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The system λ∗: psudo-expressions
—————————————————————————————

Pseudo-expressions T = V | T T | λV :T .T | ΠV :T .T

where V is an infinite collection of variables

Reduction on T generated by (λx:A.B)C →β B[x := C]

Statements are of the form A : B, with A,B∈T

Declarations are of the form x:A, with A∈T (predicate) and x∈V (subject)

Pseudo-context: a finite ordered sequence of declarations all with distinct subjects

The empty context is denoted by <>

If Γ =< x1:A1, . . . , xn:An >, then

Γ, x:B =< x1:A1, . . . , xn:An, x:B > .

Usually we do not write the <>

Axiomatization of the notion
Γ ⊢ A : B

stating that A : B can be derived from the pseudo-context Γ

in that case A and B are called (legal) expressions and Γ is a (legal) context.
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The system λ∗: axioms and rules
—————————————————————————————
Remember

A→B ,Πx:A.B

for fresh x

Bases have to become linearly ordered. The reason is that in one wants to derive

α:∗, x:α ⊢ x:α;
α:∗ ⊢ (λx:α.x) : (α → α)

but not
x:α, α:∗ ⊢ x : α;

x:α ⊢ (λα: ∗ .x) : (Πα:∗ .α)

The notion of type derivation (to come) Γ ⊢ A : B is defined by the following axioms and
rules (the proviso in the conversion rule (A =β B) is a priori not decidable; however it
can be replaced by the decidable condition

A →β B or B →β A

without changing the set of derivable statements)
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The system λ∗: axioms and rules—————————————————————————————

(axioms) ⊢ ∗ : ∗

(start)
Γ ⊢ A : ∗

Γ, x : A ⊢ x : A
if x /∈ Γ

(weakening)
Γ ⊢ M : A Γ ⊢ B : ∗

Γ, x : B ⊢ M : A
if x /∈ Γ

(product)

Γ ⊢ A : ∗ Γ, x:A ⊢ B : ∗

Γ ⊢ (Πx:A.B) : ∗

(application)
Γ ⊢ F : (Πx:A.B) Γ ⊢ a : A

Γ ⊢ Fa : B[x := a]

(abstraction)
Γ, x:A ⊢ b : B Γ ⊢ (Πx:A.B) : ∗

Γ ⊢ (λx:A.b) : (Πx:A.B)

(conversion)
Γ ⊢ M : A Γ ⊢ B : ∗ A =β B

Γ ⊢ M : B

A,B, a, b, F,M∈T
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Second-order definability of the logical operations
—————————————————————————————

1. For A,B:∗ define

⊥ , (Πβ:∗.β)

¬A , (A → ⊥)

A&B , Πγ:∗.(A → B → γ) → γ

A ∨B , Πγ:∗.(A → γ) → (B → γ) → γ

2. For A:∗ and S:∗ define

∀x:S.A , Πx:S.A

∃x:S.A , Πγ:∗.(Πx:S.(A → γ)) → γ

3. For S:∗ and x, y:S define

(x =L y) , ΠP :(S → ∗).Px → Py
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Russell paradox
—————————————————————————————
Russell. Let R = {a | a /∈ a}. Then

∀a[a∈R ⇔ a /∈ a]

In particular
R∈R ⇔ R /∈ R

Positive version Proposition 1. Let R = {a∈X | a /∈ a}. Then

R /∈ A
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Hypergame paradox
—————————————————————————————
Zwicker. A game for two players is finite if each game has to finish.

For example tic, tac, toe is finite, but chess not. Hypergame is a game for two in which
the first player chooses a finite game. After that the second player makes the first move
in that game and the first player the second. Etcetera.

Clearly hypergame is finite: as soon as the first player has chosen a finite game, only
finitely many moves are possible.

But now starting hypergame the following stream of moves is possible:

hypergame, hypergame, hypergame, . . .

which does not finish. Therefore hypergame is not finite. Contradiction.

Positive version Proposition 2. Let R be a binary relation on a set A. Define for a∈A

SNRa ⇔ there is no infinite sequence a0, a1, . . .∈A such that

. . . . . . Ra1Ra0Ra.

Then in A we have
¬∃b∀a [SNRa ↔ aRb].

Exercise.

Taking for R the relation in on the universe of sets V gives the Mirimanoff paradox
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Unifying
—————————————————————————————
Quine Proposition 3. Let R be a binary relation on a set A.

For n = 1, 2, . . . ,∞ define

Cna ⇔ ∃a0, . . . , an∈A[a0 = a & ∀i < n ai+1Rai & an = a].

Bn = {a∈A | ¬Cna}.

{The set Bn consists of those a∈A not on an ‘n-cycle’}. Then in A one has

¬∃b∀a[Bna ↔ aRb].

Proof. Exercise.

For n = 1 we get the positive version of the Russell paradox.

For n = ∞ of the second paradox.

For n = 2 we get the ‘exclusive club’ by Smullyan. (A person is a member of this club if

and only if he does not shave anyone who shaves him. Show that there is no person that

has shaved every member of the exclusive club and no one else.)
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Towards formalization 1
—————————————————————————————
Now we will define a (naive) set T with a binary relation < on it such that

∀a∈T [SN<a ↔ a < b], (!)

for some b∈T . Together with Proposition 2 this gives the paradox. The particular choice
of T and < is such that the auxiliary lemmas needed can be formalized in λ∗.

Definition 4
(i) T = {(A,R) | R be is a binary transitive relation on set A}

For (A,R), (A′, R′)∈T and f :A → A′ write

(a) (A,R) <−

f (A′, R′) ⇔ ∀a, b∈A [aRb → f(a)R′f(b)];

(b) f is bounded ⇔ ∃a′∈A′∀a∈A.f(a)R′a′;
(c) (A,R) <f (A′, R′) ⇔ (A,R) <−

f (A′, R′) & f is bounded.

(ii) Define the binary relation < on T by

(A,R)<(A′, R′) ⇔ ∃f :(A → A′)[(A,R) <f (A′, R′)].

(iii) Let W = {(A,R)∈T | SN<(A,R)}.

We will see that b = (W,<)∈T satisfies (!) above

(For notational simplicity we also write < for the restriction of < to W )
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Towards formalization 2
—————————————————————————————
Definition 5. For (A,R)∈T and a∈A write

1. Aa = {b∈A | bRa};

2. Ra is the restriction of R to Aa.

Lemma 6. Let (A,R)∈T and a, b∈A. Then

1. (Aa, Ra) < (A,R);

2. aRb → (Aa, Ra) < (Ab, Rb);

3. aRb → SNRb → SNRa;

4. [∀a∈ASNRa] → SN<(A,R).

Definition 7. For (A,R)∈T and a∈A write

1. Aa = {b∈A | bRa};

2. Ra is the restriction of R to Aa.
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Towards formalization 3
—————————————————————————————
Lemma 8. Let (A,R)∈T and a, b∈A. Then

1. (Aa, Ra) < (A,R);

2. aRb → (Aa, Ra) < (Ab, Rb);

3. aRb → SNRb → SNRa;

4. [∀a∈ASNRa] → SN<(A,R).

Proof. It suffices to show that for (A,R)∈T

1. SN<(A,R) → (A,R) < (W,<);

2. SN<(W,<).

For then (A,R) < (W,<) → SN<(A,R) by Lemma 6(3).

As to 1, suppose SN<(A,R). Let a∈A and define f(a) = (Aa, Ra), with Ra defined

in Def. 7. By Lemma 8 (1) one has f(a) < (A,R); by assumption and 8(3) applied to

(T,<) it follows that SN<(f(a)) and hence f(a)∈W . Therefore f :A → W . Moreover,

f :(A,R) < (W,<) by Lemma 8(1),(2).

As to 2, note that by definition ∀(A,R)∈W SN<(A,R). Hence by Lemma 8(4) one has

SN<(W,<).
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Formulating SN
—————————————————————————————

Definition 9.

1. Γ0 is the context

A:∗, R:(A → A → ∗).

2. Write in context Γ0

chainA,R ,λP :(A → ∗).∀a:A[Pa → ∃b:A[Pb & bRa]]

SNA,R ,λa:A.∀P :(A → ∗)[chainA,RP → ¬Pa].

Intuitively, chainA,RP states that P :A → ∗ is a predicate on (subset
of) A such that for every element a in P there is an element b in P

with bRa. Moreover SNA,Ra states that a:A is not in a subset P ⊆ A

that is a chain.

Lemma 10. In λU one can show

1. Γ0 ⊢chainA,R : ((A → ∗) → ∗).

2. Γ0 ⊢ SNA,R : (A → ∗).
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—————————————————————————————
Lemma 11. Γ0 ⊢λ∗ M : ¬∃b:A∀a:A[SNA,Ra ↔ aRb], for some term M .

Definition 12.

1. In context Γ0 write
closedA,R ≡ λQ:(A → ∗).∀a, b:A [Qa → bRa → Qb].
{closedA,RQ says: ‘if a is in Q and b is R-below a, then b is in Q’.}

2. In context Γ0, Q:A → ∗, write (relativizing to a predicate Q)

∀a:AQ.B ≡ ∀a:A[Qa → B]

∃a:AQ.B ≡ ∃a:A[Qa&B].

Corollary 13. In context Γ0, Q:A → ∗ the type

closedA,RQ → ¬∃b:AQ∀a:AQ [SNA,Ra ↔ aRb]

is inhabited in λU .

Proof. Relativize the proof of Lemma 11 formalized in λ∗.
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—————————————————————————————
Definition 14. In λU define two predicates <−, < of type

[Πα: ∗Πr:(α → α → ∗)Πα′: ∗Πr′:(α′ → α′ → ∗)Πf :(α → α′).∗]

as follows. We write
(A,R)<−

f (A
′, R′) for <−ARA′R′f

and similarly for < .

1. (A,R) <−

f (A′, R′) ⇔ ∀a, b:A [aRb → (fa)R′(fb)].

2. (A,R)<f (A
′, R′) ⇔ (A,R) <−

f (A′, R′) &

∃a′:A′ [DomR′a′&
∀a:A [DomRa → (fa)R′a′]],

,

where DomRa stands for ∃b:A.aRb.

3. Write for the appropriate A,R and A′, R′

(A,R)<−(A′, R′) ⇔ ∃f :A → A′ (A,R) <−

f (A′, R′)

and similarly for <.
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—————————————————————————————
The notion SN< is not a particular instance of the notion SNA,R because the ‘set’

{(A,R) | A:∗, R:A → A → ∗}

on which < is supposed to act does not form a type; so SN< has to be defined separately.

Definition 15.

1. chain< ≡ λP :(Πα: ∗ .(α → α → ∗) → ∗).
[∀α1: ∗ ∀r1:(α1 → α1 → ∗).

[Pα1r1 → ∃α2: ∗ ∃r2:(α2 → α2 → ∗)
[Pα2r2&(α2, r2) < (α1, r1)]

]
].

2. SN<≡ λα: ∗ λr:(α → α → ∗).∀P :[Πα′: ∗ .(α′ → α′ → ∗) → ∗].
[chain<P → ¬(Pαr)].

3. Trans Trans ≡ λα: ∗ λr:(α → α → ∗).∀a, b, c:α.[arb → brc → arc].

4. In context Γ0, a:A define

Ra ≡ λb, c:A.[bRc&bRa].
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—————————————————————————————
Proposition 16. In context

A:∗, R:(A → A → ∗), a:A, b:A, x : TransAR

the following types are inhabited.

1. DomRa → (A,Ra) < (A,R).

2. aRb → (A,Ra) < (A,Rb).

3. aRb → SNA,Rb → SNA,Ra.

4. (∀a:A.SNA,Ra) ↔ SN<AR.
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A universal notation system in λ∗
—————————————————————————————
Now the second problem mentioned in Step 3 will be solved. Terms U and i will be
constructed such that i faithfully embeds a pair (A,R) with A:n and R:(A → A → ∗)
into U. Such a pair (U, i) is called a universal notation system for orderings and plays
the role of the naive set T = {(A,R) | R:A → A → ∗}.

Definition 17. H ≡ Πα: ∗ .[(α → α → ∗) → ∗];
U ≡ H → ∗;
i ≡ λα: ∗ λr:(α → α → ∗)λh:H.hαr.

Proposition 18.

1. ⊢ U : ∗.

2. ⊢ i : [Πα: ∗ .(α → α → ∗) → U].

3. The type {‘faithfulness of the map i’}

∀α: ∗ ∀r:(α → α → ∗)∀α′: ∗ ∀r′:

(α′ → α′ → ∗)[iαr =L iα′r′ → (α′, r) <− (α′, r′)]

is inhabited.
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Proof of Proposition 18
—————————————————————————————
Clearly one has in λU

H : ∗,U : ∗ and i : [Πα: ∗ .(α → α → ∗) → (H → ∗)].

So we have 1 and 2. As to 3, we must show that in context

α:∗, r:(α → α → ∗), α′:∗, r′:(α′ → α′ → ∗)

the type
iαr =L iα′r′ → (α, r) <− (α′, r′)

is inhabited. Now

iαr =L iα′r′

→ λh:H.hαr =L λh:H.hα′r′

→ hαr =L hα′r′, for all h:H,
→ [(α, r) <− (α′, r′)] =L [(α′, r′) <− (α′, r′)],

by taking h ≡ λβ: ∗ λs:(β → β → ∗).(β, s) <− (α′, r′).
Since the right-hand side of the last equation is inhabited it follows that

(α, r) <− (α′, r′).
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—————————————————————————————
Using U in i we now can formalize the informal paradox

0.1. Definition. 1. On U define the binary relation <i as follows. For u, u
′:U let

u <i u
′ ≡ ∃α: ∗ ∃r:(α → α → ∗)∃α′: ∗ ∃r′:(α′ → α′ → ∗).

[u =L (iαr)&u′ =L (iα′r′)&
Trans αr & Trans α′r′ &
SN<(α, r) &
SN<(α

′, r′) & (α, r) < (α′, r′)].

2. On U define the (unary) predicate I as follows. For u:U let

Iu = ∃α: ∗ ∃r:(α → α → ∗).
[u =L (iαr) & Trans αr & SN<(α, r)].

Note that closedU,<i
I.

3. The element u : U is defined by u ≡ iU < i.
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—————————————————————————————
Lemma. The following types are inhabited in context

α:∗, r:(α → α → ∗), α′:∗, r′:(α′ → α′ → ∗)

1. (iαr) <i (iα
′r′) → (α, r) < (α′, r′).

2. SN<(A,R) → SNU,<i
(iAR).

0.2. Lemma. In context α:∗, r:(α → α → ∗), α′:∗, r′:(α′ → α′ → ∗) the following types

are inhabited.

1. (iαr) <i (iα
′r′) → (α, r) < (α′, r′).

2. SN<(A,R) → SNU,<i
(iAR).

Proof. 1. Suppose (iαr) <i (iα′r′). Then there are β, s, β′, s′ of appropriate type such that

iαr =L iβs & iα
′
r
′
=L iβ

′
s
′
& (β, s) < (β

′
, s

′
).

By the faithfulness of i and the symmetry of =L it follows that

(α, r) <
−

(β, s) < (β
′
, s

′
) <

−
(α

′
, r

′
)

hence
(α, r) < (α

′
, r

′
).

2. Suppose SN<(A,R). If chainU,<i
Q, then define

Pαr ≡ Q(iαr).

Then chain<P . Since SN<(A,R) we have ¬PAR. But then ¬Q(iAR). So we proved

chainU,<i
Q → ¬Q(iAR),

i.e. SNU,<i
(iAR).
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—————————————————————————————

0.3. Lemma. In context α:∗, r:(α → α → ∗), α′:∗, r′:(α′ → α′ → ∗) the following types

are inhabited.

1. (iαr) <i (iα
′r′) → (α, r) < (α′, r′).

2. SN<(A,R) → SNU,<i
(iAR).

Proof. 1. Suppose (iαr) <i (iα′r′). Then there are β, s, β′, s′ of appropriate type such that

iαr =L iβs & iα
′
r
′
=L iβ

′
s
′
& (β, s) < (β

′
, s

′
).

By the faithfulness of i and the symmetry of =L it follows that

(α, r) <
−

(β, s) < (β
′
, s

′
) <

−
(α

′
, r

′
)

hence
(α, r) < (α

′
, r

′
).

2. Suppose SN<(A,R). If chainU,<i
Q, then define

Pαr ≡ Q(iαr).

Then chain<P . Since SN<(A,R) we have ¬PAR. But then ¬Q(iAR). So we proved

chainU,<i
Q → ¬Q(iAR),

i.e. SNU,<i
(iAR).
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—————————————————————————————

0.4. Corollary. The type

∀u:U.SNU,<i
u

is inhabited.

Proof. Let u:U and suppose towards a contradiction
chainU,<i

P & Pu.

Then
∃u

′
:U.(u

′
<i u & Pu

′
).

Now
u
′
<i u → ∃α: ∗ ∃r:(α → α → ∗)[u =L (iαr) & SN<(α, r)].

Hence by (2) of the lemma
SNU,<i

(iαr) =L SNU,<i
u.

But then, again using chainU,<i
P , it follows that ¬(Pu). Contradiction.

0.5. Lemma. Let A:∗, R:(A → A → ∗), x:TransAR. The following type is inhabited

SN<(A,R) → ∀a:A.SN<(A,Ra).

Proof. Applying ??(4) one has

SN<(A,R) → ∀b:A.SNA,Rb,

→ ∀b:A.∀a:A.SNA,(Ra)b, see below,

→ ∀a:A.SN<(A,R
a
).

The implication SNA,Rb → SNA,(Ra)b is proved as follows. Let SNA,Rb and assume towards a contradiction that chainA,(Ra)P and

Pb. Then also chainA,RP , contradicting SNA,Rb.
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—————————————————————————————

0.6. Lemma. 1. Let α:∗ and r:α → α → ∗ and assume Transαr & SN<(α, r).
Then there are α+:∗ and r+:α+ → α+ → ∗ such that

Trans α+r+ & SN<(α
+, r+) & (α, r) < (α+, r+).

2. ∀v:UI∃v+:UIv <i v
+.

Proof. 1. The construction is the one for representing data structures in Section ??. Define

α
◦

≡ Πβ: ∗ .β → (α → β) → β,

F ≡ λx:αλβ: ∗ λ∞:βλf:(α → β).fx,

∞ ≡ λβ: ∗ λ∞:βλf:(α → β).∞;

then ∞:α◦:∗ and F :(α → α◦). Intuitively α◦ = α ∪ {∞} and F is the canonical imbedding. Indeed, F is injective and ∞ is not
in the range of F . In fact, in the given context one has

(λa:αλb:αλp:(Fa =L Fb)λQ:(α → ∗).p(λx:α◦.x∗⊥Q)) :
(∀a, b:α.(Fa =L Fb → a =L b);

(λa:αλp:(Fa =L ∞).p(λx:α◦.x∗⊥(λa:α.T ))(λb:⊥.b)) :
(∀a:α.Fa 6=L ∞);

here T ≡ ⊥ → ⊥ stands for ‘true’ and has (λb:⊥.b) as inhabiting proof. Define r◦:α◦ → α◦ → ∗ as the canonical extension of r

to α+ making ∞ larger than the elements of α:

r
◦

≡ λx:α
◦
λy:α

◦
.[∃a:α∃b:α.rab & x =L Fa & y =L Fb] ∨

[∃a:α.x =L Fa & y =L ∞].

Then Trans α◦r◦&SN<(α◦, r◦) and (α, r) <
−
F

(α◦, r◦) with bounding element ∞. This ∞ is not yet in Dom
α+ ; but one

has (α, r) <F◦F (α◦◦, r◦◦) with bounding element F∞ and therefore one can take α+ = α◦◦ and r+ = r◦◦.

If v = iαr, then take v+ = iα+r+.
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—————————————————————————————

0.7. Proposition. The following type is inhabited:

∃u:UI∀v:UI[SNU,<i
v ↔ v <i u].

Proof. For u one can take u ≡ (iU <i). In view of Corollary0.4 it is sufficient to show for v:U that {the following types are inhabited}:

1. Iu,

2. Iv → v <i u.

As to 1, we know from Corollary 0.4
∀u:U SNU,<i

u

→ SN<U <i), by Proposition ??(4),
→ I(iU <i), since clearly Trans U <i,

→ Iu.

As to 2, assume Iv. Then v =L (iαr) for some pair α, r with Transαr & SN<(α, r).
Define

f ≡ (λa:α.(iαr
a
)) : (α → U).

Then for all a:α with Domra one has
fa = (iαr

a
) <i (iαr) = v,

{by 16(1) one has (α, ra) < (α, r); use Lemma 0.5 and the definition of <i} and similarly for all a, b:α

arb → (α, ra) < (α, rb),

→ iαra <i iαrb, SN<(α, ra) & SN<(α, rb) since SN<(α, r),
→ fa <i fb.

Therefore (α, r) <
−
f

(U, <i); f on Domr is bounded by v. Since v <i v+ one has Dom<i
v. Therefore (α, r) <f (U, <i) and hence

v =L (iαr) <i (iU <i) = u.
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—————————————————————————————

0.8. Theorem (Girard’s paradox). The type ⊥ is inhabited in λU

and hence in λ∗.

Proof. Note that Proposition 0.7 is in contradiction with Corollary
13, since I is closed in U, <i. This shows that ⊥ is inhabited in λU ,
so a fortiori in λ∗.


