The Challenge of Computer Mathematics

Henk Barendregt
Nijmegen University
The Netherlands

1. Computer Mathematics: what?

Mathematical activity: defining, computing, proving

Mathematical assistant helps human user:

Representing arbitrary mathematical notions (defining)
Manipulating these (computing)
Proving results about them (proving)

in an impeccable way

1. Computer Mathematics: why?

Reasons for Computer Mathematics
e Highest degree of reliability
e Integration of proving and computing
e Certified library of theorems and algorithms
e Dependencies easy to track

e Beauty

Eventually to assist humans to learn and develop mathematics
At present an interesting foundational problem

Spin-off to computer science (actually IT): reliable hardware & software

1. Computer Mathematics: how?

e Representing “computable” objects

v/2 becomes a symbol «

a? — 2 becomes 0 a + 1 cannot be simplified
e Representing “non-computable” objects

Hilbert space H, again just a symbol
P(H) := “H is locally compact” is not decidable

But - 1 P(H) is decidable (!p is a proof of P(H))

But then we need formalized proofs

2. History: The mathematical enterprise

Mathematical activity: defining, computing, proving

°
Computing Proving
(Computability) (Logic)
° °
Defining

(Ontology)

2. History: logic, the axiomatic-deductive method

Aristotle (384-322 BC)

e [he axiomatic method

objects properties
primitive | axioms
defined derived

defining proving
computing

e The quest for logic: try to chart reasoning

(finished by Frege 1879; proved complete by Godel in 1930)

e Poof-checking vs theorem proving

2. History: Computing vs. proving

Abstract history of mathematics 4000 BC — 2100 AD

Computing

Proving

Egyptians, Chinese
Babylonians

Leibniz
Euler

Computer Algebra

Archimede
al-Khowarizm?

Cauchy

Mathematical Assistants

Thales
Eudoxos, Euclid

Newton

Proof-checkers

3. Foundations (ontology): Set theory

ONTOLOGY

Classical mathematics
only needed a few fixed spaces

Modern mathematics needs a wealth of new spaces
and ample energy is devoted to the construction of these

Set Theory has the virtue that it unifies all needed concepts in one framework

Postulated are

N
A B — AXxB
A — {X|XCA}=P(A)
A — {a€A| P(a)}
A — {F(a)|acA}

Giving monsters like P(U,en P (N))

3. Foundations (ontology): Type Theory

Type Theory is an interesting alternative to set theory
e inductively defined data types with their
e recursively defined functions and closed under

e function spaces and dependent products

3. Foundations (ontology): Type theory

Function and Product Types

If A, B are types, then A— B is the type of functions from objects of type A into
objects of type B.

a:A f:(A—=B) f:(A—B) g:(B—=C)
(fa):B (gof):(A=C)

Dependent products
I,n:AF B(n) : type

- 11,.4.B(n) : type

Functional abstraction
Ax. f(x)

stands for the function = —— f(z). For example, go f = Ax.g(f(x))

3. Foundations (ontology, computing): Type Theory

Inductive types (freely generated data types)
Natural numbers
nat := 0 | S(nat)

nat := O:nat | S:nat—nat

Recursively defined functions

given ng:nat, h:nat,nat—nat we postulate an f:nat—nat such that

F(0) =
f(S(n)) = n(f(n),n)

|
S
=

For example

0+ x
S(n)+x

|
)
-
x
)
|

|
[

|

“n

S

+
=
“n
=

*

8

||
S\O

*
=
I

8
©
=

|

n!*(n+ 1)

3. Foundations (ontology, computing): more Data Types

Other data type: (binary) trees.

tree := leaf:nat—tree | p:tree,tree—tree

o p(leaf (3),p(leaf(5),leaf(2)))
AN

/N
D 2

Primitive recursion over trees: we postulate functions like

mirror(leaf(n)) leaf(n)
mirror(p(t1,t2)) = p(mirror(ts), mirror(t1))

No need to code such structures into numbers via the Chinese remainder theorem (Godel)

3. Foundations (logic): first-, second- and higher-order logic

First order rules for —, &, V, -, &, VaeeU, dxeU

Continuity: Ve>0VzdoVy. ..., uniform continuity: Ve>0doVz, y. ...

Second-order rules for VXCU, dXCU

A sentence is a theorem if it belongs to all sets containing the axioms that are
closed under deductions.

This definition is not allowed in pure first order logic.

In second-order logic:

teS < VXCSlarioms C X & (Vx,y,z.x,yeX & z,yt z2) = zeX| = teX

An element x in a group G has torsion iff AneN.x™ = ¢
Higher-order A topology O on U is an element of P(P(U))

Third order statement:

There exists a topology on U such that F' is continuous

3. Foundations (logic): Intuitionism

Brouwer: Aristotelian logic is unreliable

It may promise existence without being able to give a witness

- dneN.A(n), but F A(0), ¥ A(1),...

Heyting: charted Brouwer's logic

Gentzen: gave it a nice form

Example of such an A

A(n) < (n=0& P£NP)V (n =1 & P=NP)

3. Foundations (logic): “Intuitionism has become technology” (Constable)

THEOREM-CLASSICAL [No effectiveness]
For every non-deterministic finite automaton (NDFA) M there is a DFA M’ such
that L(M) = L(M').

THEOREM-CLASSICAL [This does not give the theorem]
There is a Turing machine TM such that for every NDFA M the result TM(M) is
a DFA with the same language.

THEOREM-CLASSICAL [We do not always want to be explicit]
Let TM = ({q0,..),-..). Then TM is a Turing machine and for every NDFA M
the result TM(M) is a DFA with the same language.

THEOREM-CONSTRUCTIVELY. |]
For every NFDA M there exists a FDA M’ having the same language

Building an intuitionistic library provides certified tools

4. Status quo: Proof-assistants

Assistance

tactics

<

current context
current goal

Reliability?

proof-
checker

proof-development system

proof assistant

The de Bruijn criterion: have a small checker.

>
certified

statement

4. Status quo: some systems

e Mizar based on classical ZFC set theory

e |sabelle-HOL based on classical higher order logic with A-terms

e Coq based on impredicative intuitionistic Type Theory

5. Proofs by computation

Goal to prove

Full generalization

First try to prove
Va.A(x)

obtaining A(t) a fortiori

Example
107 4+ 91% =910 4 107

is proved best by first proving

Ve,yeNx+y=y+=x

5. Proofs by computation

Goal to prove

A(l)
Pattern generalization
Strategy: write t = f(s) with seL
and try to prove
Vee L. A(f(x))

giving A(f(s)), hence A(t).

This method is particulary powerful if combined with reflection.

But we need to prove f(s) =t.

5. Proofs by computation

How does one give formal proofs of

e Computations
(zy —2® +9°)(a° —y° +2°) = a'y—ay’ +ayz’ — 2+
220% — 2223 4 2% — % 4 228
It is important to formally prove computations, not just for computational state-
ments, but also for statements involving intuition

e Intuition

Let f : R—IR be defined by

Then f is continuous.

5. Proofs by computation

The Poincaré Principle:
If f(a) =0b, via a computation, then - f(a) = b axiomatically

The class P of f's for which this is postulated may vary

P =1 (Isabelle-HOL: ephemeral proofs)
P ={f | prim. rec. over a data type} (Coq)

P ={f| f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion

5. Proofs by computation

The Poincaré Principle:
If f(a) =0b, via a computation, then - f(a) = b axiomatically

The class P of f's for which this is postulated may vary

P =1 (Isabelle-HOL: ephemeral proofs)
P ={f | prim. rec. over a data type} (Coq)

P =A{f|f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion

5. Proofs by computation: using the Poincaré Principle

log a LN log b

l square l

a

Logarithms

b

CL+$ b—|—

R

a b

fepP

5. Proofs by Computation: using reflection

Here the map + is not the logarithm but usually of a syntactic nature (reflection):

((x + y)(x — y))" = times(minus x y)(plus xy) and f is something like a
simplify function on these syntactic expressions. The role of the exp function is
played by the semantic function [].

smpl.

times(minus x y)(plus x y) minus(sq x)(sq y) cL

N o

(. —y)(x+y) e (22 — y?) €R

In order to apply this freely one has to show

Ve:L.[e] = [smpl €]

once and for all

6. Case studies

Formalized in Coq (intuitionistic proofs)

THEOREM 1.
[Formalization: Geuvers, Wiedijk, Zwanenburg, Pollack, Niqui]

Every non-constant polynomial p(z) over C has a root z€C.

THEOREM 2. Collaboration between Coq and GAP
[Formalization: Oostdijk, Caprotti, Elbers]

The number 9026258083384996860449366072142307801963 is a prime.
(Based on Fermat's little theorem and Pocklington.)

THEOREM 3.
[Formalization: Capretta]

Correctness of the Fast Fourier Transform.

6. Case studies

THEOREM 4. [Formalization: Person, Théry]

Correctness of an efficient Grobner base algorithm.

THEOREM 5. [Formalization: Cruz-Filipe]

Fundamental theorem of calculus

THEOREM 6. [Formalization: Danos, Gonthier, Werner]

Main lemma for the four colour theorem.

For this, Coq needed an overdrive: compilation rather than interpretation

This compiler was proved correct in the simpler version of Coq

romantic Super cool
Maths Human mind Coq Compiled Coq
Biology | Human eye Light microscope Electronic microscope

7. Challenge: Style “A-term”

THEOREM. Euclid : Vd>0,ndq,r[r<d & n = qd + r|.

Proof.
(EX q:nat | (EX r:nat|(lthan r d)/\n=(plus(times d q)r)))
[d:nat; p:(d>0)] [r’:nat; H4:((1than r’ d)/\n’=(plus (times d q’) r’))]
[P:=[n:nat] (and_ind (1lthan r’ d) n’=(plus (times d q’) r’)
(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))] (EX q:nat|(EX r:nat|(lthan r d)/\n=(plus (times d q) r)))
(cv_ind P [H5: (1than r’ d); H6:(n’=(plus (times d q’) r’))]
[n:nat; ih:(before n P)] (ex_intro nat [q:nat]
[H:=(1tgeq n d)] (EX r:nat | (lthan r d)/\n=(plus (times d q) r))
(or_ind (lthan n d) (geq n d) (suc q’) (ex_intro nat
(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))

[r:nat]
[?O:(lthan n d)] (1than r d)/\n=(plus (times d (suc q’)) r) r’
ex_intro nat

(conj (lthan r’ d)
[g:nat] (EX r:nat | (lthan r d)/\n=(plus (times d q) r)) n=(plus (times d (suc q’)) r’) H5
0 (ex_intro nat) [H7:=(f_equal nat nat (plus d) n’
[r:naF](lthan r d)/\n=(plus (?1mes d0) r)n (plus (times d q’) r’) H6)]
(conj (1than n d) n=(plus (times d 0) n) HO [HS8:=(eq_ind_r nat (plus (monus n d) d)
(eq_ind_r nat (times 0 d) [nO:nat]ln=(plus nO n) [n0:nat]n0=n (pdmon n d HO)
(req nat n) (times d 0) (times_com d 0))))) (plus d (monus n d))
[HO:(geq n d)] [n’:=(momus n d)] (plus_com d (monus n d)))]
[H1:=(1tm n d (leseq_trans one d n p HO) p)] (eq_ind nat (plus d n’)
[H2:=(ih n’ H1)](ex_ind nat [q:nat] [n0:nat]n0=(plus (times d (suc q’)) r’)
(EX r:nat | (1than r d)/\nn=(plus (times d q) 1)) (eq_ind_r nat
(EX q:nat | (plus d (plus (times d q’) r’))
(EX r:nat | (lthan r d)/\n=(plus (times d q) r))) [n0:nat]
[q’:nat; n0=(plus (times d (suc q’)) r’)
H3: (EX r:nat|(lthan r d)/\nn=(plus(times d q’)r))] (compute q’ r’ d)
(ex_ind nat (plus d n’)H7) n H8))))H4)H3)H2)H)). QED
[r:nat] (1than r d)/\n’=(plus (times d q’) r)

7. Challenge: Style “Script”

Theorem. Euclid : (d:nat) (0<d)->(n:nat) (EX qg:nat|(EX r:nat|(r<d/\n=(d[*]1q[+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat]

(EX q:nat| (EX r:nat|(r<d/\n=(d[*]1q[+]r))))
Apply ’(cv_ind P).

Intro n.

Intro ih.

Unfold before in ih.

Assert ((lthan n d)\/(geq n d)).
Apply ltgeq.

Unfold P.

Intuition.

Exists O.

Exists n.

Split.

Try Assumption.

Rewrite -> times_com.

Try Assumption.

Simpl.

Apply req.

LetTac nn := (n[-]1d).

Assert (lthan nn n).

Unfold nn.

Apply 1ltm.

Intuition.

Apply (leseq_trans one d n).

Intuition.
Intuition.
Intuition.

Assert (P nn).

Apply ih.

Try Assumption.
Unfold P in H1.

Pick H1 qq.

Pick H2 rr.
Intuition.

Exists (suc qq).
Exists rr.
Intuition.

Assert ((d[+]nn)=(d[+](d[*]1qq[+]rr))).
Apply (f_equal ? 7 (plus d)).
Try Assumption.
Assert ((d[+]nn)=n).
Unfold nn.

R plus_com.

Apply pdmon.

Try Assumption.
Rewrite <- H4.
Rewrite -> H1.

Apply compute.

Qed.

7. Challenge: Style “Script”

Theorem. Euclid :
(d:nat) (d>0)->(n:nat) (EX q:nat| (EX r:nat| (r<d/\n=(d[*]1q[+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat] (EX q:nat| (EX r:natl| (r<d/\n=(d[*]ql+]r))))
Apply ’(cv_ind P).

Intro n.

Intro ih.

7. Challenge: “Best Mathematical Style”

THEOREM. Let d€énat with 0 < d. Then

Vné€nat dq, r€nat|r < d & n = qd + r].

PROOF. Let denat with 0 < d be given.

Write P(n) := dq,r€nat.[r < d & n =qd+r].

We will show

VnéEnat.P(n)

by course of value induction. So assume

in order to prove P(n).

Vk<n.P(k),

If n < d, then we can take ¢ = 0,7 = n.

If on the other hand n > d, define n1 = n —d.
Then n; < n by Itm. Therefore P(n1) by (ih).

(ih)

Hence for some ¢1,7r1Enat one has ry < d & n1 = q1d + r1.
Take g =q1 +1,r =r1. Then r < d and

n

(n —d) +4d,
d+ (n=d)
d-+ nq

d+ (q1d+r1)
(g1 +1)d + 71,
qd + r.

by lemma pdmon and n > d,

by computation,

QED

7. Challenge: Style “Mathmode” (M. Giero)

Lemma Euclid : (d:nat) (0<d)->(n:nat) (EX q:nat|((EX r:nat|(r<d)/\n=((d[x]q) [+]1r)))).
Proof. MLet d be nat. Assume (0 < d) (Ad).
LetTac P:=[n:nat] ((EX g:nat|(EX r:nat|((r<d)/\n=((d[x]q) [+]1r))))).
Claim ((n:nat) (before n P)->(P n)) (A1).
MLet n be nat. Assume (before n P) (A6).
Case 1 (n<d) (A2).
Take zero and prove (EX r:nat|r<d/\n=d[x]zero[+]r).
Take n and prove (n<d/\n=d[x]zero[+]n).
Done (n<d) [by A2].
Done (n=d[x]zero[+]n) [by times_com].
Case 2 (n>=d) (A5).
Claim ((monus n d) <n).
Have (0<n) [by A4, A5, 1lt_le_imp_1t].
Hence claim done [by A4, pos_imp_mon_1t].
Then (P (n-,d)) [by A6].
Then consider q such that
([q:nat] (EX r:natlr<d/\n-,d=d[x]q[+]r)).
Then consider r such that
([r:nat] (r<d/\n-,d=d[x]q[+]r)) (A8).
Take (S q) and prove (EX r:nat|r<d/\n=d[x](S q)[+]r).
Take r and prove (r<d/\n=d[x](S q)[+]r).
Firstly (r<d) [by A8].
Secondly we have

n = ((n-,d)[+]d) [by ge_imp_mon_plus_eq, A5].
eqr (dlx]lql+]r[+]1d) [by A8]. Hence
eqr (d[x](S q)[+]r) [by compute].

End_cases [by dichotomy].
So we have proved (A1).
Finally we need to prove ((n:nat) (P n)).
Done [by cv_ind, Al1]. Qed.

7. Challenge

Mathematician-friendly systems for Computer Mathematics can be built
Needed

mathematical interface (M-mode)
libraries
certified tools

It will take 150 manyear (~ 5 M UKpound) to build them
for the topics of a master’'s in mathematics

