Semantics and Strong Normalization

Part I

Semantics

Set-theoretic semantics

We start with a family of sets $\{X_{\alpha}\}_{\alpha \in \mathbb{A}}$.

• The types $A \in \mathbb{T}$ are interpreted thus:

$$\llbracket \alpha \rrbracket = X_{\alpha}$$
$$\llbracket A \to B \rrbracket = \{ f : \llbracket A \rrbracket \to \llbracket B \rrbracket \} \quad (= \llbracket B \rrbracket^{\llbracket A \rrbracket})$$

• If $\Gamma \vdash t : A$, then $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$, where

$$\llbracket x_1:A_1, \ldots, x_n:A_n \rrbracket = \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket$$

▶ In particular, if $\vdash t : A$, then $\llbracket t \rrbracket$ is an element of $\llbracket A \rrbracket$.

Set-theoretic semantics

Let $\Gamma = \{x_1:A_1, \ldots, x_n:A_n\}$. The interpretation [t] proceeds by induction on t:

▶ $\Gamma \vdash x_i : A_i$. Then

$$\llbracket x_i \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \xrightarrow{\pi_i} \llbracket A_i \rrbracket$$
$$\llbracket x_i \rrbracket \vec{a} = a_i$$

► $\Gamma \vdash st : B$ by $\Gamma \vdash s : A \rightarrow B$ and $\Gamma \vdash t : A$. Then, for $(a_1, \ldots, a_n) \in \llbracket \Gamma \rrbracket$, $\llbracket s \rrbracket \vec{a} \in \llbracket B \rrbracket^{\llbracket A \rrbracket}$, and $\llbracket t \rrbracket \vec{a} \in \llbracket A \rrbracket$.

 $\llbracket st \rrbracket \vec{a} = \llbracket s \rrbracket \vec{a} (\llbracket t \rrbracket \vec{a})$

• $\Gamma \vdash t : A \rightarrow B$ by $\Gamma, x: A \vdash t : B$. Then

$$\llbracket \lambda x : A.t \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \to B \rrbracket$$
$$\llbracket \lambda x : A.t \rrbracket \vec{a} = a \mapsto \llbracket t \rrbracket (\vec{a}; a)$$

example

Example Suppose $\mathbb{A} = \{o\}$, and let $X_o = \mathbb{N}$. Then

$$\llbracket o \to o \rrbracket = \{f : \mathbb{N} \to \mathbb{N}\} = \mathbb{N}^{\mathbb{N}}$$
$$\llbracket (o \to o) \to (o \to o) \rrbracket = \{\Phi : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}\} = (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}^{\mathbb{N}}}$$

$$\llbracket \lambda x : o.x \rrbracket = \llbracket I \rrbracket = (n \mapsto n) = \mathsf{Id}_{\mathbb{N}} \quad \in \mathbb{N}^{\mathbb{N}}$$
$$\llbracket \lambda x : o \to o \, \lambda y : o.x(xy) \rrbracket = \llbracket c_2 \rrbracket = (f \mapsto f \circ f) \qquad \in (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}^{\mathbb{N}}}$$

A typed lambda term of type $A \rightarrow B$ should be interpreted as a morphism between mathematical structures A and B. How can we capture this generality?

Categories

- A category C consists of
 - ▶ a collection C₀ of objects (representing some mathematical structure), and
 - ▶ a collection C₁ of structure-preserving morphisms (between objects in C₀)
- The collection of morphisms from object A to object B is denoted as C(A, B). (Also popular: Hom(A, B), Mor(A, B))

• One writes $f : A \rightarrow B$ if $f \in C(A, B)$.

Categories

Examples

<i>C</i> ₀	(C(A, B)
Sets	$\{f:A\to B\}$
Groups	$\{h: A \rightarrow B \mid h(a_1a_2) = h(a_1)h(a_2)\}$
Top. spaces	$\{f: A ightarrow B \mid f^{-1}U$ open if U open $\}$
Vector spaces	$\{L: A \to B \mid L(ax + by) = aL(x) + bL(y)\}$
Posets	$\{m: A \to B \mid a \leq a' \Longrightarrow m(a) \leq m(a')\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Categories

Axioms for a category:

- For every object X, there is a morphism $Id_X : X \to X$.
- For morphisms f : X → Y and g : Y → Z, there is the composition morphism

$$g \circ f : X \to Z$$

▶ For $f : A \rightarrow X$, $g : X \rightarrow B$, the identity map Id_X satisfies

$$f = \mathsf{Id}_X \circ f$$
 and $g = g \circ \mathsf{Id}_X$

The composition operation satisfies:

$$(f \circ g) \circ h = f \circ (g \circ h)$$

Universal properties

Many constructions of classical mathematics are characterized by their *mapping properties*:

- The free group on a set
- The Stone-Cech compactification of a space
- The algebraic closure of a field
- The Cauchy-completion of a metric space

These are non-trivial examples.

However, even the most elementary constructs of the language of mathematics can be captured by the "categorical perspective."

What is the universal mapping property of the singleton set $\{*\}$ (a set 1 with only one element $* \in 1$)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What is the universal mapping property of the singleton set $\{*\}$ (a set 1 with only one element $* \in 1$)? Answer: For any set X, there is exactly one map $c_* : X \to 1$. (The constant map with value *.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For two sets A, B, what is the universal property of the product $A \times B$?

For two sets A, B, what is the universal property of the product $A \times B$?

Answer: there are maps $\pi_1 : A \times B \to A$, and $\pi_2 : A \times B \to B$, such that any pair of maps $f : C \to A$ and $g : C \to B$ can be factored through the product:

$$\begin{array}{c} C \\ f \swarrow \quad \downarrow (f,g) \quad \searrow g \\ A \stackrel{\pi_1}{\leftarrow} \quad A \times B \stackrel{\pi_2}{\rightarrow} \quad B \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In Set Theory, the natural numbers are defined as

$$\mathbb{N} := \bigcap \{X \mid \emptyset \in X, \quad n \in X \Rightarrow n \cup \{n\} \in X\}$$

- ▶ Up to isomorphism, the natural numbers are determined by any set N which is freely generated from a distinguished element $0 \in N$ and a function $S : N \rightarrow N$.
- The condition of being "freely generated" states the universal property of the natural numbers: for any set X, given an element x₀ ∈ X and a function x₅ : X → X, there is a canonical map h : N → X (it is given by recursion).

natural numbers

This leads to the notion of a *natural numbers object*.

Definition

Let $N \in C_0$ come with maps $z : \mathbf{1} \to N$, $s : N \to N$ such that, for any other object X with maps $b : \mathbf{1} \to X$ and $f : X \to X$, there exists a unique map $i : N \to X$ satisfying

$$i \circ z = b$$
$$i \circ s = f \circ i$$

Such an N is called a natural numbers object (nno).

Function space

We have now seen abstract categorical descriptions of

- Singletons (generally, terminal objects)
- Products
- Natural numbers

To interpret the simply typed lambda calculus, we need the notion of a "function space" object. The appropriate categorical setting for this is that of *Cartesian closed categories*. Idea: we want a category where, for any pair of objects A, B, there is another object " $A \rightarrow B$ " which in a natural way represents C(A, B), the collection of maps from A to B.

CCCs

Let *C* be a category with a terminal object **1**. *C* is a *Cartesian category* if, for any two objects *A*, *B*, there is an object $A \times B$ with the following properties:

- there are maps $\pi_1 : A \times B \to A$ and $\pi_2 : A \times B \to B$,
- For any pair of maps f : C → A, g : C → B, there exists a unique map (f,g) : C → A × B such that

$$\pi_1 \circ (f,g) = f$$

 $\pi_2 \circ (f,g) = g$

▶ In other words, the following diagram commutes, for any *f*, *g*:

The Stupid Diagram Goes Here

Let C be a Cartesian category.

 C is a Cartesian closed category if, for any two objects Y, Z, there is an object Z^Y and a canonical isomorphism

$$\{f: X \times Y \to Z\} \iff \{g: X \to Z^Y\}$$

$$f(x, y) \iff (x \mapsto f_x(y))$$

• Taking $X = Z^Y$ and $g = Id_{Z^Y}$ yields the *evaluation map*

$$ev_{Y,Z}: Z^Y \times Y \to Z$$

Examples

$\begin{array}{c|c} C_0 & A \times B & B^A \\ \text{Sets} & A \times B & \{f : A \to B\} \\ \text{Top. Spaces} & X \times Y, \text{ product topology} \\ \text{Posets} & X \times Y, \text{ product order} & C(X, Y), \text{ compact-open topology} \\ \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Categorical Semantics

Let C be a ccc.

The simply typed lambda calculus is interpreted as follows. Types are interpreted by objects of C:

- Choose $X_{\alpha} \in C_0$ for each $\alpha \in \mathbb{A}$
- $A \in \mathbb{T}$ is interpreted by induction

•
$$\llbracket \alpha \rrbracket = X_{\alpha}$$

• $\llbracket A \to B \rrbracket = \llbracket B \rrbracket^{\llbracket A \rrbracket}$

A context $\Gamma = \{x_1:A_1, \dots, x_n:A_n\}$ is interpreted by the product

$$\llbracket \Gamma \rrbracket = \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket$$

A term t of type A in the context Γ is interpreted by an arrow

$$[\![t]\!]:[\![\Gamma]\!]\to [\![A]\!]$$

In particular, a closed term is interpreted by an arrow $\mathbf{1}
ightarrow \llbracket A
rbracket$.

Categorical Semantics

Let $\Gamma = \{x_1: A_1, \ldots, x_n: A_n\}.$ The interpretation [t] proceeds by induction on *t*: \blacktriangleright $\Gamma \vdash x_i : A_i$. Then $\llbracket x_i \rrbracket : \llbracket A_1 \rrbracket \times \cdots \times \llbracket A_n \rrbracket \overset{\pi_i}{\longrightarrow} \llbracket A_i \rrbracket$ ▶ $\Gamma \vdash st : B$ by $\Gamma \vdash s : A \rightarrow B$ and $\Gamma \vdash t : A$. Then $\llbracket st \rrbracket : \llbracket \Gamma \rrbracket \xrightarrow{(\llbracket s \rrbracket, \llbracket t \rrbracket)} \llbracket B \rrbracket^{\llbracket A \rrbracket} \times \llbracket A \rrbracket \xrightarrow{ev_{\llbracket A \rrbracket, \llbracket B \rrbracket}} \llbracket B \rrbracket$ ► $\Gamma \vdash t : A \rightarrow B$ by $\Gamma, x : A \vdash t : B$. Then $\llbracket \lambda x : A.t \rrbracket : \llbracket \Gamma \rrbracket \longrightarrow \llbracket B \rrbracket^{\llbracket A \rrbracket}$

is the transpose of

$$\llbracket \Gamma \rrbracket \times \llbracket A \rrbracket \overset{\llbracket t \rrbracket}{\longrightarrow} \llbracket B \rrbracket$$

Relationship between syntax and semantics.

- "Cartesian closed categories are the canonical semantic universe of the simply typed lambda calculus. Conversely, the internal language of Cartesian closed categories is that of simple type theory."
- There is a subtlety: CCCs have more structure than the function space between two types: they also have products and a terminal object (which acts as the unit element for the product).
- Questsion: what should we add to the system of types and terms in order to have the full language of cccs?

Simple type theory

Any type theory consists of three components

Syntax:

$$\mathbb{T} ::= \alpha \mid \mathbb{T} \to \mathbb{T}$$

$$t ::= x \mid \lambda x : \mathbb{T} . t \mid t t$$

$$\text{Typing rules:} \qquad \underbrace{(x:A) \in \Gamma}_{\Gamma \vdash x:A} (Ax)$$

$$\underbrace{\Gamma, x:A \vdash r:B}_{\Gamma \vdash \lambda x:A.r:A \to B} (\rightarrow 1) \qquad \underbrace{\Gamma \vdash s:A \to B}_{\Gamma \vdash st:B} (\rightarrow E)$$

Computation rules:

$$\beta$$
: $(\lambda x:A.r)a = r[a/x]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Simple type theory

Any type theory consists of three components

Syntax:

 $\mathbb{T} ::= \alpha \mid \mathbb{T} \to \mathbb{T} \mid \mathbb{T} \times \mathbb{T} \mid$ $t ::= x \mid \lambda x : \mathbb{T} \cdot t \mid t \mid (t, t) \mid \pi_1 t \mid \pi_2 t \mid$ $\mathsf{Typing rules:} \qquad \frac{(x:A) \in \Gamma}{\Gamma \vdash x:A} (Ax)$ $\frac{\Gamma, x:A \vdash r:B}{\Gamma \vdash \lambda x:A.r : A \to B} (\to 1) \qquad \frac{\Gamma \vdash s:A \to B}{\Gamma \vdash st:B} (\to E)$ $\frac{\Gamma \vdash s:A}{\Gamma \vdash (s, t) : A \times B} (\times 1) \qquad \frac{\Gamma \vdash p:A \times B}{\Gamma \vdash \pi_1 p:A} (\times_1 E) \qquad \frac{\Gamma \vdash p:A \times B}{\Gamma \vdash \pi_2 p:B} (\times_2 E)$

Computation rules:

$$\beta: \qquad (\lambda x: A. r) \mathbf{a} = r[\mathbf{a}/x]$$
$$\pi: \qquad \pi_i(\mathbf{a}_1, \mathbf{a}_2) = \mathbf{a}_i \qquad i \in \{1, 2\}$$

Simple type theory

Any type theory consists of three components

Syntax:

$$\begin{split} \mathbb{T} &::= \alpha \mid \mathbb{T} \to \mathbb{T} \mid \mathbb{T} \times \mathbb{T} \mid \mathbb{N} \\ t &::= x \mid \lambda x : \mathbb{T}.t \mid tt \mid (t,t) \mid \pi_{1}t \mid \pi_{2}t \mid 0 \mid St \mid I_{\mathbb{T}}tt \\ \end{split}$$
 $\mathsf{Typing rules:} \qquad \frac{(x:A) \in \Gamma}{\Gamma \vdash x:A} (Ax) \\ \frac{\Gamma, x:A \vdash r:B}{\Gamma \vdash \lambda x:A.r : A \to B} (\to 1) \qquad \frac{\Gamma \vdash s:A \to B}{\Gamma \vdash st:B} (\to E) \\ \frac{\Gamma \vdash s:A \qquad \Gamma \vdash t:B}{\Gamma \vdash (s,t) : A \times B} (\times 1) \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \pi_{1}p : A} (\times_{1}E) \qquad \frac{\Gamma \vdash p : A \times B}{\Gamma \vdash \pi_{2}p : B} (\times_{2}E) \\ \frac{\Gamma \vdash 0 : \mathbb{N}}{\Gamma \vdash Sn : \mathbb{N}} (\mathbb{N}_{S}1) \qquad \frac{\Gamma \vdash b : X \qquad \Gamma \vdash f : X \to X}{\Gamma \vdash I_{X}bf : \mathbb{N} \to X} (\mathbb{N}E) \end{split}$

Computation rules:

$$\begin{aligned} \beta : & (\lambda x : A \cdot r) a = r[a/x] \\ \pi : & \pi_i(a_1, a_2) = a_i \qquad i \in \{1, 2\} \\ \iota : & I_X b f 0 = b \\ \iota : & I_X b f(Sn) = f(I_X b f n) \end{aligned}$$

Type theory provides a uniform term language for concepts defined abstractly by their universal properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The map appearing in the universal property of the natural numbers, technically called the *iteration functional*

$$l_X bf0 = b$$
$$l_X bf(Sn) = f(l_X bfn)$$

is not sufficient to define the predecessor function.

But one can use the product (present in any ccc) to define it using Kleene's laughing gas trick:

 $\mathsf{Pred} n = \pi_2(I_{\mathbb{N}\times\mathbb{N}} (0,0) (\lambda p:\mathbb{N}\times\mathbb{N}.(S(\pi_1 p),\pi_1 p)) n)$

It is more natural to simply allow f to know the iteration step n. This results in the principle of *primitive recursion*:

$$\frac{\Gamma \vdash b: X \quad \Gamma \vdash f: \mathbb{N} \to X \to X}{\Gamma \vdash R_X bf: \mathbb{N} \to X} (\mathbb{N}E)$$

with reduction rules:

$$R_X bf0 = b$$
$$R_X bf(Sn) = fn(R_X bfn)$$

With a recursor, the predecessor can be defined directly

 $\operatorname{Pred} n = R_X 0 \left(\lambda n x. n \right)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Induction

When $X : \mathbb{N} \to *$ is a type which depends on the recursed variable, the dependence of f on n cannot be avoided:

$$\frac{\Gamma \vdash b: X0 \qquad \Gamma \vdash f: \forall n: \mathbb{N}. Xn \rightarrow X(Sn)}{\Gamma \vdash \mathsf{Ind}_X bf: \forall n: \mathbb{N}. Xn}$$
(NE)

This is the *induction principle*. It is much more powerful than the (non-dependent) recursion principle.

(Roughly, recursion says that \mathbb{N} is a *weakly* initial $\{0, S\}$ -algebra, i.e. that the universal morphism exists; induction also says that it is unique — that \mathbb{N} is the "standard model" of Peano axioms.)

Dependent eliminators

```
Check nat_rect.

> nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n))

-> forall n : nat, P n
```

Any inductive definition has a corresponding induction principle, giving the dependent version of its universal mapping property.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the dependent elimination rule for the product type $A \times B$?

What is the dependent elimination rule for the product type $A \times B$? Hint. The projection operators π_i can be replaced by a "product recursor"

$$R_X^{A imes B} : (A o B o X) o A imes B o X$$

 $R_X^{A imes B} h(a, b) = hab$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This presents $A \times B$ as an inductive type.

What is the dependent elimination rule for the product type $A \times B$? Hint. The projection operators π_i can be replaced by a "product recursor"

$$R_X^{A imes B} : (A o B o X) o A imes B o X$$

 $R_X^{A imes B} h (a, b) = hab$

This presents $A \times B$ as an inductive type. Answer: Allowing X to be a dependent type over $A \times B$ (so that $X : A \times B \rightarrow *$) yields

prod_rect

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The function type $A \rightarrow B$ is not inductive.

The map on types $(A, B \mapsto A \rightarrow B)$ is not monotone in the first argument: as A gets bigger, $A \rightarrow B$ will generally get smaller. So the universal property instead goes via the adjunction

$$Mor(C \times A, B) \cong Mor(C, A \rightarrow B)$$

(The negatively-occurring C encodes the context.)

The function type $A \rightarrow B$ is not inductive.

The map on types $(A, B \mapsto A \rightarrow B)$ is not monotone in the first argument: as A gets bigger, $A \rightarrow B$ will generally get smaller. So the universal property instead goes via the adjunction

$$Mor(C \times A, B) \cong Mor(C, A \rightarrow B)$$

(The negatively-occurring *C* encodes the context.) Puzzle for the break:

How could a dependent version of this property be formulated? (IOW, what is the "dependent elimination principle" for the simply typed lambda calculus?)

Part II Strong Normalization

Logical Relations

Solution to the puzzle:

For every type $A \in \mathbb{T}$, we are given a predicate $PA : A \rightarrow *$ on terms of type A.

That is, we are given $P: \forall A: \mathbb{T}.A \rightarrow *$

The "elimination principle" specifies which conditions guarantee that PA will hold of all terms of type A.

Its conclusion has type $\forall A : \mathbb{T} \forall a : A. PAa$

 $P(A \rightarrow B)f$ holds for a term $f : A \rightarrow B$ if

 $\forall a: A. PAa \rightarrow PB(fa)$

Definition

A predicate $P: \forall A: \mathbb{T}.A \rightarrow *$ is a *logical relation* if

$$P(A \rightarrow B)f \iff \forall a: A. PAa \rightarrow PB(fa)$$

If P is a logical relation, then

- ▶ *P* holds of an application *st* provided $P(A \rightarrow B)s$ and *PAt*
- ▶ *P* holds of an abstraction $\lambda x: A.t$ provided $PAa \Rightarrow PBt[x:=a]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Logical Relations

The variables of the context Γ now add hypotheses $P\Gamma$: If $\Gamma = x_1:A_1, \ldots, x_n:A_n$, the typing $\Gamma \vdash t : A$ eliminates into

 $\forall (a_1:A_1,\ldots,a_n:A_n) \ PA_1a_1 \wedge \cdots \wedge PA_na_n \Rightarrow PAt[\vec{x}:=\vec{a}]$

Theorem

Let P be a logical relation. Let $\Gamma \vdash t : A$. If PA_ix_i holds for each $(x_i:A_i) \in \Gamma$, then PAt holds.

Strong Normalization

Three fundamental pillars of type theory:

- ► Church-Rosser: M = N ⇔ M → Z ← N ("Consistency of computation")
- Subject Reduction: Γ ⊢ M : A, M → N ⇒ Γ ⊢ N : A ("Consistency between computation and logic")

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Strong Normalization: Γ ⊢ M : A ⇒ SN(M) ("Consistency of logic")

Strong Normalization

Assume $\Gamma \vdash M : A$.

To show: there is no infinite reduction sequence starting from M

$$M o M' o M'' o \cdots$$

Clearly, if t is strongly normalizing, then $\lambda x:A.t$ is too. But why should application preserve SN? $(\omega = \lambda x.xx \text{ is a normal form, but } \Omega = \omega \omega \text{ is unsolvable.})$ The induction has to be higher-order: logical relations. By induction on A, define the predicate $Comp_A : A \rightarrow *:$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\operatorname{Comp}_{\alpha} t := SN(t)$
- $\operatorname{Comp}_{A \to B} f := \forall a: A. \operatorname{Comp}_A a \Rightarrow \operatorname{Comp}_B(fa)$

By definition, Comp is a logical relation.

Lemma

- 1. $\operatorname{Comp}_A t \Longrightarrow SN(t)$.
- 2. $\vec{t} \in SN \Longrightarrow \text{Comp}_A x \vec{t}$

Proof.

For atomic types α , both points are trivial.

For function types $A \rightarrow B$, we suppose given $f : A \rightarrow B$ such that, if Comp_A holds at a:A, then $\text{Comp}_B(fa)$. In particular, $\text{Comp}_B(fx)$. By inductive hypothesis, SN(fx). Hence SN(f). Now let $\vec{t} \in SN$, and suppose that $\text{Comp}_A a$. By inductive hypothesis, we have SN(a), and thus also $\text{Comp}_B(x\vec{t}a)$. Hence

$$\operatorname{Comp}_{A \to B}(x\vec{t})$$

Theorem $\Gamma \vdash t : A \Longrightarrow SN(t)$

Proof.

By 2, every variable of any type is computable. Hence, the hypotheses Comp Γ is satisfied for every $\Gamma \vdash t : A$. By the logical-relations theorem, we have Comp_At. By 1, SN(t).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

 $\operatorname{Comp}_{\mathcal{A}}(r[x:=s]\vec{t}), r, s, \vec{t} \in SN \Longrightarrow \operatorname{Comp}_{\mathcal{A}}((\lambda x.r)s\vec{t}).$

Proof.

When α is atomic, this is just

$$r, s, \vec{t}, r[x:=s]\vec{t} \in SN \Longrightarrow (\lambda x.r)s\vec{t} \in SN$$

Given $r, s, \vec{t} \in SN$, suppose that $\operatorname{Comp}_{A \to B}(r[x:=s]\vec{t})$. For a:A, we want to show that $\operatorname{Comp}_A a \Longrightarrow \operatorname{Comp}_B((\lambda x.r)s\vec{t}a)$. Indeed, $\operatorname{Comp}_A a$ gives $\operatorname{Comp}_B(r[x:=s]\vec{t}a)$. By inductive hypothesis, $\operatorname{Comp}_B((\lambda x.r)s\vec{t}a)$ as desired.

Extensions

This proof method easily extends to the full Gödel's system T on the slides before.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Girard extended it to second-order and higher-order logic.