
The Imperative and Functional Programming Paradigm

Henk Barendregta, Giulio Manzonettoa,1, Rinus Plasmeijera

aFaculty of Science, Radboud University, Nijmegen, The Netherlands

1. Models of computation

In Turing (1937) a characterization is given of those functions that can be
computed using a mechanical device. Moreover it was shown that some pre-
cisely stated problems cannot be decided by such functions. In order to give
evidence for the power of this model of computation, Turing showed in the
same paper that machine computability has the same strength as definability
via λ-calculus, introduced in Church (1936). This model of computation was
also introduced with the aim to show that undecidable problems exist.

Turing Machine computability forms a very simple model that is easy to
mechanize. Lambda calculus computability, on the other hand, is a priori

more powerful. Therefore it is not obvious that it can be executed by a
machine. As Turing showed the equivalence of both models also λ-calculus
computations can be performed by a machine and also Turing Machine com-
putations are powerful. This gave rise to the combined
Church-Turing Thesis The notion of intuitive computability is exactly cap-

tured by λ-definability or by Turing computability.

Computability via Turing machines gave rise to Imperative Programming.
Computability described via λ-calculus gave rise to Functional Programming.
As imperative programs are more easy to run on hardware, this style of soft-
ware became predominant. We present major advantages of the functional
programming paradigm over the imperative one, that are applicable, pro-
vided one is has the mental capacity to explicitly deal with simple abstrac-
tions.

Email addresses: henk@cs.ru.nl (Henk Barendregt), g.manzonetto@cs.ru.nl
(Giulio Manzonetto), rinus@cs.ru.nl (Rinus Plasmeijer)

1Supported in part by NWO Project 612.000.936 CALMOC.

Preprint submitted to Alan Turing - His Work and Impact July 3, 2011

2. Functional programming

Features from lambda calculus

Rewriting. Lambda terms form a set of formal expressions subjected to
possible rewriting (or reduction) steps. For each term there are in general
several parts that can be rewritten. However, if there is an eventual outcome,
in which there is no more possibility to rewrite, it necessarily is unique.

Application. An important feature of the syntax of λ-terms is application.
Two expressions can be applied to each other: if F and A are λ-terms, then
so is FA, with as intended meaning the function F applied to the argument
A. Both the function and the argument are given the same status as λ-
terms. This implies that functions can be applied to functions, obtaining
higher order functions.

Abstraction. Next to application there is abstraction. This feature allows
to create complex functions. For example given terms F and G intended as
functions, then one may form F ◦ G and G ◦ F ◦ G with the rewriting rules

(F ◦ G) a → F (G a);
(G ◦ F ◦ G) a → G(F (G a)).

It is interesting to note that there is one single mechanism, λ-abstraction,
that can capture both examples and much more. Given a λ-term M in
which the variable x may occur, one can form the abstraction λx.M . It
has as intended meaning the function that assigns to x the value M . More
generally λx.M assigns to N the value M [x:=N], where the latter denotes
the expression obtained by substituting N for x in M . Then one has

F ◦ G , λx.F (Gx);

G ◦ F ◦ G , λx.G(F (G x)).

β-reduction. Corresponding to this abstraction with its intended meaning,
there is a single rewriting mechanism. It is called β-reduction and is

(λx.M)N → M [x:=N],

giving the two rewrite examples mentioned above from the definition of F ◦G
and G◦F ◦G. One can iterate the procedure, and introduce the higher order
function C ‘composition’ as follows.

C , λfλgλx.f(g x).

2

Having C one can write F ◦G , C F G, where in the absence of parentheses
one should read this C F G as (C F) G. Dually the iterated abstraction
λfλgλx.f(g x) should be read as λf(λg(λx.f(g x))).

Instead of λ-abstraction, it is convenient to define functions by their
applicative behavior2. One then writes comp f g x = f (g x), obtaining
‘composition’ comp f g = f ◦ g. One can even give definitions that are ‘loop-
ing’, like L x = (x, L(x + 1)), so that L 0 = (0,(1,(2,(3,...)))). Simi-
larly one can construct the list of all prime numbers. Infinite lists are easier
to describe than a list of say 28 elements.

Lazy evaluation. Expressions are evaluated as little as possible. Consider
the program f (L 4): the expression L 4 is computed only when f tries to
read some input, and is just evaluated for long enough to return a value to
f. This enables dealing with ‘infinite objects’, mentioned above.

Features beyond lambda calculus

For the pragmatics of functional programming several features are added
to the basic system of λ-calculus.

Data. Although integers and ‘scientific’ real numbers can be represented
as λ-terms, for efficiency reasons they are given by special constants, together
with the primitives for standard operations.

Names. The original λ-calculus formalism does not have names by de-

sign, as arbitrary λ-abstractions can be made. However, for the pragmatics
of using and reusing software components, it is useful introduce a naming
construction let. E.g. let comp = λfλgλx.f(g x) means that composition
C , λfλgλx.f(g x) is now called comp and can be used later to define

F ◦ G , comp FG.

3. Types

In physics constants have a ‘dimension’, e.g. speed is measured in km/h.
When we bike at v = 12km/h and we do this for t = 3h, we have gone
vt = 12 · 3 = 36km. Dimensions prevent that we want to consider e.g. vt2 to
compute the distance.

Similarly functional programming languages come with a type system
helping to ensure correctness. A program expecting a number (: Int) should

2This method is called heuristic application principle by Böhm.

3

not receive a judgement (: Bool). Giving module F a type A is denoted by
F : A (read ‘F in A’). One starts typing the data, e.g. 3 : Int, True : Bool.
Functions with behavior G x = y get as type A → B, where x : A and y : B. An
application F a is only allowed if the types match, i.e. F : A → B and a : A.

The functional programmer indicates the types of the data structures and
basic functions and the machine performs type-inferencing at compile-time.
This is a major help for combining software modules in a correct way: many
bugs are caught as the result will be an untypable program.

Algebraic Data Types. Next to basic data types, like Int, Bool, one likes
to use common data structures, like lists and trees of elements of type A. Such
structures start small and grow. There is the empty list Nil and one can
extend a list tl by chaining an element hd of type A, obtaining Cons hd tl.
The function that counts the number of elements in a list (of arbitrary type)
can be defined by specifying that on the empty list it is 0 and on an enlarged
list it is the length of the previous list plus 1.
count : List A → Int

count Nil = 0

count (Cons hd tl) = 1 + count tl

Using so called Generalized Abstract Data Types one introduces several such
types simultaneously, mutually depending on each other, keeping type-infer-
encing possible, see Schrijvers et al. (2009).

Generic types. One can ‘code’ algebraic types enabling to write uniformly
functions on these. For example, there is a map on lists and on trees of data
(hanging at the leaves), whereby a given function f is applied to each element.
The two functions can be obtained by specializing one program with a generic
type, including possible exceptions. With this feature one can embed Domain
Specific Languages within a functional language, see Plasmeijer et al. (2007).

Dynamic types. A functional program P having type A is compiled to
machine code and evaluated. During this process the original term, its type
and context of definitions are forgotten. Using ‘dynamic types’ one may keep
track of this syntactic data. This enables dynamic code, e.g. for writing typed
Operating System in a pure functional language, and dealing with unknown
plug-ins or database specifications.

Efficiency. Considerable effort has been put into the compiler technolo-
gies for functional languages. The code generated by the state of art compil-
ers for Haskell, OCaML, and Clean is so good, that efficiency is no longer an
issue, see the URL <shootout.alioth.debian.org>.

An example. Using abstraction, application, algebraic data types and

4

functions as arguments one can write compact software that can easily be
modified. One can construct foldr with the following specification.
foldr (•) [a1, . . . , an] start = (a1 • (a2 • (. . . (an • start) . . .))
Here ‘•’ is a binary operation used in infix position and ‘(•)’ stands for • as
argument. The program foldr works on every kind of lists, and subsequently
can be applied to particular functions and data-structures, for example to
obtain sumlist. As a comparison also the imperative code is given. The
function foldr has the ‘schematic type’ (A → B → B) → B → List A → B,
which does not need to be given by the programmer.

working Functional (Haskell-like) Imperative (C-like)

foldr f e Nil = e

foldr f e (Cons hd tl) =

f hd (foldr f e tl)

sumlist = foldr (+) 0

int sumlist(node *l){

node *cur = l;

int res = 0;

while not (curr = Nil){

res = res + curr ->num;

curr = curr ->next;

}

return res;

}

If one needs the product of the elements of a list, then in the functional case
one just adds a new line prodlist = foldr (∗) 1, whereas in the imperative
case one needs to write another procedure exactly like sumlist, except for
the product that now replaces the sum, thus doubling the lines of code.

4. Input/output

In applications one needs to perform I/O to manipulate information avail-
able in peripherals (e.g. keyboard and mouse for input and the file system
and screen for output). These characterize the ‘state’ of the machine and
platform running a program. This may effect the content of the file, which is
imperative by nature. In pure3 functional languages one has to deal with I/O
in a special way, while maintaining modularity, readability, and typability.

In Haskell the state has a particular type State. For output one modifies
the state (‘writing’) and for input one makes available to the main functional
program a value from the state (‘reading’, thereby also possibly changing the
state). The programming environment of Haskell comes with a collection of

3A pure functional language is one without assignments, i.e. statements like [x:=x+1].

5

write and read operations having the following effect.
write a state = state’

read state = (a,state’)

Together these are called ‘actors’, with the following type and action.
actor : State → A× State

actor state = (a, state′)
Here ‘write a’ is interpreted as an actor, for which the A is not used. Actors
can have an erasing effect on the state. Therefore the programmer has access
to the actors, but not to the state. Otherwise one could write
f state = (write 1 state, write 2 state) (!)
having a not well-defined effect (depending on execution order). The type
State remains hidden to the programmer, but not the actors having type
Monad A = State → (A× State), parametrized with a type A, on which
the program can operate. The entire program is seen as a state modifying
function of type Monad B, for some type B. Composing such functions, using
a kind of composition4, one preserves modularity and compactness. In the
meantime any possible computations can take place, by interleaving these
with the actors. The monadic approach in Haskell has as advantage that it
does not require a special type system to deal with I/O.

In Clean dealing with I/O is more general. Monads are used as well,
but also the state on which they act is given to the programmer. This is
possible because a uniqueness type system warrants safe usage that avoids
situations like (!) above. As the state is available, one can split it into different
components, like files, the keyboard, and whatever one needs. These can be
modified separately, as long as they are not duplicated. Explicit access to
the state allow to write the actors within Clean itself.

We see that both in Haskell and in Clean, dealing with I/O comes at a
certain price. But this is well worth the advantages of pure functional pro-
gramming languages: having arbitrarily high meaningful information density,
with modules that can be combined easily in a safe way.

5. Current research

Parallelism. Pure functional languages are better equipped for programming
multi-cores than imperative languages, as the result of a function is indepen-

4As reading actors use the information obtained by modifying the state, it is a serial
action with giving over a token, like in a relay race.

6

dent of its evaluation order. Therefore modules in a functional program can
be safely evaluated in parallel. As it costs overhead to send data between
processors, one should restrict parallel evaluation to those functions having
time consuming computations. Research on parallel evaluation of functional
programs, see Hammond and Michaelson (1999), has been revived by the
advent of new multi-core machines, Marlow et al. (2009).

Certification. In languages like AGDA, Bove et al. (2009), or Coq, Coq Devel-
opment Team (2010), one can fully specify a program and prove correctness.
This demands even more skills from the programmer than pure functional
languages already do: programming becomes proving. But the ideal of ‘for-
mal methods’ (fully specifying software together with a proof of correctness)
has become feasible. For example Leroy (2009) gives a full certification of an
optimized compiler for the kernel of the (imperative) language C.

6. History and perspective

The first functional language was Lisp, McCarthy et al. (1962). There is
no type system and I/O is done imperatively. By contrast the language ML,
Milner et al. (1997), and its modern variant F#, Syme (2007), are impure as
well, but strongly typed. Miranda, Turner (1985), was one of the first pure
functional programming languages, with lazy evaluation and type inference.
Clean, Plasmeijer and van Eekelen (2002), and Haskell, Peyton Jones (2003),
are modern variants of Miranda. Haskell has become the de facto standard
pure functional language, widely used in academia.

Pure functional programming has not yet become mainstream, despite its
expressive power and increased safety. To make use of the power, one needs
understanding the type systems and the use of the right abstractions. Once
mastered, functional programming enables writing applications in a fraction
of the usual development and debugging time.

References

Bove, A., Dybjer, P., Norell, U., 2009. A brief overview of Agda - a functional
language with dependent types. Vol. 5674 of Lecture Notes in Computer Science.
Springer, pp. 73–78.

Church, A., 1936. An unsolvable problem of elementary number theory. American
Journal of Mathematics 58, 345–363.

7

Coq Development Team, 2010. The Coq Proof Assistant Reference Manual – Ver-
sion V8.3. http://coq.inria.fr.

Hammond, K., Michaelson, G., 1999. Research Directions in Parallel Functional
Programming. Springer.

Leroy, X., 2009. A formally verified compiler back-end. Journal of Automated
Reasoning 43 (4), 363–446.

Marlow, S., Jones, S. L. P., Singh, S., 2009. Runtime support for multicore Haskell.
In: Hutton, G., Tolmach, A. P. (Eds.), Proc. Int. Conf. on Functional program-
ming 2009. ACM, pp. 65–78.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., Levin, M. I., 1962.
LISP 1.5 Programmer’s Manual. MIT Press.

Milner, R., Tofte, M., Harper, R., McQueen, D., 1997. The Definition of Standard
ML. The MIT Press.

Peyton Jones, S. (Ed.), 2003. Haskell 98 language and libraries: the revised report.
Cambridge University Press.

Plasmeijer, R. M., Achten, P., Koopman, P. W. M., 2007. iTasks: executable spec-
ifications of interactive work flow systems for the web. In: Hinze, R., Ramsey, N.
(Eds.), Proc. Int. Conf. on Functional Programming 2007. ACM, pp. 141–152.

Plasmeijer, R. M., van Eekelen, M. C. J. D., 2002. Clean Language Report. Uni-
versity of Nijmegen, software Technology Group.

Schrijvers, T., Jones, S. L. P., Sulzmann, M., Vytiniotis, D., 2009. Complete and
decidable type inference for GADTs. In: Hutton, G., Tolmach, A. P. (Eds.),
Proc. Int. Conf. on Functional programming 2009. ACM, pp. 341–352.

Syme, D. and Granicz, A. and Cisternino, A., 2007. Expert F#. Apress.

Turing, A. M., 1937. Computability and lambda-definability. The Journal of Sym-
bolic Logic 2 (4), 153–163.

Turner, D. A., 1985. Miranda: A non-strict functional language with polymorphic
types. In: FPCA. pp. 1–16.

8

