
Reflection in the Chomsky Hierarchy

Henk Barendregt∗ Venanzio Capretta† Dexter Kozen‡

Abstract

The class of regular languages can be generated from the regular ex-
pressions. These regular expressions, however, do not themselves form
a regular language, as can be seen using the pumping lemma. On the
other hand, the class of enumerable languages can be enumerated by a
universal language that is one of its elements. We say that the enumerable
languages are reflexive.

In this paper we investigate what other classes of the Chomsky Hier-
archy are reflexive in this sense. To make this precise we require that the
decoding function is itself specified by a member of the same class. Could
it be that the regular languages are reflexive, by using a different collection
of codes? It turns out that this is impossible: the collection of regular
languages is not reflexive. Similarly the collections of the context-free,
context-sensitive, and computable languages are not reflexive. Therefore
the class of enumerable languages is the only reflexive one in the Chomsky
Hierarchy.

In honor of Roel de Vrijer on the occasion of his sixtieth birthday

1 Introduction

Let T ⊆ P(Σ∗) be a class of languages over an alphabet Σ. Let (C,U) be a
couple of languages such that the words of U are pairs c • w with c ∈ C and w
arbitrary. Define, for c ∈ C,

LcU = {w ∈ Σ∗ | c • w ∈ U}.

The pair (C,U) is called a universal coding system for T if

T = {LcU | c ∈ C}.

T is called reflexive if there exists a universal coding system (C,U) for T , such
that C,U ∈ T .

∗Institute of Computing and Information Science, Radboud University, Nijmegen, The
Netherlands
†School of Computer Science, University of Nottingham, UK
‡Computer Science Department, Cornell University, Ithaca, New York 14853, USA

1

We assume that Σ is a fixed alphabet and consider only languages over it,
that is, subsets of Σ∗. We assume that Σ has “enough” symbols, in the sense
that, given some candidate language of codes C, we freely presume that we can
find a symbol • not contained in any word of C.

It turns out that the classes of regular, context-free and context-sensitive lan-
guages are all non-reflexive. The proofs of these facts are different for each of the
three classes. The class of recursive languages (not officially in the Chomsky hi-
erarchy) is also non-reflexive. It is known that recursively enumerable languages
are reflexive, as follows from the existence of a universal Turing machine.

This leaves open the possibility that other classes, smaller than that of recur-
sively enumerable languages, are reflexive. In fact we will show in Proposition 2
that for every effectively countable family of languages, we can construct such a
class containing its union. The construction is simple but artificial. The quest
is for such a reflexive class that has a uniformly defined family of accepting
machines.

1.1 Related Work

A crucial difference between reflexivity and other notions of universality in the
literature is that the code of a language is included as part of its representation
in the universal language. This imposes a strong uniformity requirement on
the coding scheme that is absent with other notions. Greibach [2] constructs a
“hardest context-free language” L0 such that every context-free language is an
inverse homomorphic image of L0 or L0 − {ε}. The language L0 is constructed
from a Dyck language (parenthesis language) on two pairs of matching paren-
theses. The homomorphism, which is the coding mechanism that witnesses the
embedding of a context-free language in the universal language L0, is not part
of L0, thus imposes no uniformity condition.

A similar result is the Chomsky–Schützenberger theorem [1], which states
that every context-free language is the homomorphic image of the intersection
of a Dyck language and a regular set. Again, the coding mechanism is not part
of the universal language.

Kasai [3] constructs a “universal context-free grammar” for every finite al-
phabet Σ, a context-free grammar G such that for every context-free language
L ⊆ Σ∗, there is a regular control set C that restricts the possible sequences
of leftmost derivations of G, such that LC(G) = L. Again, the control set C
is independent of L(G). It should be pointed out that the cited results are all
positive universality results, whereas reflexivity in our sense does not hold for
context-free languages.

2 Standard Encodings

First of all, let us look at the standard encodings for the language classes of the
Chomsky hierarchy and ask if they belong to the class that they define.

2

The standard encoding of regular languages over an alphabet Σ is the lan-
guage of regular expressions, defined as the set inductively generated by the
rules:

• The symbols ∅, ε and a for every a ∈ Σ are regular expressions;

• If u and v are regular expressions, then (u∪v), (uv) and (u∗) are regular
expressions.

It is a well-known fact that languages that make use of parentheses are not
regular, so the language of regular expressions does not belong to the class that
it defines. Instead, the following grammar shows that it is context-free:

〈reg − exp〉 → ∅
→ ε
→ a a ∈ Σ
→ (〈reg − exp〉 ∪ 〈reg − exp〉)
→ (〈reg − exp〉〈reg − exp〉)
→ (〈reg − exp〉∗)

The standard encoding of context-free languages is by context-free gram-
mars. Such a grammar is a finite sequence of rules, separated by semicolons in
our version. Each rule has the form x→ w, where x is a variable (non-terminal)
from a set V and w is any word over the alphabet V ∪Σ. Contrary to the pre-
vious case, this language is not only context-free, but even regular. In fact, it
is defined by the following regular expression:

V → (V ∪ Σ)∗(;V → (V ∪ Σ)∗)∗.

A similar consideration can be made for the context-sensitive languages.
So the conclusion is that the language of regular expressions is context-free

while the language of context-free grammars is regular! This is for what concerns
the traditional representations of languages. But if we start thinking about other
possible encodings, the question we are asking becomes muddled. Is there some
set of words, other than regular expressions, that encodes regular languages and
is itself regular? Since we know that regular languages are effectively countable,
we can certainly enumerate them using natural numbers, through some form
of Gödel numbering. Therefore the numerals can be used as codes for regular
languages, and they themselves form a regular language. The regular expression
defining them is simply S∗O, where S and O are symbols denoting successor
and zero, respectively.

This, however, is an unnatural answer to the question whether regular lan-
guages have an internal representation. The decoding function is going to be
quite complex and certainly won’t be implementable by a finite automaton,
which is the sort of machine associated to a regular language.

3

3 Reflexivity

A coding system consists of a language C of codes and some decoding mecha-
nism. This can be given in two equivalent ways: either by a universal language
U or by a decoding function d : C → T . We define the notion of reflexivity
for a language class T by requiring that there be a coding language C and a
universal class U both within T .

Definition 1 Let T be a class of languages over an alphabet Σ, i.e., T ⊆ P(Σ∗).

1. A coding system is a pair (C,U) with C,U ⊆ Σ∗. We call C the code
language and U the decoding language.

2. Given a coding system (C,U) and any c ∈ C, define

LcU = {w ∈ Σ∗ | c • w ∈ U}.

where • is a new symbol not used in C. We call the mapping λc.LcU the
decoding function of the system.

3. (C,U) is a T -coding system iff C ∈ T and U ∈ T .

4. (C,U) is universal for T iff T = {LcU | c ∈ C}.

5. T is reflexive if there exists a T -coding system that is universal for T .

Equivalently, we could have taken the decoding function as a primitive in the
definition of a coding system, defining it as a pair (C, d), where C is a language
and d : C → P(Σ∗). The two definitions are related by the transformations:

U = {c • w | c ∈ C and w ∈ d(c)} and d(c) = LcU .

Any system (C,U) codes the class of languages T(C,U) = {LcU | c ∈ C}.
(C,U) is trivially universal for T(C,U), but it is not necessarily a T(C,U)-coding
system, because C and U may not be in T(C,U). We will call (C,U) itself reflexive
when this happens, that is, when there are codes c, u ∈ C such that C = Lc

U

and U = Lu
U . We can always extend a system to a reflexive one minimally.

Proposition 2 For every coding system (C,U), there exists another coding sys-
tem (C ′, U ′) such that

{Lc
′

U ′ | c′ ∈ C ′} = {LcU | c ∈ C ′} ∪ {C ′, U ′}.

Proof. We can safely assume that there are two words c, u ∈ Σ∗ not containing
the separator • and not in C. We are going to use them as the new codes for
C ′ and U ′, respectively. Define

C ′ = C ∪ {c, u}, U ′′ = U ∪ {c • c | c ∈ C ′}, U ′ = (u•)∗U ′′.

Then (C ′, U ′) is a reflexive coding system extending (C,U). In fact, let c ∈ C,
then LcU = LcU ′ ; C ′ = Lc

U ′ and U ′ = Lu
U ′ . 2

4

4 Regular Languages

We show that regular languages are not reflexive according to the previous def-
inition. The proof exploits a well-known characterization of regular languages.

Proposition 3 (Myhill-Nerode) Given a language L over Σ, define the fol-
lowing equivalence relation ≡L on Σ∗:

v ≡L w ⇐⇒ ∀u ∈ Σ∗[vu ∈ L⇔ wu ∈ L].

Then L is regular iff Σ∗/ ≡L is finite.

The standard proof of the Myhill-Nerode result exploits the fact that L is
accepted by a finite automaton.

Theorem 4 The class of regular languages is not reflexive.

Proof. Assume that regular languages are reflexive through the coding system
(C,U). Then U is regular. Hence Σ∗/ ≡U is finite. As

c• ≡U c′• ⇐⇒ LcU = Lc
′

U ,

this implies that there are only a finite number of regular languages, quod non. 2

5 Context-Free Languages

Context-free languages (CFLs) can be characterized as those sets of words that
are accepted by a push-down automaton, that is, a finite state machine that
uses a stack as memory. If there were a universal language U for this class, the
automaton corresponding to U would have to use the stack to store both the
code c and and the information needed for the computation. But then, how can
it “read” the code without destroying the information about a specific word?
This informal argument makes it plausible that context-free languages are not
reflexive.

A more precise proof follows. This exploits the fact that every CFL has a
grammar in Chomsky normal form, where the production rules are of the form
A→ BC or A→ a, where A,B,C are nonterminal symbols and a is a terminal
symbol.

Theorem 5 The class of context-free languages is not reflexive.

Proof. We use the sets Lm = {anbmn | n ≥ 0}. Intuitively, the languages
Lm are context-free, but not uniformly so; to accept a language with large m
requires a large state set or stack alphabet in a pushdown automaton or a large
number of nonterminal symbols in a context-free grammar.

Suppose, towards a contradiction, that there were a universal CFL-coding
system (C,U). Then with each CFL L ⊆ Σ∗, there would be associated at least

5

one code c ∈ C such that for all w ∈ Σ∗, w ∈ L iff c • w ∈ U . U would have
a Chomsky normal form grammar, say with start symbol S and d nonterminal
symbols. We write A

∗→ x if the nonterminal A can derive the string x. Note
that the null string ε is not derivable from any nonterminal.

Consider a parse tree for S
∗→ x. If σ is a path in the parse tree with nodes

labelled by nonterminals A0, . . . , Ak, then for 0 ≤ i ≤ k − 1, the rule applied
to Ai is of the form either (i) Ai → BAi+1 or (ii) Ai → Ai+1B for some B.
In case (i), let vi be the nonnull string generated by B and let xi = ε. In case
(ii), let vi = ε and let xi be the nonnull string generated by B. In either case,

Ai
∗→ viAi+1xi, thus A0

∗→ vσAkxσ, where

vσ = v0v1 · · · vk−1, xσ = xk−1 · · ·x1x0.

A basic pumpable segment in a parse tree is a path σ whose endpoints are labelled
with the same nonterminal but otherwise all other nonterminals along the path
are distinct. Basic pumpable segments arise in the proof of the pumping lemma.
The length of a basic pumpable segment is at most d. If A

∗→ x and the parse
tree contains no basic pumpable segment, then |x | ≤ 2d−1, since the tree is
binary branching and of height at most d.

Now let cm be a code for Lm and choose integers m and n such that

m > d2d−1, n > |cm |+ 1. (1)

Consider a parse tree for S
∗→ cm • anbmn. Let τ be the path in the parse tree

from the start symbol S down to the rightmost a in the string an. Then

vτ = cm • an−1, xτ = bmn.

For each Ai
∗→ viAi+1xi along the path τ , we must have |xi | ≤ 2d−1,

otherwise there would be a pumpable segment in the parse tree for xi and we
could generate a string with too many b’s. In order to generate all of bmn, we
must have at least mn/2d−1 such xi, therefore if k is the length of τ , then

k ≥ mn/2d−1 > d(|cm |+ 1),

by the two inequalities (1). This implies that it is possible to find at least
|cm |+ 1 disjoint basic pumpable segments along the path τ : starting from the
bottom and walking upward toward the root, we have a basic pumpable segment
as soon as a nonterminal is repeated, then we start again from that nonterminal.

Now for each of these |cm |+1 pumpable segments σ, consider the strings vσ
and xσ. Each vσ either contains the separator •, or it is completely contained
in an, or it is completely contained in cm.

If any vσ contains •, then by pumping σ we can generate a string with the
same code cm but too many •’s, which is impossible since Lm doesn’t use •.

If any vσ is entirely contained in the an, then by pumping σ we can generate
a string that violates anbmn. If vσ is null, then xσ is nonnull and we can increase
the number of bs without changing the number of as. On the other hand, if vσ

6

is nonnull, by pumping σ once we can increase the number of as by at least one.
There should be a corresponding increase of at least m bs, but this is impossible
since |xσ | ≤ d2d−1 < m.

Finally, if all vσ are substrings of cm, then at least one of them must be null,
since there are at least |cm |+ 1 disjoint basic pumpable segments but only |cm |
letters in cm. By pumping that σ, we can generate a string with the same code
cm but too many b’s.

In all cases, we have been able to pump and generate a string that should
not be accepted by U . 2

6 Context-Sensitive Languages

The class of context-sensitive languages consists of those recognized by a linear-
bounded automaton, that is, a Turing machine with linear space complexity. An
informal argument suggests that this class cannot be reflexive: for each language
there is a linear bound, but certainly there is no universal linear bound for the
whole class, which would be necessary if it were reflexive.

The following proof that the class of context-sensitive languages is not re-
flexive uses a diagonalization argument similar to Russell’s paradox.

Definition 6 (i) Given a language L over Σ, define the root of L by

√
L = {w ∈ Σ∗ | w • w ∈ L}.

(ii) A class of languages T is called Russellian if T is closed under taking
complements and roots.

Theorem 7 If T is Russellian, then T is not reflexive.

Proof. Suppose towards a contradiction that T is Russellian and reflexive. Let
(C,U) be a T -coding system universal for T . Then U ∈ T . By closure under
complement and root it follows that√

U = {w ∈ Σ∗ | w • w /∈ U} ∈ T .

Hence
√
U = LrU for some r ∈ C. Then we obtain a contradiction:

r • r ∈ U ⇔ r ∈ LrU as LrU = {w | r • w ∈ U}
⇔ r ∈

√
U as LrU =

√
U

⇔ r • r ∈ U by definition of
√

⇔ r • r /∈ U. 2

Theorem 8 The class of context-sensitive languages is not reflexive.

Proof. We show that the class of context-sensitive languages is Russellian.
It is well known that the family of context-sensitive languages is closed under
complement.

7

As to closure under root, let L be a context-sensitive language. Then there
exists a Turing machine M with a linear space bound ax + b on the size x of
the input that accepts L. Let us define a new machine M ′ that operates in the
following way: given the input w, it first replaces it with w•w and then runs M .
Clearly M ′ is also linearly bounded, with the bound a(2x+1)+ b = 2ax+a+ b.
Hence

√
L is context-sensitive. 2

Remark 9 The class of computable languages is clearly closed under comple-
ments and roots, hence Russellian. Theorem 7 shows (the well-known fact) that
also this class is not reflexive.

7 Turing Recursively Enumerable Languages

The following result is essentially due to Turing.

Theorem 10 The class of recursively enumerable languages is reflexive.

Proof. Turing proved the existence of a universal machine Mu that can simulate
every Turing machine T using a program: there exists a code t such that, for
every input w, the result of the computation of Mu on t •w is the same as that
of T on w.

The set of codes t is itself recursively enumerable (and can in fact be made
context-free). This, together with the characterization of recursively enumerable
languages as those accepted by a Turing machine, gives the result. 2

Postscript

We leave it to the linguists to discuss whether the fact that the class of context-
sensitive languages is not reflexive has implications for the place of say English
in the Chomsky hierarchy.

Chomsky’s nativist theory posits that the human mind has an innate module
for language that is “tuned” to the specific native language in the first years
of life. The class of “natural languages” consists of those that can be tuned in
this way; nobody knows precisely where it lies, probably somewhere between
context-free and context-sensitive. But this is a statement about the syntax of
the language, not about its semantics.

In our approach we also talk about the semantics: the issue of reflection
involves the meaning of the language. In our presentation the syntax is that of
the language C and the semantics is given by U . If C is English, it can well be
context-sensitive without U being context-sensitive. After all, we can describe
Turing machines and r.e. languages in English.

8

References

[1] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of
context free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, pages 118–161. North-Holland, 1963.

[2] Sheila A. Greibach. The hardest context-free language. SIAM J. Comput.,
2(4):304–310, December 1973.

[3] Takumi Kasai. A universal context-free grammar. Information and Control,
28:30–34, 1975.

9

