Lambda Calculus

Week 2

Representing computable functions

Henk Barendregt, Freek Wiedijk assisted by Andrew Polonsky

Terminology

Def. (i) A term $M \in \Lambda$ is called *closed* if $FV(M) = \emptyset$

(ii)
$$\Lambda^{\emptyset} = \{ \underline{M} \in \Lambda \mid FV(\underline{M}) = \emptyset \}$$

Def. Let $M \in \Lambda$. Then

- (i) M is a $(\beta$ -)normal form (nf) if for no $N \in \Lambda$ one has $M \to_{\beta} N$
- (ii) M has a nf N if $M=_{\beta}N$ and N is a nf
- Prop. (i) If M is a nf and $M \twoheadrightarrow_{\beta} N$, then $M \equiv N$
- (ii) If M has nf N, then $M \twoheadrightarrow_{\beta} N$
- (iii) A term has at most one nf

Proof. (i) If $M \to \beta N$, then this goes in $k \ge 0$ steps. Then k = 0, as M is a nf.

- (ii) If $M =_{\beta} N$, then $M \twoheadrightarrow_{\beta} Z_{\beta} \twoheadleftarrow N$ by CR, hence $Z \equiv N$ by (i), as N is a nf.
- (iii) If $M =_{\beta} N_1 =_{\beta} N_2$, then $N_1 =_{\beta} N_2$, hence by (ii) $N_1 \twoheadrightarrow_{\beta} N_2$, as N_2 is a nf, so $N_1 \equiv N_2$ by (i), as N_1 is a nf.

A numerical function is a partial map $\psi: \mathbb{N}^k \to \mathbb{N}$, $k \geq 0$

Such a ψ is *defined at* \vec{n} , notation $\psi(\vec{n}) \downarrow$, if $\psi(\vec{n}) = m$, for some m otherwise ψ is *undefined at* \vec{n} , notation $\psi(\vec{n}) \uparrow$

A computable function is a partial computable function that is total The initial (computable) functions are

 $0 : \mathbb{N}$

 $S^+ : \mathbb{N} \to \mathbb{N}$

 $U_i^k : \mathbb{N}^k \to \mathbb{N}$ defined by $U_i^k(n_1, \dots, n_k) = n_i$

Let A be a class of numeric functions

- (i) \mathcal{A} is closed under composition if $\chi, \psi_1, \dots, \psi_m \in \mathcal{A} \Rightarrow \varphi \in \mathcal{A}$, with φ defined by $\varphi(\vec{n}) = \chi(\psi_1(\vec{n}), \dots, \psi_m(\vec{n}))$
- (ii) \mathcal{A} is closed under primitive recursion if $\chi, \psi \in \mathcal{A} \Rightarrow \varphi \in \mathcal{A}$, with φ defined by

(iii) \mathcal{A} is closed under minimalization if $\chi \in \mathcal{A} \Rightarrow \varphi \in \mathcal{A}$, with φ defined by

$$\varphi(\vec{n}) = \mu m[\chi(\vec{n}, m) = 0]$$

The partial computable functions form the least class

- containing the initial functions
- closed under composition, primitive recursion and minimalization

A total function is a partial function that is always defined

Church's numerals

$$\begin{array}{lll} \mathbf{c}_0 &=& \lambda f x. x &= (\lambda f(\lambda x x)) \\ \mathbf{c}_1 &=& \lambda f x. f x &= (\lambda f(\lambda x (f x))) \\ \mathbf{c}_2 &=& \lambda f x. f (f x) &= (\lambda f(\lambda x (f (f x)))) \\ &\vdots &\vdots &\vdots &\vdots \\ \mathbf{c}_n &=& \lambda f x. f^{(n)}(x) \end{array}$$

There are terms plus, times satisfying

plus
$$c_n$$
 c_m $=_{\beta}$ c_{n+m}
times c_n c_m $=_{\beta}$ $c_{n \cdot m}$

Take

plus
$$\equiv \lambda nmfx.nf(mfx)$$

times $\equiv \lambda nmfx.m(\lambda y.nfy)x$

Then

plus
$$c_n c_m = \lambda f x. c_n f(c_m f x) = \lambda f x. f^n(f^m x) = \lambda f x. f^{n+m} x$$

Def. A function $\psi: \mathbb{N}^k \to \mathbb{N}$ is λ -definable if for some $F \in \Lambda^{\emptyset}$ one has

$$\psi(\vec{n}) = m \quad \Rightarrow \quad F \mathbf{c}_{n_1} \dots \mathbf{c}_{n_k} =_{\beta} \mathbf{c}_m$$
 $\psi(\vec{n}) = \uparrow \quad \Rightarrow \quad F \mathbf{c}_{n_1} \dots \mathbf{c}_{n_k}$ has no nf

We say that F λ -defines ψ

Then also

$$\psi(\vec{n}) = m \quad \Leftrightarrow \quad F \mathbf{c}_{n_1} \dots \mathbf{c}_{n_k} =_{\beta} \mathbf{c}_m$$
 $\psi(\vec{n}) = \uparrow \quad \Leftrightarrow \quad F \mathbf{c}_{n_1} \dots \mathbf{c}_{n_k}$ has no nf

and

$$\psi(\vec{n})\downarrow \Rightarrow Fc_{n_1}\ldots c_{n_k} =_{\beta} c_{\psi(\vec{n})}$$

Booleans true $\triangleq \lambda xy.x$, false $\triangleq \lambda xy.y$

Then if b then M else $N \triangleq bMN$

Pairs $\langle M, N \rangle \triangleq \lambda f. fMN$. Then

$$\langle M, N \rangle$$
 true = $M \quad \langle M, N \rangle$ false = N

Trees

becomes $\lambda p.p c_3(p c_1 c_2)$

Mirroring trees is λ -defined by $\min ror = \lambda t \lambda p.t(\lambda ab.pba)$:

$$\operatorname{mirror}(\lambda p.p \, \mathsf{c}_3(p \, \mathsf{c}_1 \, \mathsf{c}_2)) = \lambda p.p \, (p \, \mathsf{c}_2 \, \mathsf{c}_1) \, \mathsf{c}_3$$

Thm. Let f be a total numeric function. Then

f is computable $\Leftrightarrow f$ is λ -definable

The assumption 'total' can be dropped

Proof. (\Rightarrow) (By 'induction') The initial functions can be λ -defined by the terms

$$c_0$$
, $S^+ \equiv \lambda n f x. f(n f x)$, $U_i^k \equiv \lambda x_1 \dots x_k. x_i$

Suppose g, h_1, \ldots, h_n are λ -definable by G, H. Then their composition by

$$F \triangleq \lambda \vec{x}.G(H_1\vec{x})\dots(H_n\vec{x})$$

Suppose g is λ -defined by G. Define f(0) = 7, f(n+1) = g(f(n), n).

In order to λ -define f we first do $\overline{f}(n) = \langle n, f(n) \rangle$.

Note that $\overline{f}(0)=\langle 0,7\rangle$ and $\overline{f}(n+1)=t(\overline{f}(n))$, where $t\langle x,y\rangle=\langle x+1,g(y,x)\rangle$. Then f is λ -defined by

$$F \triangleq \lambda n.nT\langle c_0, c_7 \rangle$$
 false,

with $T \triangleq \lambda p. \langle S^+(p \text{ true}), G(p \text{ false})(p \text{ true}) \rangle$. Verify that

 $T\langle \mathsf{c}_k, \mathsf{c}_{f(k)} \rangle = \langle \mathsf{c}_{k+1}, \mathsf{c}_{f(k+1)} \rangle$, hence by induction $T^n\langle \mathsf{c}_0, \mathsf{c}_7 \rangle = \langle \mathsf{c}_n, \mathsf{c}_{f(n)} \rangle$, so

$$Fc_n = T^n \langle c_0, c_7 \rangle$$
 false $= \langle c_n, c_{f(n)} \text{ false} \rangle = c_{f(n)}$

Let g be defined by G. Define $f(n) = \mu m.[g(n,m) = 0]$.

Then f is defined by $F = \lambda x.H_F x c_0$, with

$$H_F x n = \text{ if } (Gn = c_0) \text{ then } n \text{ else } H_F x (S^+ n),$$

where " $Gn = c_0$ " is an abbreviation for Gn(K false) true

Thus we have seen that the class of λ -definable functions contains the initial functions and is closed under substitution, primitive recursion and minimalization. Hence it contains all computable functions.

 (\Leftarrow) Suppose that F defines f. Then

$$f(n) = m \Leftrightarrow \lambda \vdash Fc_n = c_m$$

is an enumerable relation (since the axioms of λ are decidable).

Hence by computability theory f is computable. \square

computations
$$\rightsquigarrow$$
 termination processes \rightsquigarrow continuation

Simplest continuation

Let $\Delta = \lambda x.xx$. Then

$$\Delta \Delta = (\lambda x. xx) \Delta$$
$$= \Delta \Delta$$

This can be done in interesting ways

Given $C[\vec{x}, f] = \dots \vec{x} \dots f \dots$, there is a term F such that

$$F\vec{x} = C[\vec{x}, F]$$

Prop. Given $F_1, \ldots, F_n \in \Lambda$. Then there exists $A_1, \ldots, A_n \in \Lambda$ such that

$$A_1 \rightarrow \beta F_1 \vec{A}$$

. . .

$$A_n \rightarrow_\beta F_n \vec{A}$$

Proof. For $X_1, \ldots, X_n \in \Lambda$ write $\langle X_1, \ldots, X_n \rangle \triangleq \lambda z. z X_1 \ldots X_n$. Then

$$\langle X_1, \ldots, X_n \rangle \cup_{i}^n \rightarrow_{\beta} X_i.$$

Let

$$X \twoheadrightarrow_{\beta} \langle F_1(X\mathsf{U}_1^n) \dots (X\mathsf{U}_n^n), \dots, F_n(X\mathsf{U}_1^n) \dots (X\mathsf{U}_n^n) \rangle$$

Hence taking $A_i \triangleq X \cup_i^n$ we have

$$A_i \triangleq X \cup_i^n \implies_{\beta} F_i(X \cup_1^n) \dots (X \cup_n^n) \triangleq F_i A_1 \dots A_n. \blacksquare$$