8. Typical exercises: answers

8.1. Given is $\Sigma = \{a, b\}$ Consider

$$L = \{a^{n}ba^{m} \mid n > 0, m \ge 0\}$$

$$e = aa^{*}ba^{*}$$

$$M =$$

$$G = \begin{bmatrix} S \rightarrow aA \\ A \rightarrow aA \mid bB \\ B \rightarrow aB \mid \lambda \end{bmatrix}$$

Prove that L = L(e) = L(G) = L(M).

Answer. In spite of the hint, we show L = L(e), L = L(M), L = L(G).

 $L \subseteq L(e)$. Let $w \in L$, to show $w \in L(e)$. Then $w = a^n b a^m$ for some $n > 0, m \ge 0$. Then n = n' + 1 and $w = a a^{n'} b a^m \in L(aa^* b a^*) = L(a)L(a^*)L(b)L(a^*)$, as $L(\sigma) = \{\sigma\}$ and $L(a^*) = \{a^k \mid k \ge 0\}$.

 $L(e) \subseteq L$. Let $w \in L(e) = L(a)L(a^*)L(b)L(a^*)$. Then

 $w = aa^n ba^m = a^{n+1} ba^m \in L.$

 $L \subseteq L(M)$. Let $w \in L$, to show $w \in L(M)$. Again $w = a^{n+1}ba^m$. Now

 $[q_0, aa^n ba^m] \vdash [q_1, a^n ba^m] \vdash \ldots \vdash [q_1, ba^m] \vdash [q_2, a^m] \vdash \ldots \vdash [q_2, \lambda],$

hence $w \in L(M)$.

 $L(M) \subseteq L$. Let $w \in L(M)$ to show $w \in L$. Then $[q_0, w] \vdash [q_2, \lambda]$, So w = aw' with $[q_1, w'] \vdash [q_2, \lambda]$. But then $w' = a^n bw''$ with $[q_1, bw''] \vdash [q_2, \lambda]$. It follows that $[q_2, w''] \vdash [q_2, \lambda]$, hence $w'' = a^m$. Harvesting:

 $w = aw' = aa^n bw'' = aa^n ba^m = a^{n+1}ba^m \in L.$

 $L \subseteq L(G)$. Take $w \in L$. Then $w = aa^n ba^m$. Now

$$S \Rightarrow aA \Rightarrow aa^nA \Rightarrow aa^nbB \Rightarrow aa^nba^m,$$

so $w \in L(G)$.

 $L(G) \subseteq L$. Claim.

- (i) If $B \Rightarrow^* V$, then $V = a^n B$ or $V = a^n$, with $n \ge 0$.
- (ii) If $A \Rightarrow^* V$, then $V = a^n A$, $V = a^n b a^m B$, or $V = a^n b a^m$ with $n, m \ge 0$.
- (iii) If $S \Rightarrow^* V$, then V is of the form $a^{n+1}A$, $a^{n+1}ba^m B$, $a^{n+1}ba^m$, with $n, m \ge 0$.

We show this in detail for the first implication. Suppose $B \Rightarrow^* V$. By induction on the number of steps in this reduction we get the following. Possibility 1. V = B. Then taking n = 0, we have $V = a^n B$.

Possibility 2. $B \Rightarrow aB \Rightarrow^* V$. Then V = aV' and $B \Rightarrow^* V'$ in less steps. By the Induction Hypothesis one has $V' = a^{n'}B$ or $V' = a^{n'}$. Then also V = aV' is of the right form.

Now if $S \Rightarrow^* w \in \Sigma^*$, then by (iii) of the claim $w = a^{n+1}ba^m$ (the other possibilities contain auxiliary symbols), so $w \in L$.

8.2. Given is $\Sigma = \{a, b\}$

Consider

$$L = \{w \in \Sigma^* \mid \#_a(w) = \#_b(w)\}$$

$$b \cdot A : \lambda$$

$$a \cdot B : \lambda$$

$$b \cdot \lambda : B$$

$$a \cdot \lambda : A$$

$$M =$$

$$G = \begin{bmatrix} S \rightarrow aB \mid bA \mid \lambda \\ A \rightarrow aS \mid bAA \\ B \rightarrow bS \mid aBB \end{bmatrix}$$

(i) Prove that L = L(G) = L(M)

(ii) Prove that there is no regular expression e such that L = L(e)Answer.

 $L \subseteq L(G)$. Let $w \in L$. Consider the properties

$$1ma(w) \Leftrightarrow_{\text{Def}} \#_a(w) = \#_b(w) + 1$$

$$1mb(w) \Leftrightarrow_{\text{Def}} \#_b(w) = \#_a(w) + 1$$

$$[a=b](w) \Leftrightarrow_{\text{Def}} \#_b(w) = \#_a(w)$$

Claim. For every word w of length n one has:

(1)	[a=b](w)	\Rightarrow	$S \Rightarrow^* w;$
(2)	1ma(w)	\Rightarrow	$A \Rightarrow^* w;$
(3)	1mb(w)	\Rightarrow	$B \Rightarrow^* w.$

Case n = 0. Then $w = \lambda$ and $[a=b](\lambda)$. Indeed $S \Rightarrow \lambda$. Case n > 0. Subcase w = aw'. If [a=b](w), then 1mb(w'). By the induction hypothesis one has $B \Rightarrow^* w'$. Then $S \Rightarrow aB \Rightarrow^* aw' = w$. If 1ma(w), then [a=b](w') and hence by the induction hypothesis $S \Rightarrow^* w'$. Then $A \Rightarrow aS \Rightarrow^* aw' = w$. If 1mb(w), then $w' = w_1w_2$ with $1mb(w_i)$. By the induction hypothesis $B \Rightarrow^* w_i$. But then $A \Rightarrow aBB \Rightarrow^* aw_1w_2 = aw' = aw$. The subcase w = bw' is treated similarly. $L(G) \subseteq L$. Following the grammar (by induction on the number of generation steps) we see that

$$\begin{split} S \Rightarrow^* w &\Rightarrow & [a=b](w); \\ A \Rightarrow^* w &\Rightarrow & 1ma(w); \\ B \Rightarrow^* w &\Rightarrow & 1mb(w). \end{split}$$

Therefore if $w \in L(G)$, then $S \Rightarrow^* w$, hence [a=b](w), so $w \in L$. $L \subseteq L(M)$. Let $w \in L$, i.e. [a=b](w). Reading this word by M, if the stack is empty, this means that so far the number of a's equals that of b's. If A is on top of the stack and we read a b, then the A, witnessing a previously read a is cancelled while reading the b.

The exercises on the exam will be simpler!

.