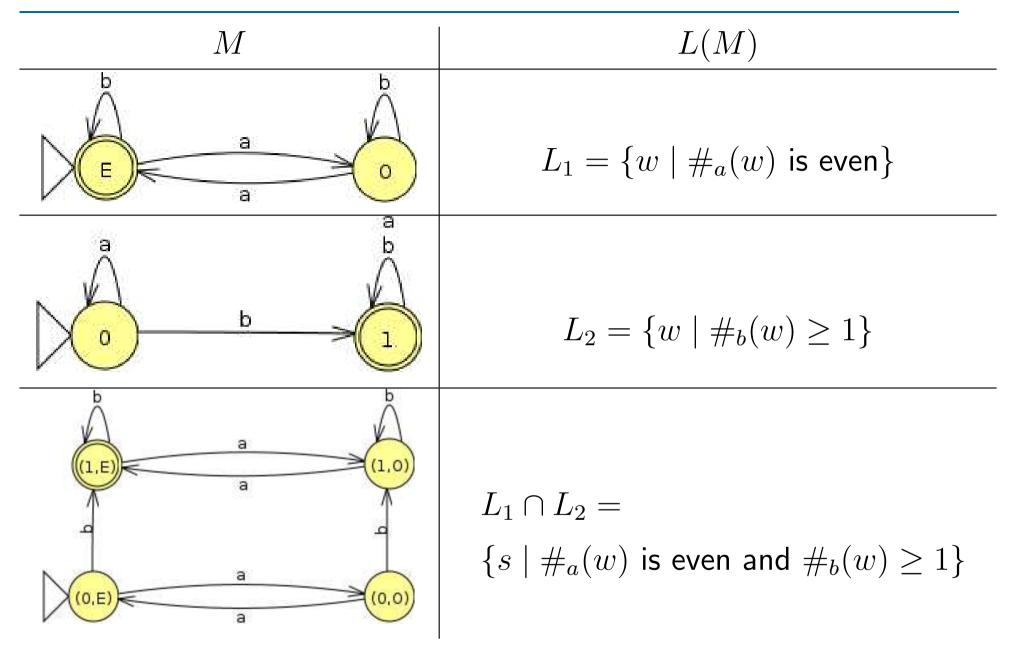
Regular Languages & Finite Automata

Manipulating Finite Automata: products for intersection



Given two DFA

$$M_1 = \langle Q_1, \Sigma, \delta_1, q_{01}, F_1 \rangle$$
$$M_2 = \langle Q_2, \Sigma, \delta_2, q_{02}, F_2 \rangle$$

Define

$$M_1 \times M_2 = \langle Q_1 \times Q_2, \Sigma, \delta, q_0, F \rangle$$

with

$$q_{0} \triangleq \langle q_{01}, q_{02} \rangle$$

$$F \triangleq F_{1} \times F_{2} \triangleq \{ \langle q_{1}, q_{2} \rangle \mid q_{1} \in F_{1}, q_{2} \in F_{2} \}$$

$$\delta(\langle q_{1}, q_{2} \rangle, a) \triangleq \langle \delta_{1}(q_{1}, a), \delta_{2}(q_{2}, a) \rangle$$

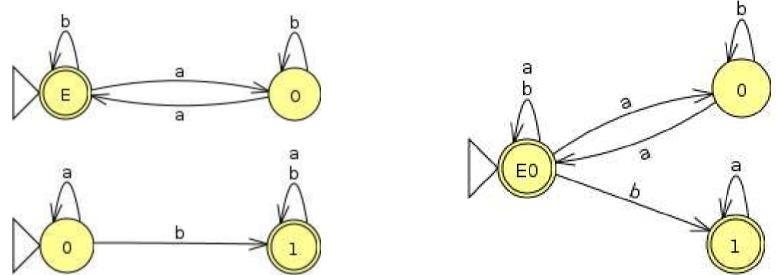
Then

$$L(M_1 \times M_2) = L(M_1) \cap L(M_2)$$

Parallel DFAs for union (wrong way: short circuit!)

Suppose we want $\{w \mid \#_a \text{ even or } \#_b \geq 1\} = L_1 \cup L_2$

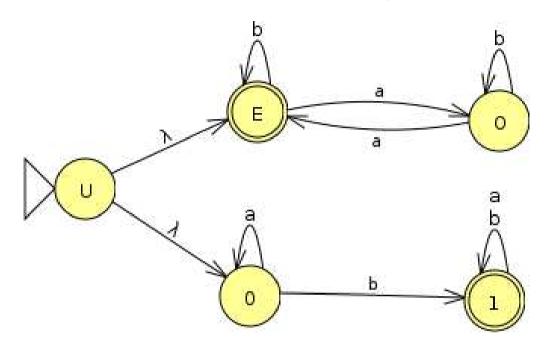
Last week we suggested to put two machines together



The DFA on the right accepts 'aaa' which is the wrong intention

 NFA_{λ}

Now we add 'silent steps' (Bas: 'diodes') to NFAs



In a NFA $_{\lambda}$ we allow

$$\delta(q,\lambda) = q'$$

for $q \neq q'$. That means

```
\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow Q
```

A finite automaton M is called *insulated*

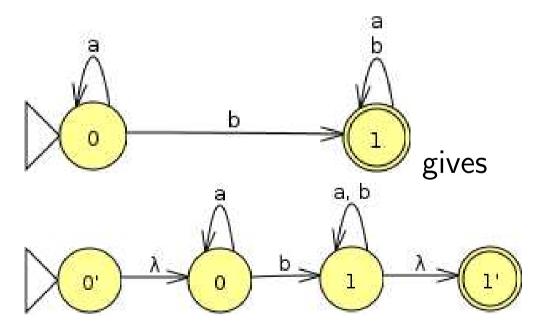
(i) if q_0 in M has no in-going arrows

(ii) there is only one final state which has no out-going arrows

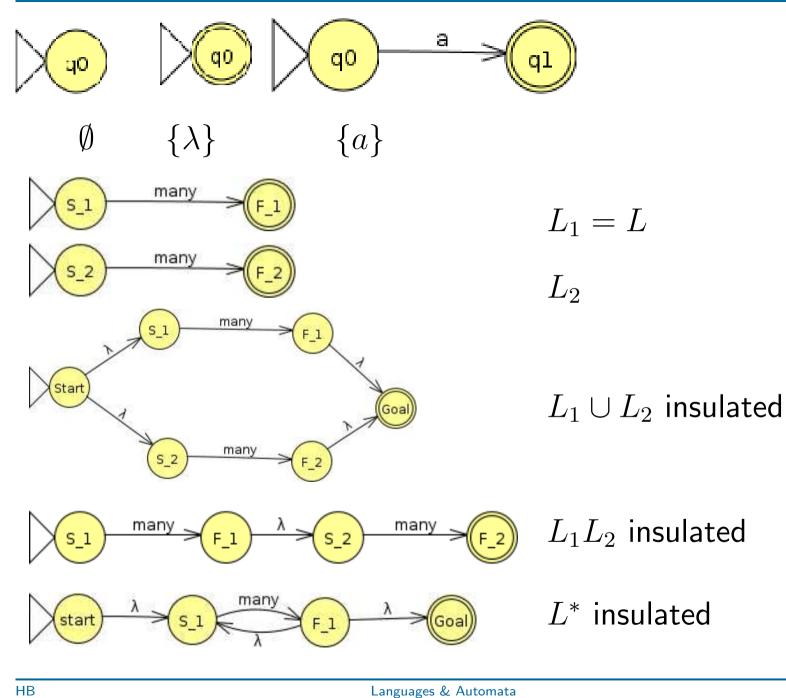
Proposition. One can insulate any machine ${\cal M}$ such that

the result M^\prime accepts the same language

Proof. Use diodes, for example



Toolkit building NFA $_{\lambda}$ s



Week 3, fall 2010

6

Proposition 1. For every regular expression e there is an $\mathsf{NFA}_{\lambda}\ M_e$ such that

$$L(M_e) = L(e).$$

Proof. Apply the toolkit. M_e can be found 'by induction on the structure of e': first do this for the simplest regular expressions; then for a composed regular expression compose the automata.

Proposition 2. For every regular language L there is an $\mathsf{NFA}_{\lambda}\ M$ such that

$$L(M) = L.$$

Proof. By definition of regular languages there is a regular expression e such that L = L(e). Then $L(M_e) = L(e) = L$.

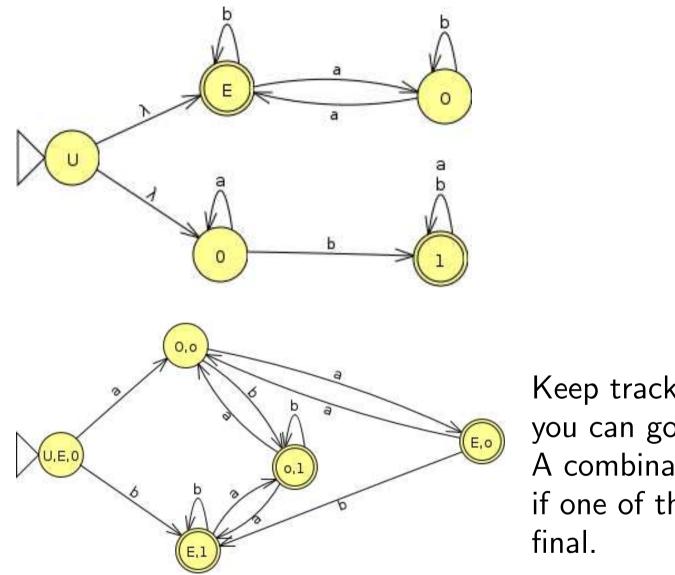
This proof one finds somtimes explained as on the following slide

Proposition. Every regular language is the language of a NFA $_{\lambda}$ Proof. Let L = L(e) for some regular expression e. By induction on e we show there is a machine M_e such that $L = L(M_e)$ Basis. Automata accepting \emptyset , $\{\lambda\}$ and $\{a\}$ are easy Induction step. Now we show that if L_1, L_2 are accepted by NFA $_{\lambda}$ -s then so are $L_1 \cup L_2, L_1L_2, L_1^*$

By the induction hypothesis there are NFA_{λ}-s such that $L_i = L(M_i)$ Take care that these machines become insulated, obtaining M'_1, M'_2 •For concatenation of languages: use serial composition of automata •For union of languages: use parallel composition of automata

- •For the *-operator use a feedbackloop and
- a λ arrow from q_0 to the end state

Avoiding non-determinism



Keep track of where you can go! A combination is final if one of the members is final. Avoiding the non-determinism preserved the accepted language Theorem Every regular language L there is a DFA M such that

L = L(M).

Proof. First find a NFA_{λ} M such that L(M) = L and then change it into a DFA preserving the language that is accepted.