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Two version of A_,

Curry version (type assignment). AY(A) = {MeA | T+ M : A} with

Church version (typed terms). A" =], 4+ A (A) with

Note - Az.x : 0—0,

if (x:A)el

(axiom) T'kFaz: A
'-M:(A—-B) THFN:A
(—-E)
I'-(MN):B
I'o:A+-M: B
(—=-1)

T'F(\z.M): (A~ B)

MeA" (A—B) NeAD(A)
MeA® (B)

=

=

rAeAN (A)
(MN)eAL (B)

Az . M)EAT (A—B)

- Az.x 0 (0—0)—=(0—0), but (M\z*.2)EA (A= A).
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Canonical translations between A—°" and A—“Y

Def. There is a forgetful map |- | : A" — A
o] 2

IMN| = [M|N]

N AM| & Az |M|

X

Def. Let M eA". Write
Ty = {z:A | 22€FV(M)}
Prop. (i) Let M eA". Then
MeAN(A) = 'y H|M|: A
(ii) Let MeA. Then
I'FM:A & IMeAN(A).|M|=M
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Type structures

Let T = T and A, =\
Def. Let M = {M(A)}aeT with M(A) # 0, for A€T.
(i) M is called a type structure for A_, if

M(A—=B) € M(BY"V £ {f | f : M(A) = M(B)}
(ii) Let M be provided with application operators

(M) = ({M(A)}aer,{-a,B}4,BeT)
A : M(A->B)x M(A) = M(B).

(iii) A typed applicative structure is such an (M, -) satisfying extensionality:

Vf,g€M(A—=B)[[VaeM(A) f-aBa=g-apal = f=g|

Prop. The notions of type structure and typed applicative structure are equivalent

Def. M is called trivial if M (0) is a singleton. Then M(A) is a singleton for all AcT
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Full type structures

Let X be a set. The full type structure M = M x over X is

M(0) X
M(A=B) 2 mB)MW ) forall A, BET.

|I>

.....

Proof. Let 1 = 0—0. Then
Ma(1) = {lp, KO, K1, £}
with ££(7) = 1 — 7. Note that VfeMz(1).f o f o f = f. Therefore Mz = c3 = c3.
Note also that ff o ff =1 # ff. Hence Ma|=co2 #c1. m
In the exercises you will show that
M = ca = cpa, Mg |=ca # coa, Mo = C5 = Co5
In fact that for ¢, J€EN one has

Mo, |: C; =Cj <= 1 :j V [Z,] > n—1 & Vklgkgn.i = j(mod k‘)]
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Term models

Def. Let D be a set of typed variables seen as constants. (i) Write
AP(A) & {MeA(A) | FV(M) C D}
(ii) D is called sufficient if for every A€ there is a closed term McA” (A)
For example {z°}, {F?, f'} are sufficient. But {f'}, {T?, f'} are not. Note that
D is sufficient < A”(0) # 0

Def. Let M, NEAP(A) with A = A1 — ... =+ A,—0.
(i) M is D-extensionally equivalent with N, notation M ~%* N if

VtieAT (A1) .. . ta€A" (Ay) .Mt =g, Nt.

If a = 0, then M, NEAP(0); in this case M ~5* N < M =g, N.
(ii) M is D-observationally equivalent with N, notation M ~%° N if

VFeAP(A—0) FM =g, FN

Theorem! For all M, NEA”(A) one has
M~ N < MaPS N.

We therefore can write M ~p V.
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Term models
Def. Let D be sufficient. Define

M[D] £ A" /=p,

with application defined by
[Flp[M]p = [FM]p.

Here [—]p denotes an equivalence class modulo ~p
Prop. M[D] is an extensional typed applicative structure satisfying

VM, NeA" M7 = [M]~ (1)

~D
Proof. That application is well defined follows from
Fep Fl& M~p M = FM ~p F'M ~p F'M’

~ext ~_0bs

For the first equality we need =5, for the second ~7’°. By induction on open terms
MeA” it follows that for (require Vd€D.p(d) = [d]p)

[M], = [M[Z: = p(x1), ..., p(an)]]D.

ext

Therefore (1). Extensionality follows as ~p is ~3". m
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The five canonical term models

These are

Mo
My
M
M3
Mgy
M

> > > > > [l

S IXXZXL

:{CO}] the ‘trivial model’
{c",d"}] the ‘minimal model’
{c”, /1]

{f' 9"}

{27, "]

:{le_)O_)O,CO}] the ‘maximal model’

Prop! Let M, N have the same type.
(i) Mo = co =c1, hence My = M = N. Therefore My is the ‘trivial model'.
(i) MiEM=N < A+ M =N Itfcy=cy.
(iii) M |: M=N & MZgnN
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Reducibility of types

Def. Let A, BET,
(i) We say that A is Sn-reducible, notation A <g, B, if for some closed term ®:A— B
one has for all closed M, M4: A

M =3n Mo & DM, =8n (I)MQ,

I.e. equalities between terms of type A can be uniformly translated to those of type B.
(ii) Write A ~ Bn B iff A <gn B & B <Bn A.
(iii) Write A <gn B for A <g, B& B L3, A.

Lemma. A=A1—...2A,—0and B = A1)~ ... 2 Az)—0, where 7 is a permuta-
tion of the set {1,...,a}. Then

(i) B <pn A

(i) A ~gy, B.

PROOF. (i) We have B <g, A via

O = Am:BAT1 ... Ta.MTr(1) -+ Tr(a)-

(ii) By (i) applied to 7~ '. ®
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Statman’s type hierarchy

Theorem!
0

0—0
0—0—0
0F—0
1—0—0
1—1—0

>()

3—0—0
1o—0—0

<Bn

with £ > 2

where 1, £ 02—0

Moreover, every type A is equivalent (~g,) to one of these

Remember (0 <g, 1 <g,)

Iy <gp 1=-0—0 <g, 1 =>1-0-0 <g, 3—0—0 <g, 19—0—0
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Inhabitants

Terms (for these only finitely many bound variables are needed)
Al 1 AxlxS.zq 0 1s Azl .. x%:z:z s 1k
A f(f(f @) w  Argta” fg(g(f(fx)))) s w+1
AT P2 . F(Azd. F(\xS.21))) : 3
Aptirm=ec® pe(pece) T

z)
)
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A2, Finite generation

DEFINITION. A type A (its inhabitants) is called finitely generated if
AP(A) can be obtained from finitely many closed terms {1, ..., M, },
not necessarily of type A, by application alone.

EXAMPLE. Let w = (0—0)—0—0. Then this type is finitely gener-
ated by {co, ST}, where ST ~g, Anfux.f(nfx).

Mastermath Lambda Calculus Week 12, Winter/Spring 2012



A2, The ‘monster’ type M (Statman)

M = 3—-1 = (00 —0)—0)—>0—=0

Examples of terms of this type
A3 ¢
AP (NS fo)
AP D(Af1.D(Af3.f2(f10)))
AR DAL f1 (RS2 f2(f1(P(Af3.f1(f3(f20)))))))
AP D140 (RPAf3.02(. .. B(Nf10,C))))) = “(W1;...;%)",
with wkE{fl, Ce fk}*
3—0—=0

AD3 o o
i l & ‘Inhabitation machine’ for M

fCO — |2=1-0
C

Terms of this type need arbitrarily many (bound) variables.

We say that the type M is rich. The types 1,w,w—+1, T are poor.
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