Exercises course Lambda Calculus, week 12 (May 14, 2012)

Let $\mathcal{M}_n = \mathcal{M}_{\{1,...,n\}}$ and $c_i = (\lambda f x. f^i x) \in \Lambda^{\emptyset}(1 \to 0 \to 0)$. Write

$$\mathcal{E}_{\beta\eta}(A) = \{ M = N \mid M, N \in \Lambda^{\emptyset}(A) \& M =_{\beta\eta} N \}.$$

Define

$$\mathcal{M} \equiv_A \mathcal{N} \iff \forall M, N \in \Lambda^{\emptyset}(A) . [\mathcal{M} \models M = N \iff \mathcal{N} \models M = N].$$

Define

$$Th(\mathcal{M})(A) = \{ M = N \mid M, N \in \Lambda^{\emptyset}(A) \& \mathcal{M} \models M = N \}.$$

Let $\mathcal{M}_1, \ldots, \mathcal{M}_5$ be the canonical term models.

1. (a) Show that for $i, j \in \mathbb{N}$ one has

$$\mathcal{M}_n \models c_i = c_j \iff i = j \lor [i, j \ge n - 1 \& \forall k_{1 \le k \le n} . i \equiv j \pmod{k}]$$

[Hint. For $a \in \mathcal{M}_n(0), f \in \mathcal{M}_n(1)$ define the trace of a under f as

 $\{f^i(a) \mid i \in \mathbb{N}\},\$

directed by $G_f = \{(a, b) \mid f(a) = b\}$, which by the pigeonhole principle is 'lassoo-shaped'. Consider the traces of 1 under the functions f_n, g_m with $1 \le m \le n$, where

$$f_n(k) = k+1, \text{ if } k < n, \text{ and } g_m(k) = k+1, \text{ if } k < m, \\ = n, \text{ if } k = n, = 1, \text{ if } k = m, \\ = k, \text{ else.}]$$

(b) Conclude that $\mathcal{M}_5 \models c_4 = c_{64}$, $\mathcal{M}_6 \not\models c_4 = c_{64}$, and $\mathcal{M}_6 \models c_5 = c_{65}$.

- 2. Show that \mathcal{M}_2 and $\Lambda[\{c^0, d^0\}]$ satisfy different equations.
- 3. Show that $\mathcal{M}_n \equiv_{\{1 \to 0 \to 0\}} \mathcal{M}_m \iff n = m$.
- 4. Show directly that $\bigcap_n \operatorname{Th}(\mathcal{M}_n)(1) = \mathcal{E}_{\beta\eta}(1)$.
- 5. Show that $\bigcap_n \operatorname{Th}(\mathcal{M}_n) = \operatorname{Th}(\mathcal{M}_{\mathbb{N}}) = \mathcal{E}_{\beta\eta}$.
- 6. Consider the following equations.
 - (1) $\lambda f:1\lambda x:0.fx = \lambda f:1\lambda x:0.f(fx);$
 - (2) $\lambda f, g:1\lambda x:0.f(g(g(fx))) = \lambda f, g:1\lambda x:0.f(g(f(gx)));$
 - (3) $\lambda F: 3\lambda x: 0.F(\lambda f_1: 1.f_1(F(\lambda f_2: 1.f_2(f_1x)))) = \lambda F: 3\lambda x: 0.F(\lambda f_1: 1.f_1(F(\lambda f_2: 1.f_2(f_2x)))).$
 - (4) $\lambda h: 1_2 \lambda x: 0.h(hx(hxx))(hxx) = \lambda h: 1_2 \lambda x: 0.h(hxx)(h(hxx)x).$

- (a) Show that 1 holds in \mathcal{M}_1 , but not in \mathcal{M}_2 .
- (b) Show that 2 holds in \mathcal{M}_2 , but not in \mathcal{M}_3 .
- (c) Show that 3 holds in \mathcal{M}_3 , but not in \mathcal{M}_4 .
- (d) Show that 4 holds in \mathcal{M}_4 , but not in \mathcal{M}_5 .
- 7. Construct six pure closed terms of the same type in order to show that the five canonical theories are maximally different. I.e. we want terms M_1, \ldots, M_6 such that in $\operatorname{Th}(\mathcal{M}_5)$ the M_1, \ldots, M_6 are mutually different; also $M_6 = M_5$ in $\operatorname{Th}(\mathcal{M}_4)$, but different from M_1, \ldots, M_4 ; also $M_5 = M_4$ in $\operatorname{Th}(\mathcal{M}_3)$, but different from M_1, \ldots, M_3 ; also $M_4 = M_3$ in $\operatorname{Th}(\mathcal{M}_2)$, but different from M_1, M_2 ; also $M_3 = M_2$ in $\operatorname{Th}(\mathcal{M}_1)$, but different from M_1 ; finally $M_2 = M_1$ in $\operatorname{Th}(\mathcal{M}_0)$. [Hint. Use the previous exercise and a polynomially defined pairing operator.]
- Following <www.cs.ru.nl/ henk/book.pdf> show that M₁ is decidable. Similarly for M₅.
- 9. Investigate whether $\mathcal{M}_2, \mathcal{M}_3$, and \mathcal{M}_4 are decidable.