/O LIBRARY

/* For efficency the receiver function of a TCP_CharReceiver will be called from

a loop. Within this loop no other events can be handled. The NrOfIterations

parameter limits the maximum number of iterations.

*/

:: NrOfIterations :== Int

:: InetLookupFunction ps :== (Maybe IPAddress) -> *(ps -> ps)

:: InetConnectFunction ps :== (Maybe TCP_DuplexChannel) -> *(ps -> ps)

//////////////////////////////// for multiplexing //////////////////////////////////

:: *TCP_RChannels = TCP_RChannels [TCP_RChannel]

:: *TCP_SChannels = TCP_SChannels [TCP_SChannel]

:: *TCP_Listeners = TCP_Listeners [TCP_Listener]

:: *PrimitiveRChannel

= TCP_RCHANNEL TCP_RChannel

| TCP_LISTENER TCP_Listener

:: SelectResult

= SR_Available

| SR_EOM

| SR_Sendable

| SR_Disconnected

A.34. STDTIME 247

A.34 StdTime

definition module StdTime

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTime contains time related operations.

// **

import StdOverloaded

from ostick import Tick

:: Time

= { hours :: !Int // hours (0-23)

, minutes :: !Int // minutes (0-59)

, seconds :: !Int // seconds (0-59)

}

:: Date

= { year :: !Int // year

, month :: !Int // month (1-12)

, day :: !Int // day (1-31)

, dayNr :: !Int // day of week (1-7, Sunday=1, Saturday=7)

}

wait :: !Int .x -> .x

/* wait n x suspends the evaluation of x modally for n ticks.

If n<=0, then x is evaluated immediately.

*/

instance < Tick

intPlusTick :: !Int !Tick -> Tick

tickDifference :: !Tick !Tick -> Int

class TimeEnv env where

getBlinkInterval:: !*env -> (!Int, !*env)

getCurrentTime :: !*env -> (!Time, !*env)

getCurrentDate :: !*env -> (!Date, !*env)

getCurrentTick :: !*env -> (!Tick, !*env)

/* getBlinkInterval

returns the time interval in ticks that should elapse between blinks of

e.g. a cursor. This interval may be changed by the user while the

interactive process is running!

getCurrentTime

returns the current Time.

getCurrentDate

returns the current Date.

getCurrentTick

returns the current Tick.

*/

instance TimeEnv World

248 APPENDIX A. I/O LIBRARY

A.35 StdTimer

definition module StdTimer

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTimer specifies all timer operations.

// **

import StdTimerDef, StdTimerElementClass, StdMaybe

from StdSystem import ticksPerSecond

from iostate import PSt, IOSt

class Timers tdef where

openTimer :: .ls !(tdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getTimerType:: (tdef .ls .ps) -> TimerType

/* Open a new timer.

This function has no effect in case the interactive process already contains a

timer with the same Id. In case TimerElements are opened with duplicate Ids, the

timer will not be opened. Negative TimerIntervals are set to zero.

In case the timer does not have an Id, it will obtain an Id which is fresh with

respect to the current set of timers. The Id can be reused after closing this

timer.

*/

instance Timers (Timer t) | TimerElements t

closeTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeTimer closes the timer with the indicated Id.

*/

getTimers :: !(IOSt .l .p) -> ([(Id,TimerType)],!IOSt .l .p)

/* getTimers returns the Ids and TimerTypes of all currently open timers.

*/

enableTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

disableTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

getTimerSelectState :: !Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* (en/dis)ableTimer (en/dis)ables the indicated timer.

getTimerSelectState yields the SelectState of the indicated timer. If the timer

does not exist, then Nothing is yielded.

*/

setTimerInterval :: !Id !TimerInterval !(IOSt .l .p) -> IOSt .l .p

getTimerInterval :: !Id !(IOSt .l .p)

-> (!Maybe TimerInterval,!IOSt .l .p)

/* setTimerInterval

sets the TimerInterval of the indicated timer.

Negative TimerIntervals are set to zero.

getTimerInterval

yields the TimerInterval of the indicated timer.

If the timer does not exist, then Nothing is yielded.

*/

A.36. STDTIMERDEF 249

A.36 StdTimerDef

definition module StdTimerDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTimerDef contains the types to define the standard set of timers.

// **

import StdIOCommon

:: Timer t ls ps = Timer TimerInterval (t ls ps) [TimerAttribute *(ls,ps)]

:: TimerInterval

:== Int

:: TimerAttribute ps // Default:

= TimerId Id // no Id

| TimerSelectState SelectState // timer Able

| TimerFunction (TimerFunction ps) // _ x->x

:: TimerFunction ps :== NrOfIntervals->ps->ps

:: NrOfIntervals :== Int

:: TimerType :== String

:: TimerElementType :== String

250 APPENDIX A. I/O LIBRARY

A.37 StdTimerElementclass

definition module StdTimerElementClass

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTimerElementClass define the standard set of timer element instances.

// **

import StdIOCommon, StdTimerDef

from timerhandle import TimerElementState

class TimerElements t where

timerElementToHandles :: !(t .ls .ps) -> [TimerElementState .ls .ps]

getTimerElementType :: (t .ls .ps) -> TimerElementType

instance TimerElements (NewLS t) | TimerElements t // getTimerElementType==""

instance TimerElements (AddLS t) | TimerElements t // getTimerElementType==""

instance TimerElements (ListLS t) | TimerElements t // getTimerElementType==""

instance TimerElements NilLS // getTimerElementType==""

instance TimerElements ((:+:) t1 t2) | TimerElements t1

& TimerElements t2 // getTimerElementType==""

A.38. STDTIMERRECEIVER 251

A.38 StdTimerReceiver

definition module StdTimerReceiver

// **

// Clean Standard Object I/O library, version 1.1

//

// StdTimerReceiver defines Receiver(2) timer element instances.

// **

import StdReceiverDef, StdTimerElementClass

// Receiver components for timers:

instance TimerElements (Receiver m)

instance TimerElements (Receiver2 m r)

252 APPENDIX A. I/O LIBRARY

A.39 StdWindow

definition module StdWindow

// **

// Clean Standard Object I/O library, version 1.1

//

// StdWindow defines functions on windows and dialogues.

// **

import StdMaybe, StdWindowDef

from StdPSt import PSt, IOSt

from StdControlClass import Controls, ControlState

// Functions applied to non-existent windows or unknown ids have no effect.

class Windows wdef

where

openWindow :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getWindowType :: (wdef .ls .ps) -> WindowType

class Dialogs wdef

where

openDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

openModalDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getDialogType :: (wdef .ls .ps) -> WindowType

/* open(Window/Dialog) opens the given window(dialog).

If the Window(Dialog) has no WindowIndex attribute (see StdWindowDef), then the

new window is opened frontmost.

If the Window(Dialog) has a WindowIndex attribute, then the new window is

opened behind the window indicated by the integer index:

Index value 1 indicates the top-most window.

Index value M indicates the bottom-most modal window, if there are M modal

windows.

Index value N indicates the bottom-most window, if there are N windows.

If index<M, then the new window is added behind the bottom-most modal window

(at index M).

If index>N, then the new window is added behind the bottom-most window

(at index N).

openModalDialog always opens a window at the front-most position.

openWindow may not be permitted to open a window depending on its

DocumentInterface (see the comments at the ShareProcesses instances in

module StdProcess).

In case the window does not have an Id, it will obtain an Id which is fresh with

respect to the current set of windows. The Id can be reused after closing this

window.

In case a window with the same Id is already open the window will not be opened.

In case controls are opened with duplicate Ids, the window will not be opened.

openModalDialog terminates when:

the window has been closed (by means of closeWindow), or the process has

been terminated (by means of closeProcess).

*/

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

closeWindow :: !Id !(PSt .l .p) -> PSt .l .p

/* If the indicated window is not an inactive modal window, then closeWindow closes

the window.

In case the Id of the window was generated by open(Window/Dialog), it will

A.39. STDWINDOW 253

become reusable for new windows/dialogues.

In case of unknown Id, closeWindow does nothing.

*/

closeControls :: !Id [Id] !Bool !(IOSt .l .p) -> IOSt .l .p

/* closeControls removes the indicated controls (second argument) from the

indicated window (first argument) and recalculates the layout iff the Boolean

argument is True.

*/

openControls :: !Id .ls (cdef .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| Controls cdef

openCompoundControls:: !Id !Id .ls (cdef .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| Controls cdef

/* openControls

adds the given controls argument to the indicated window.

openCompoundControls

adds the given controls argument to the indicated compound control.

Both functions have no effect in case the indicated window/dialog/compound

control could not be found (ErrorUnknownObject) or if controls are opened with

duplicate Ids (ErrorIdsInUse).

*/

setControlPos :: !Id !Id !ItemPos !(IOSt .l .p) -> (!Bool,!IOSt .l .p)

/* setControlPos changes the current layout position of the indicated control to

the new position.

If there are relatively laynout controls, then their layout also changes. The

window is not resized.

The Boolean result is False iff the window or control id are unknown, or if the

new ItemPos refers to an unknown control.

*/

controlSize :: !(cdef .ls (PSt .l .p))

!(Maybe (Int,Int)) !(Maybe (Int,Int)) !(Maybe (Int,Int))

!(IOSt .l .p)

-> (!Size,!IOSt .l .p)

| Controls cdef

/* controlSize calculates the size of the given control definition as it would be

opened as an element of a window/dialog.

The Maybe arguments are the prefered horizontal margins, vertical margins, and

item spaces (see also the (Window/Control)(H/V)Margin and

(Window/Control)ItemSpace attributes). If Nothing is specified, their default

values are used.

*/

hideWindows :: ![Id] !(IOSt .l .p) -> IOSt .l .p

showWindows :: ![Id] !(IOSt .l .p) -> IOSt .l .p

getHiddenWindows:: !(IOSt .l .p) -> (![Id],!IOSt .l .p)

getShownWindows :: !(IOSt .l .p) -> (![Id],!IOSt .l .p)

/* (hide/show)Windows hides/shows the indicated modeless windows (modal dialogues

can not be hidden).

get(Hidden/Shown)Windows yields the list of currently visible/invisible windows.

*/

activateWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

/* activateWindow makes the indicated window the active window.

If the window was hidden, then it will become shown.

If there are modal dialogues, then the window will be placed behind the last

modal dialog.

activateWindow has no effect in case the window is unknown or is a modal dialog.

254 APPENDIX A. I/O LIBRARY

*/

getActiveWindow :: !(IOSt .l .p) -> (!Maybe Id,!IOSt .l .p)

/* getActiveWindow returns the Id of the window that currently has the input focus

of the interactive process.

Nothing is returned if there is no such window.

Note that hidden windows never are active windows, and that modal windows never

are hidden.

*/

stackWindow :: !Id !Id !(IOSt .l .p) -> IOSt .l .p

/* stackWindow id1 id2 places the window with id1 behind the window with id2.

If id1 or id2 is unknown, or id1 indicates a modal window, stackWindow does

nothing.

If id2 indicates a modal window, then the window with id1 is placed behind the

last modal window.

*/

getWindowStack :: !(IOSt .l .p) -> (![(Id,WindowType)],!IOSt .l .p)

getWindowsStack :: !(IOSt .l .p) -> (![Id], !IOSt .l .p)

getDialogsStack :: !(IOSt .l .p) -> (![Id], !IOSt .l .p)

/* getWindowStack returns the Ids and WindowTypes of all currently open windows

(including the hidden windows), in the current stacking order starting with the

active window.

get(Windows/Dialogs)Stack is equal to getWindowStack, restricted to Windows

instances and Dialogs instances respectively.

*/

getDefaultHMargin :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getDefaultVMargin :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getDefaultItemSpace :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getWindowHMargin :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

getWindowVMargin :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

getWindowItemSpace :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

/* getDefault((H/V)Margin)/ItemSpace) return the default values for the horizontal

and vertical window/dialogue margins and item spaces.

getWindow((H/V)Margin/ItemSpace) return the current horizontal and vertical

margins and item spaces of the indicated window. These will have the default

values in case they are not specified.

In case the window does not exist, Nothing is yielded.

*/

enableWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

enableWindowMouse :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindowMouse :: !Id !(IOSt .l .p) -> IOSt .l .p

enableWindowKeyboard :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindowKeyboard :: !Id !(IOSt .l .p) -> IOSt .l .p

/* (en/dis)ableWindow

(en/dis)ables the indicated window.

(en/dis)ableWindowMouse

(en/dis)ables mouse handling of the indicated window.

(en/dis)ableWindowKeyboard

(en/dis)ables keyboard handling of the indicated window.

Disabling a window overrules the SelectStates of its elements, which all become

Unable.

Reenabling the window reestablishes the SelectStates of its elements.

The functions have no effect in case of invalid Ids or Dialogs instances.

The latter four functions also have no effect in case the Window does not have

the indicated attribute.

*/

getWindowSelectState :: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

A.39. STDWINDOW 255

getWindowMouseSelectState :: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

getWindowKeyboardSelectState:: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

/* getWindowSelectState

yields the current SelectState of the indicated window.

getWindow(Mouse/Keyboard)SelectState

yields the current SelectState of the mouse/keyboard of the indicated

window.

The functions return Nothing in case of invalid Ids or Dialogs instances or if

the Window does not have the indicated attribute.

*/

getWindowMouseStateFilter :: !Id !(IOSt .l .p)

-> (!Maybe MouseStateFilter, ! IOSt .l .p)

getWindowKeyboardStateFilter:: !Id !(IOSt .l .p)

-> (!Maybe KeyboardStateFilter, ! IOSt .l .p)

setWindowMouseStateFilter :: !Id !MouseStateFilter !(IOSt .l .p)

-> IOSt .l .p

setWindowKeyboardStateFilter:: !Id !KeyboardStateFilter !(IOSt .l .p)

-> IOSt .l .p

/* getWindow(Mouse/Keyboard)StateFilter yields the current

(Mouse/Keyboard)StateFilter of the indicated window. Nothing is yielded in

case the window does not exist or has no Window(Mouse/Keyboard) attribute.

setWindow(Mouse/Keyboard)StateFilter replaces the current

(Mouse/Keyboard)StateFilter of the indicated window. If the indicated window

does not exist the function has no effect.

*/

drawInWindow :: !Id ![DrawFunction] !(IOSt .l .p) -> IOSt .l .p

/* drawInWindow applies the list of drawing functions in left-to-right order to the

picture of the indicated window (behind all controls).

drawInWindow has no effect in case the window is unknown or is a Dialog.

*/

updateWindow :: !Id !(Maybe ViewFrame) !(IOSt .l .p) -> IOSt .l .p

/* updateWindow applies the WindowLook attribute function of the indicated window.

The SelectState argument of the Look attribute is the current SelectState of the

window.

The UpdateState argument of the Look attribute is

{oldFrame=frame,newFrame=frame,updArea=[frame]}

where frame depends on the optional ViewFrame argument:

in case of (Just rectangle):

the intersection of the current ViewFrame of the window and rectangle.

in case of Nothing:

the current ViewFrame of the window.

updateWindow has no effect in case of unknown windows, or if the indicated

window is a Dialog, or the window has no WindowLook attribute, or the optional

viewframe argument is empty.

*/

setWindowLook :: !Id !Bool !Look !(IOSt .l .p) -> IOSt .l .p

getWindowLook :: !Id !(IOSt .l .p) -> (!Maybe Look,!IOSt .l .p)

/* setWindowLook sets the Look of the indicated window.

The window is redrawn only if the Boolean argument is True.

setWindowLook has no effect in case the window does not exist, or is a

Dialog.

getWindowLook returns the (Just Look) of the indicated window.

In case the window does not exist, or is a Dialog, or has no WindowLook

attribute, the result is Nothing.

*/

setWindowPos :: !Id !ItemPos !(IOSt .l .p) -> IOSt .l .p

getWindowPos :: !Id !(IOSt .l .p) -> (!Maybe ItemOffset,!IOSt .l .p)

/* setWindowPos places the window at the indicated position.

If the ItemPos argument refers to the Id of an unknown window (in case of

256 APPENDIX A. I/O LIBRARY

LeftOf/RightTo/Above/Below), setWindowPos has no effect.

If the ItemPos argument is one of (LeftOf/RightTo/Above/Below)Prev, then the

previous window is the window that is before the window in the current

stacking order.

If the window is frontmost, setWindowPos has no effect. setWindowPos also

has no effect if the window would be moved outside the screen, or if the Id

is unknown or refers to a modal Dialog.

getWindowPos returns the current item offset position of the indicated window.

The corresponding ItemPos is (LeftTop,offset). Nothing is returned in case

the window does not exist.

*/

moveWindowViewFrame :: !Id Vector !(IOSt .l .p) -> IOSt .l .p

/* moveWindowViewFrame moves the orientation of the view frame of the indicated

window over the given vector, and updates the window if necessary. The view

frame is not moved outside the ViewDomain of the window.

In case of unknown Id, or of Dialogs, moveWindowViewFrame has no effect.

*/

getWindowViewFrame :: !Id !(IOSt .l .p) -> (!ViewFrame,!IOSt .l .p)

/* getWindowViewFrame returns the current view frame of the window in terms of the

ViewDomain. Note that in case of a Dialog, getWindowViewFrame returns

{zero,size}.

In case of unknown windows, the ViewFrame result is zero.

*/

setWindowViewSize :: !Id Size !(IOSt .l .p) -> IOSt .l .p

getWindowViewSize :: !Id !(IOSt .l .p) -> (!Size,!IOSt .l .p)

/* setWindowViewSize

sets the size of the view frame of the indicated window as given, and

updates the window if necessary. The size is fit between the minimum size

and the screen dimensions.

In case of unknown Ids, or of Dialogs, setWindowViewSize has no effect.

getWindowViewSize yields the current size of the view frame of the indicated

window. If the window does not exist, zero is returned.

*/

setWindowViewDomain :: !Id ViewDomain !(IOSt .l .p) -> IOSt .l .p

getWindowViewDomain :: !Id !(IOSt .l .p)

-> (!Maybe ViewDomain,!IOSt .l .p)

/* setWindowViewDomain

sets the view domain of the indicated window as given. The window view frame

is moved such that a maximum portion of the view domain is visible. The

window is not resized.

In case of unknown Ids, or of Dialogs, setWindowViewDomain has no effect.

getWindowViewDomain

returns the current ViewDomain of the indicated window.

Nothing is returned in case the window does not exist or is a Dialog.

*/

setWindowTitle :: !Id Title !(IOSt .l .p) -> IOSt .l .p

setWindowOk :: !Id Id !(IOSt .l .p) -> IOSt .l .p

setWindowCancel :: !Id Id !(IOSt .l .p) -> IOSt .l .p

setWindowCursor :: !Id CursorShape !(IOSt .l .p) -> IOSt .l .p

getWindowTitle :: !Id !(IOSt .l .p) -> (!Maybe Title, !IOSt .l .p)

getWindowOk :: !Id !(IOSt .l .p) -> (!Maybe Id, !IOSt .l .p)

getWindowCancel :: !Id !(IOSt .l .p) -> (!Maybe Id, !IOSt .l .p)

getWindowCursor :: !Id !(IOSt .l .p) -> (!Maybe CursorShape,!IOSt .l .p)

/* setWindow(Title/Ok/Cancel/Cursor) set the indicated window attributes.

In case of unknown Ids, these functions have no effect.

getWindow(Title/Ok/Cancel/Cursor) get the indicated window attributes.

In case of unknown Ids, the result is Nothing.

*/

A.40. STDWINDOWDEF 257

A.40 StdWindowDef

definition module StdWindowDef

// **

// Clean Standard Object I/O library, version 1.1

//

// StdWindowDef contains the types to define the standard set of windows and

// dialogues.

// **

import StdControlDef

:: Window c ls ps = Window Title (c ls ps) [WindowAttribute *(ls,ps)]

:: Dialog c ls ps = Dialog Title (c ls ps) [WindowAttribute *(ls,ps)]

:: WindowAttribute ps // Default:

// Attributes for Windows and Dialogs:

= WindowId Id // system defined id

| WindowPos ItemPos // system dependent

| WindowIndex Int // open front-most

| WindowSize Size // screen size

| WindowHMargin Int Int // system dependent

| WindowVMargin Int Int // system dependent

| WindowItemSpace Int Int // system dependent

| WindowOk Id // no default (Custom)ButtonControl

| WindowCancel Id // no cancel (Custom)ButtonControl

| WindowHide // initially visible

| WindowClose (IOFunction ps) // user can't close window

| WindowInit [IdFun ps] // no actions after opening window

// Attributes for Windows only:

| WindowSelectState SelectState // Able

| WindowLook Look // show system dependent background

| WindowViewDomain ViewDomain // {zero,max range}

| WindowOrigin Point // left top of picture domain

| WindowHScroll ScrollFunction // no horizontal scrolling

| WindowVScroll ScrollFunction // no vertical scrolling

| WindowMinimumSize Size // system dependent

| WindowResize // fixed size

| WindowActivate (IOFunction ps) // id

| WindowDeactivate (IOFunction ps) // id

| WindowMouse MouseStateFilter SelectState (MouseFunction ps)

// no mouse input

| WindowKeyboard KeyboardStateFilter SelectState (KeyboardFunction ps)

// no keyboard input

| WindowCursor CursorShape // no change of cursor

:: CursorShape

= StandardCursor

| BusyCursor

| IBeamCursor

| CrossCursor

| FatCrossCursor

| ArrowCursor

| HiddenCursor

:: WindowType

:== String

Index

:+:, 81, 100, 110
:+:, 12, 194, 204, 215, 250
:^:, 135, 173, 204, 230
:~:, 135, 204, 230

Able, see SelectState
Above, see ItemPos
AbovePrev, see ItemPos
abstract device, 13
accClipPicture, 45, 217
accControlPicture, 190
accept, see TCP
accListPIO, 233
accListPLoc, 233
accListPPub, 233
accPicture, 217
accPIO, 233
accPLoc, 233
accPPub, 233
accScreenPicture, 233
accWindowPicture, 252
accXorPicture, 43, 217
activateWindow, 58, 252
AddLS, 81, 101, 110, 194, 204, 215, 250
Alternative, 158, 159

Cancelled, 158, 159
StartedPrinting, 158, 159

AltOnly, 204
appClipPicture, 45, 217
appControlPicture, 190
applicationpath, 240
appListPIO, 233
appListPLoc, 233
appListPPub, 233
appPicture, 217
appPIO, 233
appPLoc, 233
appPPub, 233
appWindowPicture, 252
appXorPicture, 43, 217
ArrowCursor, see CursorShape
ascent, see font
asyncSend, 119, 235
attribute, 12

baseline, see font
beep, 146, 233
BeginKey, see SpecialKey
Below, see ItemPos
BelowPrev, see ItemPos
Bitmap, 42, 185
bitmap, 42, 54
Black, see Colour
BlackRGB, 223
Blue, see Colour
BoldStyle, 32, 223
Box, 40, 217, 223
BusyCursor, see CursorShape
ButtonControl, see control
ButtonDoubleDown, see ButtonState
ButtonDown, see ButtonState
ButtonState, 204

ButtonDoubleDown, 204
ButtonDown, 204
ButtonStillDown, 204
ButtonStillUp, 204
ButtonTripleDown, 204
ButtonUp, 204

ButtonStillDown, see ButtonState
ButtonStillUp, see ButtonState
ButtonTripleDown, see ButtonState
ButtonUp, see ButtonState
ByteSeq, see TCP

callback function, 12
Cancelled, see Alternative
Center, see ItemPos
channels, see TCP

api, 21
available state, 168, 174
disconnected state, 169, 174
EOM state, 168, 174
full state, 169
idle state, 168
sendable state, 169, 174

CharKey, see KeyboardState
CharStreams, 159, 160, 228

eos, 159, 160, 228
getChar, 159, 160, 228
restorePos, 159, 160, 228

258

INDEX 259

savePos, 159, 160, 228
charStreamToFile, 160, 228
chat, see TCP
CheckControl, see control
CheckControlItem, 195
circle, see oval
class

accScreenPicture, see accScreen-
Picture

CharStreams, see CharStreams
Clipboard, see Clipboard
Controls, see Controls
controlSize, see controlSize
Dialogs, see Dialogs
Drawables, see Drawables
FileSelectEnv, see FileSelectEnv
Fillables, see Fillables
Hilites, see Hilites
Ids, see Ids
MenuElements, see MenuElements
Menus, see Menus
movePenPos, see movePenPos
Processes, see Processes
Receivers, see Receivers
shareProcesses, see shareProcesses
TimeEnv, see TimeEnv
TimerElements, see TimerElements
Timers, see Timers
toRegion, see Region
Windows, see Windows

ClearKey, see SpecialKey
client, see TCP
Clipboard, 147, 189

fromClipboard, 147, 189
toClipboard, 147, 189

clipboard, 102, 147
clipboardHasChanged, 148, 189
ClipboardItem, 147, 189
clipping, 44

|region, 44
close command, 103
closeControls, 252
closeMenu, 209
closeMenuElements, 209
closeMenuIndexElements, 209
closeProcess, 16, 131, 140, 230
closeRadioMenuIndexElements, 209
closeReceiver, 235
closeSubMenuIndexElements, 209
closeTimer, 248
closeWindow, 52, 65, 105, 252
Colour, 28, 223

Black, 28, 223
Blue, 28, 223

Cyan, 29, 223
DarkGrey, 28, 223
Green, 28, 223
Grey, 28, 223
LightGrey, 28, 223
Magenta, 29, 223
Red, 28, 223
RGB, 223
RGBColour, 29
White, 28, 223
Yellow, 29, 223

Columns, see RowsOrColumns
command, see menu
CommandOnly, 204
CompoundControl, see control
connection

establishement, 165
tearing down, 171

connectTCP, see TCP
context switch, 119
control, 47, 69

|attribute, 69, 195
ControlFunction, 70, 124, 195
ControlHide, 70, 195
ControlHMargin, 80, 195
ControlHScroll, 80, 195
ControlId, 70, 195
ControlItemSpace, 80, 195
ControlKeyboard, 70, 121, 195
ControlLook, 80, 195
ControlMinimumSize, 70, 80,
195

ControlModsFunction, 70, 195
ControlMouse, 70, 80, 195
ControlOrigin, 80, 195
ControlPos, 70, 83, 195
ControlResize, 70, 80, 88, 195
ControlSelectState, 70, 121,
195

ControlSize, 70, 80, 195
ControlViewDomain, 80, 195
ControlVMargin, 80, 195
ControlVScroll, 80, 195

button|, 64, 65, 76, 124, 127,
148, 149, 194, 195

check|, 71, 194, 195
compound|, 13, 65, 79, 88, 89,

113, 124, 194, 195
compound frame, 80

custom|, 78, 88, 89, 194, 195
custom button|, 77
custom button|, 194, 195
customised|, 69
edit|, 75, 121, 148, 149, 194, 195

260 INDEX

hierarchical|, 69
|layout, see layout
platform standard|, 69
pop up|, 72
popup|, 194, 195
previous|, 87
radio|, 70, 194, 195
receiver, 118
resize, 88
slider
region, 74

slider|, 73, 194, 195
text|, 64, 75, 113, 194, 195

ControlFunction, see control
ControlHide, see control
ControlHMargin, see control
ControlHScroll, see control
ControlId, see control
ControlItemSpace, see control
ControlKeyboard, see control
ControlLook, see control
ControlMinimumSize, see control
ControlModsFunction, see control
ControlMouse, see control
ControlOnly, 204
ControlOrigin, see control
ControlPos, see control
ControlResize, see control
ControlResizeFunction, 195
Controls, 12, 111, 194, 197

controlToHandles, 194
getControlType, 194

ControlSelectState, see control
ControlSize, see control
controlSize, 252
controlToHandles, see Controls
ControlType, 195
ControlViewDomain, see control
ControlVMargin, see control
ControlVScroll, see control
copy command, 102
CrossCursor, see CursorShape
CursorShape, 257

ArrowCursor, 257
BusyCursor, 257
CrossCursor, 257
FatCrossCursor, 257
HiddenCursor, 257
IBeamCursor, 257
StandardCursor, 257

Curve, 36, 217, 223
CustomButtonControl, see control
CustomControl, see control
cut command, 102

Cyan, see Colour

DarkGrey, see Colour
Date, 247
defaultPrintSetup, see printing
DeleteKey, see SpecialKey
descent, see font
Dialog, 252, 257
Dialogs, 14, 51, 62, 65, 252

getDialogType, 252
openDialog, 51, 63, 252
openModalDialog, 63, 252

dialogue, 13, 47, 113, 124, 148
active|, 49, 57
|frame, 49, 56
modal|, 47, 57, 58, 62
modeless|, 49

Direction, 73, 204
Horizontal, 73, 204
Vertical, 73, 204

dirseparator, 240
disableControls, 190
disableMenuElements, 102, 213
disableMenus, 102, 209
disableMenuSystem, 102, 209
disableReceivers, 235
disableTimer, 140, 248
disableWindow, 252
disableWindowKeyboard, 252
disableWindowMouse, 252
DNS, see TCP
document interface, 131

multiple|, 101, 104, 132
no|, 131
single|, 131

DocumentInterface, 204
MDI, 204
NDI, 204
SDI, 204

DownKey, see SpecialKey
dpi, 154
draw, see Drawables
Drawables, 29, 34, 185, 217

draw, 29, 217
drawAt, 29, 156, 217
undraw, 29, 217
undrawAt, 29, 217

drawAt, see Drawables
drawing, 21, 27

api, 21
bitmap, 42
Drawables(Bitmap), 42

box
Drawables(Box), 40

INDEX 261

Fillables(Box), 40
circle, see oval, 257
clipping, see clipping
coordinate system, 27
curve
Drawables(Curve), 37
Fillables(Curve), 38

|environment, 27
hiliting, see Hilites
line, 33
drawLine, 34
drawLineTo, 34
Drawables(Vector), 34

oval
Drawables(Oval), 35
Fillables(Oval), 36

Picture, 27
pixel, 27
point, 33
drawPointAt, 33

polygon
Drawables(Polygon), 40
Fillables(Polygon), 41

rectangle
Drawables(Rectangle), 39
Fillables(Rectangle), 39

text
Drawables(Char), 34
Drawables(String), 34

xor mode, 43, 44, 155
drawInWindow, 54
drawLine, 217
drawLineTo, 217
drawPoint, 217
drawPointAt, 217

EditControl, see control
enableControls, 190
enabled, 204
enableMenuElements, 102, 213
enableMenus, 102, 209
enableMenuSystem, 102, 209
enableReceivers, 235
enableTimer, 140, 248
enableWindow, 252
enableWindowKeyboard, 252
enableWindowMouse, 252
EndKey, see SpecialKey
EnterKey, see SpecialKey
eos, see CharStreams
ErrorIdsInUse, see ErrorReport
ErrorReport, 26, 204

ErrorIdsInUse, 26, 204
ErrorUnknownObject, 204

ErrorViolateDI, 204
NoError, 26, 204

ErrorUnknownObject, see ErrorReport
ErrorViolateDI, see ErrorReport
EscapeKey, see SpecialKey
event

abstract|, 117
keyboard|, 58
message|, see message
mouse|, 61
timer|, 109

F10Key, see SpecialKey
F11Key, see SpecialKey
F12Key, see SpecialKey
F13Key, see SpecialKey
F14Key, see SpecialKey
F15Key, see SpecialKey
F1Key, see SpecialKey
F2Key, see SpecialKey
F3Key, see SpecialKey
F4Key, see SpecialKey
F5Key, see SpecialKey
F6Key, see SpecialKey
F7Key, see SpecialKey
F8Key, see SpecialKey
F9Key, see SpecialKey
FatCrossCursor, see CursorShape
FileCharStream, 160, 228
FileEnv, 233
Files, 153
FileSelectEnv, 54, 103, 104, 199, 233

selectInputFile, 54, 199
selectOutputFile, 54, 62, 199

fileToCharStream, 160, 228
fill, see Fillables
Fillables, 29, 217

fill, 29, 217
fillAt, 29, 217
unfill, 29, 217
unfillAt, 29, 217

fillAt, see Fillables
Fix, see ItemPos
Font, 30
font, 30, 155

|metrics, 31
ascent, 31
baseline, 31
descent, 31
FontMetrics, 31
leading, 31
max. width, 31

non-proportional|, 31
proportional|, 31

262 INDEX

TrueType|, 155
FontDef, 30, 160, 223
fontLineHeight, 156, 223
FontMetrics, 223
FontName, 223
FontSize, 223
FontStyle, 223
footer, see printing
fromClipboard, see Clipboard
fromJust, 208

getActiveWindow, 58, 105, 252
getBitmapSize, 42, 55, 185
getBlinkInterval, see TimeEnv
getChar, see CharStreams
getCheckControlItems, 190
getCheckControlSelection, 190
getClipboard, 147, 189
getCompoundMenuElementTypes, 213
getCompoundTypes, 190
getControlItemSpaces, 190
getControlLayouts, 190
getControlLooks, 190
getControlMargins, 190
getControlMinimumSizes, 190
getControlNrLines, 190
getControlResizes, 190
getControlSelectStates, 190
getControlShowStates, 190
getControlTexts, 122, 190
getControlType, see Controls
getControlTypes, 190
getControlViewDomains, 190
getControlViewFrames, 190
getControlViewSizes, 190
getCurrentDate, see TimeEnv
getCurrentTime, see TimeEnv
getDefaultHMargin, 252
getDefaultItemSpace, 252
getDefaultVMargin, 252
getDialogsStack, 252
getDialogType, see Dialogs
getDocumentInterface, 233
getFontCharWidth, 32, 217
getFontCharWidths, 32, 217
getFontDef, 217
getFontMetrics, 31, 217
getFontNames, 30, 217
getFontSizes, 30, 217
getFontStringWidth, 32, 217
getFontStringWidths, 32, 217
getFontStyles, 30, 217
getHiddenWindows, 252
getKeyboardStateKey, 204

getKeyboardStateKeyState, 204
getMenu, 213
getMenuElementMarkStates, 213
getMenuElementSelectStates, 213
getMenuElementShortKey, 213
getMenuElementTitles, 213
getMenuElementType, see MenuEle-

ments
getMenuElementTypes, 213
getMenuPos, 209
getMenus, 209
getMenuSelectState, 209
getMenuTitle, 209
getMenuType, see Menus
getMouseStateButtonState, 204
getMouseStateModifiers, 204
getMouseStatePos, 204
getPageDimensions, see printing
getPenColour, 217
getPenFont, 217
getPenFontCharWidth, 32, 217
getPenFontCharWidths, 32, 217
getPenFontMetrics, 31, 156, 217
getPenFontStringWidth, 32, 59, 156,

217
getPenFontStringWidths, 32, 217
getPenPos, 217
getPenSize, 217
getPopUpControlItems, 190
getPopUpControlSelection, 190
getProcessWindowPos, 230
getProcessWindowSize, 230
getRadioControlItems, 190
getRadioControlSelection, 190
getReceivers, 235
getReceiverSelectState, 235
getReceiverType, see Receivers
getRegionBound, 217
getResolution, 217
getSelectedRadioMenuItem, 213
getShownWindows, 252
getSliderDirections, 190
getSliderStates, 190
getTimerElementType, see TimerEle-

ments
getTimerInterval, 248
getTimers, 248
getTimerSelectState, 248
getTimerType, see Timers
getWindow, 122, 190
getWindowCancel, 252
getWindowCursor, 252
getWindowHMargin, 252
getWindowItemSpace, 252

INDEX 263

getWindowKeyboardSelectState, 252
getWindowKeyboardStateFilter, 252
getWindowLook, 252
getWindowMouseSelectState, 252
getWindowMouseStateFilter, 252
getWindowOk, 252
getWindowPos, 252
getWindowSelectState, 252
getWindowsStack, 105, 252
getWindowStack, 58, 252
getWindowTitle, 252
getWindowType, see Windows
getWindowViewDomain, 252
getWindowViewFrame, 252
getWindowViewSize, 252
getWindowVMargin, 252
Green, see Colour
Grey, see Colour

header, see printing
HelpKey, see SpecialKey
HiddenCursor, see CursorShape
hideControls, 190
hideProcess, 230
hideWindows, 252
hilite, see Hilites
hiliteAt, see Hilites
Hilites

Hilites, 155
Hilites, 29, 44, 217

Box, 44
hilite, 29, 217
hiliteAt, 29, 217
Rectangle, 44

hinch, 240
hmm, 240
homepath, 240
Horizontal, see Direction

I/O state, 15
IBeamCursor, see CursorShape
Id, see identi�cation
identi�cation, 25

|assignment rule, 25, 127
|attribute, 25
Id, 25, 200
R2Id, 25, 118, 126, 200
RId, 25, 117, 136, 200

IdFun, 132, 204
Ids, 25, 200

openId, 25, 200
openIds, 25, 200
openR2Id, 25, 200
openR2Ids, 25, 200

openRId, 25, 200
openRIds, 25, 200

Index, 71, 72, 98, 204
initialisation, 16
input

|focus, 49, 58, 79, 133
keyboard|, 47, 58, 79, 89, 133
mouse|, 47, 58, 79, 92, 133

interactive
|object, 11
process, see process

internet, 164
IOSt, 15, 200, 233, 252

empty|, 17
IP address, see TCP
IsCharKey, see Key
isEmptyRegion, 217
isJust, 208
isNothing, 208
IsRepeatKey, 204
IsSpecialKey, see Key
ItalicsStyle, 32, 223
item space, 64
ItemLoc, 83, 204
ItemOffset, 83, 204
ItemPos, 83, 204

Above, 84, 204
AbovePrev, 84, 86, 204
Below, 84, 204
BelowPrev, 84, 86, 204
Center, 84, 85, 204
Fix, 83, 84, 204
Left, 84, 85, 204
LeftBottom, 83, 85, 204
LeftOf, 84, 204
LeftOfPrev, 84, 86, 204
LeftTop, 83, 85, 204
Right, 84, 85, 204
RightBottom, 83, 85, 204
RightTo, 84, 204
RightTop, 83, 85, 204
RightToPrev, 84, 86, 204

JobInfo, see printing
Just, see Maybe

kerning, 32
Key, 204

IsCharKey, 204
IsSpecialKey, 204

KeyboardFunction, 58, 89, 204
KeyboardState, 58, 122, 204

CharKey, 58, 204
SpecialKey, 58, 204

264 INDEX

KeyboardStateFilter, 58, 204
KeyDown, see KeyState
KeyState, 58, 204

KeyDown, 204
KeyUp, 204

KeyUp, see KeyState

layout
boundary aligned, 83, 85
control|, 83
default|, 84
�xed position, 83, 84
line aligned, 84, 85
o�set, 85
relative|, 84, 86
|root, 84
|scope, 79
|tree, 84
window|
cascade, 101
tile, 101, 102

leading, see font
Left, see ItemPos
LeftBottom, see ItemPos
LeftJustify, see WrapMode
LeftKey, see SpecialKey
LeftOf, see ItemPos
LeftOfPrev, see ItemPos
LeftTop, see ItemPos
Length, 195
life-cycle, 14

Picture, 27
LightGrey, see Colour
ListCS, 135, 204, 230
listening, see TCP
ListLS, 64, 65, 81, 100, 110, 113, 194,

204, 215, 250
Look, 52, 77, 78, 89, 158, 195
lookupIPAddress, see TCP

Magenta, see Colour
margin, 64
Mark, see MarkState
markCheckControlItems, 190
marked, 204
markMenuItems, 213
MarkState, 71, 204

Mark, 71, 204
NoMark, 204
Nomark, 71

maxFixedWindowSize, 240
MaxRGB, 223
maxScrollWindowSize, 240
Maybe, 208

Just, 208
Nothing, 208

MDI, see DocumentInterface
MDIProcess, 133, 230, 232
Menu, see menu
menu, 13, 95, 96, 136, 145

api, 20
|attribute, 96, 212
MenuFunction, 96, 212
MenuId, 96, 212
MenuIndex, 96, 212
MenuMarkState, 96, 212
MenuModsFunction, 96, 212
MenuSelectState, 96, 212
MenuShortKey, 96, 212

|item, 97, 212, 215
Menu, 209, 212
radio|, 98, 212, 215
receiver, 118
|separator, 98, 212, 215
sub|, 13, 99, 212, 215
subsetting, 102, 104
Windows|, 101, 133

MenuAttribute, see menu
MenuElements, 95, 215, 216

getMenuElementType, 215
menuElementToHandles, 215

menuElementToHandles, see MenuEle-
ments

MenuElementType, 212
MenuFunction, see menu
MenuId, see menu
MenuIndex, see menu
MenuItem, see menu
MenuMarkState, see menu
MenuModsFunction, see menu
MenuRadioItem, 212
Menus, 95, 209

getMenuType, 209
openMenu, 95, 209

MenuSelectState, see menu
MenuSeparator, see menu
MenuShortKey, see menu
MenuType, 212
message, 117

|passing, 125
asynchronous, 119
synchronous, 119, 120

MinRGB, 223
mmperinch, 240
Modifiers, 58, 204
ModifiersFunction, 204
MouseDown, see MouseState
MouseDrag, see MouseState

INDEX 265

MouseFunction, 60, 204
MouseMove, see MouseState
MouseState, 60, 204

MouseDown, 204
MouseDrag, 204
MouseMove, 204
MouseUp, 204

MouseStateFilter, 58, 204
MouseUp, see MouseState
moveControlViewFrame, 190
movePenPos, 217
movePoint, 204
moveWindowViewFrame, 252
MState, 213

NDI, see DocumentInterface
NDIProcess, 131, 132, 230, 232
new command, 103
NewLS, 81, 101, 110, 194, 204, 215, 250
NilCS, 204
NilLS, 81, 100, 110, 111, 194, 204,

215, 250
NoError, see ErrorReport
noLS, 17, 204
noLS1, 204
NoMark, see MarkState
NoModifiers, 204
NonProportionalFontDef, 32, 223
Nothing, see Maybe
Notice, 64
notice, 63, 104, 105
NoticeButton, 64
NoWrap, see WrapMode
NrLines, 195
NrOfIntervals, 249

obscureCursor, 233
open command, 103
openBitmap, 42, 55, 185
openCompoundControls, 252
openControls, 252
openDefaultFont, 30, 217
openDialog, see Dialogs
openDialogFont, 30, 217
openFont, 30, 217
openId, see Ids
openIds, see Ids
openMenu, see Menus
openMenuElements, 209
openModalDialog, see Dialogs
openNotice, 64
openProcesses, see Processes
openR2Id, see Ids
openR2Ids, see Ids

openRadioMenuItems, 209
openReceiver, see Receivers
openRId, see Ids
openRIds, see Ids
openSubMenuElements, 209
openTimer, see Timers
openWindow, see Windows
OptionOnly, 204
out of band data

we do not support it, 164
Oval, 35, 217, 223

PageDimensions, see printing
paste command, 103
PgDownKey, see SpecialKey
PgUpKey, see SpecialKey
PI, 37, 223
Picture, 27, 47, 77, 78, 80

|Attribute, 28, 217
PicturePenColour, 28, 217
PicturePenFont, 29, 217
PicturePenPos, 28, 217
PicturePenSize, 28, 217

|Domain, 48
PicturePenColour, see Picture
PicturePenFont, see Picture
PicturePenPos, see Picture
PicturePenSize, see Picture
pixel, 27, 155
Point, 204
point, 155
Polygon, 40, 217, 223
polygon, 217
PolygonAt, 217
PopUpControl, see control
PopUpControlItem, 195
port number, see TCP
print, see printing
PrintEnvironments, 158, 159
PrintInfo, see PrintInfo
printing, 151

cancel dialogue, 153, 159
|anything, 151
defaultPrintSetup, 152
|dialogue, 155
|environment, 153
getPageDimensions, 154
|header, 161, 162
JobInfo, 151, 153
margins, 154
origin, 154, 159
PageDimensions, 154
|parameters, 151
print, 152, 154, 225

266 INDEX

print job dialogue, 151
print setup dialogue, 151
PrintInfo, 152, 153
printPagePerPage, 158, 225
PrintSetup, 151, 153
PrintSetupEnvironments, 152
printText1, 159, 228
printText2, 161, 228
printText3, 162, 228
printUpdateFunction, 157, 225
range, 154
scaling, see scaling
|text, 151, 159, 161
|trailer, 162

printPagePerPage, see printing
PrintSetup, see printing
printText1, see printing
printText2, see printing
printText3, see printing
printUpdateFunction, see printing
process, 15, 131

active|, 133
api, 20
|attribute, 132, 204
ProcessAbout, 132
ProcessActivate, 133, 204
ProcessClose, 133, 204
ProcessDeactivate, 133, 204
ProcessHelp, 132
ProcessNoWindowMenu, 133, 204
ProcessShareGUI, 133
ProcessWindowPos, 132, 204
ProcessWindowResize, 132, 204
ProcessWindowSize, 132, 204

|creation, 133
|group, 134, 136, 141
|initialisation, 132
|window, 132

ProcessActivate, see process
ProcessClose, see process
ProcessDeactivate, see process
Processes, 134, 135, 230

openProcesses, 134, 230
startProcesses, 134, 136, 230

ProcessGroup, 134, 230, 232
ProcessInit, 16, 132, 232
ProcessNoWindowMenu, see process
ProcessWindowPos, see process
ProcessWindowResize, see process
ProcessWindowResizeFunction, 204
ProcessWindowSize, see process
PSt, 15, 133, 153, 233

quit command, 104

R2Id, see identi�cation
R2IdtoId, 200
RadioControl, see control
RadioControlItem, 195
RadioMenu, see menu
Receiver, 117, 121, 124, 197, 216,

235, 238, 251
receiver, 13, 117, 124, 136, 139

api, 20
|attribute, 118, 238
ReceiverSelectState, 118, 238

bi-directional, 117, 120, 126
|identi�cation, 25, 117
uni-directional, 117, 119

Receiver2, 118, 126, 197, 216, 235,
238, 251

Receiver2Function, 238
ReceiverFunction, 238
Receivers, 118, 235

getReceiverType, 235
openReceiver, 118, 235
reopenReceiver, 235

ReceiverSelectState, see receiver
ReceiverType, 238
receiving, see TCP
Rectangle, 38, 204, 217
rectangleSize, 59, 204
RectangleToUpdateState, 204
Red, see Colour
redo command, 103
Region, 44, 217

toRegion, 44
[], 44
PolygonAt, 44
Rectangle, 44
:^:, 44

reopenReceiver, see Receivers
resetCursor, 233
resizeBitmap, 42, 185
resolution, 30

printer|, 154, 157
screen|, 153, 156, 157
|emulation, 153, 156

restorePos, see CharStreams
RGB, see Colour
RGBColour, 223
RId, see identi�cation
RIdtoId, 200
Right, see ItemPos
RightBottom, see ItemPos
RightJustify, see WrapMode
RightKey, see SpecialKey
RightTo, see ItemPos
RightTop, see ItemPos

INDEX 267

RightToPrev, see ItemPos
Rows, see RowsOrColumns
RowsOrColumns, 71, 195

Columns, 71, 195
Rows, 71, 195

SansSerifFontDef, 32, 223
save as command, 104
save command, 103
savePos, see CharStreams
scaling

explicit|, 156
implicit|, 156, 157

screen emulation, see printing
ScrollFunction, 195
SDI, see DocumentInterface
SDIProcess, 131, 132, 136, 230, 232
selectChannel, see TCP
selectInputFile, see FileSelectEnv
selectOutputFile, see FileSelectEnv
selectPopUpControlItem, 190
selectRadioControlItem, 190
selectRadioMenuIndexItem, 213
selectRadioMenuItem, 213
SelectState, 204

Able, 204
Unable, 204

SendDeadlock, see SendReport
sending, see TCP
SendOk, see SendReport
SendReport, 118, 235

SendDeadlock, 118
SendOk, 118, 119
SendDeadlock, 235
SendOk, 235
SendUnableReceiver, 235
SendUnknownReceiver, 235
SendUnableReceiver, 118, 119
SendUnknownReceiver, 118, 119

SendUnableReceiver, see SendReport
SendUnknownReceiver, see SendReport
SerifFontDef, 32, 223
server, see TCP
setClipboard, 147, 189
setControlLooks, 89, 190
setControlPos, 252
setControlTexts, 190
setCursor, 233
setDefaultPenColour, 217
setDefaultPenFont, 217
setDefaultPenSize, 217
setDoubleDownDistance, 233
setEditControlCursor, 122, 190
setMenu, 213

setMenuElementTitles, 213
setMenuTitle, 209
setPenColour, 217
setPenFont, 217
setPenPos, 217
setPenSize, 217
setProcessActivate, 233
setProcessDeactivate, 233
setSliderStates, 190
setSliderThumbs, 190
setTimerInterval, 248
setWindow, 190
setWindowCancel, 252
setWindowCursor, 252
setWindowKeyboardStateFilter, 252
setWindowLook, 53, 59, 252
setWindowMouseStateFilter, 252
setWindowOk, 252
setWindowPos, 252
setWindowTitle, 252
setWindowViewDomain, 252
setWindowViewSize, 252
shareProcesses, 133, 135, 230
ShiftOnly, 204
showControls, 190
showProcess, 230
showWindows, 252
Size, 204
SliderAction, 195
SliderControl, see control
SliderDecLarge, see SliderMove
SliderDecSmall, see SliderMove
SliderIncLarge, see SliderMove
SliderIncSmall, see SliderMove
SliderMove, 74, 195

SliderDecLarge, 74, 195
SliderDecSmall, 74, 195
SliderIncLarge, 74, 195
SliderIncSmall, 74, 195
SliderThumb, 74, 195

SliderState, 73, 204
SliderThumb, see SliderMove
SmallFontDef, 32, 223
SpecialKey, 204, see KeyboardState

BeginKey, 204
ClearKey, 204
DeleteKey, 204
DownKey, 204
EndKey, 204
EnterKey, 204
EscapeKey, 204
F10Key, 204
F11Key, 204
F12Key, 204

268 INDEX

F13Key, 204
F14Key, 204
F15Key, 204
F1Key, 204
F2Key, 204
F3Key, 204
F4Key, 204
F5Key, 204
F6Key, 204
F7Key, 204
F8Key, 204
F9Key, 204
HelpKey, 204
LeftKey, 204
PgDownKey, 204
PgUpKey, 204
RightKey, 204
UpKey, 204

stackWindow, 252
StandardCursor, see CursorShape
Start, 16
StartedPrinting, see Alternative
startIO, 16, 131, 133, 134, 136
startMDI, 230
startNDI, 230
startProcesses, see Processes
startSDI, 230
state

I/O|, 15
local|, 11, 104, 114, 132
process|, 11
public|, 136
share|, 134
|transition, 12, 158

SubMenu, see menu
SymbolFontDef, 32, 223
syncSend, 119, 140, 146, 235
syncSend2, 120, 127, 235

TCP, 163
accept, 167
available, 168
bufferSize, 170
ByteSeq, 166
chat server, 175
client, 164, 165, 172
connection, see connection
connectTCP MT, 166
disconnected, 170
DNS, 164, 165
dotted decimal form, 164
dotted decimal notation, 165
duplex channel, 166
eom, 168

events, 179
flushBuffer MT, 170
IP address, 164, 165
listening, 164, 166
lookupIPAddress, 165
nsend MT, 170
port number, 164{166
receive MT, 168
receiving, 167, 168, 179
selectChannelMT, 178
selectChannel MT, 173
send noti�er, 180
send MT, 170
sending, 169, 170, 179
server, 163, 166, 172
StdChannels, 165, 167
StdTCPChannels, 165
StdTCPDef, 165
StringRChannel, 178
StringSChannel, 178
TCP Listener, 166
TCP RChannel, 166
TCP RCharStream, 177
TCP SChannel, 166
TCP SCharStream, 177
timeout, 166, 168, 170, 173

text
drawing, see drawing
|metrics, 31

TextControl, see control
TextLine, 195
ticksPerSecond, 109, 111, 240
Time, 247
TimeEnv, 233, 247

getBlinkInterval, 247
getCurrentDate, 247
getCurrentTime, 247

timeout, see TCP
Timer, see timer
timer, 13, 109, 140

api, 20
|attribute, 109, 249
TimerFunction, 109, 249
TimerId, 109, 249
TimerSelectState, 109, 249

receiver, 118
Timer, 109, 248, 249

TimerAttribute, see timer
TimerElements, 110, 250, 251

getTimerElementType, 250
timerElementToHandles, 250

timerElementToHandles, see TimerEle-
ments

TimerElementType, 249

INDEX 269

TimerFunction, see timer
TimerId, see timer
TimerInterval, 109, 249
Timers, 110, 248

getTimerType, 248
openTimer, 110, 248

TimerSelectState, see timer
TimerType, 249
Title, 204
toClipboard, see Clipboard
toRegion, 217
toVector, 204
trailer, see printing

Unable, see SelectState
undef, 125
UnderlinedStyle, 32, 223
undo command, 103
undraw, see Drawables
undrawAt, see Drawables
unfill, see Fillables
unfillAt, see Fillables
unmarkCheckControlItems, 190
unmarkMenuItems, 213
UpdateArea, 204
UpdateState, 53, 77, 78, 204
updateWindow, 252
UpKey, see SpecialKey

Vector, 204, 217
Vertical, see Direction
ViewDomain, 204
ViewFrame, 204
vinch, 240
vmm, 240

wait, 247
White, see Colour
WhiteRGB, 223
Width, 195
Window, 89, 252, 257
window, 13, 47, 121

active|, 49, 57, 105, 133
api, 20
|attribute, 49, 257
WindowActivate, 50, 57, 133,
257

WindowCancel, 49, 257
WindowClose, 50, 133, 257
WindowCursor, 51, 257
WindowDeactivate, 50, 57, 133,
257

WindowHide, 50, 257
WindowHMargin, 50, 257

WindowHScroll, 51, 257
WindowId, 50, 257
WindowIndex, 50, 257
WindowInit, 50, 257
WindowItemSpace, 50, 257
WindowKeyboard, 51, 58, 257
WindowLook, 51, 52, 158, 257
WindowMinimumSize, 51, 257
WindowMouse, 51, 58, 257
WindowOk, 49, 65, 257
WindowOrigin, 51, 257
WindowPos, 50, 257
WindowResize, 51, 257
WindowSelectState, 51, 257
WindowSize, 50, 257
WindowViewDomain, 51, 52, 111,
257

WindowVMargin, 50, 257
WindowVScroll, 51, 257

control layer, 48, 56
document layer, 48, 52
|frame, 48, 56, 80
rendering
direct|, 52
indirect|, 52, 158

stacking order, 49
WindowActivate, see window
WindowAttribute, see window
WindowCancel, see window
WindowClose, see window
WindowCursor, see window
WindowDeactivate, see window
WindowHide, see window
WindowHMargin, see window
WindowHScroll, see window
WindowId, see window
WindowIndex, see window
WindowInit, see window
WindowItemSpace, see window
WindowKeyboard, see window
WindowLook, see window
WindowMinimumSize, see window
WindowMouse, see window
WindowOk, see window
WindowOrigin, see window
WindowPos, see window
WindowResize, see window
Windows, 51, 132, 252

getWindowType, 252
openWindow, 51, 252

WindowSelectState, see window
WindowSize, see window
WindowType, 257
WindowViewDomain, see window

270 INDEX

WindowVMargin, see window
WindowVScroll, see window
World, 200, 233, 247, 252
WrapMode, 159, 228

LeftJustify, 159, 228
NoWrap, 159, 228
RightJustify, 159, 160, 228

WState, 190

Yellow, see Colour

