Lambda Calculus Week 1 The systems CL and λ

Henk Barendregt, Freek Wiedijk assisted by Andrew Polonsky

Introduction 1/18

Lambda calculus (and the related combinatory logic) is a language expressing

- algorithms functional programming
- proofs machine verification

with applications

The system comes in several versions

- untyped
- typed

Types are like dimensions of constants in physics

 $c = 3.10^8 \text{m/s}$ for the speed of light

giving important partial correctness check

$$E = mc^2$$
 both having dimension gm^2/s^2

Mastermath Lambda Calculus Week 1, Winter 2012

An alphabet Σ is a set of symbols

A word over Σ is a finite string of elements in Σ

 Σ^* consists of all strings over Σ (possibly nonsensical)

A language L over Σ is a subset $L \subseteq \Sigma^*$

 $L\subseteq \Sigma^*$ chooses in some way *meaningful* strings called *formulas* often such a language is given by a grammar

With a theory \mathcal{T} we go one step further: it is a subset $\mathcal{T} \subseteq L$ selecting a set of *correct* (true, valid, intended) sentences often such a theory is given by an axiomatic system

In an equational theory sentences are of the form $t_1=t_2$ with t_1,t_2 belonging to a set of terms $T\subseteq \Sigma^*$

$$\bullet \ 3)(^2 + \ {\rm meaningless})$$

$$\bullet \ 3^2 + 4^2 = 7^2 \ {\rm meaningful, \ correct}$$

$$\bullet \ 3^2 + 4^2 = 5^2 \ {\rm meaningful, \ correct}$$

$$\mathcal{T}$$

$$\mathsf{L}$$

$$\Sigma \longmapsto \Sigma^* \longmapsto L \longmapsto \mathcal{T}$$

Alphabet

$$\Sigma_{CI} = \{ \mathbf{I}, \mathbf{K}, \mathbf{S}, x, ',), (, = \}$$

We introduce several simple regular grammars over Σ_{CL} .

- (i) constant := I | K | S
- (ii) | variable := x | variable' |
- (iii) term := constant | variable | (term term)
- (iv) formula := term = term

Intuition:

in (FA) the term F stands for a function and A for an argument

Axioms

$$IP = P$$

$$KPQ = P$$

$$SPQR = PR(QR)$$
(K)
(S)

Deduction rules (equational logic)

$$P = P$$

$$P = Q \Rightarrow Q = P$$

$$P = Q, Q = R \Rightarrow P = R$$

$$P = Q \Rightarrow PR = QR$$

$$P = Q \Rightarrow RP = RQ$$

Here P, Q, R denote arbitrary terms

IP stands for (IP), KPQ for ((KP)Q) and SPQR for ((SP)Q)R)
In general $PQ_1 \dots Q_n \equiv (...((PQ_1)Q_2)\dots Q_n)$ (association to the left)

Proposition.

(i) Let $\mathbf{D} \triangleq \mathbf{SII}$. Then (doubling)

$$\mathbf{D}x = \mathbf{C}\mathbf{I} \ xx.$$

(ii) Let $\mathbf{B} \triangleq \mathbf{S}(\mathbf{KS})\mathbf{K}$. Then (composition)

$$\mathbf{B} f g x =_{\mathsf{CL}} f(g x).$$

(iii) Let $\mathbf{L} \triangleq \mathbf{D}(\mathbf{B}\mathbf{D}\mathbf{D})$. Then (self-doubling, life!)

$$L =_{CL} LL.$$

Proof.

(i)
$$\mathbf{D}x \triangleq \mathbf{SII}x$$
 (ii) $\mathbf{B}fgx \triangleq \mathbf{S}(\mathbf{KS})\mathbf{K}fgx$ (iii) $\mathbf{L} \triangleq \mathbf{D}(\mathbf{B}\mathbf{D}\mathbf{D})$

$$= \mathbf{I}x(\mathbf{I}x) = \mathbf{KS}f(\mathbf{K}f)gx = \mathbf{B}\mathbf{D}\mathbf{D}(\mathbf{B}\mathbf{D}\mathbf{D})$$

$$= xx. = \mathbf{S}(\mathbf{K}f)gx = \mathbf{D}(\mathbf{D}(\mathbf{B}\mathbf{D}\mathbf{D}))$$

$$= \mathbf{K}fx(gx) \triangleq \mathbf{D}\mathbf{L}$$

$$= f(gx). = \mathbf{L}\mathbf{L}.$$

We want to understand and preferably also to control this!

The meaning of

$$\lambda x.3x$$

is the function

$$x \longmapsto 3x$$

that assigns to x the value 3x (3 times x). Therefore

$$(\lambda x.3x)(6) = 18.$$

The parentheses around the 6 are usually not written:

$$(\lambda x.3x)6 = 18$$

Principal axiom

$$(\lambda x.M)N = M[x:=N] \tag{\beta}$$

Alphabet

$$\Sigma = \{x,',(,),\lambda,=\}$$

Language

```
	ext{variable} := 	ext{x} | 	ext{variable}' \ 	ext{term} := 	ext{variable} | (	ext{term term}) | (\lambda 	ext{variable term}) \ 	ext{formula} := 	ext{term} = 	ext{term}
```

Theory 1. Axioms $(\lambda x M)N = M[x = N]$

2. Deduction rules: equational logic

$$M = M$$

$$M = N \Rightarrow N = M$$

$$M = N, N = L \Rightarrow M = N$$

$$M = N \Rightarrow ML = NL$$

$$M = N \Rightarrow LM = LN$$

$$M = N \Rightarrow \lambda x M = \lambda x N$$

Bureaucracy 9/18

Substitution

M	M[x:=N]
x	$\mid N \mid$
$y \not\equiv x$	$\mid y \mid$
PQ	(P[x:=N])(Q[x:=N])
$\lambda x P$	$\lambda x P$
$\lambda y P$	$\lambda y \left(P[x:=N] \right)$

^{&#}x27;Association to the left'

$$PQ_1 \dots Q_n \equiv (..((PQ_1)Q_2) \dots Q_n).$$

'Associating to the right'

$$\lambda x_1 \dots x_n M \equiv (\lambda x_1(\lambda x_2(..(\lambda x_n(M))..))).$$

Outer parentheses are usually omitted. For example

$$(\lambda x.x)y \equiv ((\lambda xx)y)$$

 $\lambda x.x$ and $\lambda y.y$ acting on M both give M

We write

$$\lambda x.x \equiv_{\alpha} \lambda y.y$$

"Names of bound variables may be changed"

NB

$$\begin{array}{rcl} \mathsf{K}MN & \equiv & (\lambda xy.x)MN \\ & \equiv & (((\lambda x(\lambda y\ x))M)N) \\ & = & ((\lambda yM)N) \\ & = & M \end{array}$$

assuming that y not in M.

But

$$\begin{array}{lll} \mathsf{K}\,yz & \equiv & (((\lambda x(\lambda y\,x))y)z) & \mathsf{better:} & \mathsf{K}\,yz & \equiv & (((\lambda x'(\lambda y'\,x'))y)z) \\ & =_? & ((\lambda y\,y)z) & = & (\lambda y'\,y)z \\ & = & z?? & = & y & \mathsf{as}\;\mathsf{it}\;\mathsf{should}. \end{array}$$

Reduction 11/18

There is an asymmetry in

$$(\lambda x M)N = M[x := N]$$

We express this by (contraction rule)

$$(\lambda x M)N \mapsto_{\beta} M[x:=N]$$

This gives rise to \rightarrow_{β} (one step reduction)

and $\rightarrow \beta$ (many step reduction)

$$\begin{array}{cccc} M \mapsto_{\beta} N & \Rightarrow & M \to_{\beta} N \\ M \to_{\beta} N & \Rightarrow & ML \to_{\beta} NL \\ M \to_{\beta} N & \Rightarrow & LM \to_{\beta} LN \\ M \to_{\beta} N & \Rightarrow & \lambda x M \to_{\beta} \lambda x N \\ M \to_{\beta} N & \Rightarrow & M \to_{\beta} N \\ M \to_{\beta} N & \Rightarrow & M \to_{\beta} M \\ M \to_{\beta} N, N \to_{\beta} L & \Rightarrow & M \to_{\beta} L \end{array}$$

 $\twoheadrightarrow_{\beta}$ is the transitive reflexive closure of \rightarrow_{β}

 \rightarrow_{β} is the 'compatible closure' of \mapsto_{β}

Terms Λ 12/18

Set of lambda terms: Λ . Examples:

Indeed,
$$\mathsf{K} XY \triangleq (\lambda xy.x)XY$$

$$\triangleq ((\lambda x(\lambda yx))X)Y$$

$$\rightarrow_{\beta} (\overline{\lambda yX})Y$$

$$\rightarrow_{\beta} X$$

Variable convention: assume that the bound and free variables in a situation differ The set of free (bound) variables of M, notation $\mathrm{FV}(M)$ (resp. $\mathrm{BV}(M)$), is $\mathrm{FV}(x) = \{x\}, \ \mathrm{FV}(MN) = \mathrm{FV}(M) \cup FV(N), \ \mathrm{FV}(\lambda x.M) = \mathrm{FV}(M) - \{x\}$ $\mathrm{BV}(x) = \emptyset, \ \mathrm{BV}(MN) = \mathrm{BV}(M) \cup BV(N), \ \mathrm{BV}(\lambda x.M) = \mathrm{BV}(M) \cup \{x\}.$

Exercises

THEOREM. For all $F \in \Lambda$ there is an $M \in \Lambda$ such that

$$FM =_{\beta} M$$

PROOF. Defines $W \equiv \lambda x.F(xx)$ and $M \equiv WW$. Then

$$M \equiv WW$$

$$\equiv (\lambda x.F(xx))W$$

$$= F(WW)$$

$$\equiv FM. \blacksquare$$

COROLLARY. For any 'context' $C[\vec{x}, m]$ there exists a M such that

$$M\vec{X} = C[\vec{X}, M].$$

PROOF. M can be taken the fixed point of $\lambda m\vec{x}.C[\vec{x},m]$.

Then
$$M\vec{X}=(\lambda m\vec{x}.C[\vec{x},m])M\vec{X}=C[\vec{X},M]$$
.

Consequences 14/18

We can construct terms Y, L, O, P such that

$$Yf = f(Yf)$$
 producing fixed points;
 $L = LL$ take $L \equiv YD$;
 $Ox = O$ take $O \equiv YK$;
 $P = Px$.

LEMMA. For every CL-term P and every variable x,

there is a CL-term ${\cal Q}$ such that x does not occur in ${\cal Q}$ and

$$Qx = CI P.$$

We denote this term Q constructed in the proof as [x]P

PROOF. Induction on the complexity of P

Case 1. P is a constant or a variable

Subcase 1.1 $P \equiv x$. Take $[x]x \equiv \mathbf{I}$, then

$$([x]x)x \equiv \mathbf{I}x = \mathbf{I}x$$

Subcase 1.2 $P \equiv y \not\equiv x$. Take $[x]y \equiv \mathbf{K}x$, then indeed

$$([x]y)x \equiv \mathbf{K}yx =_{\mathsf{CL}} y.$$

Subcase 1.3 $P \equiv \mathbf{C}$ with $\mathbf{C} \in \{\mathbf{I}, \mathbf{K}, \mathbf{S}\}$. Take $[x]\mathbf{C} \equiv \mathbf{K}\mathbf{C}$, then indeed

$$([x]\mathbf{C})x = \mathbf{C} \quad K\mathbf{C}x = \mathbf{C} \quad \mathbf{C}.$$

Case 2. $P \equiv UV$. Take $[x](UV) \equiv S([x]U)([x]V)$, then indeed

$$([x](UV))x \equiv S([x]U)([x]V)x = (([x]U)x)(([x]V)x) = UV. \blacksquare$$

The previous proof gave

P	[x]P	([x]P)x = P?
x	I	$\mathbf{I}x = x$
$y \not\equiv x$	$\mathbf{K}y$	$\mathbf{K}yx = y$
\mathbf{C}	KC	$\mathbf{KC}x = \mathbf{C}$
UV	$\mathbf{S}([x]U)([x]V)$	$\mathbf{S}([x]U)([x]V)x =$
		$\left (([x]U)x)(([x]V)x) = UV \right $

More efficient algorithm

P	[x]P
x	I
P with $x \notin P$	$\mathbf{K}P$
UV	$\mathbf{S}([x]U)([x]V)$

Conversion 17/18

Define $=_{\beta}$ as the symmetric transitive relation containing $\twoheadrightarrow_{\beta}$

$$M \Rightarrow_{\beta} N \Rightarrow M =_{\beta} N$$

$$M =_{\beta} N \Rightarrow N =_{\beta} M$$

$$M =_{\beta} N \& N =_{\beta} L \Rightarrow M =_{\beta} L$$

Proposition. $\lambda \vdash M = N \iff M =_{\beta} N$

PROOF. (\Rightarrow) By induction on the proof of $\lambda \vdash M = N$. (\Leftarrow) Show (except for the first case by a similar induction)

$$M \mapsto_{\beta} N \quad \Rightarrow \quad \lambda \vdash M = N$$

$$M \to_{\beta} N \quad \Rightarrow \quad \lambda \vdash M = N$$

$$M \to_{\beta} N \quad \Rightarrow \quad \lambda \vdash M = N$$

$$M =_{\beta} N \quad \Rightarrow \quad \lambda \vdash M = N \square$$

CHURCH-ROSSER THEOREM

$$M =_{\beta} N \iff \exists Z.[M \twoheadrightarrow_{\beta} Z \& N \twoheadrightarrow_{\beta} Z]$$

Let $M \in \Lambda$ with $x \notin FV(M)$. Then

$$\lambda x. Mx \mapsto_{\eta} M \tag{\eta}$$

From this one gets \rightarrow_{η} , \rightarrow_{η} , $\rightarrow_{\beta\eta}$