Lambda Calculus Week 3 Solvability and Böhm-trees

Henk Barendregt, Freek Wiedijk assisted by Andrew Polonsky

Prop. Every λ -term M is of one of the following shapes

$$M \equiv \lambda \vec{x}. y N_1 \dots N_n$$

$$M \equiv \lambda \vec{x}. (\lambda y. P) Q N_1 \dots N_n$$

Proof. Induction on the structure of M.

Def. In the first case M is called in *head normal form* (hnf) and y is the *head variable*

In the second case $(\lambda y.P)Q$ is called the *head redex*

Def. A term M has a hnf if $M =_{\beta} N$ for some hnf N

For example IK is not an hnf but has the hnf K

 $\Delta\Delta$ has no hnf (nor a nf)

Y has no nf, but an hnf $\lambda f.f(\omega_f\omega_f)$

Propositions about hnfs

Prop. Given M continued contraction of the head-redex will find the hnf of M if it exists (otherwise continue forever)

Def. The hnf found this way is called the principal hnf (phnf)

Example. $\lambda x.\mathsf{I} x(\mathsf{IK})$ has as hnf $\lambda x.x\mathsf{K}$, but the phnf $\lambda x.x(\mathsf{IK})$

Solvable terms

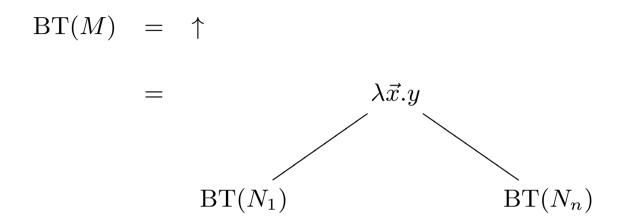
Def. (i) Let $M \in \Lambda^{\emptyset}$. Then M is solvable iff $\exists n \in \mathbb{N} \ \exists N_1 \dots N_n . M \vec{N} = \mathbf{I}$

(ii) Let $M \in \Lambda$ with $FV(M) = \{\vec{x}\}$. Then M is solvable if its closure $\lambda \vec{x}.M$ is solvable.

Theorem (Wadsworth). Let $M \in \Lambda$. Then

M is solvable $\Leftrightarrow M$ has a hnf

Let $M \in \Lambda$. The Böhm-tree of M, notation $\mathrm{BT}(M)$, is defined by



 ${\sf if}\ M$ has no hnf

if $\lambda \vec{x}.yN_1...N_n$ is the phnf of M

$$BT(\Delta\Delta) = \uparrow$$

$$BT(S) = \lambda xyz.x$$

$$y$$

$$\downarrow$$

$$z$$

$$BT(\langle K, \Delta\Delta \rangle) = \lambda z.z$$

$$\lambda xy.x$$

We want to compute BT(Y)

We know $Y \triangleq \lambda f.\omega_f \omega_f$ with $\omega_f \triangleq \lambda x.f(xx)$

Hence the phnf of Y is $\lambda f.f(\omega_f\omega_f)$

and

$$BT(\omega_f \omega_f) = f = f$$

$$| | |$$

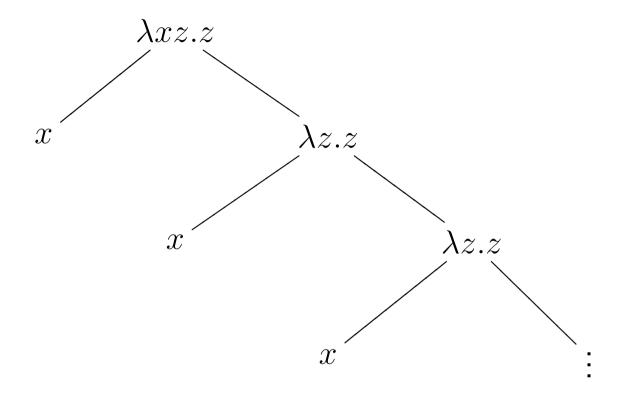
$$BT(\omega_f \omega_f) = f$$

$$BT(\omega_f \omega_f) = f$$

$$| |$$

$$BT(\omega_f \omega_f)$$

We like a term M with $\mathrm{BT}(M)$ as follows



Take $M \triangleq \lambda x.[x,x,x,\ldots] \triangleq \lambda x.Nx$, with $Nx = \langle x,Nx \rangle \triangleq \lambda z.zx(Nx)$. So we can take $N \triangleq \mathbf{Y}(\lambda nxz.zx(nx))$

To be continued!