# Computability

## Numeric functions

#### These are the elements of

$$\mathbb{N}^k \to \mathbb{N}$$
,

with  $k \ge 0$ 

Notation NF  $^k = \mathbb{N}^{\,k} \to \mathbb{N}$ 

We consider NF  $^0=\mathbb{N}$ 

**Notation** 

$$\mathsf{NF} = \bigcup_{k \in \mathbb{N}} \mathsf{NF}^k$$

Well-known functions

$$0 \in NF^0$$
,  $S \in NF^1$ , plus $\in NF^2$ , times $\in NF^2$ ,  $\Pi_i^k \in NF^k$ ,

with 
$$\Pi_i^k(x_1,\ldots,x_k)=x_i$$

#### Primitive recursive functions

We define subsets  $PR^k \subseteq NF^k$  and write

$$PR = \bigcup_{k} PR^{k}$$

the set of primitive recursive functions as the least set such that

Initial functions  $0 \in PR^0$ 

 $S \in PR^1$ 

 $\prod_{i=1}^{k} \in PR^{k}$ 

Composition Let  $G_1, \ldots, G_m \in PR^k$ ,  $H \in PR^m$ ; define  $F \in NF^k$  by

$$F(\vec{x}) = H(G_1(\vec{x}), \dots, G_m(\vec{x}))$$

then  $F \in PR^k$ 

Primitive recursion Let  $G \in PR^k$ ,  $H \in PR^{k+2}$ ; define  $F \in NF^{k+1}$  by

$$F(0, \vec{x}) = G(\vec{x})$$
  

$$F(y+1, \vec{x}) = H(y, F(y, \vec{x}), \vec{x})$$

then  $F \in PR^{k+1}$ 

#### Primitive recursive relations

Let  $R \subseteq \mathbb{N}^k$ .

(i) The characteristic function of R is  $\chi_R \in NF^k$  defined by

$$\chi_R(\vec{x}) = 0, \quad \text{if } R(\vec{x}),$$

$$= 1, \quad \text{else.}$$

(ii) The relation R is *primitive recursive* if  $\chi_R \in PR^k$ . Then we write  $R \in PR^k$ .

# Developing PR relations

Lemma. Let  $R \in PR$ . Then also  $\neg R \in PR^k$ .

Proof.  $\chi_{\neg R}(\vec{x}) = \overline{sg}(\chi_R(\vec{x}))$ .

Lemma Let  $R_1, R_2 \in PR$ . Then also  $R_1 \& R_2, R_1 \lor R_2 \in PR$ .

Proof.  $\chi_{R_1 \vee R_2}(\vec{x}) = \chi_{R_1}(\vec{x}).\chi_{R_2}(\vec{x});$ 

 $R_1(\vec{x}) \& R_2(\vec{x}) = \neg(\neg R_1(\vec{x}) \lor \neg R_2(\vec{x})). \blacksquare$ 

## Developing PR functions

Lemma. Let  $H_1, H_2, R \in PR^k$ . Define  $F \in NF^k$ 

$$F(\vec{x}) = H_1(\vec{x}), \quad \text{if } R(\vec{x})$$
  
=  $H_2(\vec{x}), \quad \text{else.}$ 

Then  $F \in PR^k$ .

Proof. 
$$F(\vec{x}) = H_1(\vec{x}).\chi_R(\vec{x}) + H_2(\vec{x}).\chi_{\neg R}(\vec{x}).$$

Lemma. Let  $H_1 \in PR^1$ ,  $G \in PR^2$ ,  $H \in PR^3$ . Define  $F \in NF^2$  by

$$F(x,y) = G(H_1(y), H_2(x,y,x))$$

Then  $F \in PR$ .

Proof. Write  $\vec{x} = x, y$ . Then

$$F(\vec{x}) = G(H_1(\Pi_1^2(\vec{x})), H_2(\Pi_1^2(\vec{x}), \Pi_2^2(\vec{x}), \Pi_1^2(\vec{x})))$$
  
=  $G(K_1(\vec{x}), K_2(\vec{x}))$ 

Thus  $K_1, K_2$ , and hence also F, are all in PR.

Lemma.  $Z = (\lambda x.0) \in PR^1$ . Proof.  $Z(0) = 0; Z(x+1) = Z(x) = \Pi_2^2(x, Z(x))$ .

#### More PR functions

Lemma  $+, \times \in PR^2$ .

Proof. 
$$x + 0 = x$$
$$x + (y + 1) = S(x + y)$$
$$x.0 = 0$$
$$x.(y + 1) = x.y + x$$

Lemma. Let  $G \in PR^{k+1}$ . Define

$$F(\vec{x}, y) = \sum_{i < y} G(\vec{x}, i)$$
$$H(\vec{x}, y) = \prod_{i < y} G(\vec{x}, i).$$

Then  $F, H \in PR^{k+1}$ .

Proof. Define 
$$\begin{array}{cccc} F(\vec{x},0) & = & 0 \\ F(\vec{x},y+1) & = & F(\vec{x},y) + G(\vec{x},y) \\ & & H(\vec{x},0) & = & 1 \\ H(\vec{x},y+1) & = & H(\vec{x},y).G(\vec{x},y). \ \blacksquare \end{array}$$

#### More PR relations

Lemma. Let  $R \in PR$ . Define

$$S(\vec{x}, z) \Leftrightarrow \exists y < z.R(\vec{x}, y)$$
 $T(\vec{x}, z) \Leftrightarrow \forall y < z.R(\vec{x}, y)$ 

Then  $S, T \in PR$ .

Proof. 
$$\chi_S(\vec{x},z) = \Pi_{y < z} \chi_R(\vec{x},y)$$

$$T(\vec{x},z) \Leftrightarrow \neg \exists y < z. \neg R(\vec{x}). \blacksquare$$

Lemma. Let  $R \in PR^{k+1}$ . Define  $F \in NF^k$  by

$$F(\vec{x},z) = \mu y \langle z.R(\vec{x},y),$$
 if y exists  $= z,$  else.

Then  $F \in PR^k$ .

Proof. 
$$F(\vec{x},0) = 0$$
 
$$F(\vec{x},z+1) = F(\vec{x},z), \quad \text{if } \exists y < z.R(\vec{x},y),$$
 
$$= z, \quad \text{else, if } R(\vec{x},z),$$
 
$$= z+1, \quad \text{else.} \blacksquare$$

# Packing and unpacking strings of numbers

There is a bijection  $j:\mathbb{N}^{|2}\to\mathbb{N}$  that is PR with inverses  $j_i\in\mathsf{PR}^{|1}$ 

$$j(j_1(x), j_2(x)) = x$$

[ 
$$j(x,y) = \frac{1}{2}(x+y)(x+y+1) + x$$
 known to Cantor ]

There is a bijection  $j^m:\mathbb{N}^{\,m} o \mathbb{N}$  that is PR with inverses  $j_i^m \in$  PR  $^1$ 

$$j^m(j_1^m(x),\dots,j_m^m(x)) = x$$

#### [ Iterate j ]

There is a bijection  $\langle - \rangle : \bigcup_{k \geq 0} \mathbb{N}^{|k|} \to \mathbb{N}$  and a maps  $\lambda x j.(x)_j \in \mathsf{PR}^{|2|}$ ,  $\mathrm{lh} \in \mathsf{PR}^{|1|}$  such that

$$x = \langle \rangle \quad \Rightarrow \quad \operatorname{lh}(x) = 0 \& (x)_i = 0$$
$$x = \langle y_0, \dots, y_{m-1} \rangle \quad \Rightarrow \quad \operatorname{lh}(x) = m \& (x)_i = y_i, \quad \text{for } i < m$$

$$[\langle y_0, \dots, y_{m-1} \rangle = j(m-1, j^m(y_0, \dots, y_{m-1}))]$$

For fixed m one has  $(\lambda y_0 \dots y_{m-1}, \langle y_0, \dots, y_{m-1} \rangle) \in PR^m$ 

There is a map  $*\in PR^2$  such that

$$\langle y_0, \ldots, y_{m-1} \rangle * \langle z_0, \ldots, z_{n-1} \rangle = \langle y_0, \ldots, y_{m-1}, z_0, \ldots, z_{n-1} \rangle$$

#### The Fibonacci function

Define 
$$F(0) = 1$$
 
$$F(1) = 1$$
 
$$F(n+2) = F(n) + F(n+1)$$

Then  $F \in PR^1$ .

Proof. Define 
$$H(x) = \langle F(x), F(x+1) \rangle$$
. Then

$$H(0) = \langle 1, 1 \rangle$$

$$H(x+1) = \langle (H(x))_1, (H(x))_0 + (H(x))_1 \rangle$$

is PR. Hence  $F(x) = (H(x))_0$  is PR.

## Course of value recursion

Given  $F \in NF^{k+1}$  define

$$\overline{F}(\vec{x},n) = \langle F(\vec{x},0), \dots, F(\vec{x},n-1) \rangle$$

Given  $H \in PR^{k+2}$ . Define

$$F(\vec{x}, n) = H(\overline{F}(\vec{x}, n), \vec{x}, n)$$

Then  $F \in PR$ .

Proof. We show first that  $\overline{F} \in PR^{k+1}$ . Indeed

$$\overline{F}(\vec{x},0) = \langle \rangle 
\overline{F}(\vec{x},n+1) = \overline{F}(\vec{x},n) * \langle F(\vec{x},n) \rangle 
= \overline{F}(\vec{x},n) * \langle H(\overline{F}(\vec{x},n),\vec{x},n) \rangle$$

Then

$$F(\vec{x}, n) = (\overline{F}(\vec{x}, n+1))_n.$$

Therefore  $F \in PR$ .

## Partial recursive functions

A partial function  $\psi:\mathbb{N}^k \rightharpoonup \mathbb{N}$  is a relation  $\psi\subseteq \mathbb{N}^k \times \mathbb{N}$  such that

$$(x,y),(x,y')\in\psi \Rightarrow y=y'$$

If  $(x,y)\in\psi$ , then we write  $\psi(x)\downarrow(\psi(x)$  is defined) and  $\psi(x)\simeq y$ .

If for no y one has  $(x,y) \in \psi$ , then we write  $\psi(x) \uparrow (\psi(x) \text{ is undefined})$ 

Initial functions  $0 \in \mathcal{PR}^0$ 

 $S \in \mathcal{PR}^1$ 

 $\prod_{i=1}^{k} \in \mathcal{PR}^{k}$ 

Composition Let  $\psi_1, \ldots, \psi_m \in \mathcal{PR}^k$ ,  $\chi \in \mathcal{PR}^m$ ; define  $\varphi \in \mathsf{NF}^k$  by

 $\varphi(\vec{x}) \simeq \chi(\psi_1(\vec{x}), \dots, \psi_m(\vec{x}))$ 

then  $\varphi \in \mathcal{PR}^k$ 

Primitive recursion Let  $\psi \in \mathcal{PR}^k$ ,  $\chi \in \mathcal{PR}^{k+2}$ ; define  $\varphi \in \mathsf{NF}^{k+1}$  by

$$\varphi(0, \vec{x}) \simeq \psi(\vec{x})$$

$$\varphi(y+1, \vec{x}) \simeq \chi(y, \varphi(y, \vec{x}), \vec{x})$$

then  $\varphi \in \mathcal{PR}^{k+1}$ 

Minimalization Let  $\chi \in \mathcal{PR}^{k+1}$  and define  $\varphi(\vec{x}) \simeq \mu y.[\chi(\vec{x},y) \simeq 0]$ 

then  $\varphi \in \mathcal{PR}^k$ 

## Small print about equality

In an equation

$$t \simeq s$$

with expressions that are partially defined, the meaning is

$$[t\downarrow \Rightarrow [s\downarrow \& t=s]] \& [s\downarrow \Rightarrow [t\downarrow \& t=s]]$$

We understand that

$$\chi(\psi_1(\vec{x}), \dots, \psi_k(\vec{x})) \downarrow \quad \Leftrightarrow \quad \exists y_1, \dots, y_k.$$

$$[\psi_1(\vec{x}) = y_1 \& \dots \& \psi_k(\vec{x}) = y_k \& \chi(y_1, \dots, y_k) \downarrow]$$

$$\mu y.[\chi(\vec{x},y) \simeq 0] \downarrow \quad \Leftrightarrow \quad \exists y.[\chi(\vec{x},y) \simeq 0 \&$$

$$\forall z < y.\chi(\vec{x},z) \downarrow \& \chi(\vec{x},z) \not\simeq 0]$$