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Abstract

A sketch of proof is given for the range property for H: the range of a
closed λ-term in the closed term model modulo β-conversion and equating
unsolvable terms is either a singleton or infinite. The proof depends on
one unresolved technical conjecture.

1. The range property

In this section we introduce the notion of ‘range property’ in λ-calculus and
explain where it came from. Notations are as in Barendregt [1984].

1.1. Definition. Let M be a λ-algebra.
(i) The range property for M states that if F is a closed λ-term, then

its range, considering F as a map [[F ]] : M→M, has cardinality either 1 or
Card(M). More explicitly, let

RangeM(F ) = {[[F ]]d | d∈M}.

Then the range property for M states that for all closed terms F the cardinality
of the set RangeM(F ) is either 1 or Card(M).

(ii) Let T be a λ-theory. Then the range property is said to hold for T if it
holds for Mo(λT ). Write RangeT (F ) for RangeM

o(λT )(F ).

1.2. Remark. For lambda theories T, S (seen as sets of equations) one has

T ⊆ S ⇒ Card(RangeS(F )) ≤ Card(RangeT (F )),

since in S more terms are equated.

A hint for the validity of the range property for βη was given in Böhm
[1968]. In that paper it was shown that if M,N are two different βη-nfs are
in the range of a closed λ-term F , then one could construct a third element L
differing from both M and N .

1.3. Proposition (Böhm). Let M,N ∈Rangeβη(F ) be two distinct elements in

nf. Then there exists an L∈Rangeβη(F )/{M,N}.
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Proof. Since M,N are in nf, they have βη-nfs, by Corollary 15.1.5 in Ba-
rendregt [1984]. By assumption these βη-nfs are distinct. Let M = FP ,
N = FQ, as M,N ∈Range(F ). By the seperability theorem proved in Böhm
[1968], there exists a closed term G such that GM = Q, GN = P . Take
L ≡ Y(F ◦ G). Claim: L∈Range(F ), L 6=βη M and L 6=βη N . Indeed,
L = F (GL)∈Range(F ). Moreover, if L = M , then

M = L = F (GL) = F (GM) = FQ = N,

a contradiction. If L = N , a similar contradiction follows.

The argument cannot be continued, however, since L does not need to have a
nf. But the range property for βη can be proved by going over to codes, giving
the proof of the constructive range theorem presented in Barendregt [1993].

1.4. Theorem. Suppose F is a closed term and that X = {M0, . . . ,Mn−1},
with n ≥ 2, are n distinct elements of the range of F in Mo(λβη). Then there

exists an element in Range(F )/X .

Proof. By assumption (and some notational abuse) we have Mi 6=βη Mj for
i 6= j. Let FPi = Mi, for i < n. For a lambda term N , let #N ∈N be its
code-number and let N = c#N be the corresponding (Church) numeral. We
claim that there exists a closed term G such that for all i < n and all N =βη Mi

G N = G Mi = Pi+1(mod n).

Indeed, define the partial computable function ψ such that

ψ(k) = #Pi+1(mod n), if ∃M ∈Λo[M =βη Mi & k = #M ]

= ↑ (undefined), else.

Then we can take G as the λ-defining term for ψ. Now take L such that
L = F (G L ), by applying the second fixed-point theorem to (F ◦G). We claim
that L is the required element. As before L∈Range(F ). Moreover, suppose
L∈X , i.e. L =βη Mi for some i < n. Then

Mi =βη L = F (G L ) = F (G Mi ) = FPi+1(mod n) = Mi+1(mod n),

a contradiction with the assumption that the Mi are all distinct.

2. Validity of the range property

In this section the know versions of the Range theorem are summarized, includ-
ing an abstract version, due to Statman, in terms of Ershov numerations.

2.1. Proposition. Let T be any λ-theory, i.e. set of equations between closed

terms closed under derivation. Then the range property holds for the open term

model M(T ).
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The essence is to distinguish whether for a closed term F the free variable x
occurs in all terms M =T Fx. If this is the case, then F has an infinite range
(remember that a λ-theory consists of a set of equations between closed terms).
If in some M =T Fx the variable x has disappeared, then the range of F is a
singleton. For details of the proof see Barendregt [1984], Proposition 20.2.4.

2.2. Proposition. Let T be a ce1 λ-theory. Then the range property holds for

the closed term model Mo(T ).

This follows directly from the validity of Theorem 1.4 generalized to any ce
theory T .

2.3. Proposition (Wadsworth). Let M be a λ-algebra satisfying

B = {M = N |M,N ∈Λo & BT (M) = BT (N)}.

Then the range property holds for M.

The proof, from Barendregt [1984] Theorem 20.2.6, resembles that of Proposi-
tion 2.1, but now one distinguishes wether or not x is a free variable in BT (Fx).

If so, then by the Böhm-out technique, Barendregt [1984] Corollary 10.3.9
one has for some P,Q

Fx~P = x~Q.

Then the cardinality of the range of F is Card(M).
If not, then F and λx.F I have the same BT and hence are equal, so

Card(Range(F ))=1.
For the final result we will give a light introduction to numbered sets of

Ershov, see Visser [1980] or Eršov [1973].

2.4. Definition. (i) A numeration is 〈N,∼〉, with ∼ an equivalence relation.
(ii) A morphism f :〈N,∼1〉→〈N,∼2〉 is a total computable map f :N→N with

∀n,m∈N.[n ∼1 m ⇒ f(n) ∼2 f(m)].

(iii) 〈N,∼〉 is called pre-complete if every partial unary computable function
ψ:N→N can be made total modulo ∼, that is:

∃f total and computable ∀n∈N.[ψ(n)↓ ⇒ f(n) ∼ ψ(n)].

(iv) 〈N,∼〉 is called positive if ∼ is ce.

2.5. Proposition (Statman). Let f : 〈N,∼1〉→〈N,∼2〉 be a morphism. Sup-

pose that 〈N,∼1〉 is pre-complete and 〈N,∼2〉 is positive. Then the range of f
is either a singleton or infinite.

For the proof see Barendregt [1993] Corollary 5.6, making use of the ADN
theorem in Visser [1980].

Proposition 2.2 follows directly from this result.

1Computably enumerable; previously called recursively enumerable: re.
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3. Steps towards the range property for H

3.1. Definition. Let H be the λ-theory axiomatized by (β-conversion and)
{M = N |M,N ∈Λo & M,N unsolvable}.

In this section we sketch a possible path of proof for the range property for H.
We first sketch a difficulty encountered in trying to prove this result. Let F

be a possible counterexample, i.e. 1 < Card(RangeH(F )) < ℵ0. By Remark 1.2
one has Card(RangeB(F )) ≤ Card(RangeH(F )) ≤ Card(Rangeβ(F )). There-
fore, by Propositions 2.2 and 2.2, RangeH(F ) must be a singleton in any model
MB equating terms with equal Böhm-like trees and infinite in the term model
Mo(λβ). Then x /∈ BT(Fx), but x∈FV(M) for all M =H Fx. This means
that during the growth of the BT the free variable x is ‘pushed into infinity’. If
some trace of x towards infinity occurs in a context xP1 . . . Pn with n maximal,
then the range of F is infinite by considering F (λx1 . . . xn.ck). The case that is
left is that in Fx the free variable x is pushed into infinity and gets more and
more arguments to eat. An example of this situation is an F such that

Fx =β λz.z(F (xΩ)z).

Then

Fx = λz.z(F (xΩ)z) = λz.z2(F (xΩΩ)z) = . . . = λz.zk(F (xΩ∼k)z) = . . . .

In this case RangeH(F ) has cardinailty 1, as sooner or later MΩ
∼k =H Ω. The

difficulty is that in general x, while being pushed to infinity, may get an infinite
sequence P1, P2, P3, . . . as arguments (possibly containing the x) and that it is
not clear which arguments M can ‘eat themselves through’ this sequence. (We
saw that through the sequence Ω,Ω,Ω, . . . of cumulative arguments, no M can
eat its way, i.e. eventually becomes unsolvable). It is not decidable which terms
can eat themselves through a given infinite sequence.

Following a different strategy, we believe that the following statements are
correct and hence the range property for H is valid.

3.2. Conjecture. Let JZ ≡ WWZ, with W ≡ λwzxy.x(wwzy). This is a

parametrized version of Wadsworth’s infinite η-expansion of I. Let F ∈Λø and

suppose that for all A,B ∈Λø one has FA =B FB. Then

(i) ∀n,m∈N.[n 6= m ⇒ Jcn
6=H Jcm

].
(ii) FΩ 6=H FA ⇒ ∀n∈N.FΩ 6=H F (Jcn

A).
(iii) FΩ 6=H FA ⇒ ∀n,m∈N.[n 6= m ⇒ F (Jcn

A) 6=H F (Jcm
A)].

From Conjecture 3.2(iii) the range property for H follows easily.
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