Exercises week 2

Formal languages, grammars, and machines 26 april, 2012

2. Regular languages, Finite Automata

2.1.

Let a DFA M be given by

Describe the words accepted by M.

- 2.2. Let $e = a^*(baa^*)^*b$?, where b? = $(b \cup \lambda)$, and L = L(e).
 - (i) Show that $baab \in L$ by writing out the definition of L(e).
 - (ii) Show that $abba \notin L$ by writing out the definition of L(e).
- 2.3. Let M be the deterministic finite automaton (DFA) given by

 $\langle Q, \Sigma, \delta, q_0, F \rangle$

with $\Sigma = \{a, b, c\}, Q = \{q_0, q_A, q_B, q_C\}, \delta$ given by the table

δ	q_0	q_A	q_B	q_C
a	q_A	q_0	q_C	q_B
b	q_B	q_C	q_0	q_A
c	q_C	q_B	q_A	q_0

and $F = \{q_0\}.$

- (i) Make a state transition diagram for M.
- (ii) Determine for the following words whether they belong to L(M): abba, baab, bac, cac.
- (iii) Define a non-deterministic finite automaton (NFA) M' modifying M by changing δ into the following δ' .

δ'	q_0	q_A	q_B	q_C
a	$\{q_B, q_C\}$	Ø	$\{q_0, q_C\}$	$\{q_0, q_B\}$
b	$\{q_A, q_C\}$	$\{q_0, q_C\}$	Ø	$\{q_0, q_A\}$
c	$\{q_A, q_B\}$	$\{q_0, q_B\}$	$\{q_0, q_A\}$	Ø

- (iv) Determine for the following words whether they belong to L(M'): abba, baab, bac, cac.
- 2.3^{*}. (i) Show $L(M) \neq L(M')$ with M, M' as in Exercise 2.
 - (ii) Construct a FDA M'' with L(M) = L(M'').