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1. Computer Mathematics: what?
——————————————————————————————————–

Mathematical activity: defining, computing, proving

Mathematical assistant helps human user:

Representing arbitrary mathematical notions (defining)

Manipulating these (computing)

Proving results about them (proving)

in an impeccable way
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1. Computer Mathematics: why?
——————————————————————————————————–

Reasons for Computer Mathematics

• Highest degree of reliability

• Integration of proving and computing

• Certified library of theorems and algorithms

• Dependencies easy to track

• Beauty

Eventually to assist humans to learn and develop mathematics

At present an interesting foundational problem

Spin-off to computer science (actually IT): reliable hardware & software
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1. Computer Mathematics: how?
——————————————————————————————————–

• Representing “computable” objects

√
2 becomes a symbol α

α2 − 2 becomes 0 α+ 1 cannot be simplified

• Representing “non-computable” objects

Hilbert space H, again just a symbol

P (H) := “H is locally compact” is not decidable

But ` p :1 P (H) is decidable (1p is a proof of P (H))

But then we need formalized proofs
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2. History: The mathematical enterprise
——————————————————————————————————–

Mathematical activity: defining, computing, proving
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2. History: logic, the axiomatic-deductive method
——————————————————————————————————–

Aristotle (384-322 BC)

• The axiomatic method

objects properties
primitive axioms
defined derived

defining proving
computing

• The quest for logic: try to chart reasoning

(finished by Frege 1879; proved complete by Gödel in 1930)

• Poof-checking vs theorem proving
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2. History: Computing vs. proving
——————————————————————————————————–

Abstract history of mathematics 4000 BC – 2100 AD

Computing Proving
Egyptians, Chinese Thales
Babylonians Eudoxos, Euclid

Archimede
al-Khowârizm̂ı

Leibniz Newton
Euler

Cauchy
... ... ...
Computer Algebra Proof-checkers

Mathematical Assistants
... ... ...
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3. Foundations (ontology): Set theory
——————————————————————————————————–

Ontology (what objects do there exist?)

Classical mathematics (before the 19-th century)
only needed a few fixed spaces

Modern mathematics needs a wealth of new spaces
and ample energy is devoted to the construction of these

Set Theory has the virtue that it unifies all needed concepts in one framework

Postulated are

N
A,B 7→ A×B

A 7→ {X | X ⊆ A} = P(A)
A 7→ {a∈A | P (a)}
A 7→ {F (a) | a∈A}

Giving monsters like P(⋃n∈N Pn(N))
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3. Foundations (ontology): Type Theory
——————————————————————————————————–

Type Theory is an interesting alternative to set theory

• inductively defined data types with their

• recursively defined functions and closed under

• function spaces and dependent products
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3. Foundations (ontology): Type theory
——————————————————————————————————–

Function and Product Types

If A,B are types, then A→B is the type of functions from objects of type A into
objects of type B.

a : A f : (A→B)

(f a) : B

f : (A→B) g : (B→C)

(g ◦ f) : (A→C)

Dependent products
Γ, n:A ` B(n) : type
` Πn:A.B(n) : type

Functional abstraction
λx.f(x)

stands for the function x 7−→ f(x). For example, g ◦ f = λx.g(f(x))
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3. Foundations (ontology, computing): Type Theory
——————————————————————————————————–

Inductive types (freely generated data types)

Natural numbers

nat := 0 | S(nat)
nat := 0:nat | S:nat→nat

Recursively defined functions

given n0:nat, h:nat,nat→nat we postulate an f :nat→nat such that

f(0) = n0

f(S(n)) = h(f(n), n)

For example

0 + x = x 0 ∗ x = 0 0! = 1
S(n) + x = S(n+ x) S(n) ∗ x = (n ∗ x) + x (S(n))! = n! ∗ (n+ 1)
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3. Foundations (ontology, computing): more Data Types
——————————————————————————————————–

Other data type: (binary) trees.

tree := leaf:nat→tree | p:tree,tree→tree

•
??

??
?

ÄÄ
ÄÄ
Ä

•
??

??
?

ÄÄ
ÄÄ
Ä

2

3

5

p(leaf(3),p(leaf(5),leaf(2)))

Primitive recursion over trees: we postulate functions like

mirror(leaf(n)) = leaf(n)
mirror(p(t1, t2)) = p(mirror(t2),mirror(t1))

No need to code such structures into numbers via the Chinese remainder theorem (Gödel)
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3. Foundations (logic): first-, second- and higher-order logic
——————————————————————————————————–

First order rules for →, & , ∨, ¬, ⇔ , ∀x∈U, ∃x∈U
Continuity: ∀ε>0∀x∃δ∀y. . . ., uniform continuity: ∀ε>0∃δ∀x, y. . . .

Second-order rules for ∀X⊆U, ∃X⊆U
A sentence is a theorem if it belongs to all sets containing the axioms that are
closed under deductions.

This definition is not allowed in pure first order logic.

In second-order logic:

t∈S ⇔ ∀X⊆S[axioms ⊆ X & (∀x, y, z.x, y∈X & x, y ` z) ⇒ z∈X] ⇒ t∈X

An element x in a group G has torsion iff ∃n∈N.xn = e

Higher-order A topology O on U is an element of P(P(U))
Third order statement:

There exists a topology on U such that F is continuous
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3. Foundations (logic): Intuitionism
——————————————————————————————————–

Brouwer: Aristotelian logic is unreliable

It may promise existence without being able to give a witness

` ∃n∈N.A(n), but 6` A(0), 6` A(1), . . .

Heyting: charted Brouwer’s logic

Gentzen: gave it a nice form

Example of such an A

A(n) ⇔ (n = 0 & P6=NP) ∨ (n = 1 & P=NP)
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3. Foundations (logic): “Intuitionism has become technology” (Constable)
——————————————————————————————————–

Theorem-classical [No effectiveness]
For every non-deterministic finite automaton (NDFA) M there is a DFA M′ such
that L(M) = L(M′).

Theorem-classical [This does not give the theorem]
There is a Turing machine TM such that for every NDFAM the result TM(M) is
a DFA with the same language.

Theorem-classical [We do not always want to be explicit]
Let TM = 〈〈q0, ..〉, . . .〉. Then TM is a Turing machine and for every NDFA M
the result TM(M) is a DFA with the same language.

Theorem-constructively. [Effectiveness]
For every NFDA M there exists a FDA M′ having the same language

Building an intuitionistic library provides certified tools
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4. Status quo: Proof-assistants
——————————————————————————————————–

Assistance

proof-development system

proof-

checker

proof-

object

certified

statement

tactics

current context

current goal

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

proof assistant

Reliability?

The de Bruijn criterion: have a small checker.
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4. Status quo: some systems
——————————————————————————————————–

• Mizar based on classical ZFC set theory

• Isabelle-HOL based on classical higher order logic with λ-terms

• Coq based on impredicative intuitionistic Type Theory
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5. Proofs by computation
——————————————————————————————————–

Goal to prove
A(t)

Full generalization

First try to prove
∀x.A(x)

obtaining A(t) a fortiori

Example
109 + 910 = 910 + 109

is proved best by first proving

∀x, y∈N.x+ y = y + x
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5. Proofs by computation
——————————————————————————————————–

Goal to prove
A(t)

Pattern generalization

Strategy: write t = f(s) with s∈L
and try to prove

∀x∈L.A(f(x))
giving A(f(s)), hence A(t).

This method is particulary powerful if combined with reflection.

But we need to prove f(s) = t.
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5. Proofs by computation
——————————————————————————————————–

How does one give formal proofs of

• Computations

(xy − x2 + y2)(x3
− y3 + z3) = x4y − xy4 + xyz3

− x5+
x2y3

− x2z3 + y2x3
− y5 + y2z3.

It is important to formally prove computations, not just for computational state-
ments, but also for statements involving intuition

• Intuition

Let f : R→R be defined by

f(x) =
ex + e−x

2
+ e

sin
2

x + e
cos

2
x.

Then f is continuous.
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5. Proofs by computation
——————————————————————————————————–

The Poincaré Principle:

If f(a) = b, via a computation, then ` f(a) = b axiomatically

The class P of f ’s for which this is postulated may vary

P = ∅ (Isabelle-HOL: ephemeral proofs)

P = {f | prim. rec. over a data type} (Coq)

P = {f | f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion
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The Poincaré Principle is in tension with the de Bruijn criterion



——————————————————————————————————–
HB The Challenge of Computer Mathematics Sterling, October 17, 2003

5. Proofs by computation: using the Poincaré Principle
——————————————————————————————————–

log a
2.

// log b

a
²²

e−

square
// b

²²

e−

a+
f

// b+

a
²² F

// b
²²

Logarithms f∈P
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5. Proofs by Computation: using reflection
——————————————————————————————————–

Here the map + is not the logarithm but usually of a syntactic nature (reflection):
((x + y)(x − y))+ = times(minus x y)(plus x y) and f is something like a
simplify function on these syntactic expressions. The role of the exp function is
played by the semantic function [[ ]].

times(minus x y)(plus x y)
smpl.

// minus(sq x)(sq y) ∈L

(x− y)(x+ y)
²²

[[ ]]

=provably
// (x2 − y2)

²²

[[ ]]

∈R

In order to apply this freely one has to show

∀e:L.[[e]] = [[smpl e]]

once and for all
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6. Case studies
——————————————————————————————————–

Formalized in Coq (intuitionistic proofs)

Theorem 1.

[Formalization: Geuvers, Wiedijk, Zwanenburg, Pollack, Niqui]

Every non-constant polynomial p(x) over C has a root x∈C.

Theorem 2. Collaboration between Coq and GAP
[Formalization: Oostdijk, Caprotti, Elbers]

The number 9026258083384996860449366072142307801963 is a prime.
(Based on Fermat’s little theorem and Pocklington.)

Theorem 3.

[Formalization: Capretta]

Correctness of the Fast Fourier Transform.
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6. Case studies
——————————————————————————————————–

Theorem 4. [Formalization: Person, Théry]

Correctness of an efficient Gröbner base algorithm.

Theorem 5. [Formalization: Cruz-Filipe]

Fundamental theorem of calculus

Theorem 6. [Formalization: Danos, Gonthier, Werner]

Main lemma for the four colour theorem.

For this, Coq needed an overdrive: compilation rather than interpretation

This compiler was proved correct in the simpler version of Coq

romantic Cool Super cool

Maths Human mind Coq Compiled Coq

Biology Human eye Light microscope Electronic microscope
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7. Challenge: Style “λ-term”
——————————————————————————————————–

Theorem. Euclid : ∀d>0, n ∃q, r[r<d & n = qd+ r].

Proof.

[d:nat; p:(d>0)]

[P:=[n:nat]

(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))]

(cv_ind P

[n:nat; ih:(before n P)]

[H:=(ltgeq n d)]

(or_ind (lthan n d) (geq n d)

(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))

[H0:(lthan n d)]

(ex_intro nat

[q:nat](EX r:nat | (lthan r d)/\n=(plus (times d q) r))

0 (ex_intro nat

[r:nat](lthan r d)/\n=(plus (times d 0) r) n

(conj (lthan n d) n=(plus (times d 0) n) H0

(eq_ind_r nat (times 0 d) [n0:nat]n=(plus n0 n)

(req nat n) (times d 0) (times_com d 0)))))

[H0:(geq n d)] [n’:=(monus n d)]

[H1:=(ltm n d (leseq_trans one d n p H0) p)]

[H2:=(ih n’ H1)](ex_ind nat [q:nat]

(EX r:nat | (lthan r d)/\nn=(plus (times d q) r))

(EX q:nat |

(EX r:nat | (lthan r d)/\n=(plus (times d q) r)))

[q’:nat;

H3:(EX r:nat|(lthan r d)/\nn=(plus(times d q’)r))]

(ex_ind nat

[r:nat](lthan r d)/\n’=(plus (times d q’) r)

(EX q:nat |(EX r:nat|(lthan r d)/\n=(plus(times d q)r)))

[r’:nat; H4:((lthan r’ d)/\n’=(plus (times d q’) r’))]

(and_ind (lthan r’ d) n’=(plus (times d q’) r’)

(EX q:nat|(EX r:nat|(lthan r d)/\n=(plus (times d q) r)))

[H5:(lthan r’ d); H6:(n’=(plus (times d q’) r’))]

(ex_intro nat [q:nat]

(EX r:nat | (lthan r d)/\n=(plus (times d q) r))

(suc q’) (ex_intro nat

[r:nat]

(lthan r d)/\n=(plus (times d (suc q’)) r) r’

(conj (lthan r’ d)

n=(plus (times d (suc q’)) r’) H5

[H7:=(f_equal nat nat (plus d) n’

(plus (times d q’) r’) H6)]

[H8:=(eq_ind_r nat (plus (monus n d) d)

[n0:nat]n0=n (pdmon n d H0)

(plus d (monus n d))

(plus_com d (monus n d)))]

(eq_ind nat (plus d n’)

[n0:nat]n0=(plus (times d (suc q’)) r’)

(eq_ind_r nat

(plus d (plus (times d q’) r’))

[n0:nat]

n0=(plus (times d (suc q’)) r’)

(compute q’ r’ d)

(plus d n’)H7) n H8))))H4)H3)H2)H)). QED
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7. Challenge: Style “Script”
——————————————————————————————————–
Theorem. Euclid : (d:nat)(0<d)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).
Proof.

Intros d p.

LetTac P:=[n:nat]

(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))

Apply ’(cv_ind P).

Intro n.

Intro ih.

Unfold before in ih.

Assert ((lthan n d)\/(geq n d)).

Apply ltgeq.

Unfold P.

Intuition.

Exists 0.

Exists n.

Split.

Try Assumption.

Rewrite -> times_com.

Try Assumption.

Simpl.

Apply req.

LetTac nn := (n[-]d).

Assert (lthan nn n).

Unfold nn.

Apply ltm.

Intuition.

Apply (leseq_trans one d n).

Intuition.

Intuition.

Intuition.

Assert (P nn).

Apply ih.

Try Assumption.

Unfold P in H1.

Pick H1 qq.

Pick H2 rr.

Intuition.

Exists (suc qq).

Exists rr.

Intuition.

Assert ((d[+]nn)=(d[+](d[*]qq[+]rr))).

Apply (f_equal ? ? (plus d)).

Try Assumption.

Assert ((d[+]nn)=n).

Unfold nn.

R plus_com.

Apply pdmon.

Try Assumption.

Rewrite <- H4.

Rewrite -> H1.

Apply compute.

Qed.
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7. Challenge: Style “Script”
——————————————————————————————————–

Theorem. Euclid :

(d:nat)(d>0)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat](EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))

Apply ’(cv_ind P).

Intro n.

Intro ih.

....

....
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7. Challenge: “Best Mathematical Style”
——————————————————————————————————–
Theorem. Let d∈nat with 0 < d. Then

∀n∈nat∃q, r∈nat[r < d & n = qd + r].

Proof. Let d∈nat with 0 < d be given.
Write P (n) := ∃q, r∈nat.[r < d & n = qd + r].
We will show

∀n∈nat.P (n)

by course of value induction. So assume

∀k<n.P (k), (ih)

in order to prove P (n).
If n < d, then we can take q = 0, r = n.
If on the other hand n ≥ d, define n1 = n −̇d.
Then n1 < n by ltm. Therefore P (n1) by (ih).
Hence for some q1, r1∈nat one has r1 < d & n1 = q1d + r1.
Take q = q1 + 1, r = r1. Then r < d and

n = (n −̇d) + d, by lemma pdmon and n ≥ d,

= d + (n −̇d)

= d + n1

= d + (q1d + r1)

= (q1 + 1)d + r1, by computation,

= qd + r. QED
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7. Challenge: Style “Mathmode” (M. Giero)
——————————————————————————————————–
Lemma Euclid : (d:nat)(O<d)->(n:nat)(EX q:nat|((EX r:nat|(r<d)/\n=((d[x]q)[+]r)))).
Proof. MLet d be nat. Assume (O < d) (A4).
LetTac P:=[n:nat]((EX q:nat|(EX r:nat|((r<d)/\n=((d[x]q)[+]r))))).
Claim ((n:nat)(before n P)->(P n)) (A1).

MLet n be nat. Assume (before n P) (A6).
Case 1 (n<d) (A2).

Take zero and prove (EX r:nat|r<d/\n=d[x]zero[+]r).
Take n and prove (n<d/\n=d[x]zero[+]n).
Done (n<d) [by A2].
Done (n=d[x]zero[+]n) [by times_com].

Case 2 (n>=d) (A5).
Claim ( (monus n d) <n).

Have (O<n) [by A4, A5, lt_le_imp_lt].
Hence claim done [by A4, pos_imp_mon_lt].
Then (P (n-,d)) [by A6].
Then consider q such that

([q:nat](EX r:nat|r<d/\n-,d=d[x]q[+]r)).
Then consider r such that

([r:nat](r<d/\n-,d=d[x]q[+]r)) (A8).
Take (S q) and prove (EX r:nat|r<d/\n=d[x](S q)[+]r).
Take r and prove (r<d/\n=d[x](S q)[+]r).
Firstly (r<d) [by A8].
Secondly we have

n = ((n-,d)[+]d) [by ge_imp_mon_plus_eq, A5].
eqr (d[x]q[+]r[+]d) [by A8]. Hence
eqr (d[x](S q)[+]r) [by compute].

End_cases [by dichotomy].
So we have proved (A1).
Finally we need to prove ((n:nat)(P n)).
Done [by cv_ind, A1]. Qed.
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7. Challenge
——————————————————————————————————–

Mathematician-friendly systems for Computer Mathematics can be built

Needed

mathematical interface (M-mode)
libraries
certified tools

It will take 150 manyear (∼ 5 M UKpound) to build them
for the topics of a master’s in mathematics


