A TUTORIAL TO THE CLEAN OBJECT I/O
LIBRARY - VERSION 1.0.1

DRAFT VERSION

Peter Achten

September 8, 1998

Contents

1 Preface 7
2 Introduction 9
2.1 What are interactive objects 9
2.2 How to manage running interactive objects 12
2.2.1 Opening of interactive objects 12

2.2.2 Modification of interactive objects 13

2.2.3 Closing of interactive objects 14

2.3 How to start an interactive program 14
2.4 My first Clean object I/O program 15

3 Global structure of the object I/0 library 17
3.1 Abstract devices 17
311 Menus 18

3.1.2 Windows 18

3.1.3 Timers. oL 19

3.14 Receivers 19

3.2 Interactive processeso 19
3.3 Drawing e 20
34 General 20

4 Object identification 23
5 Font and text handling 25
6 Drawing 29
6.1 Examples 31
6.1.1 Drawingtext oo 31

6.1.2 Pensize and position. oo oL 32

6.1.3 Drawinglines L oo oL 32

6.1.4 Drawingovals. oo 33

6.1.50 Drawingcurves oo 33

6.1.6 Drawing rectangles L. 35

CONTENTS

6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.1.12

Drawing boxes oo
Drawing polygons
Drawing bitmaps oo
Drawing in XORmode
Drawing in Hilite mode

Drawing in Clippingmode

7 Clipboard handling
7.1 Example: a clipboard editor

8 Windows and dialogues

8.1 Basic terminology

8.1.1
8.1.2
8.1.3

Anatomy of windows and dialogues
Stacking order

Active window or dialogue

8.2 Window and dialogue attributes

8.3 Handling the document layer

8.3.1
8.3.2
8.3.3

Indirect rendering L oL
Direct rendering Lo o

Pragmaticso oo o

8.4 Handling the control layer

8.5 Handling the window and dialogue frame

8.5.1
8.5.2

Opening a window or dialogue frame

Changing a window and dialogue frame

8.6 Handling keyboard and mouse input

8.6.1
8.6.2

Keyboardinput 0 ...

Mouse input

9 Control handling
9.1 The standard controls

9.1.1
9.1.2
9.1.3
9.14
9.1.5
9.1.6
9.1.7
9.1.8
9.19
9.1.10
9.1.11

The shared control attributes
The RadioControl
The CheckControl
The PopUpControl
The SliderControl
The TextControl
The EditControl,
The ButtonControl
The CustomButtonControl
The CustomControl
The CompoundControl

36
37
38
39
40
41

43
44

49
49
49
o1
o1
o1
53
93
35
39
35
o6
96
96
o7
57
58

12.2 Receiver creation

4 CONTENTS
9.2 Controlglue 72
9.2.1 e 73

9.2.2 ListLSand NilLS 0 v v i i vt et 73

9.23 AddLSand NewLS 73

9.2.4 Example: a counter control 74

9.3 Control layout 75
9.3.1 Layout at fixed position 7

9.3.2 Layout at view frame boundary 7

9.3.3 Layoutinlines 7

9.3.4 Layoutoffsets 78

9.3.5 Layout relative to the previous control 79

9.4 Resizing controls L oo 79
9.5 Examples 81
9.5.1 Keyspotting o Lo 81

9.5.2 Mousespotting oo 83

10 Menus 87
10.1 Menus and menu elements L. 87
10.1.1 The menu attributes 87

10.1.2 The Menu L oo 88

10.1.3 The Menultem 89

10.1.4 The MenuSeparator 89

10.1.5 The RadioMenu 90

10.1.6 The SubMenu 91

10.2 Menu glue L 92
10.2.1 4 e 92

10.2.2 ListLSand NilLS o v v v i i it e e e 92

10.2.3 AddLS and NewLS 92

10.3 The Windows menu v vt 93
10.4 Menu conventions. oL 93
10.4.1 Subsetting the available commands 93

10.4.2 Command conventions 94

11 Timers 97
11.1 Examples 98
11.1.1 Expandingcircles. oL 98

11.1.2 Internal clock 101

12 Receivers 105
12.1 Receiver definitions oo oo 105

CONTENTS

12.3 Message passing o
12.3.1 Uni-directional message passing
12.3.2 Bi-directional message passing

12.4 Examples e e e e e
12.4.1 Talk windows o Lo
12.4.2 Resetting the counter
12.4.3 Reading the counter

13 Interactive processes
13.1 Defining interactive processes
13.2 Interactive process creation
13.2.1 Creating single processes
13.2.2 Creating multiple processes
13.2.3 Processrelations
13.3 Examples oL
13.3.1 Talkrevisited o
13.3.2 Clock revisited

A 1/0 library
Al StdBitmap
A2 StdClipboard
A3 StdControl
A4 StdControlClass e
A5 StdControlDef
A.6 StdControlReceiver
A.7 StdFileSelect
A8 StdFont
A9 StdFontDef
Ad0StdId. e
AT1StdIO .. . e
A12StdIOCommono
A13StdMaybeo
Al4StdMenu
A15StdMenuDef oL L
A.16 StdMenuElement, oL
A.17 StdMenuElementClass
A.18 StdMenuReceivero
A19StdPictureo
A.20 StdPictureDefo
A21 StdProcesso
A.22 StdProcessDef

106
107
107
108
108
111
114

117
117
119
119
121
122
122
122
125

CONTENTS

A23StdPSt 171
A24 StdReceivero 173
A.25 StdReceiverDefo 176
A.26 StdSystemo 177
A27StdTime e 178
A28 StdTimer e 179
A.29 StdTimerDefo 180
A.30 StdTimerElementclass 181
A31StdTimerReceiver 182
A32StdWindow 183

A.33 StdWindowDef 188

Chapter 1

Preface

The functional programming language Clean has an extensive library to build graph-
ical user interface applications, the object I/O library. In this tutorial the basic
concepts of the object I/O library are explained by means of examples. In this
report all Clean code will be printed in type writer style. All examples are also
available as Clean sources in the corresponding ‘Tutorial Examples’ folder.

This tutorial is not a technical reference manual. It is assumed that the reader is
familiar with functional programming and Clean.

In Section 2 a very broad overview of the object I/O library is given, just to give
the reader a taste of what the object I/O system is all about. Section 3 presents
the global structure of the object I/O system.

The remaining part of this document explains the individual components of the
library. But before we can explain the graphical user interface elements, we first
talk about object identification (Section 4), font and text handling (Section 5), and
drawing (Section 6). In Section 7 we discuss clipboard handling, a simple user
driven mechanism to transfer data between interactive applications.

To users of graphical user interfaces the interface elements are ofcourse the windows
and dialogues. These are discussed in Section 8. Windows and dialogues can contain
controls. Because there are many aspects about control handling their treatment
deserves a separate section (9). In all graphical user interface systems, the set of
available commands is presented by means of menus, see Section 10. To support
timing features, timers can be used, see Section 11. Flexible communication of
arbitrary expressions between components can be achieved by using receivers and
message passing, see Section 12.

All of the above objects are element of one interactive process. The object I/0O
library enables the programmer to split up a large interactive program into several
interactive processes that can be created and closed dynamically. This is presented
in Section 13.

Appendix A contains the definition modules of the Clean Object I/O library, version
1.0.1. in alphabetic order.

CHAPTER 1. PREFACE

Chapter 2

Introduction

In this chapter we give a brief overview of the main features of the object I/0O
library. We first discuss what the basic components are and how they can be used
to construct more complex components (Section 2.1). When these elements have
been constructed, they must be opened to create an actual working image on the
underlying platform. Elements can be opened and closed dynamically, but it is
ofcourse also possible to change them dynamically (Section 2.2). Once we know
how to construct graphical user interfaces we can start an interactive program.
This is explained in Section 2.3. Finally, to wrap things up Section 2.4 presents the
first complete interactive Clean object I/O program of this tutorial, the ubiquitous
“Hello world!”.

2.1 What are interactive objects

One way of looking at the object I/O library is to regard it as a collection of building
blocks, the interactive objects, that the programmer can use to construct graphical
user interfaces. For instance, Figure 2.1 summarises the standard set of control
objects that can be placed in a window object.

All interactive objects are defined by means of algebraic data types. For instance,
to define the button control element in the table one would write:

button = ButtonControl "Button" []

The constituents of this expressions are the data constructor ButtonControl, ap-
plied to the string "Button", and an empty list [] of control attributes. This is
defined more concisely by the library type definition of a button control element:

:: ButtonControl 1ls ps
= ButtonControl String [ControlAttribute (1s,ps)]

Note that the names of the type constructor and the data constructor are identical
(ButtonControl). This convention is used throughout the object I/O library.

The type definition of the button control is parameterised with two type variables:
[s and ps. These correspond to another fundamental characteristic of interactive
objects: an interactive object can have local state, and also have an effect on a
public state. The type of the local state is identified by the [s type parameter, while
the type of the public state is identified by the ps type parameter. The effect of an

10 CHAPTER 2. INTRODUCTION

Control object: What does it look like:
RadioControl @ Radio I:::I Radio
CheckControl E Mark |:| Mark
PopUpControl PopUpltem w
SliderControl

TextControl Just teyt
EditControl Just te:—:ﬂ

ButtonControl

CustomButtonControl | Program defined button
CustomControl Program defined button
CompoundControl Program defined combination of controls

Figure 2.1: The standard set of controls.

interactive object that has a local state of type Is and a public state of type ps is
defined by means of a function of type (Is, ps) — (Is,ps). Such a function is called a
callback function. For most interactive objects, the callback function is an attribute
of the object. Attributes are also defined by means of algebraic data types. For
instance, among many other control attributes, one can find the callback function
attribute of controls:

:: ControlAttribute state
= ,.. | ControlFunction (state->state)

Note that the pair of local state and public state constitute the state of an element.
The meaning of attributing a control element with a callback function f is that
when that element is selected by the user, and the current state is the value (I, p),
then the new state will be (f(l,p)). In other words, a callback function defines a
state transition.

Besides having a bag of interactive objects the object I/O library provides pro-
grammers glue to construct user interfaces. This glue serves two purposes: (a)
from primitive objects one can construct new composite objects, and (b) it puts
restrictions on what components are ‘glue compatible’.

The object I/O library has one universal glue :+: that can be used to connect two
interactive objects that operate on the same local state of type ls and public state
of type ps. Its type definition is as follows:

:+: tl t2 1s ps
= (:+:) infixr 9 (t1 1s ps) (t2 1ls ps)

In order to define what components are compatible to be glued type constructor
classes are applied. The type constructor class Controls contains all control ele-
ments (see table above) but also defines that only Controls members can be glued:

instance Controls RadioControl,

2.1. WHAT ARE INTERACTIVE OBJECTS 11

CheckControl,

PopUpControl,

SliderControl,

TextControl,

EditControl,

ButtonControl,

CustomButtonControl,

CustomControl,

:+: t1 t2 | Controls t1 & Controls t2

The last line of the instance declaration list states that if el and e2 are Controls
instances, then the expression el:+:e2 is also a Controls instance. Let button
and edit below define a button control and an edit control respectively:

button = ButtonControl "Button"]
edit = EditControl "Just text" []

then the following expressions are all legal Controls instances:

Control composition: | What does it look like:

button :+: button [Huttl]l'l] [Hl_lttl]l'l]

button :+: edit | Button | Just tEHt|
edit :+: button Just tEHt| | Button |

edit :+: edit Just texd] Just tent

The collection of interactive objects that is supported by the object I/O library is
ordered in four categories, called abstract devices.

Menus: Menus provide the set of commands that are available to the user of an
interactive program. A program can have an arbitrary number of menus.
Menus can be hierarchical, i.e. they can contain menus (sub menus) which can
contain submenus as well. Menu items correspond with the menu commands
of the program.

Windows: Windows provide the primary interface element to the user of a pro-
gram. Windows can either be dialogues or general purpose windows. Win-
dows and dialogues can contain arbitrary collections of controls. Analogous
to menus, these control collections can be hierarchical, i.e. they can contain
collections of controls (compound controls), and so on.

Timers: Timers are used by a program to be able to softly synchronise actions.
A timer basically triggers a callback function every passing of a given time
interval.

Receivers: Receivers are the basic components that interactive objects can use to
communicate messages in a flexible way.

12 CHAPTER 2. INTRODUCTION

2.2 How to manage running interactive objects

In the previous section we have had a glimpse of how to define (compositions of)
interactive objects. In the object I/O library every interactive object can be created
and destroyed dynamically, but we prefer to call this opening and closing which
sounds more peacefully. Once an interactive object is running the program will need
to modify it in several ways. Examples are to enable and disable menu elements
depending on the state of the program, change the content of a window to reflect the
state of the program, and so on. Closing an element is the ultimate modification of
a running interactive object. So interactive objects have a life-cycle which consists
of three consecutive phases: opening, modification, and closing. Below we discuss
these phases.

2.2.1 Opening of interactive objects

For each abstract device a function is defined that will open a definition of such an
abstract device instance. Again type constructor classes are used to control what
elements are proper instances of each abstract device. For instance, dialogues are
defined by the following type definition:

:: Dialog c 1s ps
= Dialog Title (c 1ls ps) [WindowAttribute (1ls,ps)]

Because callback functions are state transition functions of type (Is,ps) — (Is, ps),
the attribute type constructor is parameterised with (s, ps).

The type constructor class Dialogs fixes the instances of dialogues. A (Dialog
c) is a proper instance of this class, provided that c is a proper instance of the
Controls type constructor class.

class Dialogs ddef where
openDialog :: .ls (ddef .1ls (PSt .1 .p)) (PSt .1 .p)
-> (ErrorReport,PSt .1 .p)

instance Dialogs (Dialog c) | Controls c

In Subsection 2.2.2 we will look more closely at the public state argument PSt.

Of each abstract device, the open function maps the definition of an abstract device
instance (a value parameterised with callback functions) to a concrete ‘physical’
graphical user interface element that can be modified by the user (in case of windows,
dialogues, and menus) or by the program (in case of all abstract device). As an
example we can open a very small and not very useful dialogue by the following
expression:

(error,new_public_state)
= openDialog
my_local_state
(Dialog "" (TextControl "Hello world!" [1) [1)
the_public_state

which will have the following effect (in case no error occurs):

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 13

O————u—

Hello world!

2.2.2 Modification of interactive objects

Once an interactive object has been opened and is in its running phase, it can
be modified by the user and the program. For this purpose a running interactive
object must be stored somewhere, and it must be identified by the program. Every
running interactive object is stored in the I/O state of a program. In Section 2.1
we explained that every interactive object has access to a local state and a public
state. The public state, also called process state, is a structured value defined by
means of a record:

:: *PSt 1 p // The process state record type
= { 1s :: 1 // The local process state
, PS :: P // The public process state
, 1o :: xI0OSt 1 p // The I/0 state
}
: xI0St 1 p // 1I0St is an abstract data type

The I0St is an abstract value of unique type created specifically for each interactive
program by the object I/O system. In this special value the state of running inter-
active objects is stored. (The purpose of the local process state and public process
state record fields 1s and ps will be discussed in Chapter 13.)

The modication operations require the I0St value (although some functions such
as the abstract device open functions require the PSt record). But this is not
sufficient because in general the I0St will contain an arbitrary number of windows,
dialogues, menus, timers, and receivers. So one has to specify which particular
interactive object one intends to modify. For this purpose interactive objects (and
their component structures) can be identified by means of Ids. An Id is an abstract
type that can be generated by the programmer but also by the object I/O system.
An interactive object is identified by means of a specific Id by adding this Id to
the attribute list of the corresponding object definition (see Section 2.1). As an
example, for controls the corresponding attribute is:

:: ControlAttribute state
= ,.. | ControllId Id | ControlFunction (state->state)

The major part of the object I/O library defines the modification functions that
the programmer can use to modify a running interactive object.

As an example suppose we want to change the content of the text control of the
“Hello world!” example to “Goodbye world!”. To do this, we need to identify the
text control. A control is identified uniquely by the Id of its window or dialogue
and its personal Id. So the definition of both the “Hello world” dialogue as the text

14 CHAPTER 2. INTRODUCTION

control need to be parameterised with an Id attribute. Let dialog_id be the Id of
the dialogue, and text_id the Id of the text control. Then the adapted definition
of opening the “Hello world!” dialogue is:

(error,new_public_state)
= openDialog

my_local_state

(Dialog ""
(TextControl "Hello world!" [Controlld text_id])
[WindowId dialog_id]

)

the_public_state

changeText public_state
= setWindow dialog_id
[setControlTexts [(text_id,"Goodbye world!")]]
public_state

2.2.3 Closing of interactive objects

As explained in the previous two subsections, once an interactive object has been
opened it is in a running state and it will remain in that state until it is explicitly
closed by the program. Note that although it may seem to the user that he is able
to close a window, it is actually the program that responds to a wuser request to
really close a window. For all interactive objects there are close operations. A close
operation will remove the ‘physical’ graphical user interface element and free system
resources that were required to operate the interactive object properly.

2.3 How to start an interactive program

The starting point of every Clean program (interactive or not) is the Start function.
The essence of an interactive program is that it is a function that can change the
world. So for interactive programs the Start function must have type *World —
*xWorld. The typical appearance of an interactive program looks something like
this:

Start :: *World -> *World
Start world
= ... world

In the previous sections we have seen how to define interactive objects and get them
running. The abstract device open functions require a PSt value, containing an I0St
value. These are created by the object I/O system using the function startIO.

startI0 :: !.1 !.p !(ProcessInit (PSt .1 .p))
! [ProcessAttribute (PSt .1 .p)]
'*World
-> *World
:: ProcessInit ps :== [ps->ps]

startI0 will create an initial process state given the initial local and public process
state components of type [and p. In particular this initial process state will contain

2.4. MY FIRST CLEAN OBJECT I/O PROGRAM 15

a tailor-made I0St value. In this way one switches from the world environment to
the process state environment, and the interactive program can be initialised. This
is done by the initialisation functions (of type ProcessInit).

After initialising the interactive program startI0 will evaluate the interactive pro-
gram until it becomes closed. The only way for an interactive program to be closed
is by means of the process modification function closeProcess:

closeProcess :: (PSt .1 .p) -> PSt .1 .p

This function will close all currently running interactive objects of the interactive
program and return a process state that contains an empty 10St value. All modi-
fication operations have no effect when applied to an empty I0St value. Note that
if an interactive program does not close itself it will run on forever.

2.4 My first Clean object I/O program

To complete the introduction we present the Clean object I/O version of the well
known “Hello world!” program. Here it is:

module hello

[/ FREEREE AR EFAAAFAA KK AA KK A KK A KK KA K KA A KA A KK A KK AA K KA K KA KA A KK A KA K FAK KA KK A A K KA KA KK
// Clean tutorial example program.

// This program creates a dialog that displays "Hello world!" text.
[/ wkkkskokskokokdokskokokskkok ok skokokokok Rk ok ook kst kR ook ok ok skt ko ok ok stk sk ko ko sk ko ok stk o ok ko ok

import StdEnv, StdIOD

NoState
= NoState

Start :: *World -> *World
Start world
= startI0 NoState NoState [initialise] [] world
where
initialise process
(error,process) = openDialog NoState hello process
| error<>NoError
= closeProcess process
| otherwise
= process

hello = Dialog ""
(TextControl "Hello world!" []

)
[WindowClose (noLS closeProcess)
1

This program will create an interactive program which opens the same dialogue
as shown earlier in Section 2.2.1. The singleton type NoState is applied to state
that this program has no interesting local and public process state components
(the first two arguments of startI0), and also no interesting local dialogue state
(the first argument of openDialog). The dialogue has one attribute, the callback
function that should be applied in case the user wants to close the dialogue. In
this case closing the dialogue will close the “Hello world!” program. So the callback
function can simply be closeProcess. However, the type of a callback function
of an interactive object also operates on a local state (which is NoState in this

16 CHAPTER 2. INTRODUCTION

case). To conveniently transform a function of type (a — b) into a function of type
(¢,a) = (¢,b), the library function noLS :: (a — b) (¢,a) — (¢, b) is used.

Chapter 3

Global structure of the
object 1/0 library

The Clean object I/O library currently consists of thirty two modules. All corre-
sponding definition modules can be found in Appendix A. These modules contain
everything you need to create interactive Clean programs with. No other modules
and no other symbols should be imported from the object I/O library. Violation of
this rule can result in error-prone applications at worst and non portability at least.

In this chapter the module structure of the object I/O library is discussed. This
will help you to find your way quickly in this application programmer’s interface.
As a global naming convention, all definition modules start with Std. The module
StdI0 is a convenience module that collects all other modules of the object I/O
library. The thirty two modules can be divided roughly into four major categories:
the abstract devices, interactive processes, drawing, and general. Below they will be
handled in the same order.

3.1 Abstract devices

Abstract devices have been introduced in Section 2.1 (page 11). These are the menu,
window, timer, and receiver device. These devices occupy most of the modules and
type definitions of the object I/O library. The following naming conventions have
been employed for these modules:

e The names of the modules that contain type definitions to define abstract
device instances, end with Def. So menu definitions can be found in the
module StdMenuDef, receiver definitions can be found in the module Std-
ReceiverDef, and so on. Although controls are not an abstract device, a
definition module also exists for controls, namely Std ControlDef.

e Abstract device instances that consist of elements use type constructor classes
to enumerate their elements. The corresponding type constructor classes and
standard instances are defined in the modules which names end with Class.
So menu elements can be found in the module StdMenuElementClass. The
controls can be found in Std ControlClass.

e Receivers are non standard elements of some abstract device instances. Given
the name Object of the parent device instance, you can find the type con-
structor class instance declarations in the modules which names are formed

17

18 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

like StdObjectReceiver. So, receiver instances of timers can be found in
Std TimerReceiver.

e The operations on an object Object can be found in the module named Std-
Object. So window operations can be found in the module Std Window, menu
element operations can be found in the module Std MenuElement, and so on.

Below we discuss briefly the module structure of each of the abstract devices.

3.1.1 Menus

The API for menus and menu elements consists of six modules that are related as
schematised in Figure 3.1.

StdMenu StdMenuReceiver
StdMenuElement StdMenuElementClass
StdMenuDef StdReceiverDef

Figure 3.1: The module structure of menus.

3.1.2 Windows

The ApI for windows, dialogues, and controls consists of eight modules that are
related as schematised in Figure 3.2.

StdWindow StdControlReceiver
StdWindowDef StdControlClass StdReceiverDef
StdControl

/

StdControlDef

|

StdPicture

Figure 3.2: The module structure of windows.

3.2. INTERACTIVE PROCESSES 19

3.1.3 Timers

The AP1 for timers consists of six modules that are related as schematised in Figure
3.3.

StdTimer StdTimerReceiver
StdSystem StdTimerElementClass
StdTimerDef StdReceiverDef

Figure 3.3: The module structure of timers.

3.1.4 Receivers

The API for receivers consists of two modules that are related as schematised in
Figure 3.4.

StdReceiver

|

StdReceiverDef

Figure 3.4: The module structure of receivers.

3.2 Interactive processes

As stated in Section 2.3, every interactive program has to be opened as an interactive
process. Interactive processes are handled in more detail in Chapter 13. The API
for interactive processes consists of three modules that are related as schematised
in Figure 3.5.

StdProcess

N

StdProcessDef StdWindow

Figure 3.5: The module structure of interactive processes.

20 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

3.3 Drawing

In graphical user interface applications graphics play an important role. Virtually
every interface object has a visual representation that is drawn by the underlying
platform. Drawing operations will be required by most applications to give the
user visual feedback on the current documents that are being manipulated or the
status of controls. The manipulation of text is also an issue in drawing information.
Text can be presented in very different fonts, sizes, and variations (see Chapter 5).
Drawing is discussed in detail in Chapter 6.

The ap1 for drawing consists of five modules that are related as schematised in
Figure 3.6.

StdBitmap

|

StdPicture

|

StdPictureDef

|

StdFont

|

StdFontDef

Figure 3.6: The module structure of drawing operations.

3.4 General

Finally, there are a number of modules that are less easily categorised. These are
the following seven modules:

StdClipboard: In this module clipboard operations are defined. Clipboard opera-
tions are defined in more detail in Chapter 7.

StdFileSelect: In this module two functions are defined by which a user can open
platform dependent directory browsing dialogues.

StdId: In this module the identification value generating functions are defined.
This is discussed in more detail in Chapter 4.

StdI0Common: In this module a lot of type definitions and functions are provided
that are needed by many of the abstract device modules introduced in Section
3.1.

StdMaybe: In this module a type is introduced that is very useful for providing
optional results and optional arguments. It is used by many operations in the
abstract device modules.

3.4. GENERAL 21

StdPSt: In this module operations are collected on the process state that are not re-
lated to any abstract device. It contains several type constructor class instance
declarations for file, font, and time access. Other frequently used functions
are the ‘lifting’ functions defined on the process state. With these lifting func-
tions one can easily transform for instance an I0St transition function to a
PSt transition function.

StdTime: In this module some time access operations can be found that can be
used independently of the timer device.

22 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

Chapter 4

Object identification

Before we can really delve into the details of the object I/O library we first need
to learn how to identify running interactive objects. As we have briefly discussed
in Section 2.2.2, all objects can have an identification attribute. An identification
attribute is a value of type Id. This value is an attribute, so the programmer
is not forced to provide a value for this attribute. Objects without identification
attribute can not be modified at run-time. If the program needs to modify an
interactive object, it must have been provided with an identification attribute. In
the remainder of this chapter we will explain about the identification of the other
devices.

The type Id is an abstract data type, and you can import it via the module StdId.
All 1ds are generated by the system. The type constructor class Ids defines the
creation functions. Ids can be created from the World environment and the I0St
environment. Every new Id taken from these environments is guaranteed to be
fresh with respect to the other Ids generated by any of these functions.

Id

class Ids env where

openId :: 'xenv -> ('Id, ! xenv)
openlds :: !Int !*env -> (![Id], ! xenv)
openRId :: '*env -> (! RId m, I xenv)
openRIds :: !Int !*env -> (![RId m], I xenv)
openR2Id :: '¥xenv -> (! R2Id m r, !*env)

openR2Ids:: !Int !#env -> (![R2Id m r],!*env)

instance Ids World
instance Ids (I0St .1 .p)

As the Ids class definition shows, Id values are not the only identification values
that are used in the object I/O system. Two special kinds of identification values
of type RId m and R2Id m r are used to identify receivers that respond to messages
of type m in the first case, and in addition respond with a message of type r in the
second case. Receivers are discussed in Chapter 12.

The purpose of having Ids is to unambiguously identify running interactive objects.
When assigning Ids to interactive objects, a program must comply to the following

23

24 CHAPTER 4. OBJECT IDENTIFICATION

14 assignment rules:

e Within one abstract device element instance, the Ids assigned to its elements
must be unique.

e Within one abstract device, the Ids assigned to the abstract device element
instances must be unique.

For instance, the Ids assigned to windows must all be unique, and inside a window
the Ids assigned to its controls must be unique. But for two different windows, the
Ids assigned to the controls may overlap. Also the Ids assigned to other abstract
device element instances such as menus and timers may overlap.

For RIds and R2Ids the assignment rules are even more strict: at all times when a
program is running, the R(2) Ids assigned to open receivers must be unique. The
reason for this is explained in Chapter 12.

The abstract device open functions check whether the interactive object definition
argument is valid with respect to the Id assignment rules. If this is not the case,
the ErrorReport alternative ErrorIdsInUse is returned, and the interactive object
will not be opened. If the Id assignment rules were not violated, and no other error
occured, then the alternative NoError is returned.

Chapter 5

Font and text handling

When working with text you frequently will want to know the dimensions of the
text for layout purposes or simply to calculate the size of an element containing
that text. The dimensions of a piece of text depend on two parameters:

e The font is an abstract value that describes the shape of a text. The usual
way to identify a font is by its name, point size, and style variations.

e The drawing environment determines the actual size in terms of a resolution
dependent unit. The resolution of the screen is usually a lot smaller than the
resolution of a laser writer.

Because there is a great variance of available fonts and drawing environments per
machine writing a program that handles fonts properly requires some experience.

The font data type definitions and operations can be found in the definition mod-
ules StdFontDef and StdFont. Except for one operation, all font operations are
overloaded in the drawing environment argument and are part of the FontEnv type
constructor class (see StdFont). The operations are ordered in three groups.

The first group of font operations return information about the currently installed
fonts. The function getFontNames returns a list of the names of all available fonts.
Given an element of this list, the functions getFontStyles and getFontSizes
return for that particular font the available style variations and sizes. Because in
modern font management systems there is no restriction anymore on the size of
a font, the function getFontSizes is also parameterised with two bounding size
arguments. Their type definitions are:

getFontNames :: Ixenv->(! [FontName], !*env)
getFontStyles:: IFontName !*env->(![FontStylel, !*env)
getFontSizes ::!Int !Int !FontName !*env->(![FontSize], !*env)

The second group of font operations opens fonts. The function openFont creates
a value of type Font given a font definition. A font definition is a record of type
FontDef (see StdFontDef) and is defined as follows:

:: FontDef
= { fName :: !FontName
, £Styles :: ![FontStyle]
, £Size :: !FontSize
}

25

26 CHAPTER 5. FONT AND TEXT HANDLING

Because there are so many different font systems and style variations both font
names and style variations are of type String. If you want to be sure that you are
selecting an existing font use the functions of the first group. In any case, if the
font definition argument of openFont does not correspond with an installed font,
then it returns a False Boolean and a dummy font value. If it succeeds to find a
matching font it will return a True Boolean and that font. The type of openFont
is:

openFont :: !FontDef !*env -> (!(!Bool,!Font),!*env)

There are two functions that open the font that is used by default in an application
window (openDefaultFont) and the font that is used by the system for controls
and window titles and so on (openDialogFont). These fonts are of course always
available. Their types are:

openDefaultFont :: !*env -> (!Font,!*env)
openDialogFont :: !*env -> (!Font,!*env)

The last group of font operations determine the metrics of fonts and text. The
metrics of a font consists of three values related to the height of characters of that
font (leading, ascent, and descent) and one value related to the width of characters
of that font (maz. width). Figure 5.1 below explains the height characteristics.

leading

ascent

baseline

descent

Figure 5.1: Font metrics.

The max. width characteristic is the maximum width of all characters in that
particular font. For non-proportional fonts such as Courier this implies that the
width of all characters is identical, so “1ii” is just as wide as “mmm”. For proportional
fonts such as this text the width of characters can vary a lot. Compare for instance
the width of the text “iii” with “mmm?”. The metrics of a font are collected in a
record of type FontMetrics:

:: FontMetrics
= { fAscent :: !'Int // The ascent of the font
, fDescent :: !'Int // The descent of the font

27

, fLeading :: !'Int // The leading of the font
, fMaxWidth:: !'Int // The max. width of the font
}

There are four other functions in the last group of font operations. With these
functions one can calculate the width of a (list of) character(s), and a (list of)
string(s). Actually the list versions (singleton versions) are redundant and can be
expressed in terms of the singleton version (list version) of the functions. They have
been added for reasons of efficiency because on some systems calculating the size of
a piece of text can be expensive.

There is a subtle difference in calculating the width of one character versus the
width of one string. The width of a character is determined by the character only.
The width of a string can depend on the order of the characters it contains. A
font system can take advantage of the fact that some adjacent characters can be
placed more closely together to obtain a better looking result when drawing the
string. This is called kerning. In the object I/O system, the programmer can rely
on the fact that if a piece of text is drawn character by character then the character
width function returns the correct width of the drawn character. If a piece of text
is drawn by using a string, then the string width function returns the correct width
of the drawn string.

In the StdFont module World is declared to be an instance. World itself is not a
drawing environment. When applied to a World value, the metrics functions will be
defined in terms of pixels. One final function in the StdFont module, getFontDef,
returns the FontDef of a given Font value.

Because there is wide variety of fonts available the StdFontDef module provides
a number of macros that help you make a program less dependent on the set of
available fonts. The following macros provide a number of font definitions that are
guaranteed to be available on the platform:

Font macros: Example:
SerifFontDef Garamond, Times
SansSerifFontDef Helvetica
SmallFontDef “This is a small text”
NonProportionalFontDef | Courier
SymbolFontDef Viapg <=

The following macros provide a number of standard font variations that are guar-
anteed to be available on the platform:

Style macros: Example:
ItalicsStyle Madam, I'm Adam
BoldStyle Madam, ’'m Adam
UnderlinedStyle | Madam, I'm Adam

28

CHAPTER 5. FONT AND TEXT HANDLING

Chapter 6

Drawing

All drawing functions require an environment of type *Picture. A Picture is
created for each interactive object that can be drawn in. The life-time of a Picture
environment is equal to the life-time of its parent object.

A Picture defines a coordinate system for drawing operations. Increasing x-axis
coordinates run from left to right. Increasing y-axis coordinates run from top to
bottom. The range for both axes is the full Clean Integer range.

-2731 0 2731-1
-2731 ~
y
0 >
x
2731-1

Figure 6.1: Picture coordinates.

Drawing operations on a Picture use the coordinate system to define where objects
should be drawn. The objects themselves are made up of the pixels, lying between
the coordinates. Figure 6.2 zooms in on the coordinate system from zero and
increasing. The pixels on x-coordinates 0, 5, 10,...and y-coordinates 0, 5, 10,...are
displayed.

Like most other interactive objects in the object I/O library, pictures have at-
tributes. These are the following (they can be found in the module StdPictureDef):

:: PictureAttribute
= PicturePenSize Int
| PicturePenPos Point

29

30 CHAPTER 6. DRAWING

5 0 = | = 5
10 e
LS g Cmmme
20 CmmmE =
25

Figure 6.2: Picture coordinates and pixels

| PicturePenFont Font
| PicturePenColour Colour

PicturePenSize: This attribute defines the width and height of the drawing pen.
The default value is 1, which means that drawing a point will fill an area of 1
pixel wide and 1 pixel high. Negative or zero values are always set to 1.

PicturePenPos: This attribute determines the current position of the drawing pen.
Its default value is zero. The definition of Point is:

:: Point = {x::!Int,y::!Int}

PicturePenFont: This attribute sets the current font that will be used when draw-
ing text (see also Chapter 5). Drawing text is not affected by the current
width and height of the pen. Text is always drawn at the baseline of the font
(see Figure 5.1).

PicturePenColour: This attribute determines the colour that is used when drawing
any element. The Colour data type is also defined in the module StdPicture-

Def:
: Colour
Black | DarkGrey | Grey | LightGrey | White

Cyan | Magenta | Yellow
RGB RGBColour
:: RGBColour
= {r::!Int, g::!Int, b::!Int}

| Red | Green | Blue
|
|

A colour can range between black and white (first five alternatives defining
100%, 75%, 50%, 25%, and 0% blackness), be one of red, green, blue, be one of
cyan, magenta, yellow, or some custom defined combination of red, green, blue
components. Currently the library does not support colour tables or palette
management operations, so the use of RGB colours tends to be speculative.

6.1. EXAMPLES 31

Given a *Picture environment, the function getPicture returns a ‘read-only’ pic-
ture environment (of type Picture). From this value the current attribute values
can be obtained by the function getPictureAttributes. With setPictureAttri-
butes one can change a number of picture attributes using a list of them. For all
picture attributes there are also functions to get and set them individually, using
an updateable picture (of type *Picture).

The drawing operations are divided into three groups, ordered by means of type
constructor classes:

Drawables draws the ‘outline’ of its elements. Its instances are characters, strings,
vectors, ovals, curves, boxes, rectangles, polygons, and bitmaps.

Fillables fills the interior of its elements. Its instances are ovals, curves, boxes,
rectangles, and polygons.

Hilites fills the interior of its elements in such a way that the current content
remains visible. Its instances are boxes and rectangles.

Each of these type constructor classes allows its elements to be drawn at the current
pen position or at an absolute pen position. Because of this reason the data type
definition of most of these elements do not specify their location. Exceptions are
rectangles, lines, and points.

For making more complex drawings, clipping is also supported. Drawing within a
clipping area forces all drawing to occur inside that area. Again, a type constructor
class, Clips is used for this purpose. One can clip within a box, a rectangle, a
polygon, or a list of clipping elements.

6.1 Examples

In this section we give small examples of all of the drawable elements.

6.1.1 Drawing text

Given a pen position {x,y}, drawing a piece of text (Char or String) will always
draw the text using the current PicturePenFont. The shape of the drawn characters
relies only the font information, not on the current PicturePenSize. Text can be
drawn in any of the available colours. The baseline of the particular font determines
the position of the first character, which is drawn with its left baseline starting at
{x,y}. Figure 6.3 shows the result of applying (drawAt zero "Pop" picture)
applied to an empty picture.

The new pen position is, in this case, {x=24,y=0}. One might expect the new
pen position to be {x=22,y=0}, but usually the horizontal character space is also
included. This facilitates drawing text character by character. But some cau-
tion should be taken. One might expect that the function (draw "p" (draw "o"
(draw "P" picture))) produces the same result, but this depends on the font (as
explained in Chapter 5), so in general one should not assume that this is the case.
The only certain way to know how much the pen position will change in case of
text is by calculating the width of the same text, or by comparing the pen positions
before and after drawing.

32 CHAPTER 6. DRAWING

Y

Figure 6.3: Drawing the text “Pop” at zero.

6.1.2 Pen size and position

Given a pen position {x,y}, drawing a point, a line, text, always occurs to the right
and below the pen position. Figure 6.4 illustrates these cases: from left to right the
function (drawPointAt zero (setPicturePenSize n picture)) is applied to an
empty picture, and PicturePenSize attribute values n 1, 2, and 3 respectively.

0 5 10 0 5 10 0 5 10
0 -h 0 0 EEE
ki =
5 5 5
10 10 10

Figure 6.4: Drawing a point at zero with different pen sizes.

6.1.3 Drawing lines

The shape of a line is influenced by the PicturePenSize attribute in the same way
as the shape of points are changed (see Figure 6.5).

10

Figure 6.5: Drawing a line from zero to {x=5,y=5} with different pen sizes.

There are several ways to draw lines. The function drawLineTo draws a line from
the current pen position to the argument point. If these happen to be equal, then
the result is the same as drawPointAt with the same argument. The new pen
position is the same as the target point. The function drawLine draws a line from
the first argument point to the second argument point without changing the pen
position.

6.1. EXAMPLES 33

Lines can also be drawn using the Vector instance functions from the Drawables
type constructor class. The function draw applied to a vector {vx,vy} draws a line
from the current pen position {x,y} to the point {x=x+vx,y=y+vy}. The function
drawAt applied to a point {x,y} and a vector {vx,vy} draws a line from {x,y} to
the point {x=x+vx,y=y+vy}.

6.1.4 Drawing ovals

An Oval is a transformed unit circle defined by a horizontal radius, oval_rx and a
vertical radius, oval_ry. For each point {x,y} on a unit circle, its corresponding
point on the oval is given by {x=x*oval_rx,y=y*oval_ry}. The type definition of
an Oval is:

:: Oval = {oval_rx::!Int, oval_ry::!Int}

Both radius values are always taken to be atleast zero. If any of these values is neg-
ative, then zero is used instead. Ovals are drawn using the Oval instance functions
from the Drawables type constructor class. The function draw uses the current pen
position as the center of the oval. The function drawAt uses the argument Point
as the center of the oval. Drawing an oval does not change the pen position. In
case one of the radius values is taken to be zero drawing the oval displays nothing.
Figure 6.6 draws three ovals at zero defined as follows:

{oval_rx=5, oval_ry=3}
{oval_rx=5, oval_ry=5}
{oval_rx=3, oval_ry=5}

5 5 (5
[EIEN
=]

Gn 1 uE
| | SmjsE []

5|
5]
5]
=
[]
[]
]

Figure 6.6: Three oval shapes drawn at zero.

The shape of an oval is also affected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the oval. The only pixels
that are affected are inside the oval. Figure 6.7 shows the center oval of Figure 6.6
when drawn with pen size of 1, 2, and 3.

Ovals are also an instance of the Fillables type constructor class. The function
£i1l and £i11At fill rather than draw the oval. Filling an oval includes its outline
and its interior. Figure 6.8 shows the same three ovals as given in Figure 6.6, but
now filled.

6.1.5 Drawing curves

A Curve is a section of an Oval. A curve is defined by the source oval, curve_oval,
a starting angle, curve_from and an ending angle, curve_to, both taken in radians,

34 CHAPTER 6. DRAWING

[]
]
||
I
[E]
5]
I
||
]
||

5]
=]

[E[FIEIE SIS
EEEE | EEEE|
EoE [| | S
11 T O 5 5 5
) O

EOEEEEEE |

[5]
5] 18]
| | [OSEE [

HEE|
| |
H
g
g
g
|
|

[|
WEE
| o
]

B

[

D

[|
BEE
H

HEEEEEE

-5 0 5 -5 0 5 -5 0 5

[) O]
{5) o)]]

Figure 6.8: Three filled oval shapes.

and the direction in which the section should be taken, curve_clockwise which is
a Boolean value. The type definition of a Curve is:

:: Curve
= { curve_oval :: !0val
s curve_from :: !Real
s curve_to :: !Real
s curve_clockwise :: !Bool
}

The start and end point of the section are again derived from the unit circle.
Given an angle alpha, and a source oval defined by {oval rx, oval_ry}, then
the point on the curve (oval) corresponding with alpha is {x=oval rx*cos alpha,
y=oval_ry*sin alpha}. If curve_clockwiseis True then the section is taken clock-
wise from the start point to the end point, otherwise it is taken counter clockwise
direction. Figure 6.9 shows two sections of an Oval. In both cases the curve_from
angle is & and the curve_to angle is 37” The left section is taken counter clockwise,
and the right section is taken clockwise.

-5 0 5 -10 -5 0
-5 -5
0 0 - .I IIII.
= -
5 - III. | 5 .l =]

Figure 6.9: Two curves taken clockwise and counter clockwise.

Figure 6.9 not only shows the curve sections that are taken from an oval, but
also what happens when these sections are drawn at a specific position. In both

6.1. EXAMPLES 35

cases the curves are drawn at zero. The starting point, indicated by the starting
angle, is determined by the current pen position in case of the draw function of the
Drawables type constructor class, and is determined by the Point argument of the
drawAt function of the Drawables type constructor class.

Drawing a Curve with varying PicturePenSizesis the same as taking the section of
the corresponding Oval drawn with that pen size. Figure 6.10 shows three times the
same curve taken but drawn with pen sizes 1,2, and 3 respectively. The source oval
is the same as the one drawn in Figure 6.7. The section is taken counter clockwise
from iﬂ' to 1%71'.

[[T EEEE 17]
BOEES
R

EEEE]

Figure 6.10: Three curves drawn with increasing pen sizes.

Curves are also an instance of the Fillables type constructor class. When filling
a curve, the interior formed by the drawn curve and two lines connecting the center
of the source oval and the end points of the curve is filled. Figure 6.11 shows the
two curves of Figure 6.9, but now using £ill rather than draw.

-5 0 5 -10 -5 0
-5 -5
0 T 0
EEE
[
EEEE
5 Lol 5

Figure 6.11: Two filled curves taken clockwise and counter clockwise.

6.1.6 Drawing rectangles

A Rectangle is a shape of four connected lines that is defined by two diagonally
oriented corner Points, cornerl and corner2. The type definition of a Rectangle
is as follows:

: Rectangle = {cornerl::!Point, corner2::!Point}

Rectangle is an instance of the Drawables type constructor class. The drawAt
function is not very useful because it ignores its Point argument and proceeds as
draw. Any two Points are valid corner points of a Rectangle. In case a Rectangle
has a zero width or zero height drawing that rectangle will show nothing. It does
not matter in what order the two corner points are given. Figure 6.12 shows three
Rectangles, defined as follows:

36 CHAPTER 6. DRAWING

{corneri= zero, corner2={x=10,y=6}}
{corneri= zero, corner2={x=6, y=6}}
{corner1={x=10,y=6}, corner2= zero 3
0 5 10 0 5 10 0 5 10
0
(5]]][5 5 o
= = = 5]
=] = = 5]
pEmmts s & :
5 5 (0]]]] [(]]]]]
10 10 10

Figure 6.12: Three rectangle shapes.

The shape of a rectangle is also affected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the rectangle. The only
pixels that are affected are inside the rectangle. Figure 6.13 shows the Rectangle
{corneri=zero, corner2={x=10,y=10}} when drawn with pen size 1, 2, and 3.

0 5 10 0 5 10 0 5 10
0
EEEE EEEEE
H |
0] 0
s i i
m |
0 0
] |
O |
10 _oEonEEsasn

Figure 6.13: Three rectangles drawn with increasing pen sizes.

Rectangles are also an instance of the Fillables type constructor class. The
function £i11 and £i11At fill rather than draw the rectangle. Filling a rectangle
includes its outline and its interior. Figure 6.14 shows the same three rectangles as
given in Figure 6.12, but now filled.

5 EIEIEIE R 5

5 || |
1)])) (S]

DR EEEEEEE

10 10 10

Figure 6.14: Three filled rectangles.

6.1.7 Drawing boxes

A Box is a Rectangle but without fixing a position. It is therefore only defined by
a width, box_w and height, box_h. The type definition of a Box is:

:: Box = {box_w::'Int, box_h::'Int}

6.1. EXAMPLES 37

The position of a Box is determined by the drawing functions of the type construc-
tor class Drawables. In case of draw, the current pen position is the base point.
In case of drawAt, the Point argument is the base point. Given this base point
base={x,y}, and a Box {box_w,box_h}, drawing the Box is the same as drawing
the Rectangle {cornerl=base, corner2={x=x+box w,y=y+box h}}. Any value
for box_w or box_h is permitted (so also zero or negative values).

Boxes are drawn and filled in the same way as Rectangles are. So the effect of
using different PicturePenSizes is the same as well as filling boxes.

6.1.8 Drawing polygons
A Polygon is an object which shape is formed by a number of Vectors, such as

triangles, rectangles, but also more exotic shapes. The type definition of a Polygon
is:

:: Polygon = {polygon_shape::![Vector]}

A Polygon is always a closed shape. A shape polygon_shape is closed if the fol-
lowing equation holds:

foldr (+) zero polygon_shape = zero

The object I/O library will always close the polygon_shape if this is not the case,
so you don’t have to worry about this. Drawing a polygon of shape polygon_shape
is simply drawing the closed list of vectors in sequence:

seq (map draw polygon_shape)

Figure 6.15 shows three polygons defined by the following shapes (leaving out the
last Vector gives the same Polygon):

[{vx=8,vy=0}, {vx=(-4),vy=8}, {vx=(-4),vy=(-8)1}]
[{vx=8,vy=0}, {vx=0, vy=8}, {vx=(-8),vy=0}, {vx=0, vy=(-8)1}]
[{vx=8,vy=0}, {vx=(-8),vy=8}, {vx=8, vy=0}, {vx=(-8),vy=(-8)}]

Figure 6.15: Three polygon shapes.

Similar to Boxes, Polygons do not specify their location. Again, this is determined
by the drawing functions of the type constructor class Drawables. In case of draw,
the base point is defined by the current pen position. In case of drawAt, the base
point is defined by the Point argument. In Figure 6.15 all polygons were drawn at
zero.

38 CHAPTER 6. DRAWING

-5 0 5 -5 0 5 -5 0 5
0
EEIEIE S
EEEEE EEEEE
| EE | §EE |
el [EI| | [EEEEE | |
5 [ogas [
BN O
| | AsEEE | |
FEw | e
1] o 1)) o o)
10 EIEEEE EEEEE (]) S

Figure 6.16: Three polygons drawn with pen size 2.

Because a polygon is a collection of vectors, its shape is affected by the current
PicturePenSize attribute. Figure 6.16 shows the three polygons of Figure 6.15
drawn with pen size 2.

Polygons are also an instance of the Fillables type constructor class. The function
£i11 and £i11At fill rather than draw the polygon. Filling a polygon includes its
outline and its interior. Figure 6.17 shows the same three polygons as given in
Figure 6.15, but now filled.

-5 0 5 -5 0 5 -5 0 5
0 0 0
[)) o [o] [
mmE| | | EnnEEnm | |
(] [15] o) e DEEEE | | |
[|] 15] o) e EEE
5 - L 5 {15 51] [5]
| 150] ooE [[]
[| EEEEE EEEE (5] 5] [[
EEEnEEEm | .==== ==.
10 10 10

Figure 6.17: Three filled polygons.

6.1.9 Drawing bitmaps

Using the drawing operations discussed so far one can produce images that have an
‘algorithmic’ nature: they consist of text, lines, curves, and polygons. Not every
image can be expressed (easily) in this way (consider for instance the image in
Figure 6.18). To produce more complex images bitmaps are very useful. A bitmap
is a prefabricated image of a certain size (in pixels) that is stored in the file system.

You can use your favourite drawing package and create and store images as a bitmap.
The file format depends on the platform. Currently the following formats are sup-
ported:

Platform: Format:
Macintosh PICT
Windows(95/NT) BMP

The bitmap operations can be found in module StdBitmap (Appendix A.1l). Bit-
maps can be read from file using the function openBitmap:

openBitmap :: !{#Char} !*env -> (!Maybe Bitmap, !*env)
| FileSystem env

Given the full file name of a bitmap file, openBitmap reads the bitmap in memory. If
this is successful, (Just bitmap) is returned. Reasons for failure are illegal file name

6.1. EXAMPLES 39

CASRIL
7

'
IJ J

C l@ﬂhﬂl Y

Figure 6.18: A non algorithmic image.

arguments, wrong file formats, lack of heap space (in case of Windows(95/NT)), or
lack of extra memory (in case of Macintosh!).

A Bitmap is an abstract data type. The only information one can retrieve from a
Bitmap value is its size:

getBitmapSize :: !Bitmap -> Size

Bitmaps are instances of the Drawables type constructor class. Given a current
pen position pos={x,y} and a bitmap bitmap of size {w,h}, the functions (draw
bitmap) and (drawAt pos bitmap) both place the bitmap exactly inside the rect-
angle {cornerl=pos, corner2={x=x+w,y=y+hl}}.

6.1.10 Drawing in XOR mode

For many programs it is sometimes useful to be able to temporarily draw figures
over an existing drawing, and being able to remove it without affecting the source
picture. Examples are a flashing cursor in a text editor, and anchor points in a
drawing program. For this purpose drawing in XOR mode is supported. The library
function xorPicture takes a list of drawing functions and a picture and applies the
drawing functions in left-to-right order to the picture in XOR mode.

xorPicture :: ![DrawFunction] !*Picture -> *Picture

Drawing in XOR mode has the important property that drawing the same figure
twice results in the same picture. Given a picture, and a list of drawing functions
fs, the following equation holds:

xorPicture fs (xorPicture fs picture) = picture

Let’s explain what happens in the Picture when one uses XOR mode. Consider a
source picture, source, shown left in Figure 6.19, which is a circle. Next to the
source picture is the picture to be drawn in XOR mode, a fat rectangle, represented
by a list of drawing functions fs.

n the current Macintosh implementation bitmaps are not garbage collected. This puts a
restriction on the number of bitmaps that can be used inside one application. In a future version
bitmaps will become garbage collected.

40 CHAPTER 6. DRAWING

-5 0 5 -5 0 5 -5 0 5
-5
[T [EEEE [T
HEE SIS
HE S
| 5|
0 = |
o] o
| =
HE SN
HEE E=E |
5 [[| mmeE []

Figure 6.19: A source picture and the figure to be drawn in XOR mode.

If one interprets the white pixels of both pictures as False, and the black pixels of
both pictures as True then the result of drawing fs in XOR mode in source is the
same as taking the Boolean exclusive or on all such interpreted pixels on the same
coordinates. So all pixels that have the same colour become black, while all pixels
of different colour become white. The result of this is shown in the right picture
of Figure 6.19. Applying fs once more in xor mode to this new picture yields a
picture equal to source.

What happens when using more interesting colours than black and white is basically
the same thing. In one way or another, the exclusive or is taken from the source
picture and the drawing operations in such a way that repeating it gives the source
picture again. What the colours of the ‘xor-ed’ picture are depends on the platform,
and is not specified by the object I/O library.

6.1.11 Drawing in Hilite mode

Programs that want to indicate selections (for instance text segments in a word
processor, or image components in a drawing program) can do this by drawing the
selected area in hilite mode. For this purpose the type constructor class Hilites is
used. Its type definition is:

class Hilites figure where
hilite o 'figure !*Picture -> *Picture
hiliteAt :: !'Point !figure !*Picture -> *Picture

The instances of Hilites are Box and Rectangle. The pixels that are affected by
hilite and hiliteAt are the same as for £i11 and £i11At. Drawing in hilite mode
has the same property as drawing in XOR mode that drawing the same figure twice
on a source picture leaves the source picture unchanged. Given a picture, and a
figure figure, the following equation holds:

hilite figure (hilite figure picture) = picture
hiliteAt figure (hiliteAt figure picture) = picture

The visual effect of hiliting these areas depends on the platform. On some platforms
hiliting an area will change the colour of all pixels that have the background colour
to a special hilite colour, ignoring all other pixels. Hiliting the area once more
will revert the hilite colours back to the background colour. If a platform does
not support hilite mode, the area will be drawn in XOR mode. Figure 6.20 shows
the two techniques. The source picture is the text “Pop” of Figure 6.3. In this
picture the function hilite {corner1={x=0,y=2}, corner2={x=24,y=(-10)}}is
applied. The left picture shows the result of changing background pixels into the
hilite colour, the second picture shows the result of using XOR mode.

6.1. EXAMPLES 41

0 5 10 15 20 25 0 5 10 15 20 25

|
=
O

] B O])] (o
JiL]]]]))] [
(][] 1]] o
O EEE|EC
OEECCOEE

]
O
(]
(]
(]l

(]
OO0EECOEE
OOEECOEE
OOOEEOOEE
[]
(o]
L

[FSEIEE EREEE

mal [[[[][[Soo
EEE [[|| [§6on

B EEFINE FEEEE
5 [) o [5 5

1]
][]]]

I [o o o
[T I I A =1
51 R o i R
[HIE EIS[S[E SIS
[HE EEEEN NN
5[5 5 5
[HIE [SISSSE SIS
[HE FIEESE EEEES
[DE ClEEE REEEE
5] N
5 I O
[HE MEEEE EMEEE
55 O 5 55
EEE [] [S6o
51 [e (o
[H[E SEEEE EEEEE

=
|
|
|
[
|
|
|
|
||
=
g

(o5 5 o
J
dJ
[
[

o) o o (o [

[EIE W

I

N
5 [T

Figure 6.20: Two ways to hilite a rectangular area.

6.1.12 Drawing in Clipping mode

Drawing in clipping mode is a powerful technique to create graphics that can not
be drawn (or using much more complicated expressions) using only the drawing
primitives discussed before. In clipping mode, the programmer specifies an area
that works like a mask: drawing proceeds as always, but only those pixels that are
inside the clipping area are actually drawn. Clipping is done using the functions of
the Clips type constructor class:

class Clips area where
clip :: larea [DrawFunction] !*Picture -> *Picture
clipAt :: !'Point 'area [DrawFunction] !*Picture -> *Picture

The clipping area can be a Box, Rectangle, Polygon, or a list of these. In the
latter case the union area of the list elements is taken as the clipping area. The
location of the clipping area is defined by the current pen position in case of clip,
and the Point argument in case of clipAt. In case the clipping area happens to
be empty no drawing is done. The list of drawing functions is evaluated as usual in
left-to-right order.

Suppose we have the following list of drawing functions, fs which draws a number
of horizontal lines with a result as shown in Figure 6.21:

fs = [drawLine {x=0,y=y} {x=9,y=y} \\ y<-[0,2..8]]

T
EEEEE EEEEE
[L1 ThT[]]]
5 | o |

[T T[T T
EEEEEEEEEH
EEEE AR
EEEEE EEEEE
10 LT TTrirTd

Figure 6.21: The source picture.

As clipping regions the polygons shown in Figure 6.15 are used. Figure 6.22 shows
the result of the following clipping functions to an empty picture:

42 CHAPTER 6. DRAWING

clipAt zero [{vx=8,vy=0}, {vx=(-4),vy=8}] fs
clipAt zero [{vx=8,vy=0}, {vx=0, vy=8}, {vx=(-8),vy=0}] fs
clipAt zero [{vx=8,vy=0}, {vx=(-8),vy=8}, {vx=8, vy=0}] fs

0 5 10 0 5 10 0 5 10
0 0 0
| o [EEEE | I o o o
] [[| [[] [| |
[0]) (] e EEEEN EREEE EEE
[|] | | || []
5 | [oEsEE] 5 [EEEE_| 5 I \
| [| [[| [] [| |
HERREE E EEEEN | [[&
1=}] EEEE= EEEE HEE
10 11 10 [[[[10

Figure 6.22: The clipped source picture.

Chapter 7

Clipboard handling

The clipboard is a universal simple communication metaphor between applications
and within applications. One application can write some data to the clipboard
(typically text or pictures) which can be read at a later point of time by the same or
another application. This mechanism is supported by the functions in the definition
module StdClipboard. At the moment only text can be handled. Because we
intend to incorporate pictures as well in the near future the current version is set
up in such a way that it can be extended upward compatibly. For this purpose an
abstract data type, ClipboardItem, is defined. Two overloaded functions from the
type constructor class Clipboard take care that data types can be converted to and
from ClipboardItems:

:: ClipboardItem

class Clipboard item where
toClipboard :: litem -> ClipboardItem
fromClipboard :: !ClipboardItem -> Maybe item

instance Clipboard {#Char}

A further convention of using the clipboard is that applications should provide
several ‘popular’ data formats for the same content in descending order of accuracy.
For instance, a text processor can first store its private format for the layn out text
including font and style information, followed by an ASCII version of the same text,
followed by a picture of the layn out text. For this reason the function setClipboard
that writes the clipboard is not applied to one single clipboard data item but a list
of them. The previous content will be destroyed completely. Because programs are
supposed to provide only one data item of each format from this list duplicate types
of clipboard items are removed. Note that providing setClipboard with an empty
list will clear the clipboard.

setClipboard :: ![ClipboardItem] !(PSt .1 .p) -> PSt .1 .p

The function that reads the clipboard, getClipboard, simply gets a list of the cur-
rent content of the clipboard in descending order of accuracy. With the conversion
function fromClipboard an application can determine easily if some data item is

present that it can handle.

getClipboard :: !(PSt .1 .p) -> (![ClipboardItem],!PSt .1 .p)

43

44 CHAPTER 7. CLIPBOARD HANDLING

Finally, because reading in a complete clipboard can be time-consuming or space-
consuming a function is provided that checks whether the clipboard has been up-
dated since the last time the program checked it.

clipboardHasChanged :: !(PSt .1 .p) -> (!Bool,!PSt .1 .p)

7.1 Example: a clipboard editor

To illustrate the use of the clipboard, we construct a small program that shows the
current content of the clipboard and that can write some text to the clipboard (see
the picture below). It will create only one dialogue with two text fields. In the first
text field, the show field, the content of the clipboard can be loaded by pressing a
button. In the second text field, the set field, the content of the clipboard can be
stored by pressing a button.

Clipboard Diewer §—|

Current content of clipboard

In this control, new content for the

clipboard can be edited]

The show text field and its activating button can be defined as follows:

showclip
= EditControl "" width nrlines [ControlSelectState Unable
,Controlld showid
,ControlPos (Center,zero)
1
i+

ButtonControl "Show" [ControlFunction (noLS show)]

The show text field is an edit text control that will not respond to keyboard input
(because its SelectState attribute is Unable). It is identified by some Id of value
showid. It will have some width and a height defined by the number of lines
nrlines. The “Show” button, when selected, must read the content of the clipboard
and figure out if there was a text clipboard item. It then will set the text of the
show text field to the loaded clipboard content (an empty string if nothing was
found). This action can be defined as follows:

7.1. EXAMPLE: A CLIPBOARD EDITOR 45

show process
(content,process) = getClipboard process
text getString content
= appPI0 (setWindow viewid [setControlTexts [(showid,text)]])
process

getString [clip:clips]
| isNothing item
= getString clips
| otherwise
= fromJust item
where
item = fromClipboard clip
getString []

The set text field and its activating button are defined as follows:

setclip
= EditControl "" width nrlines [ControlIld setid
,ControlPos (Center,zero)
]
i+

ButtonControl "Set" [ControlFunction (noLS set)]

The set text field is an edit text control which accepts keyboard input. It is identified
by some Id of value setid. It has the same dimensions as the show text control.
The “Set” button, when selected, must get the content of the set text control and
write this to the clipboard. This action is defined as follows:

set process
(dialog,process) = accPI0 (getWindow viewid) process
text= fromJust (snd (hd (getControlTexts
[setid] (fromJust dialog))))
= setClipboard [toClipboard text] process

The definition of the clipboard viewing dialogue simply summaries these elements
and adds a “Quit” button to terminate the program:

clipview = Dialog "Clipboard Viewer"
(showclip :+: setclip :+: quit)
[WindowId viewid]

quit = ButtonControl "Quit"
[ControlFunction (noLS closeProcess)
,ControlPos (Center,zero)
]

The last details that remain to be defined are the opening of the interactive program
which is very analogous to the “Hello world!” of Section 2.4. For completeness we
show the complete program code.

module clipboardview

46 CHAPTER 7. CLIPBOARD HANDLING

[/ FEREREE AR EFAAAFAA KK AA KK A KK A KK KA K KA A KA A KK A KK AA K KA K KA KA A KK A KA KA K KA FHA KK AAK KA KK
// Clean tutorial example program.

// This program creates a dialog to display and change the current content of the

// clipboard.
[/ korkskskskokkokokokok ko sk kokok sk ok ko sk sk s ok ok sk sk ok ok sk s sk ks ok ok ek sk ok ks sk ok ok sk sk ok ok ok ok

import StdEnv, StdI0

NoState
= NoState

Start :: *World -> *World
Start world
(ids,world) = openlds 3 world
= startI0 NoState NoState [initialise ids] [] world

initialise ids process

(error,process) = openDialog NoState clipview process
| error<>NoError
= closeProcess process
| otherwise
= process
where
(viewid,showid,setid) = (ids!'0,ids!'!1,ids!!2)
clipview = Dialog "Clipboard Viewer"
(showclip
:+: setclip
:+: quit
)
[WindowId viewid
]
showclip = EditControl "" width nrlines
[ControlSelectState Unable
, Controlld showid
, ControlPos (Center,zero)
]
.
ButtonControl "Show"
[ControlFunction (noLS show)
]
setclip = EditControl "" width nrlines
[Controlld setid
s ControlPos (Center,zero)
]
HE
ButtonControl "Set"
[ControlFunction (noLS set)
]
quit = ButtonControl "Quit"
[ControlFunction (noLS closeProcess)
s ControlPos (Center,zero)
]
width = hmm 200.0

nrlines = 10

show process
(content,process) = getClipboard process
text getString content
= appPI0 (setWindow viewid [setControlTexts [(showid,text)]]) process

set process
(dialog,process)
text

accPI0 (getWindow viewid) process

fromJust (snd (hd (getControlTexts [setid]
(fromJust dialog))))

= setClipboard [toClipboard text] process

7.1. EXAMPLE: A CLIPBOARD EDITOR

getString [clip:clips]
| isNothing item
= getString clips
| otherwise
= fromJust item
where
item = fromClipboard clip
getString []

47

48

CHAPTER 7. CLIPBOARD HANDLING

Chapter 8

Windows and dialogues

Windows and dialogues are the major top level interactive objects of the object
I/0 library. In some aspects they are very similar. For instance, they can contain
the same set of controls, and virtually all operations on windows and dialogues
are similar. Dialogues differ from windows because they usually offer a special,
enhanced, user interface to users. Another difference is that dialogues can be opened
modally. In this mode the user can be forced by the program to handle the dialogue
completely before continuing with the program. To emphasize the similarities of
windows and dialogues, their algebraic type definitions are almost identical (these
can be found in module StdWindowDef, Appendix A.32):

:: Window ¢ 1ls ps = Window Title (c ls ps) [WindowAttribute *(1ls,ps)]
: Dialog c 1s ps = Dialog Title (c 1ls ps) [WindowAttribute *(1ls,ps)]

Before delving into details, we first introduce some basic terminology for windows
and dialogues in Section 8.1 and discuss the WindowAttribute alternatives in Sec-
tion 8.2.

8.1 Basic terminology

The main purpose of a window is to present to the user a view on a document,
represented as an object of type Picture. Pictures have been discussed in Chapter
6. By using the mouse and keyboard, the user can manipulate the document.
Controls in a window can add further manipulation functionality.

The main purpose of a dialogue is to present to the user a structured way of passing
information to perform actions. This structured communication is realised by means
of controls.

8.1.1 Anatomy of windows and dialogues

Although from an application user’s perspective windows and dialogues appear to
be ‘solid’ objects (Figure 8.1) it is illustrative to have a look at a window from a
different perspective.

A window is composed of three layers, see Figure 8.2. The bottom layer, the
document layer is formed by the rendered document, the Picture. The middle
layer, the control layer contains all controls of the window. The top layer, the

49

50 CHAPTER 8. WINDOWS AND DIALOGUES

S0=—— Window =——1]

T

Figure 8.1: A window seen from the user perspective.

window frame typically consists of a title bar, and window components to close and
resize the window. The window frame can have any size and is in general smaller
than the document layer. It displays only that part of the document layer that
is within the window frame. Windows usually contain scrollbars to help the user
change the current view on the document layer. The default drawing domain of the
document layer Picture ranges from 0 to 23! — 1 in both axes. This is in general
to large for rendering the document. A window can limit the displayable range of
a Picture by setting a picture domain.

window frame

Figure 8.2: A different perspective at a window.

In contrast with windows, a dialogue is composed of only two layers, the control
layer and the window frame, the dialogue frame. Instead of a document layer, a
dialogue has a platform dependent background. The program can not draw into
nor navigate the background. The dialogue frame can not be resized by the user
and is usually big enough to display the whole control layer.

For both windows and dialogues, the programmer has full control over the view
frame, control layer, and document layer. Section 8.3 discusses how to handle the

8.2. WINDOW AND DIALOGUE ATTRIBUTES ol

document layer. Handling the control layer is discussed in Section 8.4. The window
and dialogue frame are controlled by the platform, see Section 8.5.

8.1.2 Stacking order

In general, a program can have an arbitrary number of windows and dialogues
opened at the same time. These elements appear in a stacking order, seen by
the application user in top to bottom order. For normal windows and dialogues
the stacking order is not fixed. Modal dialogues however always appear topmost.
Windows and modeless dialogues that are opened while (several) modal dialogues
are open always appear below the bottom most modal dialogue.

8.1.3 Active window or dialogue

When a user works with a program, exactly one window or dialogue receives all
keyboard and mouse input. This element is called the active window/dialogue
and it has the input focus. With the exception of modal dialogues, the active
window /dialogue does not necessarily occupy the top most stacking position.

8.2 Window and dialogue attributes

WindowAttribute is the type of window and dialogue attributes. The table below
shows which attributes are valid for which element.

WindowAttributes
For windows and dialogues: | For windows only:
WindowId WindowSelectState
WindowPos WindowLook
WindowIndex WindowViewDomain
WindowSize WindowOrigin
WindowHMargin WindowHScroll
WindowVMargin WindowVScroll
WindowItemSpace WindowMinimumSize
WindowOk WindowResize
WindowCancel WindowActivate
WindowHide WindowDeactivate
WindowClose WindowMouse
WindowInit WindowKeyboard
WindowCursor

WindowId: This attribute identifies the window/dialogue to which it is associated.
If you do not provide a WindowId, the object I/O system open function creates
a fresh Id for the window/dialogue.

WindowPos: This attribute determines the initial position of the window/dialogue
(see also Section 9.3). Relative Ids that occur in the ItemPos refer to other
windows/dialogues. The object I/O system will always place a window/dia-
logue visibly on the current screen. If you do not provide a WindowPos to a
window, then the window will be placed at the left top of the screen. If you
do not provide a WindowPos to a dialogue, then the dialogue will be placed at
a position conform the platform user interface (typically centered).

52 CHAPTER 8. WINDOWS AND DIALOGUES

WindowIndex: This attribute determines the initial stacking position of the win-
dow/dialogue (see also 8.1.2). If no WindowIndex attribute is provided, then
the window/dialogue will be opened frontmost. Modal dialogues are always
opened frontmost.

WindowSize: This attribute determines the initial size of the window/dialogue. If
no WindowSize attribute is provided, then the system will derive a proper size.
In case of dialogues the size is determined by the set of controls, margins, and
item spaces. In case of windows the size is furthermore determined by the
picture view domain.

WindowHMargin, WindowVMargin: These attributes determine the left-right, and
top-bottom margin of a window/dialogue respectively. Their default value
in case of windows is zero, and platform dependent for dialogues.

WindowItemSpace: This attribute determines the space between controls if no fur-
ther offsets are provided in the layouts of controls. The default values are
identical for windows and dialogues.

Window0k, WindowCancel: These attributes indicate which control should act con-
form the platform user interface ‘confirm’ control and ‘cancel’ control respec-
tively. If such an attribute is not provided, then no control is selected.

WindowHide: This attribute makes the given window/dialogue initially invisible.
This attribute is ignored for modal dialogues. If the WindowHide attribute is
not provided, then the window/dialogue will be opened visible.

WindowClose: This attribute adds the platform dependent close control to the win-
dow/dialogue. The associated function will be evaluated in case this control
is triggered. Actually closing the window/dialogue is the responsibility of this
function. In case no WindowClose attribute is provided, the window/dialogue
can not be closed in that way.

WindowInit: This attribute defines a list of actions that should be performed imme-
diately after opening the window/dialogue. This is equivalent to the process
initialisation actions (see Section 2.3 and 13). If no WindowInit attribute is
provided, no additional actions are performed.

WindowSelectState: This attribute defines whether the window can be used by the
user (Able) or not (Unable). Dialogues are always Able. The default value
is Able. Note that although a window can be active, it can also be disabled.
This only means that all input is ignored by the window.

WindowLook: This attribute defines a function that, given the current SelectState
of the window and information about which part of the window should be
displayed, defines what the window should look like. (The Look function
also plays a role for CustomButtonControls (Section 9.1.9), CustomControls
(Section 9.1.10), and CompoundControls (Section 9.1.11).

WindowViewDomain: This attribute defines the drawing coordinate system of the
document layer (see also 8.1.1). Drawing operations outside this area will
be clipped. If no ViewDomain is provided, then the window will obtain the
ViewDomain {corneri=zero, corner2={x=maxint,y=maxint}}.

WindowOrigin: This attribute determines the initial position of the ViewFrame,
the rectangular part of the ViewDomain that is currently visible in the win-
dow. This position is always verified to be within the given ViewDomain. If
no WindowOrigin attribute is provided, then the left-top coordinates of the
ViewDomain are used.

8.3. HANDLING THE DOCUMENT LAYER 53

WindowHScroll, WindowVScroll: These attributes add a horizontal scrollbar and
a vertical scrollbar to the window. If no attribute is given, no scrollbars are
added.

WindowMinimumSize: This attribute determines the minimum size the window can
obtain by resizing. If no attribute is given, a platform dependent minimum
size is used.

WindowResize: This attribute allows the user to resize the window. If the attribute
is not provided, then the window can not be resized. The size of a window
may exceed the size of its ViewDomain. The area that is not part of the
ViewDomain will be filled with a platform dependent background.

WindowActivate, WindowDeactivate: These attributes define the behaviour of the
window in case the window becomes the active window (WindowActivate),
and is no longer the active window (WindowDeactivate) respectively (see also
8.1.3). If no attribute is provided, this information will not be passed to the
program.

WindowMouse, WindowKeyboard: These attributes allow a window to respond to
user actions with the mouse (WindowMouse) and keyboard (WindowKeyboard).
If no attribute is provided, then this information will not be passed to the
program. Both attributes can define an additional filter to ignore some input
actions. If the SelectState of the window is Unable then neither function
will obtain input.

WindowCursor: This attribute defines the shape of the cursor in case the mouse is
over the window and not inside a control that may overrule this shape. In case
no attribute is provided moving the mouse over the window will not change
its shape.

8.3 Handling the document layer

The document layer of a window is used to present the user visual feedback on the
current status of the document that is being manipulated. Only windows have a
document layer.

8.3.1 Indirect rendering

Two WindowAttributes play a paramount role with respect to the document layer:
WindowViewDomain and WindowLook. Let’s have a closer look at them.

The document layer is rendered using a Picture. As we have seen in Section 8.2,
the default drawing range of a Picture is (0,23! — 1) in both axes. This range can
be changed by the WindowViewDomain attribute. It has a ViewDomain argument
which is defined as a Rectangle. A Rectangle is a record:

Rectangle

= { cornerl :: !Point
, corner?2 :: !Point
}

Point

= { x :: !Int

, y :: !Int

54 CHAPTER 8. WINDOWS AND DIALOGUES

consisting of the two diagonally opposite corner points of the new drawing range. It
is illegal to have identical x or y coordinates. This will cause a run-time error of the
application. All drawing that occurs outside of the view domain of the document
layer will be clipped.

The Picture of the document layer is rendered using the WindowLook attribute.
This attribute has a Look function argument. It is defined as follows:

: Look :== SelectState -> UpdateState -> [DrawFunction]

Whenever it is necessary to render (part of) the visible document layer, the object
I/0 system will apply the look function of the WindowLook attribute. It will be pa-
rameterised with the current SelectState of the window and detailed information
about which part of the current view frame needs to be rendered. This information
is presented by means of the UpdateState record:

:: UpdateState
= { oldFrame :: !ViewFrame
, newFrame :: !ViewFrame
, updArea :: !'UpdateArea
}
:: ViewFrame :== Rectangle
:: UpdateArea :== [ViewFrame]

This record consists of three fields:

oldFrame: If the size or orientation of the window was changed, then this field
contains the view frame before that change. If this is not the cause, then this
field contains the current view frame.

newFrame: If the size or orientation of the window was changed, then this field
contains the view frame after that change (so, the current view frame). If this
is not the cause, then this field contains the current view frame.

updArea: This field contains a list of Rectangles (not necessarily disjoint) that
define the parts of the visible current view frame that need to be drawn. This
list always consists of atleast one element. Each of its elements is always
completely inside the current view frame.

The result of the Look function is a list of drawing functions. These describe
the rendering actions that should be taken on the current Picture. They will be
evaluated in left-to-right order. Before doing this the Object I/O system first erases
the rectangles of the updArea field.

The purpose of the WindowLook attribute function is to describe the look of the
current state of the document layer. If the document does not change, then this
function always correctly renders the document. However, it is very likely that the
state of the document changes during the life-cycle (Section 2.2) of the window. The
WindowLook attribute can be changed using the StdWindow function setWindowLook
(Appendix A.32):

setWindowLook :: !Id !Bool !Look !'(I0St .1 .p) -> I0St .1 .p

setWindowLook will change the current WindowLook attribute of the window in-
dicated by the Id argument with the new Look function provided this window is
present and does not refer to a dialogue. If the Bool argument is False then that’s
all. If the Bool argument is True, then the look function will be applied to the
window in the way described above.

8.4. HANDLING THE CONTROL LAYER 35

8.3.2 Direct rendering

Instead of using only the Look function of a window, one can also draw directly
in the document layer Picture. This is done using the function drawInWindow
(Appendix A.32):

drawInWindow :: !'Id ![DrawFunction] !'(I0St .1 .p) -> I0St .1 .p

drawInWindow applies the list of drawing functions in left-to-right order to the
document layer Picture of the window indicated by the Id argument if this window
is present and does not refer to a dialogue. For some visual feedback such as drawing
blinking cursors or track boxes this method is easier to use than the indirect way of
using the Look function. So direct drawing changes the document layer Picture,
but does not change the Look function of the window!

8.3.3 Pragmatics

The WindowLook function is used by the object I/O system for all cases that the
content of the window needs to rendered. Among others, causes are when the view
frame, size, stacking order, or selectstate of a window changes. It is very annoying
for the application user when these actions take to much time. Therefore it is
worth your while to spend some effort in getting a good performance out of the list
of drawing functions.

8.4 Handling the control layer

The control layer contains the controls of a window or dialogue. Both interface
elements can have the same set of controls. This is made explicit by the type con-
structor class instance declarations of their respective creation functions (Appendix
A.32):

class Windows wdef
where
openWindow :: .1s !(wdef .1ls (PSt .1 .p)) !'(PSt .1 .p)
-> (!ErrorReport, !PSt .1 .p)

class Dialogs wdef

where
openDialog :: .1s !(wdef .1ls (PSt .1 .p)) !'(PSt .1 .p)
-> (!ErrorReport, !PSt .1 .p)
openModalDialog :: .ls !(wdef .1s (PSt .1 .p)) !(PSt .1 .p)
-> (!ErrorReport, !PSt .1 .p)

instance Windows (Window c) | Controls c
instance Dialogs (Dialog c) | Controls c

The standard set of Controls instances is defined in the module StdControlClass
(Appendix A.4). Many operations with respect to the control layer are identical to
operations on controls that are element of CompoundControls. Controls and their
operations are discussed in detail in Chapter 9.

96 CHAPTER 8. WINDOWS AND DIALOGUES

8.5 Handling the window and dialogue frame

The window and dialogue frame are the ‘physical’ borders of windows and dialogues.
A user can grab them using the mouse or some keyboard interface and drag them
around, change the size (in case of windows), or dispose of them. The program
has very limited influence on both the appearence and functionality of the frame.
When opening a window or dialogue, the WindowAttributes are important. This
is discussed in Section 8.5.1. User actions on the window or dialogue frame are
handled by the program via the callback function mechanism. The program can
also change frame properties. This is discussed in Section 8.5.2.

8.5.1 Opening a window or dialogue frame

The attributes of a window and dialogue definition that influence the window and
dialogue frame are ofcourse the Title and the following WindowAttributes:

WindowSize: This value gives the prefered size of the view frame of the window or
dialogue. Be aware that this is not exterior size, which is in general larger
and depends on the underlying platform.

WindowClose: If this attribute is present, then the window or dialogue frame is
provided with a platform dependent interface element to allow the user to
request the program to close that window or dialogue.

WindowHScroll and WindowVScroll: Although the horizontal and vertical scroll-
bar of a window are element of the control layer (Figure 8.2), their behaviour
is intimately connected with the size of the view frame and therefore also with
the size of the window and dialogue frame.

WindowResize: If this attribute is present, then the window is provided with a
platform dependent interface element to allow the user to change the size of
the window view frame.

These are not the only attributes that affect the size of the window frame. The
document interface (Chapter 13) of the parent interactive process also influences its
size and functionality. For instance, on a Windows(95/NT) platform, if a window
belongs to a single document process its window frame contains all menus (Chapter
10) of that process. If it belongs to a multiple document interface process then the
size of its frame even depends on its zoom state.

8.5.2 Changing a window and dialogue frame

The two most apparant changes to the window or dialogue frame are changes of
orientation and size. In case of windows, these can be caused by the application
user, depending on the attributes as explained in Section 8.5.1.

The program can also change the size of the frame for both windows and dialogues.
For dialogues this can be done only indirectly by opening or closing controls. For
windows this can also be done directly. If the program changes the view frame
(either its size or orientation) then the layout of controls is changed in the same
way as if the user had caused this change.

8.6. HANDLING KEYBOARD AND MOUSE INPUT o7

8.6 Handling keyboard and mouse input

Of all windows and dialogues that are in control by an application, at most one
receives the keyboard and mouse input. This window is the active window.

Except when modal dialogues are open, the application user can always select
one of the visible windows or dialogues to become the new active window. Dia-
logues are not notified of these changes. Windows can be notified by adding two
WindowAttributes: WindowActivate and WindowDeactivate. Both attributes are
parameterised with a function that will be applied by the object I/O system as
soon as that window becomes active or has become inactive respectively. It is
guaranteed that the WindowDeactivate attribute function is applied before the
WindowActivate function.

The underlying platform always gives visual clues to the application user about
which window or dialogue is currently active. The program can retrieve this in-
formation using the getActiveWindow function (Appendix A.32). One should be
aware that it is not correct to assume that the active window or dialogue has the
topmost stack order position. As an example, one might try to get the Id of the
active window by applying hd twice to the result list of getWindowStack, but this
only returns the top most window and not the active window.

The program can also activate windows and dialogues. This is done with the
activateWindow function (Appendix A.32). Because modal dialogues are always
front-most and the front most modal dialogue is active, one can not activate a win-
dow or modeless dialogue while modal dialogues are open. Instead, activateWindow
restacks such a window or dialogue immediately behind the bottom most modal di-
alogue without making it the active window.

The active window receives all keyboard and mouse input. If this window contains
controls it can be the case that the input is channelled to one of these controls. That
particular control then has the input focus. If no control has the input focus, then
all input is handled by the active window. In case the active window is a dialogue its
response to input is defined entirely by the underlying platform. In case of windows
the program can customise the behaviour by adding a WindowKeyboard attribute for
keyboard input (Section 8.6.1) and by adding a WindowMouse attribute for mouse
input (Section 8.6.2). Both attributes have a filter function (KeyboardStateFilter
and MouseStateFilter respectively) which is applied before the actual callback
function is evaluated. Only if the filter returns True then the callback function is
evaluated.

8.6.1 Keyboard input

Every keyboard sensitive interface object has a KeyboardFunction which is a pro-
cess state transition function that receives, as a first argument, a value of type
KeyboardState. This value represents one keyboard event. Keyboard events are
always generated in sequences that are characterised by a value of type KeyState
in the following order:

(KeyDown False) {(KeyDown True)}* KeyUp

A keyboard event is either an ASCII character (CharKey alternative) or a special key
(SpecialKey alternative).

:: KeyboardState

o8 CHAPTER 8. WINDOWS AND DIALOGUES

= CharKey Char KeyState
| SpecialKey SpecialKey KeyState Modifiers

The special keys are imported via the module StdI0Common (Appendix A.12).
Among others they define the function keys, arrow keys, page and line keys. The
Modifiers type is also defined in StdI0Common. It is a record that refers to the
state of the meta keys of the keyboard. Because some ASCII characters are gener-
ated using these meta keys they are not provided at the CharKey alternative. So
shift ‘a’ simply generates the CharKey alternative with Char value *A°.

The object I/O system guarantees that at all times only one keyboard alternative
is being handled. Assume that a user is pressing the ‘a’ key on the keyboard. This
generates a character ‘a’ key down event (CharKey ’a’ (KeyDown False)), and
then a sequence of character ‘a’ repeat key events (CharKey ’a’ (KeyDown True)).
If the user now also presses the ‘b’ key the object I/O system inserts two virtual
events that force the program to believe that the user first released the ‘a’ key with
a character ‘a’ key up event (CharKey ’a’ KeyUp), and then pressed the ‘b’ key
with a character b’ key down event (CharKey ’b’> (KeyDown False)). These are
followed by character ‘b’ repeat key events.

8.6.2 Mouse input

Every mouse sensitive interface object has a MouseFunction which is a process state
transition function that receives, as a first argument, a value of type MouseState.
This value represents one mouse event.

MouseState

= MouseMove Point Modifiers

| MouseDown Point Modifiers Int
| MouseDrag Point Modifiers

| MouseUp Point Modifiers

The Point and Modifiers types are defined in the module StdI0Common (Appendix
A.12). The Point type constructor states the position of the mouse at the mouse
event in terms of the view frame coordinates of the interactive object that contains
the specific MouseFunction. The Modifiers type constructor is a record that refers
to the state of the meta keys of the keyboard that were pressed at the mouse event.

Mouse events are always generated in sequences that are characterised by the alter-
native constructor of the MouseState type constructor:

{MouseMove}* [MouseDown {MouseDrag}* MouseUp]

The Int argument of the MouseDown alternative gives the number of times the
mouse was down within the mouse double down time. The mouse double down time
is a platform dependent time interval that distinguishes two sequential mouse down
from a double click. Although an integer is used for this count, its maximum value
is usually three. If a mouse down event with count 7 has occured and a new mouse
down event is generated within the mouse double down time, then the next mouse
down event has count i + 1. If the next mouse down event is not generated within
the mouse double down time, then the next mouse down event has count 1.

The object I/O system guarantees that every MouseFunction of a mouse sensitive
interface object is applied to a sequence of mouse events as characterised above.
Assume that a certain window is active and the user is pressing the mouse. This

8.6. HANDLING KEYBOARD AND MOUSE INPUT 99

generates first a mouse down event (MouseDown alternative), followed by a sequence
of mouse drag events (MouseDrag alternative). If for some reason another window
is being activated, the object I/O system inserts a virtual event that forces the
program to believe that the user has released the mouse button with a mouse up
event (MouseUp alternative). If the new window is also mouse sensitive, then its
MouseFunction is applied to a new virtual event that forces the program to believe
that the user has pressed the mouse again with a mouse down event (MouseDown
alternative). These are followed again by mouse drag events.

60

CHAPTER 8. WINDOWS AND DIALOGUES

Chapter 9

Control handling

The previous chapter introduced windows and dialogues. These top level interface
elements can contain controls, which are handled in this chapter. Control structures
can be hierarchical, i.e. they can be composed of controls themselves. Using controls
helps a program to provide a consistent and structured user interface. There are a
lot of issues involved when working with controls.

First of all we introduce each control object in Section 9.1. Then the glue is in-
troduced to build larger control structures in Section 9.2. An important aspect
of controls is to manage their layout, presented in Section 9.3. Related to layout
is what should happen in case a window containing controls is resized. This is
discussed in Section 9.4. Finally, Section 9.5 contains a number of examples that
demonstrate the use of controls.

9.1 The standard controls

Table 2.1 (page 10) shows the standard set of object I/O library controls. They can
be divided into three groups:

Platform standard controls: these are the controls that exist on all platforms
and that have a well-defined behaviour and look that is platform defined. In
the table these are the first seven controls (RadioControl...ButtonControl).

Customised controls: the look and feel of these controls is completely or partially
defined by the program. In the table these are the CustomButtonControl
(look is defined by the program, but it feels like a button) and CustomControl
(look and feel defined by the program).

Hierarchical controls: there is actually only one such control, the CompoundCon-
trol. It contains other controls which will be positioned relative to this
control. Except that it is hierarchical it can also have a look and feel.

There is an extensive set of control attributes that are shared by most controls.
CompoundControls have an additional set of attributes that are strongly related to
window and dialogue attributes. These will be discussed in Section 9.1.11. Before
we discuss each of the controls individually we pay some attention to the shared
control attributes.

61

62 CHAPTER 9. CONTROL HANDLING

9.1.1 The shared control attributes

The ControllId attribute identifies the control to which it is associated. If you do
not provide a ControllId, the control can not be modified.

The ControlPos attribute determines its layout position (see Section 9.3). If you
do not provide a ControlPos, the control will be placed right next to the previous
control (if it happens to be the first control, it will be positioned at the left-top).

The ControlSize attribute provides the initial size of the control. For all plat-
form standard controls except the slider control, the size can be derived from their
demanded attributes. So if you do not provide a ControlSize, then this is calcu-
lated by the system. If you do provide one then this value will override the system
calculated size (again, except for slider controls). For customised controls the size
is mandatory. For compound controls the size can be calculated given the control
elements of the compound control. So, if no ControlSize is given, the compound
control will exactly fit its element controls. If a ControlSize is given, then this
value overrides the system calculated size.

The ControlMinimumSize attribute defines the minimum size of the control. This
value is relevant in case of resizing (see Section 9.4). If no ControlMinimumSize is
provided, the default value zero is chosen.

The ControlResize attribute defines that the control is resizeable. If no Control-
Resize is provided, the control is not resizeable. See Section 9.4 about the resizing
behaviour of controls.

The ControlSelectState attribute defines whether the control can be used by the
user (Able) or not (Unable). Usually this will affect the look of the control. The
default value is Able.

The ControlHide attribute defines that the control is initially invisible. It does
occupy space. If you do not provide this attribute then the control is visible.

The ControlFunction and ControlModsFunction attributes are the primary call-
back function attributes of controls. The difference between these two attributes
is that the former is simply evaluated whenever the control is selected, and that
the latter also provides the callback function with the modifier keys that have been
pressed at the moment of selecting the control (for the definition of the modifier
keys, see definition module StdI0Common). In an attribute list the first of the two
attributes is chosen.

The ControlMouse and ControlKeyboard attributes add mouse and keyboard han-
dling callback functions to the control. This is only possible for non platform stan-
dard controls because platform standard controls have a predefined behaviour.

9.1.2 The RadioControl

A radio controlis a group of radio control items of which exactly one item is selected.
All alternatives are visible. The definition of a radio control is as follows:

: RadioControl 1s ps
= RadioControl [RadioControlItem (ls,ps)] RowsOrColumns Index
[ControlAttribute (1ls,ps)]
RowsOrColumns
= Rows Int
| Columns Int
RadioControlItem ps :== (TextLine,I0Function ps)
IOFunction ps :== ps —> ps

9.1. THE STANDARD CONTROLS 63

TextLine :== String
Index :== Int

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected item is
indicated by the Index value. As a convention in the object I/O library, when in-
dicating elements indices range from 1 upto the number of elements. So n elements
are indexed by 1...n. In case the index is out of range, i.e. less than 1 or larger
than n, it is set to 1 and n respectively. Valid radio control attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos \/ ControlFunction
ControlSize ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
ControlSelectState Vv

When a radio control item is selected the previously selected radio control item will
be unchecked, and the new radio control item gets the check mark. The correspond-
ing callback function is then evaluated. The callback function is also evaluated if
the currently selected radio control item is selected.

Example This RadioControl consists of five items, layn out in two rows. The first
item is initially selected.

radiocontrol
= RadioControl
[("Radio item "+++toString i,id)\\i<-[1..5]] (Rows 2) 1 []

i@ Badio item 1 O Badio item 2 > RBadio item 3
{7 Radio item 4) Badio item 5

9.1.3 The CheckControl

A check control is a group of check control items of which an arbitrary number of
items can be selected. All alternatives are visible. The definition of a check control
is as follows:

:: CheckControl 1s ps
= CheckControl [CheckControlItem (1ls,ps)] RowsOrColumns
[ControlAttribute (ls,ps)]

RowsOrColumns
= Rows Int
| Columns Int
CheckControlItem ps :== (TextLine,MarkState,I0Function ps)
IOFunction ps :== ps —> ps
TextLine :== String

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected items are
indicated by their MarkState value (Mark if checked, Nomark if not checked). Valid
control attributes are:

64 CHAPTER 9. CONTROL HANDLING

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos Vv ControlFunction
ControlSize ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
ControlSelectState Vv

When a check control item is selected its mark state will be toggled (from Mark to
NoMark and vice versa). No other check control items are affected. The correspond-
ing callback function is then evaluated.

Example This CheckControl consists of five items, layn out in two columns. Each
odd numbered item has a check mark.

checkcontrol
= CheckControl
[("Check item "+++toString i,if is0dd i Mark NoMark,id)
\\i<-[1..5]
1 (Columns 2) []

<] Checkitem 1 [Check item 4
[1Checkitem 2 [£] Checkitem 5
(<] Check item 3

9.1.4 The PopUpControl

A pop up control is a group of pop up control items of which exactly one item is
selected. The items of a pop up control are presented in a pop up menu. Usually
only the currently selected item is displayed in the title of that pop up menu. For this
reason pop up controls consume much less space than the functionally equivalent
radio controls. The definition of a pop up control is as follows:

:: PopUpControl 1s ps
= PopUpControl [PopUpControlItem (ls,ps)] Index
[ControlAttribute (1s,ps)]

PopUpControlItem ps :== (TextLine,I0Function ps)
I0Function ps :== ps —> ps
TextLine :== String

The initially selected item is indicated by the Index value. As a convention in the
object I/0O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1...n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid control
attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos \/ ControlFunction
ControlSize ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
ControlSelectState Vv

9.1. THE STANDARD CONTROLS 65

When a pop up control item is selected the previously selected item is unchecked
and the new item becomes the selected item. The corresponding callback function
is then evaluated. The callback function is also evaluated if the currently selected
radio control item is selected.

Example This PopUpControl consists of five items. The first item is the initially
selected item. The left picture shows the pop up control when not selected by
the user, the right picture when selected by the user.

popupcontrol
= PopUpControl
[("PopUp item "+++toString i,id)\\i<-[1..5]] 1 []

[Popup item 1 | [vPopUp item 1
Poplp item 2
FoplUp item 3
Poplp item 4
Poplp item 5

9.1.5 The SliderControl

Slider controls are used to change the view to space consuming visual data in one
particular dimension. The definition of a slider control is as follows:

: SliderControl 1ls ps
= SliderControl Direction Length SliderState
(SliderAction (1s,ps))
[ControlAttribute (1s,ps)]
Direction
= Horizontal | Vertical
Length :== Int
: SliderState
= { sliderMin :: !Int
, sliderMax :: !Int
, sliderThumb:: !Int
}
SliderAction ps :== SliderMove -> ps -> ps
SliderMove
SliderIncSmall | SliderDecSmall
SliderInclLarge | SliderDecLarge
SliderThumb Int

A slider control can be layn out in a horizontal direction (the Horizontal alternative
of Direction) or a vertical direction (the Vertical alternative of Direction). In
this direction it can have a certain length. Its width is platform dependent.

The scrolling range of a slider control is defined by the SliderState record. The
initial slider state determines the integer range: sliderMin gives the minimum
value, sliderMax gives the maximum value. In case these values are given in the
wrong order, they will be ordered properly. The initially chosen value is given by
the sliderThumb value. This value must be inclusively between sliderMin and
sliderMax. If a value smaller than the minimum range is given, then it is set to

66 CHAPTER 9. CONTROL HANDLING

the minimum. If a value larger than the maximum range is given, then it is set to
the maximum.

Valid control attributes for the SliderControl are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos \/ ControlFunction

ControlSize ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize Vv ControlKeyboard
ControlSelectState Vv

A slider control typically has five regions that can be selected by the user. These
regions are shown in Figure 9.1.

decrement increment
arrow arrow
page page
decrement increment
thumb
move

T

SliderThumb

SliderDeclarge SliderInclarge

SliderDecSmall SliderIncSmall

Figure 9.1: The regions of the SliderControl.

When the user is working with the slider control, its callback function is evaluated.
The algebraic data type SliderMove has an alternative constructor for each of the
regions of the slider control:

SliderDecSmall decrement arrow
SliderIncSmall increment arrow
SliderDecLarge page down region
SliderInclLarge page up region
SliderThumb thumb move

The program can decide what to do with this information. It is the responsibility
of the programmer that the application responds the way the user expects.

9.1. THE STANDARD CONTROLS 67

Example This SliderControl is orientied horizontally and has a length of 200
pixels.

slidercontrol
= SliderControl Horizontal 200
{sliderMin=(-100) ,sliderMax=100,sliderThumb=0}
(_ ps->ps) [I

9.1.6 The TextControl

A text control displays one line of text that can not be changed by the user. The
definition of a text control is as follows:

:: TextControl 1ls ps

= TextControl TextLine [ControlAttribute (1ls,ps)]
:: TextLine

:== String

Currently all control characters such as newlines in the textline argument are ig-
nored. Valid control attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide

ControlPos Vv ControlFunction
ControlSize Vv ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
ControlSelectState Vv

The initial size of a text control is determined by its initial text line. If the text
control has a ControlSize attribute that is larger than its initial size, then that
value becomes its initial size. A text control is not resizeable, and it will also not
change in size in case its text line is modified.

Example A text control that contains a text with newline characters.

textcontrol
= TextControl "This is a \ntext control" []

This is a tedt control

9.1.7 The EditControl

The edit control is applied to provide the user with an interface to edit (typically
small amounts of) textual data. The definition of an edit control is as follows:

:: EditControl 1s ps
= EditControl TextLine Width NrLines
[ControlAttribute (1ls,ps)]
TextLine :== String
Width :== Int
NrLines :== Int

68 CHAPTER 9. CONTROL HANDLING

An edit control initially displays some text line. If the textline contains newlines
then these are interpreted as line breaks. The edit control has an initial interior
width (in terms of pixels) and shows an integral number of lines. Valid control
attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos Vv ControlFunction

ControlSize ControlModsFunction
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard Vv
ControlSelectState Vv

If the SelectState of an edit control is Unable, the user can not type in data in
edit control. The program can keep track of the inserted text by setting the control
keyboard attribute. For each typed key the keyboard function is evaluated.

Example An EditControl that contains text with newline characters. Its interior
width is 80 pixels and it shows three lines of text.

editcontrol
= EditControl "This is an \nEditControl" 80 3 []

This is an
EditControl

9.1.8 The ButtonControl

The button control represents an action that should occur given the current state
of the window or dialogue. The definition of a button control is as follows:

ButtonControl 1s ps
= ButtonControl TextLine [ControlAttribute (1ls,ps)]
TextLine :== String

A button control has a name, given by a text line. Control characters are not
interpreted. Valid control attributes are:

ControlAttribute: | Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos Vv ControlFunction Vv
ControlSize Vv ControlModsFunction Vv
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
ControlSelectState Vv

The initial size of a button control is determined by its initial text line. If the
button control has a ControlSize attribute that is larger than its initial size, then
that value becomes its initial size. The callback function of a button control is the
function that is evaluated in case the button control was selected by the user and
its SelectState was Able. If the name of the button control is modified to a new
text line, then its size is not changed.

9.1. THE STANDARD CONTROLS 69

Example A ButtonControl with a title that contains newlines.

buttoncontrol
= ButtonControl "This a \nButtonControl" []

[This a Buttunl:untrul]

9.1.9 The CustomButtonControl

A custom button control is a control which feels like a button control, but which
look is customised by the program. The definition of a custom button control is as
follows:

:: CustomButtonControl 1ls ps
CustomButtonControl Size Look [ControlAttribute (1ls,ps)]

: Size
= {w::Int,h::Int}
: SelectState
= Able | Unable
:: UpdateState
= { oldFrame :: !ViewFrame
, newFrame :: !'ViewFrame
, updArea :: !UpdateArea
}
:: Look :== SelectState -> UpdateState -> [DrawFunction]
: ViewFrame :== Rectangle
: UpdateArea :== [ViewFrame]
:: DrawFunction:== *Picture -> *Picture

Both the initial size and look of a custom button control are defined by the program.
The look of a custom button control is identical to the look of a window as discussed
in Section 8.3.1. The UpdateState argument contains zero based rectangles of the
same size as the custom button control itself. Every custom button control has
a *Picture environment to which the look drawing functions are applied. Valid
control attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos Vv ControlFunction Vv
ControlSize ControlModsFunction Vv
ControlMinimumSize Vv ControlMouse

ControlResize Vv ControlKeyboard
ControlSelectState Vv

The callback function of a custom button control is the function that is evaluated
in case the custom button control was selected by the user and its SelectState
was Able.

Example A CustomButtonControl which look depends on its SelectState. The
picture on the left shows the custom button control in Able state, the picture
on the right in Unable state.

70 CHAPTER 9. CONTROL HANDLING

custombuttoncontrol
= CustomButtonControl {w=50,h=50} look []
where
look :: SelectState UpdateState -> [DrawFunction]
look Able {newFrame}
= [setPenColour DarkGrey, fill newFrame
, setPenColour Black, draw newFrame
]
look Unable {newFrame}
= [setPenColour LightGrey,fill newFrame
]

9.1.10 The CustomControl

A custom control is a control of which both the look and feel are program defined.
The definition of a custom control is as follows:

: CustomControl 1s ps
CustomControl Size Look [ControlAttribute (1s,ps)]

: Size
= {w::Int,h::Int}
:: SelectState
= Able | Unable
:: UpdateState
= { oldFrame :: !ViewFrame
, newFrame :: !ViewFrame
, updArea :: !UpdateArea
}
:: Look :== SelectState -> UpdateState -> [DrawFunction]
:: ViewFrame :== Rectangle
:: UpdateArea :== [ViewFrame]
:: DrawFunction:== *Picture -> *Picture

Both the initial size and look of a custom control are defined by the program. The
look of a custom control is identical to the look of a window as discussed in Section
8.3.1. The UpdateState argument contains zero based rectangles of the same size
as the custom control itself. Every custom control has a *Picture environment to
which the look drawing functions are applied. Valid control attributes are:

ControlAttribute: Valid: | ControlAttribute: Valid:
Controlld Vv ControlHide Vv
ControlPos Vv ControlFunction
ControlSize ControlModsFunction
ControlMinimumSize Vv ControlMouse Vv
ControlResize Vv ControlKeyboard Vv
ControlSelectState Vv

The feel of a custom control is defined by its mouse and keyboard callback functions.
If the user selects the custom control with the mouse, then the mouse callback

9.1. THE STANDARD CONTROLS 71

function handles all feedback. If the custom control has the keyboard input focus,
and the user is typing, then the keyboard callback function handles all feedback.

Example A CustomControl which look depends on its SelectState. The picture
on the left shows the custom control in Able state, the picture on the right in
Unable state.

customcontrol
= CustomControl {w=50,h=50} look []
where
look :: SelectState UpdateState -> [DrawFunction]
look Able {newFrame}
= [setPenColour DarkGrey, fill newFrame
, setPenColour Black, draw newFrame
]
look Unable {newFrame}
= [setPenColour LightGrey,fill newFrame
]

9.1.11 The CompoundControl

The compound controlis a control that contains other controls. A compound control
is actually a window within a window. It introduces a new layout scope: i.e.
controls inside it are positioned relative to the bounds of the compound control.
The compound control can have an additional look and feel. The definition and
Controls class instance declaration of a compound control is as follows:

CompoundControl c ls ps
= CompoundControl (c 1ls ps) [ControlAttribute (1ls,ps)]

instance Controls (CompoundControl c) | Controls c

The c parameter of the CompoundControl type constructor is a type constructor
variable that corresponds with the control elements of the compound controls. Any
composition of controls that is an instance of the Controls type constructor class
is a valid argument of CompoundControl.

Compared with the previous controls, compound controls have an additional number
of control attributes that are irrelevant to the other controls. These attributes are
similar to some attributes of windows and dialogues, and ofcourse they intend to
have the same meaning. Valid control attributes are:

72 CHAPTER 9. CONTROL HANDLING

ControlAttribute: Valid: || ControlAttribute: | Valid:
Controlld Vv ControlltemSpace Vv
ControlPos 4 ControlHMargin 4
ControlSize Vv ControlVMargin Vv
ControlMinimumSize Vv ControlLook Vv
ControlResize Vv ControlViewDomain Vv
ControlSelectState 4 ControlOrigin 4
ControlHide 4 ControlHScroll 4
ControlFunction ControlVScroll 4
ControlModsFunction

ControlMouse Vv

ControlKeyboard

The size of a compound control, if not provided as a ControlSize attribute, is
derived by the system from its control elements (see for more information on the
layout of control Section 9.3). Related to the size of a compound control and layout
of its elements are a number of attributes. The ControlMinimumSize attribute de-
termines the minimum size of the compound control (see resizing controls, Section
9.4), the ControlResize attribute controls the resize behaviour (see also Section
9.4), the ControlItemSpace, ControlHMargin, and ControlVMargin attributes de-
fine the distance between the elements themselves and the horizontal and vertical
distance of the elements to the border of the compound control respectively.

The compound control anatomy is the same as that of a window (Section 8.1.1). It
consists of the same three layers as a window except that we call its top layer the
compound frame rather than window frame. The compound frame has no title nor
features like resize controls and so on.

Analogous to windows, compound controls have a view domain if the Control-
ViewDomain is given. Otherwise it has a zero based arbitrarily large view domain.
A view domain defines a finite area in which can be drawn (see Chapter 6), but
also is used as an area to place controls (see Section 9.3). Given a view domain,
and a compound control that can in principle be smaller than the view domain, two
scrolling attributes can be added: ControlHScroll and ControlVScroll. These
attributes control the current view frame of the compound control. The left top
point of the view frame that is currently visible is called the origin. This value can
be set initially with the ControlOrigin attribute.

The document layer of a CompoundControl can be drawn into only if both the
ControlLook and ControlViewDomain attributes are given. In that case the system
provides the compound control with a drawing environment. If a ControlLook is
not given, then the compound control is transparant.

The feel of a compound control is ofcourse partially determined by its element
controls. If the ControlMouse attribute is given, then the compound control can
handle all mouse events that are directed to one of its element controls. This is not
the case for keyboard input.

An example of a CompoundControl is given once we have discussed the means to
create compositions of controls in the next section.

9.2 Control glue

In the previous section the standard set of controls has been discussed. This list
does not cover all controls class instances. In the library module StdControlClass
(Appendix A.4) a number of additional instances are defined, namely the type

9.2. CONTROL GLUE 73

constructors AddLS, NewLS, ListLS, NilLS, and :+: (their definition can be found
in Appendix A.12). These additional instances are required to glue controls. They
are treated below.

9.2.1 :+:

The most common constructor to glue controls is :+:. Its type constructor definition
and Controls class instance declaration are as follows:

:+: tl1 t2 local context
= (:+:) infixr 9 (t1 local context) (t2 local context)

instance Controls ((:+:) cl c2) | Controls cl & Controls c2

Given two Controls instances c1 and c2, working on the same local state of type
local and context state context, the expression cl:+:c2 is also a Controls in-
stance working on the same local state and context state. Because :+: is right
associative, the expression c1:+:c2:+:c3 should be read as cl:+: (c2:+:¢c3).

9.2.2 ListLS and NilLS

In principle the :+: glue is sufficient to create all required control structures. In
case of working with a number of control instances of the same type, it is much more
convenient to use lists and list comprehensions. This glue is provided by the type
constructors ListLS and NilLS. Their type constructor definitions and Controls
class instance declarations are as follows:

ListLS t local context = ListLS [t local context]
NilLS local context = NilLS

instance Controls (ListLS c) | Controls c
instance Controls NilLS

Given a list of Controls instances cs = [c; ...c,], working on the same local
state of type local and context state context, the expression ListLS cs is also
a Controls instance working on the same local state and context state. The type
constructor NilLS is a shorthand for ListLS []. It can also be conveniently used
to state that a CompoundControl or window or dialogue has no controls.

9.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue controls that work on
the same local state and context state. Two other glueing constructors are defined
to extend and change the local state, AddLS and NewLS. Their type constructor
definitions and Controls class instance declarations are as follows:

:: AddLS t local context

= E..add:
{ addLS :: add
, addDef:: t *(add,local) context
}

:: NewLS t local context

74 CHAPTER 9. CONTROL HANDLING

= E..new:
{ newlLS :: new
, newDef:: t new context
}

instance Controls (AddLS c) | Controls c
instance Controls (NewLS c) | Controls c

Given a Controls instance cl that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
cl :+: {addLS=x, addDef=c2}.

Given a Controls instance cl that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expression c1 :+: {newLS=x,
newDef=c2}.

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quantification.

9.2.4 Example: a counter control

In this section we show an example of glueing controls to form a new Controls class
instance. A CompoundControl is defined that consists of three other controls. It
implements a manually incrementable counter. To display the current count value
it uses an Unable EditControl. Two ButtonControls are used to decrement and
increment the counter.

counter windowid displayid
= { newLS =initcount
, newDef=CompoundControl
(EditControl (toString initcount) (hmm 50.0) 1
[ControlSelectState Unable

,ControlPos (Center,zero)
,ControlId displayid
]
:+: ButtonControl "-" [ControlFunction (count (-1))
,ControlPos (Center,zero)
]
:+: ButtonControl "+" [ControlFunction (count 1)]
) 1
}
where

initcount = 0O

count :: Int (Int,PSt .1 .p) -> (Int,PSt .1 .p)
count dx (count,ps)
= (count+dx, setText windowid displayid (count+dx) ps)

setText :: Id Id x (PSt .1 .p) -> PSt .1 .p | toString x
setText wid cid x ps

9.3. CONTROL LAYOUT 75
= appPI0
(setWindow wid [setControlTexts [(cid,toString x)]1]) ps

Figure 9.2 shows the counter after some user manipulations that resulted in the
counter value -15.

-1 |

Figure 9.2: The counter control.

9.3 Control layout

The object I/O library offers the programmer an expressive layout mechanism to
define the layout of controls. Controls can be element of windows, dialogues, and
compound controls. The layout rules that are discussed in this section are followed
in all these cases. Some layout rules refer to the view domain and frame of the
parent object. In case of dialogues these two are identical. They are zero based
rectangles with a size equal to the dialogue interior.

As we have seen, every control can have a ControlPos attribute. This attribute is
defined as follows:

ControlAttribute ps
= ... | ControlPos ItemPos |
:: ItemPos
:== (ItemLoc,Item0ffset)
Itemloc
Fix Point

| LeftTop | RightTop | LeftBottom | RightBottom
| Left | Center | Right
| LeftOf Id | RightTo Id | Above Id | Below Id
| Left0fPrev | RightToPrev | AbovePrev | BelowPrev
:: ItemOffset
:== Vector

The layout position of a control consists of two values: an ItemLoc value and an
Item0ffset value which is a vector. The ItemLoc actually determines the location
of the control, the Item0ffset value adds an offset to this position (which ofcourse
influences the position of other controls). The ItemLoc values can be divided into
four groups:

Fixed position: this is actually only the Fix alternative of ItemLoc. Fix point
places the left top corner of the control of which it is the attribute at the
specified point. The point is given in the coordinate system of the compound
control. This coordinate system is determined by the current view domain of
the parent object.

Boundary aligned: these are the alternatives LeftTop ...RightBottom. When
applied their control is placed at the left-top, right-top, left-bottom, or right-
bottom of the current view frame of the parent object.

76 CHAPTER 9. CONTROL HANDLING

Line aligned: these are the alternatives Left ...Right. When applied their con-
trol is placed below all previous line aligned controls and either left-aligned,
centered, or right-aligned with respect to the current view frame of the parent
object.

Relative position: these are the remaining alternatives Left0f ...BelowPrev.
The first four alternatives must be parameterised with the Id of a control
that is element of the same parent object, otherwise a runtime error will
occur. The latter four alternatives can be defined in terms of the first four
but have the advantage that you do not have to think of Ids for controls that
you only want to relatively place other controls to. Placing controls relatively
to other controls must construct a tree of related controls: cyclic references
are not allowed and result also in a runtime error.

Controls that are layn out relatively form a layout tree with one layout root control.
The layout attribute of the layout root control determines the layout positions of
the whole layout tree. If it is at a fixed position, the layout tree obtains a fixed
position. If it is boundary aligned, the layout tree is aligned at the same boundary.
If it is line aligned, the layout tree is line aligned.

Except for the first layout root control the default layout attribute for controls
is (RightToPrev,zero). For the first layout root control the default attribute is
(Left,zero). Consequently, the default layout order is from left to right in one
single row.

Controls are allowed to overlap partially or completely. This is particularly useful
in case of combinations of hidden and visible controls when at all times only one
is visible. It allows the program to change the control structure in an easy way by
hiding and showing controls.

In the remaining part of this section a number of examples are given to illustrate
control layout. In each of the examples we assume that the controls that are being
layn out are placed in a parent object with a view domain and view frame as given
in Figure 9.3. The x axis (the horizontal arrow) and y axis (the vertical arrow)
intersect at the coordinate zero.

view domain

view frame

Figure 9.3: View domain and view frame.

Controls are being displayed as boxes. The control configuration shown in Figure
9.4 occurs frequently in the examples. It consists of five equally sized controls,

9.3. CONTROL LAYOUT 7

co -..c4. The layout root control is cg. The controls c; ...cs are layn out
relatively to ¢y and have the layout attributes Left0f, RightTo, Above, and Below

respectively with zero offsets.
L]

1 3 1
I I
I I
ol
| - - -]

Figure 9.4: A layout tree of five controls.

9.3.1 Layout at fixed position

Controls and layout trees that have a Fix layout attribute are being placed relative
to the view domainof the parent object. So their visibility depends on the current
orientation of the parent view frame (recall that the view frame clips everything
that is outside of it). Figure 9.5 shows the control configuration of Figure 9.4 when
the layout root control has the attribute (Fix zero,zero).

——————————————————————————————

Figure 9.5: The layout tree at (Fix zero,zero).

9.3.2 Layout at view frame boundary

Controls and layout trees that are laynout relative to the parent view frame bound-
ary will always be visible, provided ofcourse that the view frame is suffiently large.
If the view frame is not large enough, these controls may become overlapped. Figure
9.6 shows the positions of the control configuration of Figure 9.4 when positioned
at every corner of the view frame (using LeftTop, RightTop, LeftBottom, and
RightBottom with zero offsets.

9.3.3 Layout in lines

Laying out controls and layout trees in lines is similar to writing characters in
an English piece of text: each new character is placed right next to the previous

78 CHAPTER 9. CONTROL HANDLING

——————————————————————————————

Figure 9.6: The layout tree at LeftTop, RightTop, LeftBottom, and RightBottom.

character until a new line is started. A new line starts below the previous line. This
new line can be left aligned, centered, or right aligned. The layout attributes Left,
Center, and Right introduce both a new line and its alignment. Figure 9.7 shows
the positions of the control configuration of Figure 9.4 when positioned at Left,
Center, and Right respectively, using zero offsets. It also illustrates that if the
view frame is not big enough, controls may become partially invisible.

——————————————————————————————

B
[ol[alla]
[°]
B

Figure 9.7: The layout tree at Left, Center, and Right.

9.3.4 Layout offsets

So far we have used zero offsets in the layout attribute examples. The layout
position of a control is changed by an offset vector value v = {vx,vy} as follows:
first, the layout position of the control is calculated as explained above, using a
zero offset. Now assume that this results in the ezact location pos = {x,y}. Then
the real position of the control is {x=x+vx, y=y+vyl}. Figure 9.8 illustrates this.
Given two controls ¢y and c; it shows the result of placing ¢; at RightTo control cg
with an offset value v .= {vx,vy}. The dashed box shows the location of c; using

9.4. RESIZING CONTROLS 79

a zero offset.

VX

EINNERE

1]

Figure 9.8: Laying out controls using an offset vector.

9.3.5 Layout relative to the previous control

As explained earlier in this section, the default layout attribute of a control is
(RightToPrev,zero). The other layout attributes that refer to the previous control
are Left0fPrev, AbovePrev, and BelowPrev. In this section we explain what the
previous control is.

Section 9.2 introduced the glue to create control structures. The best way to look at
such a control structure is to have a look at its numbered graph structure. Consider
the following expression: (a:+:b:+:c) with a, b, and c standard Controls class
instances as introduced in Section 9.1. Figure 9.9 shows the graph structure (recall
that :+: is right associative).

Figure 9.9: The numbered graph of (a:+:b:+:c).

Each node in the graph has an index. If a node is a glue node, then first number
the left sub tree, then the node itself, then the right sub tree. If a node is a
standard Controls class instance, then number it. The nodes of the sub tree of
a CompoundControl are not numbered. Proceeding in this way, one obtains the
index figures at each of the nodes in Figure 9.9. If a node in the graph with index
1 represents one of the standard Controls class instances then its previous control
is represented by that node in the graph that has the highest index less than i
and represents also one of the standard Controls class instances. So the previous
control of ¢ is not :+:4 but bs because we assumed that b is an instance of the
standard Controls class. Analogously, the previous element of b is neither one of
the two :+: nodes, but a;. Finally, a has no previous control.

9.4 Resizing controls

The object I/O system has a simple mechanism to let controls respond to resize
actions of their parent interface element (window, dialogue, or compound control).
If a control wants to respond to resize events, it should have a ControlResize
attribute. It is defined as follows:

80 CHAPTER 9. CONTROL HANDLING

ControlAttribute ps

= ... | ControlResize ControlResizeFunction |
ControlResizeFunction

:== Size -> Size -> Size -> Size

The control resize function is applied to its current size, old size of its parent,
and the new size of its parent. It returns its own new size. This calculation is
performed for all controls that are part of the control that is being resized. If
a CompoundControl has a resize function, and the new size is different from its
previous size, then this computation continues recursively, otherwise the layout of
its elements is not recalculated. Given the new sizes of the controls, the layout
is recalculated and adjusted accordingly. The effect of this strategy is that the
relative layout of controls is never changed in case of resizing a window, dialogue,
or compound control.

As an example, consider one wants to have a CompoundControl that always dis-
plays three CustomControls next to each other at the top of its view frame. The
CompoundControl takes care that it always has a width dividable by 3, using its
own ControlResize function compoundresize. Its ControlLook function draws a
rectangle fitting its current view frame.

compound = CompoundControl
(ListLS [custom,custom,custom])
[ControlResize compoundresize
,ControlSize compoundsize
,ControlLook (_ {newFrame}->[draw newFrame])

,CompoundHMargin 0 O
,CompoundVMargin 0 O
,CompoundItemSpace 0 O
]
compoundsize = {w=60,h=75}
compoundresize _ _ newparentsize=:{w}
= {newparentsize & w=w/3%3}

The CustomControls resize their widths according to the new width of their par-
ent control, using the ControlResize function customresize. The look of the
CustomControl simply draws a rectangle fitting its current view frame and the two
diagonals.

custom = CustomControl
{w=compoundsize.w/3,h=6}
look
[ControlResize customresize]
customresize customsize _ {w}
= {customsize & w=w/3}
look _ {newFrame}
= [draw newFrame
,drawLine newFrame.cornerl
newFrame.corner?2
,drawLine {newFrame.cornerl & y=newFrame.corner2.y}
{newFrame.corner2 & y=newFrame.cornerl.y}

]

Figure 9.10 shows what happens with the controls when the parent object is resized.
At the left the initial state of the CompoundControl and its CustomControls is

9.5. EXAMPLES 81

displayed. As explained in Section 9.3, the three custom controls form a layout
tree with the layout root control having the layout attribute (Left,zero) and the
other CustomControls (RightToPrev,zero). In the middle, the CompoundControl
is resized in both directions. This resize action causes first recalculation of the size
of the CompoundControl, using compoundresize. Because this value differs from
the old size, recalculation continues for each CustomControl. The final result is
shown at the right.

1

Figure 9.10: Resizing a CompoundControl with three CustomControls.

9.5 Examples

In this section a number of examples are given to clarify the use of controls.

9.5.1 Keyspotting

To illustrate keyboard handling we discuss a small example program that mon-
itors keyboard events, called ‘keyspotting’. It creates a Window that contains a
CompoundControl that contains a CustomControl. Before we discuss each of the
components below, we have a look at the way they handle keyboard input.

Each of the components is keyboard sensitive and uses the same KeyboardFunction
spotting. Given a string that states who currently has the input focus, spotting
simply changes the Look function of the CustomControl and forces its update (by
using a True boolean). We assume that there is a conversion function that trans-
forms a KeyboardState into a String. The Look function look draws the text that
it is parameterised with within a framed box.

spotting who key ps
= appPI0 (setWindow windowid
[setControlLooks
[(controlid,True,look (who+++":"+++toString key))
]
]

) ps

look text _ {newFrame}
= [setPenColour White
,fill newFrame
,setPenColour Black
,draw newFrame

82 CHAPTER 9. CONTROL HANDLING

,drawAt {x=10,y=customsize.h/2} text
]

The CustomControl custom displays which component is currently receiving what
keyboard input. The control is identified by controlid. It parameterises its Key-
boardFunction spotting function with the string "Control".

custom
= CustomControl customsize (look "")
[ControlKeyboard (const True) Able (noLS1 (spotting "Control"))
,ControlId controlid
]

The CompoundControl compound contains only custom. It parameterises its Key-
boardFunction spotting with the string "Compound". Its size is chosen such that
it is large enough to display custom completely. It conveniently uses the look
function to draw a box around itself.

compound
= CompoundControl custom
[ControlKeyboard (const True) Able (noLS1 (spotting "Compound"))

,ControlSize {w=customsize.w+2*margin
,h=customsize.h+2*margin
X

,ControlLook (look "™)

]

Finally, the Window window contains only compound. It parameterises its spotting
function with the string "Window". Its size is chosen such that it is large enough
to display compound completely. For this purpose also the margin layout attributes
are set. Termination of the program is taken care of by having the program quit
when the user closes the window.

window
= Window "keyspotting" compound
[WindowKeyboard (const True) Able (nolLS1 (spotting "Window"))

,WindowId windowid

,WindowSize {w=customsize.w+4*margin
,h=customsize.h+4*margin
X

,WindowHMargin margin margin
,2WindowVMargin margin margin
,WindowClose (noLS closeProcess)

]

Remaining details that need to be defined are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
keyspotting below. We assume that the module stringconv contains a string
conversion function for KeyboardStates.

module keyspotting

// 3k 3k 3k 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k >k 3k ok 3k >k 3k >k 3k k 3k 3k >k 3k >k 5k 3k 5k 3k ok 3k ok 3k ok 3k 3k 5k 3 5k 3k >k 3k k >k 5k >k 3k >k 3k %k 5k 3k 5k 3k >k 5k %k 3k >k 3k 3k >k %k %k 3k %k >k %k >k *k kK k >k

// Clean tutorial example program.

9.5. EXAMPLES 83

1/

// This program monitors keyboard input that is sent to a Window which consists
// of a CompoundControl which consists of a CustomControl.
[/ kxskokskoksoksoR ok ok kokkskokskokskok ok kokokskokskokok sk ksk ok ko skskokskokskokk sk ksk ok kol sksk ok sk ok sk ki sk ksk ok skt sk sk ok sk ok sk sk sk ok ok ok ok

import StdEnv,StdIO,stringconv

NoState
= NoState

Start :: *World -> *World
Start world
(windowid, world)= openld world
(controlid,world)= openld world
= startI0 NoState NoState [initialise windowid controlid] [] world

where
initialise windowid controlid ps
custom = CustomControl customsize (look "")
[ControlKeyboard (const True) Able
(noLS1 (spotting "Control"))
R ControlId controlid
]
compound = CompoundControl custom
[ControlKeyboard (const True) Able
(noLS1 (spotting "Compound"))
, ControlSize {w=customsize.w+2*margin
,h=customsize.h+2*margin
}
s ControlLook (look "™)
]
window = Window "keyspotting" compound
[WindowKeyboard (const True) Able
(noLS1 (spotting "Window"))
. WindowId windowid
, WindowSize {w=customsize.w+4*margin
,h=customsize.h+4*margin
}
, WindowClose (noLS closeProcess)
, WindowHMargin margin margin
, WindowVMargin margin margin
]
(error,ps) = openWindow NoState window ps
| error<>NoError
= abort "keyspotting could not open window"
| otherwise
= ps
where
customsize = {w=550,h=100}
margin =10

spotting who key ps
= appPI0 (setWindow windowid
[setControlLooks [(controlid,True,look text)]]
) ps
where
text = who+++":"+++toString key
look text _ {newFrame}
= [setPenColour White, fill newFrame
, setPenColour Black, draw newFrame
, drawAt {x=10,y=customsize.h/2} text
]

9.5.2 Mousespotting

To illustrate mouse handling we discuss a small example program that monitors
mouse events, called ‘mousespotting’. It creates a Window that contains a Compound-

84 CHAPTER 9. CONTROL HANDLING

Control that contains a CustomControl. Before we discuss each of the components
below, we have a look at the way they handle mouse input.

Each of the components is mouse sensitive and uses the same MouseFunction
spotting. Given a string that states who currently has the input focus, spotting
simply changes the Look function of the CustomControl and forces its update (by
using a True boolean). We assume that there is a conversion function that trans-
forms a MouseState into a String. The Look function look draws the text that it
is parameterised with within a framed box.

spotting who mouse ps
= appPI0 (setWindow windowid
[setControlLooks [(controlid,True,look text)]]) ps
where
text = who+++":"+++toString mouse

look text _ {newFrame}
= [setPenColour White, fill newFrame
, setPenColour Black, draw newFrame
, drawAt {x=10,y=customsize.h/2} text
]

The CustomControl custom displays which component is currently receiving what
mouse input. The control is identified by controlid. It parameterises its Mouse-
Function spotting function with the string "Control".

custom
= CustomControl customsize (look "")
[ControlMouse (const True) Able (noLS1 (spotting "Control"))
,ControlId controlid
]

The CompoundControl compound contains only custom. It parameterises its Mouse-
Function spotting with the string "Compound". Its size is chosen such that it is
large enough to display custom completely. It conveniently uses the look function
to draw a box around itself.

compound
= CompoundControl custom
[ControlMouse (const True) Able (noLS1 (spotting "Compound"))
,ControlSize {w=customsize.w+2*margin,h=customsize.h+2*margin}
,ControlLook (look "")
]

Finally, the Window window contains only compound. It parameterises its spotting
function with the string "Window". Its size is chosen such that it is large enough
to display compound completely. For this purpose also the margin layout attributes
are set. Termination of the program is taken care of by having the program quit
when the user closes the window.

window
= Window "mousespotting" compound
[WindowMouse (const True) Able (nolLS1 (spotting "Window"))
,WindowId windowid

9.5. EXAMPLES 85

,WindowSize {w=customsize.w+4*margin,h=customsize.h+4*margin}
,WindowHMargin margin margin

,2WindowVMargin margin margin

,WindowClose (noLS closeProcess)

]

Remaining details that need to be defined are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
mousespotting below. We assume that the module stringconv contains a string
conversion function for MouseStates.

module mousespotting

[] R AR EFAAAFAA KA AA KK A KK A KK KA K KA A KA KK A KK AA K KA K KA KA A KK A KA KA K KA KA A KK AA KA KK
// Clean tutorial example program.

// This program monitors mouse input that is sent to a Window which consists

// of a CompoundControl which consists of CustomControl.
[/ skskokskokskokskok ok ko ko ko ok ok ok ok ok sk ok sk sk ok sk ok sk sk o ko ok sk sk s ok ok ok sk sk o ok ok ok sk sk sk ok sk ok sk sk o ko ok sk sk sk ok ok ok sk sk ok ko ok ok

import StdEnv,StdIO,stringconv

NoState
= NoState
Start :: *World -> *World

Start world
(windowid, world)= openld world
(controlid,world)= openld world
= startI0 NoState NoState [initialise windowid controlid] [] world

where
initialise windowid controlid ps
custom = CustomControl customsize (look "")
[ControlMouse (const True) Able
(noLS1 (spotting "Control"))
, Controlld controlid
]
compound = CompoundControl custom
[ControlMouse (const True) Able
(noLS1 (spotting "Compound"))
, ControlSize {w=customsize.w+2*margin
,h=customsize.h+2*margin
}
, ControlLook (look "")
]
window = Window "mousespotting" compound
[WindowMouse (const True) Able
(noLS1 (spotting "Window"))
, WindowId windowid
, WindowSize {w=customsize.w+4*margin
,h=customsize.h+4*margin
}
, WindowHMargin margin margin
, WindowVMargin margin margin
, WindowClose (noLS closeProcess)
]
(error,ps) = openWindow NoState window ps
| error<>NoError
= abort "mousespotting could not open window"
| otherwise
= ps
where
customsize = {w=550,h=100}
margin =10

spotting who mouse ps

86 CHAPTER 9. CONTROL HANDLING

= appPI0 (setWindow windowid
[setControlLooks [(controlid,True,look text)]]) ps
where
text = who+++":"+++toString mouse
look text _ {newFrame}
= [setPenColour White, fill newFrame
, setPenColour Black, draw newFrame
, drawAt {x=10,y=customsize.h/2} text
]

Chapter 10

Menus

Many interactive applications allow a user to manipulate a number of documents.
As we saw in the previous chapter, the user can issue these manipulations by means
of the keyboard and mouse. Another common source of manipulations is by issueing
commands to the application. This is where menus come in. Menus help a program
to structure the set of available commands. To the user of an application, the use
of menus provides a consistent and easily browsable graphical display of the set
of available commands. For these reasons it is recommended to use menus in a
program.

In Section 10.1 we introduce the standard set of menu definitions that are at a
programmers disposal. Then the glue is introduced to create larger menu structures
in Section 10.2. One special menu is available for interactive processes that have
the multiple document interface (MDI) attribute, the windows menu. This menu
enumerates the current open and visible windows of that process and give some
commands to organise them. This is treated in Section 10.3. Menus provide a
consistent graphical interface to users. To enhance the consistency, a number of
programming conventions have evolved. These are discussed in Section 10.4.

10.1 Menus and menu elements

Menus and menu elements can be defined by means of the type definitions in mod-
ule StdMenuDef (Appendix A.15). Analogous to Windows, Dialogs, and Compound-
Controls, Menus are parameterised with a type constructor variable. The admiss-
able instances are the menu elements. Below we introduce each of the components.

10.1.1 The menu attributes

The menu attributes are used by both menus and menu elements. They are the
following;:

MenuAttribute ps

= Menuld Id

| MenuSelectState SelectState

| MenuIndex Int

| MenuShortKey Char

| MenuMarkState MarkState

| MenuFunction (I0Function ps)

87

88 CHAPTER 10. MENUS

| MenuModsFunction (ModsIOFunction ps)

The Menuld attribute identifies the menu or menu element to which it is associated.
If you do not provide a Menuld the menu (element) can not be modified.

The MenuSelectState attribute defines whether the menu (element) can be used
by the user (Able) or not (Unable). Usually this will affect the look of the menu
(element). The default value is Able.

The Menulndex attribute defines the index position of a menu. Index positions
range from one (for the first menu) upto the number of menus. A negative or zero
MenuIndex attribute value will place the menu in front of all current menus. A
MenuIndex attribute value that is larger than the current number of menus will
place the menu behind all current menus. Other MenuIndex attribute values place
the menu behind the menu with that index value.

The MenuShortKey attribute defines a character that can be used by user to select
the menu element to which the character is associated by means of the keyboard.
The menu element can be selected by pressing that character and some special,
platform dependent meta key.

The MenuMarkState attribute can add a check mark symbol (Mark) or leave it out
(NoMark) to a menu element. The default value is NoMark.

The MenuFunction and MenuModsFunction attributes add callback functions to
menu elements that are evaluated when the menu element to which they are as-
sociated is selected by the user. The difference between these two attributes is
that the former is simply evaluated whenever the menu element is selected, and
that the latter also provides the callback function with the modifier keys that have
been pressed at the moment of selecting the menu element (for the definition of the
modifier). In a MenuAttribute list, the first of these two attributes is chosen.

10.1.2 The Menu

A menu is a top level interface element that contains a group of related commands.
The definition of a menu is as follows:

:: Menu m 1s ps
= Menu Title (m ls ps) [MenuAttribute *(1ls,ps)]

The usual appearance of a menu is by its title. The user can browse through its
commands by mouse or by a platform dependent keyboard interface. Valid menu
attributes are:

MenuAttribute: Valid:
Menuld Vv
MenuSelectState Vv
MenuIndex Vv
MenuShortKey
MenuMarkState
MenuFunction
MenuModsFunction

Example Here is an example of a menu. The left picture shows the menu when
not selected by the user, the right picture when selected by the user.

10.1. MENUS AND MENU ELEMENTS 89

menu
= Menu "Menu"
(MenuItem "Open..." [MenuShortKey ’07]
:+: Menultem "Close" [MenuSelectState Unable
»MenuShortKey ‘w’?
]
:+: MenuSeparator (]
:+: Menultem "Quit" [MenuShortKey ’q’]
) |
File IIi"!I
Open.. ¥0
Close W
Quit #0Q

10.1.3 The Menultem

The menu item is the standard element that refers to a command. The definition
of a menu item is as follows:

:: Menultem ls ps = Menultem Title [MenuAttribute *(1ls,ps)]

The title of a menu element is displayed as a member of its parent menu. When
the user selects the menu item its Menu (Mods)Function attribute is evaluated if the
menu item, and all of its parent menus are Able. The appearence of the menu item
reflects this state. Valid menu item attributes are:

MenuAttribute: | Valid:
Menuld
MenuSelectState
MenuIndex
MenuShortKey
MenuMarkState
MenuFunction
MenuModsFunction

L <

Examples of menu items are given in Section 10.1.2.

10.1.4 The MenuSeparator

The menu separator is a menu element that is only used to separate groups of related
menu elements within a parent menu. Graphically, a menu separator usually inserts
some vertical space within a menu. Menu separators have no further functionality.
The definition of a menu separator is as follows:

:: MenuSeparator ls ps = MenuSeparator [MenuAttribute *(1ls,ps)]

Because menu separators have no other purpose than providing some ‘white space’
between menu elements, the only valid menu separator attribute is the MenuId:

90 CHAPTER 10. MENUS

MenuAttribute: Valid:
Menuld Vv
MenuSelectState
MenuIndex
MenuShortKey
MenuMarkState
MenuFunction

MenuModsFunction

In the menu example of Section 10.1.2 a menu separator has been used.

10.1.5 The RadioMenu

A radio menu element is a group of menu items of which exactly one menu item is
selected. All alternatives are visible. The definition of a radio menu is as follows:

:: RadioMenu 1s ps = RadioMenu [MenuRadioItem *(ls,ps)] Index
[MenuAttribute *(1ls,ps)]
:: MenuRadioItem ps :== (Title,Maybe Id,Maybe Char,IOFunction ps)

The initially selected item is indicated by the Index value. As a convention in the
object I/0O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1...n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid radio menu
attributes are:

MenuAttribute: Valid:
Menuld Vv
MenuSelectState Vv
MenuIndex

MenuShortKey Vv
MenuMarkState
MenuFunction
MenuModsFunction

When an item of the radio menu is selected the previously selected radio menu
item will be unchecked, and the new radio menu item gets the check mark. The
corresponding callback function is then evaluated. The callback function is also
evaluated if the currently selected radio menu item is selected.

Example Here is an example of a radio menu and what it initially looks like (it is
instructive to compare this with the radio control example at page 63).

radiomenu
= RadioMenu
[("Radio item "+++toString i,Nothing,Just (iChar i),id)
\\ i<-[1..5]
1 1101
where
iChar i = toChar (toInt ’1°+i-1)

10.1. MENUS AND MENU ELEMENTS

+ Radio item 1
Radio item 2
Radio item 3
Radio item 4
Radio item o

#1
#2
#3
4
#D

10.1.6 The SubMenu

The sub menu is a menu element that contains other menu elements.

91

So it is a

menu within a menu, and ofcourse can contain sub menus as well. The definition
of a sub menu is as follows:

: SubMenu m 1s ps =

SubMenu Title (m 1ls ps) [MenuAttribute *(1ls,ps)]

The usual appearance of a sub menu is by its title. The user can browse through
its elements by mouse or by a platform dependent keyboard interface. Valid sub

menu attributes are:

MenuAttribute:

Valid:

Menuld
MenuSelectState
MenuIndex
MenuShortKey
MenuMarkState
MenuFunction

MenuModsFunction

Example Here is an example of a sub menu. It is actually the same definition as
the menu at page 88 except that it has a SubMenu data constructor rather
than the Menu data constructor and a different title. The left picture shows
the sub menu when not selected by the user, the right picture when selected

by the user.
submenu
= SubMenu "Sub Menu"
(MenuItem "Open..." [MenuShortKey ’07]
:+: Menultem "Close" [MenuSelectState Unable
,MenuShortKey ‘w’
]
:+: MenuSeparator (]
:+: Menultem "Quit" [MenuShortKey ’q’]
) |
supmenu > | INCITETTTMN Open.. |
Close

Quit #Q

92 CHAPTER 10. MENUS

10.2 Menu glue

In the previous section the standard set of menus and menu elements has been
discussed. This list is not complete. In the library module StdMenuElementClass
(Appendix A.17) a number of additional instances are defined, namely the type
constructors AddLS, NewLS, ListLS, NilLS, and :+: (their definition can be found
in Appendix A.12). These additional instances are required to glue menus. They
are treated below.

10.2.1 :+:

The most common constructor to glue menu elements is :+:. Its type constructor
definition and MenuElements class instance declaration are as follows:

:+: t1 t2 local context
= (:+:) infixr 9 (t1 local context) (t2 local context)

instance MenuElements ((:+:) ml m2) | MenuElements mil
& MenuElements m2

Given two MenuElements instances m1 and m2, working on the same local state
of type local and context state context, the expression mi:+:m2 is also a Menu-
Elements instance working on the same local state and context state. Because :+: is
right associative, the expression m1:+:m2:+:m3 should be read as m1:+: (m2:+:m3).

10.2.2 ListLS and NilLS

In principle the :+: glue is sufficient to create all required menu element structures.
In case of working with a number of menu instances of the same type, it is much
more convenient to use lists and list comprehensions. This glue is provided by
the type constructors ListLS and NilLS. Their type constructor definitions and
MenuElements class instance declarations are as follows:

ListLS t local context = ListLS [t local context]
NilLS local context NilLS

instance MenuElements (ListLS m) | MenuElements m
instance MenuElements NilLS

Given a list of MenuElements instances ms = [m; ...m,], working on the same lo-
cal state of type local and context state context, the expression ListLS ms is also
a MenuElements instance working on the same local state and context state. The
type constructor NilLS is a shorthand for ListLS []. It can also be conveniently
used to state that a SubMenu or Menu has no menu elements.

10.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue menu elements that
work on the same local state and context state. Two other glueing constructors
are defined to extend and change the local state, AddLS and NewLS. Their type
constructor definitions and MenuElements class instance declarations are as follows:

10.3. THE WINDOWS MENU 93

:: AddLS t local context

E..add:

{ addLS :: add

, addDef:: t *(add,local) context

}
:: NewLS t local context
= E. .new:
{ newlLS :: new
, newDef:: t new context
}

instance MenuElements (AddLS m) | MenuElements m
instance MenuElements (NewLS m) | MenuElements m

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
ml :+: {addLS=x, addDef=m2}.

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expressionmi :+: {newLS=x,
newDef=m2}.

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quantification.

10.3 The Windows menu

In this section the special MDI Windows menu should be discussed. This section
is not done because currently that menu has not yet been implemented for the
Windows(95/NT) platform.

10.4 Menu conventions

The use of menus provides application users with a consistent and uniform access to
the available set of commands. In this section we discuss a number of conventions
that are usually followed to increase the consistency level.

10.4.1 Subsetting the available commands

In general when using an interactive application, the application will move through
several states. In each state a particular subset of the complete set of available
commands will be applicable to the user while the remaining commands should
not be selected. A well designed application should make this clear to the user by
subsetting the available commands.

The easiest way to subset commands is by disabling and enabling the menu elements
that should be unselectable and selectable respectively. For this purpose the func-
tions enableMenuElements and disableMenuElements (module StdMenuElement,

94 CHAPTER 10. MENUS

Appendix A.16) are available to enable and disable individual menu elements. Com-
plete menus can be enabled and disabled using the StdMenu (Appendix A.14) func-
tions enableMenus and disableMenus. The whole current set of menus can be
enabled and disabled using enableMenuSystem and disableMenuSystem.

10.4.2 Command conventions

In this section we discuss some conventions that are found frequently in many
applications with respect to commands.

Clipboard commands

Applications that support the use of the clipboard (Chapter 7) to cut, copy, and
paste private and external data usually are found in an "Edit" menu. Conventions
are:

cut This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing
this command should remove that object from its context and place it in the
clipboard. Its name should be "Cut" and it should have the shortkey attribute
’x?.

copy This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing this
command should place it in the clipboard, but not remove it from its context.
Its name should be "Copy" and it should have the shortkey attribute ’c”’.

paste This command should be enabled only if the clipboard contains an object
that can be currently incorporated in the application. Issueing this command
should read the clipboard and put that object in the application. Its name
should be "Paste" and it should have the shortkey attribute ’v’.

Undo command

Applications that allow users to manipulate documents by sequences of commands
can support an undo command. The undo command can also be undone by the redo
command. These commands are usually found in an "Edit" menu. Conventions
are:

undo This command should be enabled only if the user has issued a sequence of
commands that can be undone. The number of undoable commands depends
on the sophistication of the application. The name of this command is "Undo"
and it has the shortkey attribute ’>z’.

redo This command should be enabled only if a (sequence of) undo command has
been issued. At each selection it restores the changes of the undo command.
The name of this command is "Redo" and it has the shortkey attribute ’y’.

Document commands

The document commands are frequently found commands to create new documents,
open existing documents, and save and close open documents. These commands
are usually found in an "File" menu. Conventions are:

10.4. MENU CONVENTIONS 95

new This command should be enabled only if the application can modify a new
document. Issueing this command should create or reuse a window containing
the new document. Its name should be "New" and it should have the shortkey
attribute ’n’.

open This command should be enabled only if the application can modify an ad-
ditional, existing document. Issueing this command should give the user the
opportunity to search for a file that will be opened by the application. For
this purpose the StdFileSelect function selectInputFile can be used (Ap-
pendix A.7). The name of the command should be "Open..." and it should
have the shortkey attribute *o’.

close This command should be enabled only if the application has an open docu-
ment window or dialogue. Issueing this command should close the currently
active window or dialogue. It is good programming practice to check if the
document has been recently saved. If this is not the case, then the user should
be asked if the document should be saved before closing. The name of this
command should be "Close" and it should have the shortkey attribute ’w’.

save This command should be enabled only if the currently active document win-
dow version differs from a (possibly not present) file version. Issueing this
command should save the current state of the document in the active window
to file. If there is no file associated yet, then the application should first ask for
a file name. For this purpose the StdFileSelect function selectOutputFile
can be used (Appendix A.7). The name of the command should be "Save"
and it should have the shortkey attribute ’s’.

save as This command should be enabled only if the application has an open
document window. Issueing this command should give the user the possi-
bility to browse the file system and provide a file name. For this purpose
the StdFileSelect function selectOutputFile can be used (Appendix A.7).
The name of the command should be "Save As..."

Quit command

Users can leave an application using the quit command. A user should always be
allowed to quit the application. It is good programming practice to check if there are
any unsaved documents in the application. If this is the case then the user should
be asked if these documents should be saved before closing. The name of the quit
command is usually "Quit" and has the shortkey attribute q’. This command is
usually found in a "File" menu.

96

CHAPTER 10. MENUS

Chapter 11

Timers

Timers provide interactive programs with a tool to let actions occur at regular
time intervals. These actions respond to timer events, and so they can be properly
defined as callback functions. Typical examples of timer uses are blinking cursors,
clocks, and time-out mechanisms.

The definition types of timers can be found in module StdTimerDef, Appendix
A.29. The main type definitions are as follows:

: Timer t 1s ps

= Timer TimerInterval (t ls ps) [TimerAttribute *(1ls,ps)]
:: TimerInterval

:== Int

TimerAttribute ps

= TimerId Id

| TimerSelectState SelectState

| TimerFunction (TimerFunction ps)
TimerFunction ps

:== NrOfIntervals->ps->ps

A TimerInterval is an integer value that must be atleast zero. The time unit is
platform dependent and is defined by the StdSystem function ticksPerSecond (see
Appendix A.26).

The TimerAttributes are the following:

TimerId This attribute identifies the timer. If you do not provide a TimerId the
timer can not be modified.

TimerSelectState This attribute defines whether the timer will respond to timer
events (Able) or not (Unable). The default value is Able.

TimerFunction This attribute is the callback function that is evaluated when a
timer event is handled. Its first argument is the number of whole timer inter-
vals that have elapsed since its previous evaluation, so this value is atleast 1.
If the timer interval is zero, then this number is always 1. Enabling a timer
from a disabled state resets the last evaluation time.

The Timer type constructor is parameterised with a type constructor variable. Anal-
ogous to menus that contain menu elements, timers can contain timer elements.

97

98 CHAPTER 11. TIMERS

The instances must be member of the TimerElements class. This is expressed by
the timer creation function, openTimer which can be found in module StdTimer
(Appendix A.28):

class Timers tdef where
openTimer :: .ls !(tdef .1ls (PSt .1 .p)) !(PSt .1 .p)
-> (!ErrorReport,!PSt .1 .p)

instance Timers (Timer t) | TimerElements t

Currently, the instances of the TimerElements class are receivers and the usual
glueing type constructors that we have already encountered in controls (Section
9.2) and menu elements (Section 10.2), namely AddLS, NewLS, ListLS, NilLS, and
:+:. The receiver instances are declared in module StdTimerReceiver (Appendix
A.31). Receivers are not handled in this chapter but in Chapter 12. The glueing
constructors are declared in the same module StdTimerElement that contains the
TimerElements class (Appendix A.30).

11.1 Examples

In this section we give some examples to illustrate the use of timers.

11.1.1 Expanding circles

In this example we create a program that uses a timer to draw a number of growing
concentric circles in a fixed size window periodically. It also opens a menu containing
only the quit command. Figure 11.1 shows the program in action. We discuss these
object I/O components in reverse order (menu, window, timer).

Circles ————=

Figure 11.1: The circles program in action.

The menu definition is very simple, as it contains only one command to termi-
nate the example program. Recall that to terminate an interactive process the
StdProcess function closeProcess must be used. The StdI0Common function noLS
suitably turns closeProcess into the desired type. Here is the menu definition.

mdef = Menu "Circles"

11.1. EXAMPLES 99

(MenulItem "Quit" [MenuFunction (noLS closeProcess)
,MenuShortKey ’q’

]
)

For simplicity, the window in which the circles are to be drawn has a fixed size,
namely windowEdge by windowEdge (200 in the example). To ease drawing, we take
care that the view domain of the window has the origin zero right in the center of
the view domain. This can be done conveniently by defining the WindowViewDomain
attribute to be:

windowViewDomain
= { cornerl = {x= “windowEdge/2,y= “windowEdge/2}
, corner2 = {x= windowEdge/2,y= windowEdge/2}
}

The window does not contain controls (expressed by the Controls type instance
NilLS) and is identified by the value windowid. The window definition is as follows:

wdef = Window "Circles" NilLS

[WindowId windowid

,WindowSize (rectangleSize windowViewDomain)
,WindowViewDomain windowViewDomain

]

The timer draws a number of concentric circles that have an increasing radius. For
this purpose it uses a local state of the following type and initial value:

:: TimerState

= { nrCircles :: Int
, equiDistance :: Int
, minRadius :: Int
}

initTimerState

= { nrCircles =4
, equiDistance

non
o N

, minRadius

}

The nrCircles field contains the number of circles that are drawn. The equi-
Distance field is the difference of radius between two neighbouring circles. The
minRadius field keeps track of the radius of the smallest visible circle.

The timer interval is set to a twentieth of a second (ticksPerSecond/20). The
timer contains no timer elements. Its definition is as follows:

tdef = Timer (ticksPerSecond/20) NilLS [TimerFunction timer]

The timer function timer will be evaluated by the object I/O system every twentieth
of a second (if possible). The timer function actually ignores the number of elapsed
intervals and simply draws the next sequence of circles. There are two cases to
distinguish:

If the smallest circle still fits entirely inside the window (tested by minRadius <
windowEdge/2), then timer erases the smallest circle by drawing it in white. It

100 CHAPTER 11. TIMERS

then draws the new circle in black which should have a radius equal to minRadius
+ nrCircles * equiDistance. Finally, the minRadius field is changed to reflect
the fact that the smallest visible circle now has radius minRadius + equiDistance.

If the smallest circle does not fit entirely inside the window, then timer completely
erases the window by filling the document layer picture with a white rectangle. By
setting the new local TimerState back to initTimerState the circles are drawn
again from the center.

timer :: NrOfIntervals (TimerState,PSt .1 .p)
-> (TimerState,PSt .1 .p)
timer _ (1s=:{nrCircles,equiDistance,minRadius},ps)
| minRadius<windowEdge/2
1s = {1s & minRadius=minRadius+equiDistance}
newRadius = minRadius+nrCircles*equiDistance

ps = appPI0 (drawInWindow windowid
[setPenColour White
,draw {oval_rx=minRadius
,oval_ry=minRadius
}
,setPenColour Black
,draw {oval_rx=newRadius
,oval_ry=newRadius
}
1) ps
= (1s,ps)
| otherwise
ps = appPI0 (drawInWindow windowid
[setPenColour White
,fill windowViewDomain
1 ps
= (initTimerState,ps)

The last details that remain to be defined are the actual opening of the menu,
window, and timer, the opening of the interactive process, and the creation of the
windowid. For completeness we show the complete program code.

module circles

[/ AR EFAAAFAA KK AA KK A KK A KK KA K KA A KA KK A KK AA K KA K KA A KA A KK A KA KA K KA KA A KK AA KA KK
// Clean tutorial example program.

// This program creates a window that displays growing concentric circles.
// For this purpose it uses a timer.
[/ kskokskokskokok ok sk ko sk ok sk sk ke skok sk ks ik sk ke ks sk sk ks ko sk ok sk ke ks sk sk ks ko sk ok sk ke ks ok sk ks ko sk ok sk ko ks ok o ok

import StdEnv, StdI0

NoState = NoState

TimerState

= { nrCircles :: Int
. equiDistance :: Int
R minRadius :: Int
}

Start :: *World -> *World
Start world
(windowid,world) = openld world

11.1. EXAMPLES 101

= startI0 NoState NoState [initialise windowid] [] world

initialise windowid ps

(error,ps) = openMenu NoState mdef ps
| error<>NoError
= closeProcess ps
(error,ps) = openWindow NoState wdef ps
| error<>NoError
= closeProcess ps
(error,ps) = openTimer initTimerState tdef ps
| error<>NoError
= closeProcess ps
| otherwise
= ps
where
mdef = Menu "Circles"
(Menultem "Quit" [MenuFunction (noLS closeProcess)
,MenuShortKey ’q’
]
)y O
wdef = Window "Circles" NilLS
[WindowId windowid
s WindowSize (rectangleSize windowViewDomain)
R WindowViewDomain windowViewDomain
]
tdef = Timer (ticksPerSecond/20) NilLS
[TimerFunction timer
]
windowEdge = 200
windowViewDomain = { cornerl={x= “windowEdge/2,y= “windowEdge/2}
, corner2={x= windowEdge/2,y= windowEdge/2}
}
initTimerState = { nrCircles =4
, equiDistance= 2
, minRadius =0
}

| minRadius<windowEdge/2

timer (1s=:{nrCircles,equiDistance,minRadius},ps)

1s = {1ls & minRadius=minRadius+equiDistance}
newRadius = minRadius+nrCircles*equiDistance
ps = appPI0

(drawInWindow windowid
[setPenColour White

,draw {oval_rx=minRadius,oval_ry=minRadius}
,setPenColour Black
,draw {oval_rx=newRadius,oval_ry=newRadius}
]
) ps

= (1s,ps)

| otherwise
ps = appPI0

(drawInWindow windowid
[setPenColour White,fill windowViewDomain]
) ps

= (initTimerState,ps)

11.1.2 Internal clock

In this example we create a program that uses three timers to track the elapsed time
since startup. The timers track the elapsed seconds, minutes, and hours respectively.
A dialogue is used to provide visual feedback. Figure 11.2 shows the application in
action. We first have a look at the dialogue, and then the three timers.

The dialogue ddef simply uses TextControls to display the hours, minutes, and
seconds. These controls are identified by the Id values hoursId, minutesId, and

102 CHAPTER 11. TIMERS

S[I== Stopwatch

Hours: [1]1]
Minutes: 1
Seconds: 14

Figure 11.2: The timing program in action.

secondsId respectively. The dialogue itself is identified by the value dialogId.
CompoundControls are used to get the layout done in the desired way. Observe the
use of list comprehensions and the ListLS Controls class instance. In this example
closing the dialogue also terminates the application. Here is the dialogue definition:

ddef
= Dialog "Stopwatch"
(CompoundControl
(ListLS [TextControl text [ControlPos (Left,zero)]
\\ text<-["Hours:","Minutes:","Seconds:"]
]
) (1
:+: CompoundControl
(ListLS [TextControl "00" [ControlPos (Left,zero)
,Controlld id

]
\\ id<-[hoursId,minutesId,secondsId]
]
) (]
)
[WindowClose (noLS closeProcess)
, WindowId dialogId
]

Because the operation of each of the three timers is very similar, we use one function
tdef to define them and parameterise it with their respective TimerIntervals.
The timers do not contain any timer elements. Each timer has a local integer
state (initially zero) that keeps the current number of evaluated time units modulo
their maximum number. This number is derived from the TimerInterval using
the straightforward function maxunit. The timerfunction tick now relies on the
NrOfIntervals parameter. Given the current number of evaluated time units in
its local integer state, each timer function adds the NrOfIntervals value to it.
Depending on the TimerInterval value, the proper modulo value is taken (using
maxunit). This new value is the new local state and is also drawn in the dialogue,
using a local convenience function setText and textid to determine the Id of the
corresponding text control.

tdef timerInterval
= Timer timerInterval NilLS [TimerFunction tickl]
where

11.1. EXAMPLES 103

tick nrElapsed (time,ps)
time = (time+nrElapsed) mod (maxunit timerInterval)
= (time,setText (textid timerInterval) (toString time) ps)

setText id text ps
= appPI0 (setWindow dialogId [setControlTexts [(id,text)]]) ps

maxunit interval

| interval==second

60

| interval==minute = 60
| interval==hour = 24

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId

The last details that remain to be defined are the actual opening of the three timers,
the dialogue, the opening of the interactive process, and the creation of the proper
Ids. For completeness we show the complete program code.

module stopwatch

// 3k 3k 3k 3k ok 3k ok 3k ok 3k ok 3k ok 3k ok 3k >k 3k ok 3k ok 3k >k 3k 3k 3k 3k >k 3k >k 5k 3k 5k 3k ok 3k 3k 3k ok 3k 3k 5k 3k >k 3k >k 3k 5k 3k 5k 5k 3k >k 3k %k 5k 5k 5k 3k >k 5k %k 5k %k 5k 3k >k %k %k >k %k >k %k >k >k *k kK k >k

// Clean tutorial example program.

// This program creates a window that tracks the elapsed time since startup.

// For this purpose it uses three timers to track the seconds, minutes, and hours
// separately.

[/ wkkkskokskokokdokskokokskkok ok skokokokok Rk ok ok ok kokotok ok ok ok ok skt ko ok sk ok stk ko ko sk ko ok stk o ok ko ok

import StdEnv,StdI0

NoState
= NoState
DialogInfo
= { secondsld HE
R minutesId 0 Id
. hoursId 0 Id
, dialogId :: Id
second == ticksPerSecond
minute == 60*second
hour :== 60*minute
openDialogInfo :: *env -> (DialoglInfo,*env) | Ids env

openDialogInfo env
([secondsid,minutesid,hoursid,dialogid:_],env) = openlds 4 env

= (

Start
Start wor

1d

{ secondsId=secondsid
, minutesId=minutesid
, hoursId =hoursid

, dialogld =dialogid

: *World -> *World

= startI0 NoState NoState [initialise‘] [] world

where

initialise‘ ps

#

(dialogInfo,ps) = accPI0 openDialoglnfo ps
initialise dialogInfo ps

104 CHAPTER 11. TIMERS

initialise :: DialogInfo (PSt .1 .p) -> (PSt .1 .p)
initialise {secondsId,minutesId,hoursId,dialogId} ps

(errors,ps) = seqlist [openTimer O (tdef timerinfo)
\\ timerinfo<-[second,minute,hour]
] ps

| any ((<>) NoError) errors
= closeProcess ps

(error,ps) = openDialog NoState ddef ps
| error<>NoError
= closeProcess ps
| otherwise
= ps
where

tdef timerInterval
= Timer timerInterval NilLS [TimerFunction tick]
where
tick nrElapsed (time,ps)
time = (time+nrElapsed) mod (maxunit timerInterval)
= (time,setText (textid timerInterval) (toString time) ps)

setText id text ps
= appPI0 (setWindow dialogId [setControlTexts [(id,text)]]) ps

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId
maxunit interval

| interval==second = 60

| interval==minute = 60

| interval==hour = 24

ddef= Dialog "Stopwatch"
(CompoundControl
(ListLS [TextControl text [ControlPos (Left,zero)]
\\ text<-["Hours:","Minutes:","Seconds:"]
]
)]
:+: CompoundControl
(ListLS [TextControl "00" [ControlPos (Left,zero)
,Controlld id]
\\ id<-ThoursId,minutesId,secondsId]
]
]

N~

WindowClose (noLS closeProcess)
, WindowId dialogld

—

Chapter 12

Recelvers

All the interactive object I/O components discussed so far have in common that the
events to which they respond are abstract. In this context abstract means that it is
not specified in detail what concrete events cause a specific callback function to be
evaluated. For instance, a callback function associated with a MenuItem (Section
10.1.3) is evaluated when it has been selected by the user. How this selection takes
place is not specified.

In this section we discuss an interactive object I/O component that responds to
program defined events, or rather messages. This component is the receiver. It
plays an important role in the construction of interactive components. There are
no restrictions on the kind of messages that can be sent or received, provided that
they are type correct. The latter is obtained by using special identification values
for receivers, the receiver ids (Chapter 4).

We will first have a look at the definition of receivers in Section 12.1. Receivers can
be opened as top level object I/O components, but also as elements of windows,
dialogues, and menus. This is discussed in Section 12.2. Knowing how to define
and open receivers, we show which functions are available to send messages in
Section 12.3. Section 12.4 contains a number of examples to demonstrate the use
of receivers.

12.1 Receiver definitions

There are two kinds of receivers. Uni-directional receivers respond only to mes-
sages. Bi-directional receivers respond to messages and also reply with a message.
The types needed to define receivers can be found in the module StdReceiverDef,
Appendix A.25.

A uni-directional receiver that responds to messages of type msg is defined by:

Receiver msg 1s ps
= Receiver (RId msg) (ReceiverFunction msg *(ls,ps))
[ReceiverAttribute *(1ls,ps)]
ReceiverFunction msg ps
== msg -> ps -> ps

A bi-directional receiver that responds to messages of type msg and returns a re-
sponse message of type resp is defined by:

105

106 CHAPTER 12. RECEIVERS

Receiver2 msg resp 1ls ps
= Receiver2 (R2Id msg resp) (Receiver2Function msg resp *(ls,ps))
[ReceiverAttribute *(1ls,ps)]
: Receiver2Function msg resp ps
:== msg -> ps -> (resp,ps)

The set of receiver attributes is currently limited to the ReceiverSelectState
which default value is Able.

ReceiverAttribute ps
= ReceiverSelectState SelectState

12.2 Receiver creation

Receivers can be opened as top level interface elements such as windows, dialogues,
menus, and timers. This is done in the usual, overloaded way (module StdReceiver,
Appendix A.24):

class Receivers rdef where
openReceiver :: .ls !(rdef .1s (PSt .1 .p)) !'(PSt .1 .p)
-> (!ErrorReport,!PSt .1 .p)

instance Receivers (Receiver msg)
instance Receivers (Receiver2 msg resp)

Receivers can also be opened as elements of windows, dialogues, menus, and timers.
So, in a window or dialogue one can not only add the set of controls as discussed
in Chapter 9 but also receivers. This is accomplished by declaring receivers to be
instances of the Controls type constructor class in module StdControlReceiver
(Appendix A.6). Analogously, receivers can be menu elements (module StdMenu-
Receiver, Appendix A.18), and timer elements (module StdTimerReceiver, Ap-
pendix A.31).

In all cases, when opening receivers, their R(2) Id values must be unique (Chapter
4). The reason is that the message passing functions that we are about to discuss
next require the R(2) Id value.

12.3 Message passing

In contrast with the previously discussed object I/O components, receivers must
have an identification value. The message passing functions require this identifica-
tion value to ensure that a message of the correct type is sent. The message passing
functions can be found in module StdReceiver, Appendix A.24.

All message passing functions return a report about the message passing action.
This report is an algebraic type SendReport has the following alternatives:

SendReport

Send0k
SendUnknownProcess
SendUnknownReceiver

12.3. MESSAGE PASSING 107

| SendUnableReceiver
| SendDeadlock

For all functions, the alternative value SendOk is returned in case message pass-
ing was successful. The alternative SendUnknownReceiver is returned in case the
indicated receiver is not open at the moment of sending the message. The other
SendReport alternatives are discussed below.

We start with message passing to uni-directional receivers in Section 12.3.1. Bi-
directional message passing is discussed in Section 12.3.2.

12.3.1 Uni-directional message passing

There are two functions a programmer can use to send a message to a uni-directional
receiver: asyncSend and syncSend. which have the same function types:

asyncSend :: !(RId msg) msg !(PSt .1 .p) -> (!SendReport,!PSt .1 .p)
syncSend :: !(RId msg) msg !(PSt .1 .p) —-> (!SendReport,!PSt .1 .p)

Using asyncSend, a message is placed at the end of the asynchronous message queue
of the indicated receiver and will, at some point, be handled by that receiver. It
is unspecified when that event occurs. Because events are handled one by one, the
programmer can be certain that this will not occur within evaluation of the callback
function that applies asyncSend. Asynchronous messages that are sent in sequence
will be evaluated in that sequence. Asynchronous message passing only fails in
case the indicated receiver is not open, as discussed above. One should observe
that successfully queueing an asynchronous message does not guarantee that the
message will be handled. The receiver might be disabled or closed before all of its
messages have been handled.

If one wants to enforce a receiver to handle a message, one should use syncSend.
This function does not place the message in the message queue of the indicated
receiver, but evaluates its receiver function given the message. This implies that
syncSend has to switch context because the indicated receiver may be part of an-
other object I/O component. Another consequence is that synchronous messages
may overtake asynchronous messages. However, synchronous messages that are sent
in sequence will be evaluated in that sequence.

Sending a synchronous message fails in case the indicated receiver does not exist. If
the indicated receiver does exist, but its ReceiverSelectState attribute is Unable,
then the message is also not handled. In this case, the SendReport alternative
SendUnableReceiver is returned.

Examples of uni-directional message passing are given in Section 12.4. The first
example, in Section 12.4.1, demonstrates the use of asynchronous message passing,
while the second example, in Section 12.4.2, demonstrates synchronous message
passing.

12.3.2 Bi-directional message passing

Bi-directional message passing is synchronous. A message is sent using the function
syncSend2:

syncSend2 :: !(R2Id msg resp) msg !(PSt .1 .p)
-> (! (!SendReport, !Maybe resp), !PSt .1 .p)

108 CHAPTER 12. RECEIVERS

Analogous to syncSend, syncSend?2 locates the indicated bi-directional receiver and
applies the argument message immediately to the corresponding receiver function.
If this receiver could be found and happens to be Able, evaluation of the receiver
function will yield a response message resp. In this case the SendReport result of
syncSend2 is Send0k, and the response value is returned as (Just resp). In all
exceptional cases, there is no response value and Nothing is returned. To evaluate
the receiver function, syncSend?2 has to switch context as well.

Bi-directional receivers can be used to retrieve local encapsulated data. Example
12.4.3 demonstrates this.

12.4 Examples

In this section we give some examples to illustrate the use of receivers.

12.4.1 Talk windows

In this example we create a program that uses receivers to send keyboard input
from one window to another window, and vice versa. This results in a talk like
application (although it is not very useful as a talk application because it runs on
one computer). Figure 12.1 shows the application in action.

———— Talkb —
F

TalkA Hello “A',
Hello 'B*
Goodbvye!
Hello 'B*
Hello 'Af,
Goodbye!

Figure 12.1: The talk program in action.

The initialisation actions of the talk program, defined by the function initialise,
first create a menu that has only one quit menu item. Then two RId values are gen-
erated that will be used to identify the two receivers. The function openTalkWindow
is then applied twice to create the two windows. Its parameters are the name of
the window and the two receiver ids. The first receiver id parameter identifies the
private receiver, while the second identifies the other receiver.

initialise :: (PSt .1 .p) -> PSt .1 .p
initialise ps
menu = Menu "Talk"
(MenuItem "Quit" [MenuShortKey’q’
,MenuFunction (nolLS closeProcess)

12.4. EXAMPLES 109

]
) [

(error,ps) = openMenu NoState menu ps
| error<>NoError

= abort "talk could not open menu."
(a,ps) = accPI0 openRId ps
(b,ps) = accPI0 openRId ps
ps = openTalkWindow "A" a b ps
ps = openTalkWindow "B" b a ps
| otherwise

= ps

openTalkWindow creates a dialogue in which the user can type text and see the mes-
sages of the other talk window. The dialogue consists of three components: in the
first EditControl,identified by inId, the user can type text. The ControlKeyboard
attribute takes care that the program can respond to keyboard input. The second
EditControl, identified by outId, is used to present the messages coming from the
other talk window. To prevent the user from typing text in this control its initial
ControlSelectState attribute is Unable. The Receiver component is the one to
which the messages are being sent.

openTalkWindow :: String (RId String) (RId String) (PSt .1 .p)
-> PSt .1 .p
openTalkWindow name me you ps
(wId, ps) = accPI0 openld ps

(inId, ps) = accPI0 openld ps
(outId,ps) = accPI0 openld ps
talk = Dialog ("Talk "+++name)
(EditControl "" (hmm 50.0) 5
[Controlld inId
, ControlKeyboard inputfilter Able
(noLS1 (input wId inId you))
]
:+: EditControl "" (hmm 50.0) 5
[Controlld outId
, ControlPos (BelowPrev,zero)
, ControlSelectState Unable
]
:+: Receiver me (nolLS1 (receive wId outId)) []
)
[WindowId wld
]
(error,ps) = openDialog NoState talk ps
| error<>NoError
= abort "talk could not open window."
| otherwise
= ps

The input EditControl has a keyboard filter, inputfilter, that accepts only
KeyDown keyboard input.

inputfilter :: KeyboardState -> Bool
inputfilter keystate = getKeyboardStateKeyState keystate<>KeyUp

110 CHAPTER 12. RECEIVERS

For accepted keyboard input value of type KeyboardState, the callback func-
tion input is evaluated. It first gets the current state of the dialogue, using
the StdControl library function getWindow (Appendix A.3). From this value
the current content of the input EditControl can be retrieved, using the func-
tion getControlTexts. This new content, which is a String, is being sent asyn-
chronously to the other receiver. Note that input assumes that both getWindow
and asyncSend never fail.

input :: Id Id (RId String) KeyboardState (PSt .1 .p) -> PSt .1 .p
input wId inlId you _ ps
(Just window,ps)
= accPI0 (getWindow wId) ps
text = fromJust (snd (hd (getControlTexts [inId] window)))
= snd (asyncSend you text ps)

For every string message received from the other talk window, the receiver func-
tion receive is evaluated. It simply replaces the current content of the output
EditControl with the new text. This is done using the function setControl-
Texts. The function setEditControlCursor makes sure that the end of the text
is visible.

receive :: Id Id String (PSt .1 .p) -> PSt .1 .p
receive wld outld text ps

= appPI0 (setWindow wId [setControlTexts [(outId,text)]
,setEditControlCursor outId (size text)
D ps

For completeness the whole program is shown here.

module talk

[/ R AAEFAA KK AA KK A KK A KK KA K KA A KA A A KA KK AA K KA K KA KA A KK A KA K FAK KA FHA KK AAK KA KK
// Clean tutorial example program.

// This program creates two windows that communicate with each other using message
// passing. Text that has been typed in one window is being sent to the other, and
// vice versa.

[/ wkkkskokskokokdokskokokskokok ok skokokokok Rk ok ook ks ko kR ok ok ook okt ko skoksk ok stk sk ko ko koo ok stk o sk ko ok

import StdEnv, StdIOD

NoState
= NoState

Start :: *World -> *World
Start world

= startI0 NoState NoState [initialise] [] world
where

initialise :: (PSt .1 .p) -> PSt .1 .p

initialise ps

menu = Menu "Talk"
(Menultem "Quit" [MenuShortKey ’q’
, MenuFunction (noLS closeProcess)
]
) 0
(error,ps) = openMenu undef menu ps
| error<>NoError
= abort "talk could not open menu."
(a,ps) = accPI0 openRId ps

(b,ps) = accPI0 openRId ps

12.4. EXAMPLES 111

ps = openTalkWindow "A" a b ps
ps = openTalkWindow "B" b a ps
| otherwise

= ps

openTalkWindow :: String (RId String) (RId String) (PSt .1 .p) -> PSt .1 .p
openTalkWindow name me you ps
(wId, ps) = accPID openld ps
(inId, ps) accPID openld ps
(outId,ps) = accPID openld ps
wdef Dialog ("Talk "+++name)
(EditControl "" (hmm 50.0) 5
[Controlld inId
, ControlKeyboard inputfilter Able
(noLS1 (input wId inId you))

]
:+: EditControl "" (hmm 50.0) 5
[Controlld outId
, ControlPos (BelowPrev,zero)
s ControlSelectState Unable
]
)
[WindowId wld
1
(error,ps) = openDialog undef wdef ps
| error<>NoError
= abort "talk could not open window."
rdef = Receiver me (noLS1 (receive wId outId)) []
(error,ps) = openReceiver NoState rdef ps
| error<>NoError
= abort "talk could not open receiver"
| otherwise
= ps

where
inputfilter :: KeyboardState -> Bool
inputfilter keystate
= getKeyboardStateKeyState keystate<>KeyUp

input :: Id Id (RId String) KeyboardState (PSt .1 .p) -> PSt .1 .p
input wId inId you _ ps
(Just window,ps) = accPI0 (getWindow wId) ps
text = fromJust (snd (hd (getControlTexts [inId] window)))
= snd (asyncSend you text ps)

receive :: Id Id String (PSt .1 .p) -> PSt .1 .p
receive wId outId text ps

= appPI0 (setWindow wId [setControlTexts [(outId,text)]
, setEditControlCursor outId (size text)
1) ps

12.4.2 Resetting the counter

In this example we extend the example counter in Section 9.2.4 (page 74) with a
means to reset the counter to zero. We proceed in a bottom-up style: the counter
control is a compound control extended with a receiver that, when it receives a
message, will reset the counter to zero. This control encapsulates its local counter
state. Then a button control is defined that, when selected, sends a message to the
receiver component of the counter control. The whole is being placed in a dialogue.
Figure 12.2 gives a snapshot of the program.

The main component is ofcourse the counter control, defined by counter. It encap-
sulates an integer local state with initial value initcount. Its definition is almost
identical to the one shown on page 74 except that a Receiver has been added.

112 CHAPTER 12. RECEIVERS

=0

Counter

Figure 12.2: The counter control with reset button.

counter
= {newLS = initcount
,newDef= CompoundControl
(EditControl (toString initcount) (hmm 50.0) 1
[ControlSelectState Unable

,ControlPos (Center,zero)
,ControlId displayid
]
:+: ButtonControl "-" [ControlFunction (count (-1))
,ControlPos (Center,zero)
]
:+: ButtonControl "+" [ControlFunction (count 1)]
:+: Receiver resetid reset []

) O

The only purpose of the receiver is to reset the current local counter value to
initcount and show this by changing the content of the EditControl. Note that
the receiver function reset is not interested at all in the message.

reset :: m (Int,PSt .1 .p) -> (Int,PSt .1 .p)
reset _ (_,ps)
= (initcount,setText windowid displayid initcount ps)

The reset button is a straightforward ButtonControl. It is centered below the
counter control. Its ControlFunction is just to send a message synchronously to
the receiver component of the counter control. Because this component does not
care about the message, the button function can be as bold to send the StdMisc
library function undef. This function, when evaluated, aborts the application. This
demonstrates that message passing is truely lazy in the message argument.

resetbutton
= ButtonControl "Reset"
[ControlFunction (noLS (snd o syncSend resetid undef))
,ControlPos (Center,zero)

]

The final details of the program are to generate the proper identification values and
to create the initial process and dialogue. For completeness, the program code is
given here.

12.4. EXAMPLES 113

module counterreset

[] FEREREE AR EFAAAFAA KA AA KK A KK A KK KA K KA A KA A KK A KK AA K KA K KA KA KK A KA K FAK KA KA A K KA KA KK
// Clean tutorial example program.

// This program defines a Controls component that implements a manually settable
// counter. A receiver is used to add a reset option.
[/ skskokskokskokskok ok ko ko ko ok ok ok ok ok sk ok sk sk ok sk ok sk sk o ko ok sk sk s ok ok ok sk sk o ok ok ok sk sk sk ok ok ok sk sk o ko ok sk sk sk ok ok ok sk sk ok ko ok ok

import StdEnv, StdI0

NoState
= NoState

Start :: *World -> *World
Start world
= startI0 NoState NoState [initialise] [] world
where
initialise ps
(windowid, ps) = accPI0 openIld ps
(displayid,ps) = accPI0 openld ps
(resetid, ps) = accPI0 openRId ps
(error,ps) = openDialog NoState
(dialog windowid displayid resetid) ps

| error<>NoError

= abort "counter could not open Dialog."
| otherwise

= ps

dialog windowid displayid resetid
= Dialog "Counter"
(counter
:+: resetbutton
)
[WindowId windowid
s WindowClose (noLS closeProcess)

where
counter
= { newLS = initcount
, newDef = CompoundControl
(EditControl (toString initcount) (hmm 50.0) 1
[ControlSelectState Unable
,ControlPos (Center,zero)
,Controlld displayid
]
:+: ButtonControl "-" [ControlFunction (count (-1))
,ControlPos (Center,zero)
]
:+: ButtonControl "+" [ControlFunction (count 1]
:+: Receiver resetid reset []
) 01
¥
where
initcount =0

count :: Int (Int,PSt .1 .p) -> (Int,PSt .1 .p)
count dx (count,ps)
= (count+dx,setText windowid displayid (count+dx) ps)

reset :: m (Int,PSt .1 .p) -> (Int,PSt .1 .p)
reset _ (_,ps)
= (initcount,setText windowid displayid initcount ps)

setText :: Id Id x (PSt .1 .p) -> PSt .1 .p | toString x
setText wid cid x ps
= appPI0 (setWindow wid [setControlTexts [(cid,toString x)11) ps

114 CHAPTER 12. RECEIVERS

resetbutton
= ButtonControl "Reset"
[ControlFunction (noLS (snd o syncSend resetid undef))
,ControlPos (Center,zero)

]

12.4.3 Reading the counter

In this example we extend the counter example once more and add a dialogue that
reads the local counter value. To be able to do this a bi-directional receiver is added
to the counter. Figure 12.3 gives a snapshot of the program.

Counter

=y}

Read =I

1
+
[}
W

h

Figure 12.3: Reading the counter control with reset button.

The first change is to extend the counter component with a bi-directional receiver
component defined by the expression (Receiver2 readid read []), wherereadid
is a R2Id identification value. The receiver function read is very straightforward:
it returns the current local counter value without changing anything (also in this
case read is not interested in the input message type):

read :: m (Int,PSt .1 .p) -> (Int,(Int,PSt .1 .p))
read _ (count,ps)
= (count, (count,ps))

The initialisation actions open another dialogue defined by display that obtains
and shows the counter value on request. This request can be done by a user by
pressing the ButtonControl labeled "Read".

display windowid displayid readid
= Dialog "Read"

(EditControl "" (hmm 50.0) 1
[ControlSelectState Unable
,ControlId displayid
]

:+: ButtonControl "Read" [ControlFunction (nolLS read)
,ControlPos (Center,zero)
]

)

[WindowId windowid
s WindowClose (noLS closeProcess)

12.4. EXAMPLES 115

When the "Read" button has been selected, its callback function read is evaluated.
It sends a message to the bi-directional receiver component of the counter control
using syncSend2. If this action fails it aborts the program. Although this situation
will never occur, this check has been added for program hygiene. In a success-
full communication, value will be (Just count), and it is this value that is then
displayed in the EditControl of the dialogue.

read ps
((error,value),ps) = syncSend2 readid undef ps
| case error of SendOk -> False; _ -> True
= abort "could not read counter value"
| otherwise

= setText windowid displayid (fromJust value) ps

The initialisation actions create the necessary identification values. Because of the
Id assignment rules (Chapter 4) the Id displayid can be used in both dialogues.
Here is the complete program code.

module counterread

[/ R AR EFAAAFAA KK AA KK A KK A KK KA K KA A KA A KK A KK AA K KA K KA KA A KK A KA KA K KA A KA A KK AAK KA KK
// Clean tutorial example program.

// This program defines a Controls component that implements a manually settable

// counter.

// A bi-directional receiver is added to give external access to the counter value.
[/ wkkkskokskokokdokskokokskkok ok skokokokok ok ok ok okt kR ok ok ook skt ko ok sk ok stk sk ko ko sk ko ok stk o sk ko ok

import StdEnv, StdID

NoState
= NoState

Start :: *World -> *World
Start world
= startI0 NoState NoState [initialise] [] world

initialise ps
(windowid, ps) = accPI0 openld ps

(displayid,ps) = accPI0 openld ps
(resetid, ps) = accPI0 openRId ps
(readid, ps) = accPI0 openR2Id ps
(error,ps) = openDialog NoState
(dialog windowid displayid resetid readid) ps

| error<>NoError

= abort "counter could not open counter dialog."
(windowid,ps) = accPI0 openld ps
(error,ps) = openDialog NoState (display windowid displayid readid) ps
| error<>NoError

= abort "counter could not open display dialog."
| otherwise

= ps

where

dialog windowid displayid resetid readid
= Dialog "Counter"
(counter
:+: resetbutton

)
[WindowId windowid
, WindowClose (noLS closeProcess)
]
where
counter

116 CHAPTER 12. RECEIVERS

= { newLS = initcount
, newDef = CompoundControl
(EditControl (toString initcount) (hmm 50.0) 1
[ControlSelectState Unable

,ControlPos (Center,zero)
,Controlld displayid
]

:+: ButtonControl "-" [ControlFunction (count (-1))
,ControlPos (Center,zero)
1

:+: ButtonControl "+" [ControlFunction (count 1]
: Receiver resetid reset []
:+: Receiver2 readid read []

) 0

._‘.-

}
where
initcount = 0

count :: Int (Int,PSt .1 .p) -> (Int,PSt .1 .p)
count dx (count,ps)

count = count+dx

= (count,setText windowid displayid count ps)

reset :: m (Int,PSt .1 .p) -> (Int,PSt .1 .p)
reset _ (_,ps)
= (initcount,setText windowid displayid initcount ps)

read :: m (Int,PSt .1 .p) -> (Int,(Int,PSt .1 .p))
read _ (count,ps)
= (count, (count,ps))

resetbutton
= ButtonControl "Reset" [ControlFunction (noLS reset)
,ControlPos (Center,zero)
1
where
reset ps

= snd (syncSend resetid undef ps)

display windowid displayid readid
= Dialog "Read"

(EditControl "' (hmm 50.0) 1
[ControlSelectState Unable
,Controlld displayid
]

:+: ButtonControl "Read" [ControlFunction (noLS read)
,ControlPos (Center,zero)
]

)

[WindowId windowid
, WindowClose (noLS closeProcess)

where
read ps
((error,value),ps) = syncSend2 readid undef ps
| case error of Send0Dk -> False; _ -> True
= abort "could not read counter value"
| otherwise

= setText windowid displayid (fromJust value) ps

setText :: Id Id x (PSt .1 .p) -> PSt .1 .p | toString x
setText wid cid x ps
= appPI0 (setWindow wid [setControlTexts [(cid,toString x)11) ps

Chapter 13

Interactive processes

All of the examples discuss so far created an interactive program using the Std-
Process function startI0 (Appendix A.21). This function creates an interactive
process that engages in some graphical user interface actions with a user and then
terminates, using the StdProcess function closeProcess. In this chapter we show
how an interactive process can spawn new interactive processes that will run in-
terleaved. Instead of using only startI0 and these interactive process creation
functions, it is also possible to create a whole process topology at once.

We start the discussion by looking at the ways to define interactive processes in
Section 13.1. This is followed by the functions to open interactive processes. Finally
we give some examples to illustrate their application.

13.1 Defining interactive processes

The types to define interactive processes can be found in the module StdProcessDef
(Appendix A.22). In the object I/O library, interactive processes are distinguished
by their document interface. There are three kinds of document interfaces, and there
are also three corresponding type constructors to define an individual interactive
process:

No Document Interface (NDI): An interactive process with this document in-
terface does not present a document to a user. It has no menus. It is typically
used for ‘background’ interactive processes. The interactive process is allowed
to open dialogues, timers, and receivers. The type constructor that defines a
NDI process is NDIProcess:

:: NDIProcess p
= E..1:NDIProcess 1 (ProcessInit (PSt 1 p))
[ProcessAttribute (PSt 1 p)]

Single Document Interface (SDI): An interactive process with this document
interface presents exactly one document to the user. All menu commands are
associated with this document. The interactive process is allowed to open
dialogues, timers, and receivers. The type constructor that defines a SDI
process is SDIProcess:

:: SDIProcess wdef p

117

118 CHAPTER 13. INTERACTIVE PROCESSES

= E..1 1s:SDIProcess 1 ls (wdef 1s (PSt 1 p))
(ProcessInit (PSt 1 p))
[ProcessAttribute (PSt 1 p)]

Multiple Document Interface (MDI): An interactive process with this docu-
ment interface can present an arbitrary number of documents to the user
(even zero). In its menu system all available commands are presented. The
interactive process is allowed to open dialogues, timers, and receivers.

:: MDIProcess p
= E..1:MDIProcess 1 (ProcessInit (PSt 1 p))
[ProcessAttribute (PS