

Lambda Calculus

Week 12

The canonical term models for λ_{\rightarrow}

Henk Barendregt, Freek Wiedijk

assisted by Andrew Polonsky

Two version of λ_{\rightarrow}

Curry version (type assignment). $\Lambda^{\Gamma}(A) \triangleq \{M \in \Lambda \mid \Gamma \vdash M : A\}$ with

(axiom)	$\Gamma \vdash x : A$	if $(x:A) \in \Gamma$
(\rightarrow -E)	$\frac{\Gamma \vdash M : (A \rightarrow B) \quad \Gamma \vdash N : A}{\Gamma \vdash (MN) : B}$	
(\rightarrow -I)	$\frac{\Gamma, x:A \vdash M : B}{\Gamma \vdash (\lambda x.M) : (A \rightarrow B)}$	

Church version (typed terms). $\Lambda^{\text{ch}} \triangleq \bigcup_{A \in \mathbb{T}} \Lambda_{\rightarrow}^{\text{ch}}(A)$ with

$x^A \in \Lambda_{\rightarrow}^{\text{ch}}(A)$
$M \in \Lambda_{\rightarrow}^{\text{ch}}(A \rightarrow B) \quad N \in \Lambda_{\rightarrow}^{\text{ch}}(A) \quad \Rightarrow \quad (MN) \in \Lambda_{\rightarrow}^{\text{ch}}(B)$
$M \in \Lambda_{\rightarrow}^{\text{ch}}(B) \quad \Rightarrow \quad (\lambda x^A.M) \in \Lambda_{\rightarrow}^{\text{ch}}(A \rightarrow B)$

Note $\vdash \lambda x.x : 0 \rightarrow 0$, $\vdash \lambda x.x : (0 \rightarrow 0) \rightarrow (0 \rightarrow 0)$, but $(\lambda x^A.x) \in \Lambda_{\rightarrow}^{\text{ch}}(A \rightarrow A)$.

Canonical translations between $\lambda \rightarrow^{\text{CH}}$ and $\lambda \rightarrow^{\text{CU}}$

Def. There is a *forgetful map* $|\cdot| : \Lambda^{\text{ch}} \rightarrow \Lambda$

$$\begin{aligned} |x^A| &\triangleq x \\ |MN| &\triangleq |M||N| \\ |\lambda x:A.M| &\triangleq \lambda x.|M| \end{aligned}$$

Def. Let $M \in \Lambda^{\text{ch}}$. Write

$$\Gamma_M \triangleq \{x:A \mid x^A \in \text{FV}(M)\}$$

Prop. (i) Let $M \in \Lambda^{\text{ch}}$. Then

$$M \in \Lambda_{\rightarrow}^{\text{ch}}(A) \Rightarrow \Gamma_M \vdash |M| : A$$

(ii) Let $M \in \Lambda$. Then

$$\Gamma \vdash M : A \Leftrightarrow \exists M' \in \Lambda_{\rightarrow}^{\text{ch}}(A). |M'| \equiv M$$

Type structures

Let $\mathbb{T} = \mathbb{T}^{\{0\}}$ and $\lambda_{\rightarrow} = \lambda_{\rightarrow}^{\text{ch}}$

Def. Let $\mathcal{M} = \{\mathcal{M}(A)\}_{A \in \mathbb{T}}$ with $\mathcal{M}(A) \neq \emptyset$, for $A \in \mathbb{T}$.

(i) \mathcal{M} is called a type structure for λ_{\rightarrow} if

$$\mathcal{M}(A \rightarrow B) \subseteq \mathcal{M}(B)^{\mathcal{M}(A)} \triangleq \{f \mid f : \mathcal{M}(A) \rightarrow \mathcal{M}(B)\}$$

(ii) Let \mathcal{M} be provided with *application operators*

$$\begin{aligned} (\mathcal{M}, \cdot) &= (\{\mathcal{M}(A)\}_{A \in \mathbb{T}}, \{\cdot_{A,B}\}_{A,B \in \mathbb{T}}) \\ \cdot_{A,B} &: \mathcal{M}(A \rightarrow B) \times \mathcal{M}(A) \rightarrow \mathcal{M}(B). \end{aligned}$$

(iii) A *typed applicative structure* is such an (\mathcal{M}, \cdot) satisfying *extensionality*:

$$\forall f, g \in \mathcal{M}(A \rightarrow B) [[\forall a \in \mathcal{M}(A) f \cdot_{A,B} a = g \cdot_{A,B} a] \Rightarrow f = g].$$

Prop. The notions of type structure and typed applicative structure are equivalent

Def. \mathcal{M} is called *trivial* if $\mathcal{M}(0)$ is a singleton. Then $\mathcal{M}(A)$ is a singleton for all $A \in \mathbb{T}$

Full type structures

Let X be a set. The *full type structure* $\mathcal{M} = \mathcal{M}_X$ over X is

$$\begin{aligned}\mathcal{M}(0) &\triangleq X \\ \mathcal{M}(A \rightarrow B) &\triangleq \mathcal{M}(B)^{\mathcal{M}(A)}, \quad \text{for all } A, B \in \mathbb{T}.\end{aligned}$$

Def. $\mathcal{M}_n \triangleq \mathcal{M}_{\{0, \dots, n-1\}}$

Prop. $\mathcal{M}_2 \models c_1 = c_3 \neq c_2$

Proof. Let $1 = 0 \rightarrow 0$. Then

$$\mathcal{M}_2(1) = \{I_0, K0, K1, ff\}$$

with $ff(i) = 1 - i$. Note that $\forall f \in \mathcal{M}_2(1). f \circ f \circ f = f$. Therefore $\mathcal{M}_2 \models c_3 = c_1$.

Note also that $ff \circ ff = I \neq ff$. Hence $\mathcal{M}_2 \models c_2 \neq c_1$. ■

In the exercises you will show that

$$\mathcal{M}_5 \models c_4 = c_{64}, \mathcal{M}_6 \models c_4 \neq c_{64}, \mathcal{M}_6 \models c_5 = c_{65}$$

In fact that for $i, j \in \mathbb{N}$ one has

$$\mathcal{M}_n \models c_i = c_j \Leftrightarrow i = j \vee [i, j \geq n-1 \ \& \ \forall k_1 \leq k \leq n. i \equiv j \pmod{k}]$$

Term models

Def. Let \mathcal{D} be a set of typed variables seen as constants. (i) Write

$$\Lambda^{\mathcal{D}}(A) \triangleq \{M \in \Lambda(A) \mid \text{FV}(M) \subseteq \mathcal{D}\}$$

(ii) \mathcal{D} is called *sufficient* if for every $A \in \text{TF}_0$ there is a closed term $M \in \Lambda^{\mathcal{D}}(A)$

For example $\{x^0\}$, $\{F^2, f^1\}$ are sufficient. But $\{f^1\}$, $\{\Psi^3, f^1\}$ are not. Note that

$$\mathcal{D} \text{ is sufficient} \Leftrightarrow \Lambda^{\mathcal{D}}(0) \neq \emptyset$$

Def. Let $M, N \in \Lambda^{\mathcal{D}}(A)$ with $A = A_1 \rightarrow \dots \rightarrow A_a \rightarrow 0$.

(i) M is \mathcal{D} -extensionally equivalent with N , notation $M \approx_{\mathcal{D}}^{\text{ext}} N$ if

$$\forall t_1 \in \Lambda^{\mathcal{D}}(A_1) \dots t_a \in \Lambda^{\mathcal{D}}(A_a). M \vec{t} =_{\beta\eta} N \vec{t}.$$

If $a = 0$, then $M, N \in \Lambda^{\mathcal{D}}(0)$; in this case $M \approx_{\mathcal{D}}^{\text{ext}} N \Leftrightarrow M =_{\beta\eta} N$.

(ii) M is \mathcal{D} -observationally equivalent with N , notation $M \approx_{\mathcal{D}}^{\text{obs}} N$ if

$$\forall F \in \Lambda^{\mathcal{D}}(A \rightarrow 0) FM =_{\beta\eta} FN$$

Theorem! For all $M, N \in \Lambda^{\mathcal{D}}(A)$ one has

$$M \approx_{\mathcal{D}}^{\text{ext}} N \Leftrightarrow M \approx_{\mathcal{D}}^{\text{obs}} N.$$

We therefore can write $M \approx_{\mathcal{D}} N$.

Term models

Def. Let \mathcal{D} be sufficient. Define

$$\mathcal{M}[\mathcal{D}] \triangleq \Lambda^{\mathcal{D}} / \approx_{\mathcal{D}},$$

with application defined by

$$[F]_{\mathcal{D}}[M]_{\mathcal{D}} \triangleq [FM]_{\mathcal{D}}.$$

Here $[-]_{\mathcal{D}}$ denotes an equivalence class modulo $\approx_{\mathcal{D}}$

Prop. $\mathcal{M}[\mathcal{D}]$ is an extensional typed applicative structure satisfying

$$\forall M, N \in \Lambda^{\text{ch}}. \llbracket M \rrbracket^{\mathcal{M}[\mathcal{D}]} = [M]_{\approx_{\mathcal{D}}} \quad (1)$$

Proof. That application is well defined follows from

$$F \approx_{\mathcal{D}} F' \& M \approx_{\mathcal{D}} M' \Rightarrow FM \approx_{\mathcal{D}} F'M \approx_{\mathcal{D}} F'M'$$

For the first equality we need $\approx_{\mathcal{D}}^{\text{ext}}$, for the second $\approx_{\mathcal{D}}^{\text{obs}}$. By induction on open terms $M \in \Lambda^{\mathcal{D}}$ it follows that for (require $\forall d \in \mathcal{D}. \rho(d) = [d]_{\mathcal{D}}$)

$$\llbracket M \rrbracket_{\rho} = [M[\vec{x} := \rho(x_1), \dots, \rho(x_n)]]_{\mathcal{D}}.$$

Therefore (1). Extensionality follows as $\approx_{\mathcal{D}}$ is $\approx_{\mathcal{D}}^{\text{ext}}$. ■

The five canonical term models

These are

$$\begin{array}{lll} \mathcal{M}_0 & \triangleq & \mathcal{M}[\{\mathbf{c}^0\}] & \text{the 'trivial model'} \\ \mathcal{M}_1 & \triangleq & \mathcal{M}[\{\mathbf{c}^0, \mathbf{d}^0\}] & \text{the 'minimal model'} \\ \mathcal{M}_2 & \triangleq & \mathcal{M}[\{\mathbf{c}^0, \mathbf{f}^1\}] \\ \mathcal{M}_3 & \triangleq & \mathcal{M}[\{\mathbf{f}^1, \mathbf{g}^1, \mathbf{c}^0\}] \\ \mathcal{M}_4 & \triangleq & \mathcal{M}[\{\Phi^3, \mathbf{c}^0\}] \\ \mathcal{M}_5 & \triangleq & \mathcal{M}[\{\mathbf{b}^{12 \rightarrow 0 \rightarrow 0}, \mathbf{c}^0\}] & \text{the 'maximal model'} \end{array}$$

Prop! Let M, N have the same type.

- (i) $\mathcal{M}_0 \models \mathbf{c}_0 = \mathbf{c}_1$, hence $\mathcal{M}_0 \models M = N$. Therefore \mathcal{M}_0 is the 'trivial model'.
- (ii) $\mathcal{M}_1 \models M = N \Leftrightarrow \lambda + M = N \not\models \mathbf{c}_0 = \mathbf{c}_1$.
- (iii) $\mathcal{M}_5 \models M = N \Leftrightarrow M =_{\beta\eta} N$

Reducibility of types

Def. Let $A, B \in \mathbb{T}_0$

(i) We say that A is $\beta\eta$ -reducible, notation $A \leq_{\beta\eta} B$, if for some closed term $\Phi: A \rightarrow B$ one has for all closed $M_1, M_2: A$

$$M_1 =_{\beta\eta} M_2 \Leftrightarrow \Phi M_1 =_{\beta\eta} \Phi M_2,$$

i.e. equalities between terms of type A can be uniformly translated to those of type B .

- (ii) Write $A \sim_{\beta\eta} B$ iff $A \leq_{\beta\eta} B \ \& \ B \leq_{\beta\eta} A$.
- (iii) Write $A <_{\beta\eta} B$ for $A \leq_{\beta\eta} B \ \& \ B \not\leq_{\beta\eta} A$.

Lemma. $A = A_1 \rightarrow \dots \rightarrow A_a \rightarrow 0$ and $B = A_{\pi(1)} \rightarrow \dots \rightarrow A_{\pi(a)} \rightarrow 0$, where π is a permutation of the set $\{1, \dots, a\}$. Then

- (i) $B \leq_{\beta\eta} A$
- (ii) $A \sim_{\beta\eta} B$.

PROOF. (i) We have $B \leq_{\beta\eta} A$ via

$$\Phi \equiv \lambda m: B \lambda x_1 \dots x_a. mx_{\pi(1)} \dots x_{\pi(a)}.$$

- (ii) By (i) applied to π^{-1} . ■

Statman's type hierarchy

Theorem!

0	$<_{\beta\eta}$
$0 \rightarrow 0$	$<_{\beta\eta}$
$0 \rightarrow 0 \rightarrow 0$	$<_{\beta\eta}$
...	$<_{\beta\eta}$
$0^k \rightarrow 0$	$<_{\beta\eta}$ with $k > 2$
...	$<_{\beta\eta}$
$1 \rightarrow 0 \rightarrow 0$	$<_{\beta\eta}$
$1 \rightarrow 1 \rightarrow 0 \rightarrow 0$	$<_{\beta\eta}$
$3 \rightarrow 0 \rightarrow 0$	$<_{\beta\eta}$
$1_2 \rightarrow 0 \rightarrow 0$	where $1_2 \triangleq 0^2 \rightarrow 0$

Moreover, every type A is equivalent ($\sim_{\beta\eta}$) to one of these

Remember ($0 <_{\beta\eta} 1 <_{\beta\eta} 1_2$)

$$1_2 <_{\beta\eta} 1 \rightarrow 0 \rightarrow 0 <_{\beta\eta} 1 \rightarrow 1 \rightarrow 0 \rightarrow 0 <_{\beta\eta} 3 \rightarrow 0 \rightarrow 0 <_{\beta\eta} 1_2 \rightarrow 0 \rightarrow 0$$

Terms (for these only finitely many bound variables are needed)

$$\begin{array}{lll} \lambda x^0.x & : & 1 \\ \lambda f^1 x^0. \underline{f(f(f\ x))} & : & \omega \\ \lambda F^{frm-e}.F(\lambda x_1^0.F(\lambda x_2^0.F(\lambda x_3^0.x_1))) & : & 3 \\ \lambda p^{1_{frm-e}} c^0. pc(pcc) & : & \top \end{array}$$

$\lambda^0 \rightarrow$ Finite generation

DEFINITION. A type A (its inhabitants) is called *finitely generated* if $\Lambda^\emptyset(A)$ can be obtained from finitely many closed terms $\{M_1, \dots, M_n\}$, not necessarily of type A , by application alone.

EXAMPLE. Let $\omega = (0 \rightarrow 0) \rightarrow 0 \rightarrow 0$. Then this type is finitely generated by $\{c_0, S^+\}$, where $S^+ \sim_{\beta\eta} \lambda nfx. f(nfx)$.

$\lambda^0 \rightarrow$ The ‘monster’ type M (Statman)

$$M := 3 \rightarrow 1 = (((0 \rightarrow 0) \rightarrow 0) \rightarrow 0) \rightarrow 0 \rightarrow 0$$

Examples of terms of this type

$$\lambda \Phi^3 c^0 . c$$

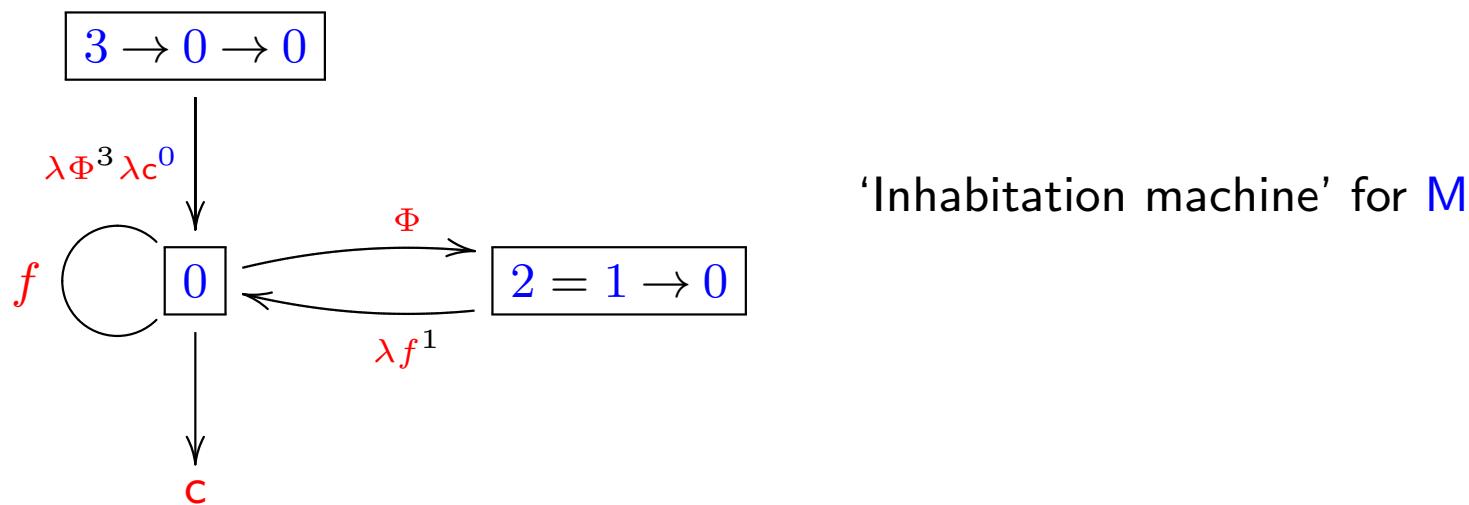
$$\lambda \Phi^3 c^0 . \Phi(\lambda f^1 . f c)$$

$$\lambda \Phi^3 c^0 . \Phi(\lambda f_1^1 . \Phi(\lambda f_2^1 . f_2(f_1 c)))$$

$$\lambda \Phi^3 c^0 . \Phi(\lambda f_1^1 . \underline{f_1}(\Phi(\lambda f_2^1 . \underline{f_2}(f_1(\Phi(\lambda f_3^1 . f_1(f_3(f_2 c))))))))$$

$$\lambda \Phi^3 c^0 . \Phi(\lambda f_1^1 . \vec{w}_1(\Phi(\lambda f_2^1 . \vec{w}_2(\dots \Phi(\lambda f_n^1 . \vec{w}_n c)))))) = \langle \vec{w}_1; \dots; \vec{w}_n \rangle,$$

with $\vec{w}_k \in \{f_1, \dots, f_k\}^*$.



Terms of this type need arbitrarily many (bound) variables.

We say that the type M is *rich*. The types $1, \omega, \omega+1, \top$ are *poor*.