
Regular Languages & Finite Automata



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Manipulating Finite Automata: products for intersection 1
—————————————————————————————

M L(M)

L1 = {w | #a(w) is even}

L2 = {w | #b(w) ≥ 1}

L1 ∩ L2 =

{s | #a(w) is even and #b(w) ≥ 1}



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Product of two DFA 2
—————————————————————————————

Given two DFA

M1 = 〈Q1,Σ, δ1, q01, F1〉

M2 = 〈Q2,Σ, δ2, q02, F2〉

Define
M1 ×M2 = 〈Q1 ×Q2,Σ, δ, q0, F 〉

with

q0 , 〈q01, q02〉

F , F1 × F2 , {〈q1, q2〉 | q1 ∈F1, q2 ∈F2}

δ(〈q1, q2〉, a) , 〈δ1(q1, a), δ2(q2, a)〉

Then
L(M1 ×M2) = L(M1) ∩ L(M2)



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Parallel DFAs for union (wrong way: short circuit!) 3
—————————————————————————————

Suppose we want {w | #a even or #b ≥ 1} = L1 ∪ L2

Last week we suggested to put two machines together

The DFA on the right accepts ‘aaa’ which is the wrong intention



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

NFAλ 4
—————————————————————————————

Now we add ‘silent steps’ (Bas: ‘diodes’) to NFAs

In a NFAλ we allow
δ(q, λ) = q′

for q 6= q′. That means

δ : Q× (Σ ∪ {λ})→Q



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Insulated machines 5
—————————————————————————————

A finite automaton M is called insulated

(i) if q0 in M has no in-going arrows
(ii) there is only one final state which has no out-going arrows

Proposition. One can insulate any machine M such that

the result M ′ accepts the same language

Proof. Use diodes, for example

gives



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Toolkit building NFAλs 6
—————————————————————————————

∅ {λ} {a}

L1 = L

L2

L1 ∪ L2 insulated

L1L2 insulated

L∗ insulated



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Regular languages accepted by a NFAλ 7
—————————————————————————————

Proposition 1. For every regular expression e there is an NFAλ Me such
that

L(Me) = L(e).

Proof. Apply the toolkit. Me can be found ‘by induction on the struc-
ture of e’: first do this for the simplest regular expressions; then for a
composed regular expression compose the automata.

Proposition 2. For every regular language L there is an NFAλ M such
that

L(M) = L.

Proof. By definition of regular languages there is a regular expression
e such that L = L(e). Then L(Me) = L(e) = L.

This proof one finds somtimes explained as on the following slide



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Constructing NFAλ-s for regular langugages 8
—————————————————————————————

Proposition. Every regular language is the language of a NFAλ

Proof. Let L = L(e) for some regular expression e.

By induction on e we show there is a machineMe such that L = L(Me)

Basis. Automata accepting ∅, {λ} and {a} are easy

Induction step. Now we show that if L1, L2 are accepted by NFAλ-s

then so are L1 ∪ L2, L1L2, L
∗

1

By the induction hypothesis there are NFAλ-s such that Li = L(Mi)

Take care that these machines become insulated, obtaining M ′

1
,M ′

2

•For concatenation of languages: use serial composition of automata

•For union of langugages: use parallel composition of automata

•For the *-operator use a feedbackloop and

a λ arrow from q0 to the end state �



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Avoiding non-determinism 9
—————————————————————————————

Keep track of where
you can go!
A combination is final
if one of the members is
final.



—————————————————————————————
HB Languages & Automata Week 3, fall 2010

Regular ⇒ accepted by a DFA 10
—————————————————————————————

Avoiding the non-determinism preserved the accepted language

Theorem Every regular language L there is a DFA M such that

L = L(M).

Proof. First find a NFAλ M such that L(M) = L and then change it
into a DFA preserving the language that is accepted.


