

Lambda Calculus

Week 3

Self-coding and evaluation

Henk Barendregt, Freek Wiedijk
assisted by Andrew Polonsky

Two examples: natural numbers and trees

Natural numbers:

$\text{Nat} ::= \text{zero} \mid \text{suc } \text{Nat}$

$\text{Tree} ::= \text{leaf} \mid \text{pair } \text{Tree } \text{Tree}$

Equivalently, as a context-free grammar

$\text{Nat} \rightarrow z \mid (s \text{ Nat})$

$\text{Tree} \rightarrow l \mid (p \text{ Tree Tree})$

We know what belongs to it

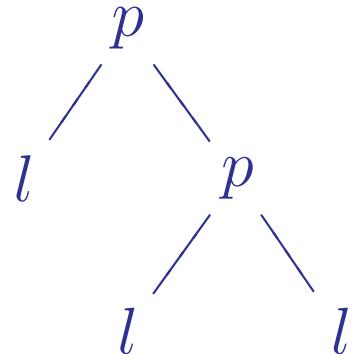
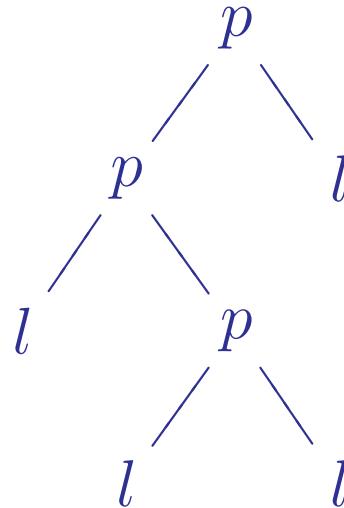
$\text{Nat} = \{z, (sz), (s(sz)), (s(s(sz))), \dots\} = \{s^n z \mid n \in \mathbb{N}\}$

Trees

Tree := l | (p Tree Tree)

Examples of elements of (language defined by) Tree

(p l (p l l)) and (p (p l (p l l)) l)



Translating data into lambda terms (Böhm-Berarducci)

Nat: $t \rightsquigarrow \lceil t \rceil := \lambda s z. t$

For example

$$\lceil (s(s(s z))) \rceil = \lambda s z. (s(s(s z))) = c_3$$

Tree: $t \rightsquigarrow \lceil t \rceil := \lambda p l. t$

For example

$$\lceil (p l(p l l)) \rceil = \lambda p l. (p l(p l l))$$

Operating on data after representing them

For Nat we could operate on the codes to represent wanted functions:

$$A_+ \lceil n \rceil \lceil m \rceil =_{\beta} \lceil n + m \rceil$$

$$A_{\times} \lceil n \rceil \lceil m \rceil =_{\beta} \lceil n \times m \rceil$$

Define on Trees the operation of mirroring:

$$\text{Mirror } (1) = 1$$

$$\text{Mirror } (p \ t1 \ t2) = (p \ (\text{Mirror } t2) \ (\text{Mirror } t1))$$

We will construct a λ -term A_M such that

$$A_M \lceil t \rceil = \lceil \text{Mirror}(t) \rceil$$

Representing the basic operation on Tree

LEMMA. There exists a $P \in \Lambda$ such that

$$P \lceil t_1 \rceil \lceil t_2 \rceil = \lceil pt_1 t_2 \rceil \quad (1)$$

PROOF. Taking $P := \lambda t_1 t_2 pl.p(t_1 pl)(t_2 pl)$ we claim that (1) holds.

Note that $t \in \text{Tree}$ can be considered as a λ -term: $\text{Tree} \subseteq \Lambda$

Since $\lceil t \rceil = \lambda pl.t$ one has $\lceil t \rceil pl =_{\beta} t$. Hence

$$\begin{aligned} P \lceil t_1 \rceil \lceil t_2 \rceil &= (\lambda t_1 t_2 pl.p(t_1 pl)(t_2 pl)) \lceil t_1 \rceil \lceil t_2 \rceil \\ &= \lambda pl.p(\lceil t_1 \rceil pl)(\lceil t_2 \rceil pl) \\ &= \lambda pl.pt_1 t_2 \\ &= \lceil pt_1 t_2 \rceil. \blacksquare \end{aligned}$$

Representing mirroring in Λ

PROPOSITION. There exists an $A_M \in \Lambda$ such that for all $t \in \text{Tree}$

$$A_M \lceil t \rceil =_{\beta} \lceil \text{Mirror}(t) \rceil \quad (2)$$

PROOF. Take $A_M = \lambda t p l. t p' l$, where $p' = \lambda a b. p b a$.

We claim by induction that (2) holds. Note that $A_M \lceil t \rceil p l = \lceil t \rceil p' l$.

Case $t = l$. Then

$$A_M \lceil l \rceil = \lambda p l. (\lambda p l. l) p' l = \lambda p l. l = \lceil l \rceil = \text{Mirror}(\lceil l \rceil).$$

Case $t = p t_1 t_2$. Then

$$\begin{aligned} A_M \lceil p t_1 t_2 \rceil &= \lambda p l. \lceil p t_1 t_2 \rceil p' l \\ &= \lambda p l. p \lceil t_1 \rceil \lceil t_2 \rceil p' l \\ &= \lambda p l. p' (\lceil t_1 \rceil p' l) (\lceil t_2 \rceil p' l) \\ &= \lambda p l. p (\lceil t_2 \rceil p' l) (\lceil t_1 \rceil p' l) \\ &= \lambda p l. p (A_M \lceil t_2 \rceil p l) (A_M \lceil t_1 \rceil p l) \\ &= \lambda p l. p (\lceil \text{Mirror}(t_2) \rceil p l) (\lceil \text{Mirror}(t_1) \rceil p l), \quad \text{by the IH,} \\ &= \lceil p (\text{Mirror}(t_2)) (\text{Mirror}(t_1)) \rceil \\ &= \lceil \text{Mirror}(p t_1 t_2) \rceil. \blacksquare \end{aligned}$$

More on data types

A data type D is a set with some operations (functions) on it.

An k -ary operation is a function $f : D^k \rightarrow D$.

Thereby a 0-ary operation $c : D^0 \rightarrow D$ is identified with a $c \in D$.

A datatype is determined by its operations on D :

$$c_1, \dots, c_{k_0} : D^0 \rightarrow D = D$$

$$f_1^1, \dots, f_{k_1}^1 : D^1 \rightarrow D$$

$$f_1^2, \dots, f_{k_2}^2 : D^2 \rightarrow D$$

...

Nat has $z : \text{Nat}$, $s : \text{Nat} \rightarrow \text{Nat}$.

Tree has $l : \text{Tree}$, $p : \text{Tree}^2 \rightarrow \text{Tree}$

Extra exercise

Let data type D be given as follows

$$D ::= c \mid fD \mid gDD$$

Let $A_0, A_1, A_2 \in \Lambda$. Show that there is an $F \in \Lambda$ such that for the Böhm-Berarducci coding $\lceil d \rceil$ we have

$$F \lceil c \rceil = A_0$$

$$F \lceil f d \rceil = A_1 (F \lceil d \rceil) \lceil d \rceil$$

$$F \lceil g d_1 d_2 \rceil = A_2 (F \lceil d_1 \rceil) (F \lceil d_2 \rceil) \lceil d_1 \rceil \lceil d_2 \rceil$$

The λ -definable functions over D are closed under primitive recursion.

Second translation (Böhm-Piperno-Guerini)

Consider the data type D with

$$c : D, \quad f : D \rightarrow D, \quad g : D^2 \rightarrow D$$

The second coding (also denoted by $\lceil t \rceil$) is

$$\begin{aligned}\lceil c \rceil &= \lambda e. e U_1^3 e \\ \lceil f(t) \rceil &= \lambda e. e U_2^3 \lceil t \rceil e \\ \lceil g(t_1, t_2) \rceil &= \lambda e. e U_3^3 \lceil t_1 \rceil \lceil t_2 \rceil e\end{aligned}$$

PROPOSITION. There are lambda terms F, G such that

$$\begin{aligned}F \lceil t \rceil &= \lceil f(t) \rceil \\ G \lceil t_1 \rceil \lceil t_2 \rceil &= \lceil g(t_1, t_2) \rceil\end{aligned}$$

PROOF. Take

$$\begin{aligned}F &:= \lambda t e. e U_2^3 t e \\ G &:= \lambda t_1 t_2 e. e U_3^3 t_1 t_2 e. \blacksquare\end{aligned}$$

Recursion

THEOREM. Given $A_1, A_2, A_3 \in \Lambda$ there is an $H \in \Lambda$ such that

$$\begin{aligned} H \ulcorner c \urcorner &= &= A_1 H \\ H \ulcorner F \urcorner t \urcorner &= &= A_2 \ulcorner t \urcorner H \\ H \ulcorner G \urcorner t_1 \urcorner \ulcorner t_2 \urcorner &= &= A_3 \ulcorner t_1 \urcorner \ulcorner t_2 \urcorner H \end{aligned}$$

PROOF. Try $H = \langle\langle B_1, B_2, B_3 \rangle\rangle$.

$$\begin{aligned} H \ulcorner c \urcorner &= \langle\langle B_1, B_2, B_3 \rangle\rangle \ulcorner c \urcorner \\ &= \ulcorner c \urcorner \langle B_1, B_2, B_3 \rangle \\ &= \langle B_1, B_2, B_3 \rangle U_1^3 \langle B_1, B_2, B_3 \rangle \\ &= B_1 \langle B_1, B_2, B_3 \rangle \\ &= A_1 \langle\langle B_1, B_2, B_3 \rangle\rangle, && \text{if } B_1 := \lambda z. A_1 \langle z \rangle. \\ &= A_1 H \end{aligned}$$

$$\begin{aligned} H \ulcorner f(t) \urcorner &= \langle B_1, B_2, B_3 \rangle U_2^3 \ulcorner t \urcorner \langle B_1, B_2, B_3 \rangle \\ &= B_2 \ulcorner t \urcorner \langle B_1, B_2, B_3 \rangle \\ &= A_2 \ulcorner t \urcorner H, && \text{if } B_2 := \lambda t z. A_2 t \langle z \rangle. \end{aligned}$$

$$H \ulcorner g(t_1, t_2) \urcorner = A_3 \ulcorner t_1 \urcorner \ulcorner t_2 \urcorner H, && \text{if } B_3 := \lambda t_1 t_2 z. A_3 t_1 t_2 \langle z \rangle. \blacksquare$$

Data type for coding lambda terms

Consider the data type

$$\begin{aligned}\text{var} &: D \rightarrow D \\ \text{app} &: D \rightarrow D \rightarrow D \\ \text{abs} &: D \rightarrow D\end{aligned}$$

Define **Var**, **App**, **Abs** as follows

$$\begin{aligned}\text{Var} &:= \lambda xe. eU_1^3 xe \\ \text{App} &:= \lambda xye. eU_2^3 xye \\ \text{Abs} &:= \lambda xe. eU_3^3 xe\end{aligned}$$

Coding lambda terms $M \rightsquigarrow \lceil M \rceil$ (Mogensen)

$$\begin{aligned}\lceil x \rceil &:= \text{Var } x \\ \lceil MN \rceil &:= \text{App} \lceil M \rceil \lceil N \rceil \\ \lceil \lambda x. M \rceil &:= \text{Abs} (\lambda x. \lceil M \rceil)\end{aligned}$$

Self-interpretation

THEOREM. There exists a λ -term E such that for all $M \in \Lambda$

$$E^\lceil M \rceil = M$$

PROOF. By recursion we can find an E such that

$$\begin{aligned} E(\text{Var } x) &= x \\ E(\text{App } m n) &= E m (E n) \\ E(\text{Abs } m) &= \lambda x. E(m x) \end{aligned}$$

Then

$$\begin{aligned} E(\lceil x \rceil) &= E(\text{Var } x) &= x \\ E(\lceil M N \rceil) &= E(\text{App} \lceil M \rceil \lceil N \rceil) &= E^\lceil M \rceil (E^\lceil N \rceil) &= M N \\ E(\lceil \lambda x. M \rceil) &= E(\text{Abs}(\lambda x. \lceil M \rceil)) &= \lambda x. E^\lceil M \rceil &= \lambda x. M. \end{aligned}$$

Filling in the details of E one has (writing $\mathbf{C} := \lambda xyz. xzy$)

$$E = \langle \langle \mathbf{K}, \mathbf{S}, \mathbf{C} \rangle \rangle.$$

■

Application 1

If you see someone coming out of ‘arrivals’ in an airport, you cannot determine where he or she comes from.

Similarly, there is no F such that for all $X, Y \in \Lambda$

$$F(XY) = X$$

PROPOSITION. There exists an $F_i \in \Lambda$, $i \in \{1, 2\}$ such that

$$F_i \lceil X_1 X_2 \rceil = \lceil X_i \rceil.$$

PROOF. We do this for $i = 1$. By recursion there exists F_1 s.t.

$$F_1(\text{App } x_1 \ x_2) = A_2 x_1 x_2 F_1 = x_1, \text{ taking } A_2 = \mathbf{U}_1^3.$$

This suffices. ■

Second fixed point theorem*

LEMMA. There exists a term $\text{Num} \in \Lambda$ such that for all $M \in \Lambda$

$$\text{Num} \ulcorner M \urcorner =_{\beta} \ulcorner \ulcorner M \urcorner \urcorner$$

PROOF. Use recursion for the lambda calculus data type with

$$\begin{aligned} A_1 x N &= \text{App} \ulcorner \text{Var} \urcorner (\text{Var } x) \\ A_2 m n N &= \text{App} (\text{App} \ulcorner \text{App} \urcorner (N m)) (N n) \\ A_3 m N &= \text{App} \ulcorner \text{Abs} \urcorner (\text{Abs} (\lambda x. N (m x))) \end{aligned}$$

SECOND FIXED POINT THEOREM. For all F there is an X with

$$F \ulcorner X \urcorner =_{\beta} X$$

PROOF. Let $W := \lambda z. F(\text{App } z(\text{Num } z))$ and $X := W \ulcorner W \urcorner$. Then

$$\begin{aligned} X &= W \ulcorner W \urcorner \\ &= F(\text{App} \ulcorner W \urcorner (\text{Num} \ulcorner W \urcorner)) = F(\text{App} \ulcorner W \urcorner \ulcorner \ulcorner W \urcorner \urcorner) \\ &= F \ulcorner W \urcorner \ulcorner W \urcorner = F \ulcorner X \urcorner. \blacksquare \end{aligned}$$

Decidability of sets of terms

A set $\mathcal{C} \subseteq \Lambda$ is *decidable* if there exists an $F \in \Lambda$ such that for all $M \in \Lambda$

$$\begin{aligned} F \ulcorner M \urcorner &= \text{true}, & \text{if } M \in \mathcal{C}; \\ F \ulcorner M \urcorner &= \text{false}, & \text{otherwise.} \end{aligned}$$

Problem. Is $\Lambda^\emptyset \subseteq \Lambda$ decidable?

A theorem by Dana Scott

Theorem. Let $\mathcal{C} \subseteq \Lambda$ be a non-trivial set ($\emptyset \neq \mathcal{C}, \Lambda \neq \mathcal{C}$).

Suppose that \mathcal{C} is closed under $=_\beta$. Then \mathcal{C} is undecidable.

Proof. Suppose \mathcal{C} is decidable. Let $M_0 \notin \mathcal{C}, M_1 \in \mathcal{C}$. Then there exists a term $F \in \Lambda$ such that

$$\begin{aligned} F \ulcorner M \urcorner &= \text{true}, & \text{if } M \in \mathcal{C}; \\ F \ulcorner M \urcorner &= \text{false}, & \text{otherwise.} \end{aligned}$$

Taking $G \triangleq \lambda m. F M M_1 M_0$ one gets

$$\begin{aligned} G \ulcorner M \urcorner &= M_0, & \text{if } M \in \mathcal{C}; \\ G \ulcorner M \urcorner &= M_1, & \text{otherwise.} \end{aligned}$$

There exists a term $M \in \Lambda$ such that $G \ulcorner M \urcorner = M$. But then

$$\begin{aligned} M \in \mathcal{C} &\Rightarrow M = G \ulcorner M \urcorner = M_0 \Rightarrow M \notin \mathcal{C}; \\ M \notin \mathcal{C} &\Rightarrow M = G \ulcorner M \urcorner = M_1 \Rightarrow M \in \mathcal{C}. \end{aligned}$$

a contradiction. ■

Classical theory

Def. For $M \in \Lambda$, define $\#(M)$ as the Gödel number of M . Write

$$\mathbf{c}_M \triangleq \mathbf{c}_{\#(M)}.$$

Prop. There exists an $E_c \in \Lambda^\emptyset$ such that for all $M \in \Lambda^\emptyset$

$$E_c \mathbf{c}_M = M$$

Prop. For all $F \in \Lambda$ there exists an $M \in \Lambda$ such that

$$M = F \mathbf{c}_M.$$

Prop. Using this notion the set $\{M \in \Lambda \mid \text{FV}(M) = \emptyset\}$ is decidable.