
Reflection in the Chomsky hierarchy

Henk Barendregt1and Venanzio Capretta2

1Institute of Computing and Information Science,
Radboud University, Nijmegen, The Netherlands

2School of Computer Science, University of Nottingham, UK

1 Introduction

A class C of formal languages is called reflexive if it contains a universal language
U , describing all members of C in a well-defined way.

We investigate which classes of formal languages in the Chomsky hierar-
chy are reflexive. The Chomsky hierarchy consists of four classes: the regular
(R), context-free (CF), context-sensitive (CS) and Turing enumerable (T E)
languages. Each class is associated with a kind of computing machine that ac-
cepts exactly the languages in it: finite automata, push-down automata, linearly
bounded Turing machines and unlimited Turing machines. This can be found
in any standard text on formal languages and automata. Not officially in the
Chomsky hierarchy is the class of Turing computable languages (T C), accepted
by always halting Turing machines. One has R⊆ CF ⊆ CS ⊆ T C ⊆ T E .

Speaking of natural languages, it is often said informally that, for example,
English is rich enough to describe itself. This means that we can give an accurate
description of the grammar of the English language in English. More generally,
English can be used to describe the grammar of any natural language.

We want to make this intuition mathematically precise. Let C ⊆ P(Σ∗) be
a class of languages over an alphabet Σ. Let (C,U) be a couple of languages
such that the words of U are in the form of pairs c • w where c ∈ C, • is a
distinguished symbol of Σ, and w can be an arbitrary word. We assume that
C is a language over the alphabet Σ − {•}, so there is no ambiguity in the
demarcation between c and w. Defining, for c ∈ C,

Lc
U = {w ∈ Σ∗ | c • w ∈ U},

we say that c ∈ C codes Lc
U . The pair (C,U) is a universal coding for C if

C = {Lc
U | c ∈ C}.

C is reflexive if there exists a universal coding (C,U) for C, such that C,U ∈ C.
It turns out that the classes of regular, context-free, context-sensitive, and

computable languages are all non-reflexive. The proof of these facts are different
for the first three classes, while for the class of computable languages the proof
is the same as for that of the context-sensitive ones. It is known that Turing
enumerable languages are reflexive, as follows from the existence of a universal
Turing machine.

1



2 Standard encodings

First of all, let us look at the standard encodings for the language classes of the
Chomsky hierarchy and ask whether they belong to the class that they define.

The standard encoding of regular languages over an alphabet Σ is the lan-
guage of regular expressions, defined as the set inductively generated by the
following rules.

• The symbols ∅, ε and a for every a ∈ Σ are regular expressions;

• If u and v are regular expressions, then so are (u ∪ v), (uv) and (u∗).

It is a well-known fact that languages that make use of parentheses are not
regular, so the language of regular expressions does not belong to the class that
it defines. Instead, the following grammar shows that it is context-free:

〈reg-exp〉 → ∅
→ ε
→ a a ∈ Σ
→ (〈reg-exp〉 ∪ 〈reg-exp〉)
→ (〈reg-exp〉〈reg-exp〉)
→ (〈reg-exp〉∗)

The standard encoding of context-free languages is by context-free gram-
mars. Such a grammar is a finite sequence of rules, separated by semicolons in
our version. Each rule has the form x→ w, where x is a variable (non-terminal)
from a set V and w is any word on the alphabet V ∪Σ. Contrary to the previ-
ous case, this language is not only context-free, but even regular. In fact, it is
defined by the following regular expression.

V → (V ∪ Σ)∗(;V → (V ∪ Σ)∗)∗.

A similar consideration can be made for the context-sensitive languages.
So the conclusion is that the language of regular expressions is context-

free, while the language of context-free grammars is regular. This for what
concerns the traditional representations of languages. But if we start thinking
about other possible encodings, the question we are asking becomes muddled.
Is there some set of words, other than that of regular expressions, that encodes
regular languages and is itself regular? Since we know that regular languages are
effectively countable, we can certainly enumerate them using natural numbers,
through some form of Gödel-numbering. Therefore, the numerals can be used
as codes for regular languages and they themselves form a regular language.
The regular expression defining them is simply (S∗)O. This, however, is an
unnatural answer to the question whether regular languages have an internal
representation. The decoding function is going to be quite complex and certainly
won’t be implementable by a finite automaton, which is the sort of machine
associated to a regular language. Therefore, it is natural to impose restrictions
on a coding. It should belong to the class that it is coding in a sense defined
below.

2



3 Reflexivity

A coding consists of a language C of codes and some decoding mechanism. This
can be given in two equivalent ways: either by a universal language U or by a
decoding function d : C → C. We define the notion of reflexivity for a language
class C by requiring that there is a coding language C and a universal language
U both inside C.

The classes of languages that we consider are parameterized over the al-
phabet. To emphasize the alphabet, we write CΣ. For example, we may write
R{a,b} for the class of regular languages over the two-symbol alphabet {a, b}.
In our definition we need a special separator symbol •. We also need that the
language C of codes does not use this symbol. This is no real restriction: In any
alphabet with at least three symbols, we can always reserve one of the symbols
for a special purpose and re-encode all the symbols as strings of the remaining
ones. So if there is a language of codes that uses •, we can always translate it
into one that does not.

Definition 1 Let Σ be an alphabet containing a distinguished symbol •. Let C
be a class of languages over Σ, that is C ⊆ P(Σ∗).

1. A coding over Σ is a pair (C,U) with C ⊆ (Σ − {•})∗ and U ⊆ Σ∗. We
call C the code language and U the decoding language.

2. Given a coding (C,U) and any c ∈ C, define

Lc
U = {w ∈ Σ∗ | c • w ∈ U}.

The map λλc.Lc
U is the decoding function corresponding to the coding.

3. (C,U) is a C-coding iff C ∈ C and U ∈ C.

4. (C,U) is universal for C iff C = {Lc
U | c ∈ C}.

5. C is reflexive if there exists a C-coding that is universal for C.

Equivalently, we could have taken the decoding function as a primitive in
the definition of a coding, defining it as a pair (C, d), where C is a language and
d : C → P(Σ∗). The two definitions are related by the transformations

U = {c • w | c ∈ C ∧ w ∈ d(c)} and d(c) = Lc
U .

4 Regular languages

We show that regular languages are not reflexive according to the previous def-
inition. The proof exploits the following characterization of regular languages.

Proposition 2 (Myhill-Nerode) Given a language L over Σ, define the fol-
lowing equivalence relation ≡L on Σ∗

v ≡L w ⇐⇒ ∀u ∈ Σ∗[vu ∈ L⇔ wu ∈ L].

Then L is regular iff Σ∗/ ≡L is finite.

3



The standard proof of the Myhill-Nerode result exploits the fact that L is
accepted by a finite automaton.

Theorem 3 The class R of regular languages is not reflexive.

Proof. Assume that regular languages are reflexive through the coding (C,U).
Then U is regular. Hence Σ∗/ ≡U is finite. For every two codes c, c′ ∈ C,

c• ≡U c′• ⇐⇒ Lc
U = Lc′

U .

Then there would be only a finite number of regular languages, quod non. 2

5 Context-free languages

Context-free languages can be characterized as those sets of words that are
accepted by by push-down automata, that is, a finite state machine that uses
a stack as memory. For a universal language U for this class, the automaton
corresponding to U would have to use the stack to store both the code c and
the information needed for the computation. But then, how can it “read” the
code without destroying the information about a specific word? This informal
argument makes it plausible that context-free languages are not reflexive.

A more precise proof follows. As a stepping stone, we show that it is im-
possible to generate all context-free languages from a finite collection of them,
using only concatenation and union.

Lemma 4 For any natural number n > 0, the context-free language

Bn = {akbnak | k ∈ N}

cannot be decomposed as Bn = L1L2 with L1 and L2 non trivial (that is, not
the singleton empty word).

Proof. Suppose Bn = L1L2. Since bn ∈ Bn, we must have that either in L1 or
in L2 there is at least one word made only of bs.

Suppose bk ∈ L1 for some k > 0. Then it is impossible for a word in L2 to
have a trailing a, since there are no words with the form bkwa in Bn. But then
it must be that L1 = Bn and L2 = {ε}.

Similarly, if bk ∈ L2 for some k > 0, then L1 = {ε} and L2 = Bn. 2

We need a stronger result, with a proof exploiting the same idea.

Lemma 5 For any natural numbers n > 0 and m1,m2, define

Bn,m1,m2 = {ak+m1bnak+m2 | k ∈ N}.

Then Bn,m1,m2 is context-free. A language L is called n-special if L is infinite
and L ⊆ Bn,m1,m2 for some m1,m2 ∈ N. Then we have

L = L1L2 is n-special ⇒ L1 or L2 is n-special.

Proof. Assume L = L1L2 is n-special, and let w = ak+m1bnak+m2 ∈ L, as
L is not empty. Then w can be decomposed as w = w1w2 with w1 ∈ L1 and
w2 ∈ L2. We proceed by cases on where the split occurs.

4



Case 1. The split occurs withing the bn part, we come to the conclusion that
L1 and L2 must both be singletons, contradicting the infinity of L. Indeed, if
w1 = ak+m1bn1 and w2 = bn2ak+m2 with n1, n2 > 0 such that n1 +n2 = n, then
the fact that w1 ∈ L1 forces L2 to be the singleton {w2}, since for any w′2 6= w2

one has w1w
′
2 /∈ Bn,m1,m2 . Similarly L1 has to be a singleton. This contradicts

that L1L2 is infinite and hence this case cannot occur.
Case 2. w1 = ah and w2 = ah′

bnak+m2 with h+ h′ = k+m1. The fact that
w2 ∈ L2 forces L1 to be the singleton {ah}. Then L2 must be

L2 = {ak+m1−hbnak+m2 | ak+m1bnak+m2 ∈ L} ⊆ Bn,m′
1,m′

2
,

with m′1 = m1 − h and m′2 = m2, which is infinite.
Case 3. w2 = ah is treated similarly. 2

Corollary 6 The class CF of context-free languages cannot be generated by a
finite number of them, using concatenation and finite union.

Proof. For a class of languages F , write F+ for the least class of languages
containing all elements of F that is closed under union and concatenation.

Assume towards a contradiction that F is a finite set of context-free lan-
guages such that F+ is the class of all context-free languages. W.l.o.g. one has
∅ /∈ F , as one has (F − {∅})+ = F+, by taking the empty union. Therefore,
since Bn1,m1,m2 and Bn2,m′

1,m′
2

are disjoint, for n1 6= n2, there is an n0 > 0 such
that for all L ∈ F and all m1,m2 ≥ 0 one has L 6⊆ Bn0,m1,m2 . By ‘induction on
the generation’ of F+ we show for this n0 that

∀L∈F+.L is not n0-special. (1)

For the base case L ∈ F this follows by the choice of n0. Now assume L = L1∪L2

is n0-special. Then by the pigeonhole principle, say, L1 ⊆ Bn0,m1,m2 is infinite,
so n0-special, contradicting the induction hypothesis. Finally assume L = L1L2

is n0-special. Then by Lemma 5, say, L2 is n0-special, also contradicting the
induction hypothesis. This establishes (1). Since Bn0 = Bn0,0,0 is context-free,
hence in F+, and moreover infinite, (1) yields a contradiction. 2

Let us recall how a push-down automaton M works with an input from Σ∗.
Such an M has a finite set of states S, with a unique start state qs and a subset
F ⊆ S of accepting states. Also there is an alphabet ΣM (possibly 6= Σ). At any
stage in the computation M is in a ‘configuration’ of the form [q, w, α], where q
is a state, w ∈ Σ∗ a word to be read, and α ∈ Σ∗M is a stack content. A finite
set of transitions of M is given, each of the form (q, a, b)→ (q′, b′), qualifying

[q, aw, bα]→ [q′, w, b′α]

as an admissible computation step for any w and α. The effect is that the
machine reads and takes a from the input, reads and pops b from the stack and
finally pushes b′ onto the stack. Any of a, b and b′ can be the null symbol,
meaning that the computation step will neither read a symbol from the input,
nor pop or push a symbol from or onto the stack, respectively.

A computation trace is of the form c1, . . . , ck, where the cis are configurations
and ci → ci+1 is an admissible computation step for all 1 ≤ i < k. If there exists
such a trace we write c1 ` ck (the automaton M is non-deterministic). Machine
M accepts a word w ∈ Σ∗ if [qs, w, ε] ` [q, ε, ε], for some accepting state q ∈ F .

5



Definition 7 Given M a push-down automaton, define two binary relations `i

and `s on its configurations.
Write [q, w, α] `i [q′, v, β] if the end configuration is the first with input v in

a trace of M starting in [q, w, α]. Since input can only be read, v is necessarily
a postfix of w, that is, w = w0v for some w0. The relation `i is used to specify
the portion of the computation that consumes a given prefix w0 of the input.

Write [q, w, α] `s [q′, v, β] if the end configuration is the first with stack β
in a trace of M starting in [q, w, α]. Contrary to `i, in this case many symbols
can be pushed onto and popped out of the stack before reaching β. However, we
will use it only in the case that α = aβ for some symbol a.

For every symbol a ∈ Σ and states q and q′, we define the language

La,q,q′ = {w | ∀v, α.[q, wv, aα] `s [q′, v, α]}.

Theorem 8 The class CF of context-free languages is not reflexive.

Proof. Suppose towards a contradiction that the class of context-free languages
is reflexive via (C,U). Then there exists a push-down automaton M that accepts
the universal language U .

That is, a word of the form c •w belongs to U iff there exists a computation
trace for M starting in configuration [qs, c • w, ε] and ending in configuration
[q, ε, ε] with q and accepting state. Let c′ be the content of the stack after
consuming the code from the input, that is: [qs, c •w, ε] `i [q0, w, c

′]. The state
q0 and stack content c′ depend only on c and not on w. Consider c′ as an
internalization of the language code c.

Let c′ = a0 · · · an. The trace of the processing of the input w can be divided
in n + 1 steps, each terminating with the popping of one of the ais. Hence w
can be decomposed as w = w0 · · ·wn, such that the trace of the computation
looks as follows:

[q0, w0 · · ·wn, a0 · · · an] `s [q1, w1 · · ·wn, a1 · · · an]
...
`s [qn, wn, an]
`s [qn+1, ε, ε].

The first part of the computation tells us that w0 ∈ La0,q0,q1 and similarly for
the other parts. Putting them all together we obtain that:

w ∈ La0,q0,q1La1,q1,q2 · · ·Lan,qn,qn+1 .

This must be true for every word in Lc
U , therefore we have:

Lc
U = ∪{La0,q0,q1La1,q1,q2 · · ·Lan,qn,qn+1 | q1, . . . , qn+1 states of M,

qn+1 accepting}.

Therefore every context-free language is obtained by concatenation and
union from the finite set of languages in the form La,q,q′ . This is impossible
by Lemma 6. 2

6



6 Context-sensitive languages

The class of context-sensitive languages consists of those recognized by a linear-
bounded automaton, that is, a Turing machine with linear space complexity.
The following informal argument suggests that this class cannot be reflexive.
For each language there is a linear bound, but certainly there is no universal
linear bound for the whole class, which would be necessary if it were reflexive.

The following proof that the class of context-sensitive languages is not re-
flexive uses a diagonalization argument similar to Russell’s paradox.

Definition 9 (i) Given a language L over Σ. Define the root of L by
√
L = {w ∈ Σ∗ | w • w ∈ L}.

(ii) A class of languages C is called Russellian if C is closed under taking
complements and roots.

Theorem 10 If C is Russellian, then C is not reflexive.

Proof. Suppose towards a contradiction that C is Russellian and reflexive. Let
(C,U) be a C-coding universal for C. Then U ∈ C. By closure under complement
and root it follows that√

U = {w ∈ Σ∗ | w • w /∈ U} ∈ C.

Hence
√
U = Lr

U for some r ∈ C. Then we obtain a contradiction as follows.

r • r ∈ U ⇔ r ∈ Lr
U , as Lr

U = {w | r • w ∈ U},
⇔ r ∈

√
U, as Lr

U =
√
U,

⇔ r • r ∈ U, by definition of
√

,

⇔ r • r /∈ U. 2

Theorem 11 The class CS of context-sensitive languages is not reflexive.

Proof. By Theorem 10 it suffices to show that CS is Russellian. It is well-known
that CS is closed under complement.

As to closure under root, let L be a context-sensitive language. Then there
exists a Turing machine M with a linear space bound ax + b on the size x of
the input that accepts L. Let us define a new machine M ′ that operates in the
following way: given the input w, it first replaces it with w•w and then runs M .
Clearly M ′ is also linearly bounded, with the bound a(2x+1)+ b = 2ax+a+ b.
Hence

√
L is context-sensitive. 2

7 Turing computable and enumerable languages

Also the class of computable (recursive) languages is not reflexive.

Theorem 12 The class T C of computable languages is not reflexive.

Proof. R is closed under complements. It is also closed under roots: if L is
computable, then f :

√
L→ L with f(w) = w • w is a computable reduction of√

L to L, making
√
L computable. It follows that R is Russellian and therefore

not reflexive. 2

The following result is essentially due to Turing.

7



Theorem 13 The class T E of Turing enumerable languages is reflexive.

Proof. Turing proved the existence of a universal machine Mu such that every
Turing machine T can be simulated by it using a program: there exists a code
t such that, for every input w, the result of the computation of Mu on t • w is
the same as that of T on w.

The set of codes t is itself recursively enumerable (and can in fact be made
context-free). This, together with the characterization of recursively enumerable
languages as those accepted by a Turing machine, gives the result. 2

Postscript

Chomsky’s nativist theory states that the human mind has an innate module
for language that is “tuned” to the specific native language in the first years
of life. The class of “natural languages” consists of those that can be tuned in
this way; nobody knows precisely where it lays, probably somewhere between
context-free and context-sensitive. This is a statement about the syntax of the
language, not about its semantics. In our approach we also talk about the
semantics: the issue of reflection involves the meaning of the language. In our
presentation the syntax of a language is coded by C and its semantics is given
by U . If C is English, it can well be that it is context-sensitive without U being
context-sensitive. After all, we can describe Turing machines and recursively
enumerable languages in English.

Our results leave open the possibility that some other yet unknown class,
smaller than that of the Turing enumerable languages, is reflexive. Therefore
English may belong to such a class.

We leave it to the linguists to discuss whether the fact that all classes that
we discussed, except that of the Turing enumerable languages, are not reflexive
has implications for the place of English in the Chomsky hierarchy.

8


