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Abstract

A sketch of proof is given for the range property for H: the range of a
closed A-term in the closed term model modulo (3-conversion and equating
unsolvable terms is either a singleton or infinite. The proof depends on
one unresolved technical conjecture.

1. The range property

In this section we introduce the notion of ‘range property’ in A-calculus and
explain where it came from. Notations are as in Barendregt [1984].

1.1. DEFINITION. Let M be a A-algebra.

(i) The range property for M states that if F' is a closed A-term, then
its range, considering F' as a map [F] : M—M, has cardinality either 1 or
Card(M). More explicitly, let

Range™(F) = {[F]d | d € M}.

Then the range property for M states that for all closed terms F' the cardinality
of the set Range™ (F) is either 1 or Card(M).

(ii) Let T be a A-theory. Then the range property is said to hold for T if it
holds for M°(XT). Write Range” (F) for RangeM’ 1) (F).

1.2. REMARK. For lambda theories T, S (seen as sets of equations) one has
T C S = Card(Range” (F)) < Card(Range” (F)),
since in S more terms are equated.

A hint for the validity of the range property for fn was given in Bohm
[1968]. In that paper it was shown that if M, N are two different Sn-nfs are
in the range of a closed A-term F', then one could construct a third element L
differing from both M and N.

1.3. PROPOSITION (Bohm). Let M, N € Range®(F) be two distinct elements in
nf. Then there exists an L € Range®(F)/{M,6N}.



PRrROOF. Since M, N are in nf, they have gn-nfs, by Corollary 15.1.5 in Ba-
rendregt [1984]. By assumption these Sn-nfs are distinct. Let M = FP,
N = FQ, as M, N € Range(F'). By the seperability theorem proved in Bohm
[1968], there exists a closed term G such that GM = @, GN = P. Take
L = Y(F o@G). Claim: LecRange(F), L #gn, M and L #3, N. Indeed,
L = F(GL) € Range(F'). Moreover, if L = M, then

M=L=F(GL)=F(GM)=FQ =N,
a contradiction. If L = N, a similar contradiction follows. m

The argument cannot be continued, however, since L does not need to have a
nf. But the range property for #n can be proved by going over to codes, giving
the proof of the constructive range theorem presented in Barendregt [1993].

1.4. THEOREM. Suppose F' is a closed term and that X = {Moy,..., M,_1},
with n > 2, are n distinct elements of the range of F' in M°(A\Bn). Then there
exists an element in Range(F)/X.

PROOF. By assumption (and some notational abuse) we have M; #3, M; for
i # j. Let FP; = M;, for i < n. For a lambda term N, let #N €N be its
code-number and let "N = cxy be the corresponding (Church) numeral. We
claim that there exists a closed term G such that for all i < n and all N =g,, M;

G'N'= Gr]\4iT = %+1(mod n)-
Indeed, define the partial computable function v such that

1/)(7‘@’) = #Pi+1(m0d n)s if IM € AO[M —Bn M; & k= #M]
= 7 (undefined), else.

Then we can take G as the A-defining term for . Now take L such that
L = F(G'L"), by applying the second fixed-point theorem to (F oG). We claim
that L is the required element. As before L € Range(F'). Moreover, suppose
LeX,ie. L =gy, M; for some ¢ < n. Then

M; —pBn L= F(GFLT) = F(GTMZT) = FPiJrl(mod n) — Mi+1(m0d n)»

a contradiction with the assumption that the M; are all distinct. m

2. Validity of the range property

In this section the know versions of the Range theorem are summarized, includ-
ing an abstract version, due to Statman, in terms of Ershov numerations.

2.1. PROPOSITION. Let T be any A-theory, i.e. set of equations between closed
terms closed under derivation. Then the range property holds for the open term

model M(T).



The essence is to distinguish whether for a closed term F' the free variable x
occurs in all terms M =7 Fz. If this is the case, then F' has an infinite range
(remember that a A-theory consists of a set of equations between closed terms).
If in some M =7 Fz the variable x has disappeared, then the range of F is a
singleton. For details of the proof see Barendregt [1984], Proposition 20.2.4.

2.2. PROPOSITION. Let T be a ce* \-theory. Then the range property holds for
the closed term model M°(T).

This follows directly from the validity of Theorem 1.4 generalized to any ce
theory T.

2.3. PROPOSITION (Wadsworth). Let M be a A-algebra satisfying
B={M=N|M,NeA° & BT(M) = BT(N)}.
Then the range property holds for M.

The proof, from Barendregt [1984] Theorem 20.2.6, resembles that of Proposi-
tion 2.1, but now one distinguishes wether or not z is a free variable in BT (F'z).
If so, then by the Bohm-out technique, Barendregt [1984] Corollary 10.3.9
one has for some P, ()
FaP = a:@

Then the cardinality of the range of F is Card(M).

If not, then F and Az.Fl| have the same BT and hence are equal, so
Card(Range(F'))=1.

For the final result we will give a light introduction to numbered sets of
Ershov, see Visser [1980] or Ersov [1973].

2.4. DEFINITION. (i) A numeration is (N, ~), with ~ an equivalence relation.
(ii) A morphism f:(N,~1)—(N, ~9) is a total computable map f:N—N with

Vn,meN.[n ~1m = f(n)~2 f(m)].

(iii) (N, ~) is called pre-complete if every partial unary computable function
1:N—N can be made total modulo ~, that is:

3f total and computable Vn e N.[th(n)] = f(n) ~ ¢(n)].
(iv) (N, ~) is called positive if ~ is ce.

2.5. PROPOSITION (Statman). Let f : (N,~1)—(N,~q) be a morphism. Sup-
pose that (N, ~q) is pre-complete and (N, ~q) is positive. Then the range of f
is either a singleton or infinite.

For the proof see Barendregt [1993] Corollary 5.6, making use of the ADN
theorem in Visser [1980].
Proposition 2.2 follows directly from this result.

!Computably enumerable; previously called recursively enumerable: re.



3. Steps towards the range property for ‘H

3.1. DEFINITION. Let H be the A-theory axiomatized by ((-conversion and)
{M =N |M,NeA°& M, N unsolvable}.

In this section we sketch a possible path of proof for the range property for H.

We first sketch a difficulty encountered in trying to prove this result. Let F
be a possible counterexample, i.e. 1 < Card(Range’'(F)) < Ry. By Remark 1.2
one has Card(Range®(F)) < Card(Range™(F)) < Card(Range”(F)). There-
fore, by Propositions 2.2 and 2.2, Range’(F) must be a singleton in any model
Mp equating terms with equal Bohm-like trees and infinite in the term model
MO(AB). Then x ¢ BT(Fz), but € FV(M) for all M =y Fx. This means
that during the growth of the BT the free variable x is ‘pushed into infinity’. If
some trace of x towards infinity occurs in a context xP; ... P, with n maximal,
then the range of F' is infinite by considering F'(Axj ...xzy.ck). The case that is
left is that in F'x the free variable x is pushed into infinity and gets more and
more arguments to eat. An example of this situation is an F' such that

Fr =3 \z.2(F(2Q)z).
Then
Fu = Mz.2(F(2Q)z2) = \2.22(F(2QQ)2) = ... = Az 2F(F (a2 F)2) = ...

In this case Range’(F) has cardinailty 1, as sooner or later MQ™~* =3, Q. The
difficulty is that in general z, while being pushed to infinity, may get an infinite
sequence Py, Ps, Ps, ... as arguments (possibly containing the z) and that it is
not clear which arguments M can ‘eat themselves through’ this sequence. (We
saw that through the sequence 2,2, €, ... of cumulative arguments, no M can
eat its way, i.e. eventually becomes unsolvable). It is not decidable which terms
can eat themselves through a given infinite sequence.

Following a different strategy, we believe that the following statements are
correct and hence the range property for H is valid.

3.2. CONJECTURE. Let Jz = WWZ, with W = lwzzy.z(wwzy). This is a
parametrized version of Wadsworth’s infinite n-expansion of |. Let F € A? and
suppose that for all A, Be A’ one has FA =3 FB. Then
(i) Vn,meN.[n #m = Je, #u Je,,|-
(ii) FQ#y FA = VneN.FQ #y F(J.,A).
(iii) FQ# FA = Vn,meN.n#m = F(J.,A) #n F(Je,,A)l.

From Conjecture 3.2(iii) the range property for H follows easily.
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