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CONTENTS 7

In a nutshell the intersection type systems considered in this Part form a class
of type assignment systems for untyped λ-calculus, extending Curry’s basic
functionality with a new type constructor, intersection. This simple move makes
it possible to express naturally and in a finitary way many operational and
denotational properties of terms.

Intersection types have been originally introduced as a language for descri-
bing and capturing properties of λ-terms, which had escaped all previous typing
disciplines. For instance, they were used in order to give the first type theoretic
characterization of strongly normalizable terms, and later of (persistently) nor-
malizing terms.

It was realized early on that intersection types also had a distinctive seman-
tical flavour: they express at a syntactical level the fact that a term belongs
to suitable compact open sets in a Scott domain. Building on this intuition,
intersection types were used in Barendregt et al. [1983] to introduce filter models
and give a proof of the completeness of the natural semantics of simple type
assignment systems in applicative structures suggested in Scott [1972].

Since then, intersection types have been used as a powerful tool both for
the analysis and the synthesis of λ-models. On the one hand, intersection type
disciplines provide finitary inductive definitions of interpretation of λ-terms in
models. On the other hand, they are suggestive for the shape the domain model
has to have in order to exhibit certain properties.

Intersection types can be viewed also as a restriction of the domain theory in
logical form, see Abramsky [1991], to the special case of modeling pure lambda
calculus by means of ω-algebraic complete lattices. Many properties of these
models can be proved using this paradigm, which goes back to Stone duality.
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Chapter 14

An Exemplary System 16.10.2006:1032

There are several systems that assign intersection types to untyped lambda
terms. These will be collectively denoted by λ∩. In this section we consider
one particular system of this family, λBCD

∩ in order to outline the concepts and
related properties. Definitions and the statement of theorems will be given, but
no proofs. These can be found in the next chapters of Part III.

One motivation for the system presented comes from trying to modify the
system λ→ in such a way that not only subject reduction, but also subject
expansion holds. The problem of subject expansion is the following. Suppose
⊢λ→

M : A and that M ′ →→βη M . Does one have ⊢λ→
M ′ : A? Let us focus on

one β-step. So let M ≡ (λx.P )Q be a redex and suppose

⊢λ→
P [x := Q] : A. (1)

Do we have ⊢λ→
(λx.P )Q : A? It is tempting to reason as follows. By

assumption (1) also Q must have a type, say B. Then (λx.P ) has a type
B→A and therefore ⊢λ→

(λx.P )Q : A. The mistake is that in (1) there may be
several occurrences of Q, say Q1 ≡ Q2 ≡ . . . ≡ Qn, having as types respectively
B1, . . . ,Bn. It may be impossible to find a single type for all the occurrences of
Q and this prevents us from finding a type for the redex. For example

⊢λ→
(λx.I(Kx)(Ix)) : A→A,

6⊢λ→
(λxy.x(Ky)(xy))I : A→A.

The system introduced in this chapter with intersection types assigned to
untyped lambda terms remedies the situation. The idea is that if the several
occurrences of Q have to have different types B1, . . . ,Bn, we give them all of
these types:

⊢ Q : B1 ∩ . . . ∩Bn,

implying that for all i one has Q : Bi. Then we have

⊢ (λx.P ) : B1 ∩ . . . ∩Bn→A and

⊢ ((λx.P )Q) : A.

There is, however, a second problem. In the λK-calculus, with its terms
λx.P such that x /∈ FV(P ) there is the extra problem that Q may not be

9
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typable at all, as it may not occur in P [x := Q]! This is remedied by allowing
B1 ∩ . . .∩Bn also for n = 0 and writing this type as ⊤, to be considered as the
universal type, i.e. assigned to all terms. Then in case x /∈ FV(P ) one has

⊢ (λx.P ) : ⊤→A and

⊢ ((λx.P )Q) : A.

This is the motivation to introduce a ≤ relation on types with largest
element⊤ and intersections such that A∩B ≤ A,A∩B ≤ B and the extension of
the type assignment by the sub-sumption rule Γ ⊢ M : A, A ≤ B ⇒ Γ ⊢ M :
B. It has as consequence that terms like λx.xx get as type ((A→B) ∩ A)→B,
while (λx.xx)(λx.xx) only gets ⊤ as type. Also we have subject conversion

Γ ⊢M : A & M =β N ⇒ Γ ⊢ N : A.

This has as consequence that one can create a lambda model in which the
meaning of a closed term consists of the collection of types it gets. In this way
new lambda models will be obtained and new ways to study classical models
as well.

The type assignement system λBCD
∩ will be introduced in Section 14.1 and

the correspondig filter model in 14.2.

14.1. The system of type assignment λ
BCD
∩

A typical member of the family of intersection type assignment systems is λBCD
∩ .

This system is introduced in Barendregt et al. [1983] as an extension of the
initial system in Coppo and Dezani-Ciancaglini [1980].

14.1.1. Definition. Let A be a set of type atoms.
(i) The intersection type language over A, denoted by TT = TTA

∩ is defined by
the following abstract syntax.

TT = A | TT→TT | TT ∩ TT

(ii) Write

A∞ = {ψ0, ψ1, ψ2, . . .}
A
⊤
∞ = A∞ ∪ {⊤},

where the type atom ⊤ /∈A∞ is considered as a constant.

Notation. (i) A,B,C,D,E range over arbitrary types. When writing intersection
types we shall use the following convention: the constructor ∩ takes precedence
over the constructor → and it associates to the right. For example

(A→B→C) ∩A→B→C ≡ ((A→(B→C)) ∩A)→(B→C).

(ii) α, β, . . . range over A.
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14.1.2. Remark. In Part III the set of syntactic types will be formed as above;
for many of these systems the set A will be finite. In this Chapter, however, we
take A = A

⊤
∞.

The following deductive system has as intention to introduce an appropriate
pre-order on TT, compatible with the operator →, such that A∩B is a greatest
lower bound of A and B, for each A,B.

14.1.3. Definition (Intersection type preorder). On TT = TT
A⊤
∞

∩ a binary rela-
tion ≤ ‘is subtype of ’ is defined by the following axioms and rules.

(refl) A ≤ A
(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

(⊤) A ≤ ⊤
(⊤→) ⊤ ≤ ⊤→⊤
(→∩) (A→B) ∩ (A→C) ≤ A→(B ∩ C)

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

14.1.4. Definition. The intersection type theory BCD is the set of all judge-
ments A ≤ B derivable from the axioms and rules in Definition 14.1.3. For
(A ≤ B)∈BCD we write A ≤BCD B or ⊢BCD A ≤ B (or often just A ≤ B).

14.1.5. Remark. All systems in Part III have the first five axioms and rules
of Definition 14.1.3. They differ in the extra axioms and rules and the set of
constants.

14.1.6. Definition. Write A=BCDB (or A = B) for A ≤BCD B & B ≤BCD A.
In BCD we usually work with TT modulo =BCD. By rule (→) one has

A = A′ & B = B′ ⇒ (A→B) = (A′→B′).

Moreover, A ∩B becomes the glb of A,B.

14.1.7. Definition. (i) A basis is a finite set of statements of the shape x:B,
where B ∈TT, with all variables distinct.

(ii) The type assignment system λBCD
∩ for deriving statements of the form

Γ ⊢M : A with Γ a basis, M ∈Λ (the set of untyped lambda terms) and A∈TT



12 CHAPTER 14. AN EXEMPLARY SYSTEM 16.10.2006:1032

is defined by the following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A)∈Γ

(→I)
Γ, x:A ⊢M : B

Γ ⊢ (λx.M) : (A→B)

(→E)
Γ ⊢M : (A→ B) Γ ⊢ N : A

Γ ⊢ (MN) : B

(∩I)
Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : (A ∩B)

(≤)
Γ ⊢M : A

Γ ⊢M : B
if A ≤BCD B

(⊤-universal) Γ ⊢M : ⊤

(iii) We say that a term M is typable from a given basis Γ, if there is a type
A∈TT such that the judgement Γ ⊢M : A is derivable in λBCD

∩ . In this case we
write Γ ⊢BCD

∩⊤ M : A or just Γ ⊢M : A, if there is little danger of confusion.

14.1.8. Remark. All systems of type assignment in Part III have the first five
axioms and rules of Definition 14.1.7.

In the following Proposition we need the notions of admissible and derived
rule. Let us first informally define these notions for the simple logical theory of
propositional logic.

14.1.9. Definition. Let ⊢ denote provability in propositional logic. Consider
the rule

Γ ⊢ A
(R)

Γ ⊢ B

(i) R is called admissible if one has

Γ ⊢ A ⇒ Γ ⊢ B

(ii) R is called derived if one has

Γ ⊢ A→B

For example we have that
Γ ⊢ A→A→B

Γ ⊢ A→B
is derived. Also that for propositional variables ϑ, ̺

⊢ ϑ
⊢ ̺
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is admissible, simply because ⊢ ϑ does not hold, but not derived. A derived rule
is always admissible and the example shows that the converse does not hold. If

Γ ⊢ A
Γ ⊢ B

is a derived rule, then for all Γ′ ⊇ Γ one has that

Γ′ ⊢ A
Γ′ ⊢ B

is also derived. Hence derived rules are closed under theory extension.
We will only be concerned with admissible and derived rules for theories of

type assignment.

14.1.10. Proposition. (i) Notice that the rules (∩E)

Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

are derived in λBCD
∩ .

(ii) The following rules are admissible in the intersection type assignment
system λBCD

∩ .

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A

(≤-L)
Γ, x:B ⊢M : A C ≤ B

Γ, x:C ⊢M : A

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ

Γ, x:(C→B) ⊢ (M [y := xN ]) : A

(∩L)
Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B

14.1.11. Theorem. In (i) assume A 6= ⊤. Then

(i) Γ ⊢ x : A ⇔ ∃B ∈TT.[(x:B ∈Γ & B ≤ A].
(ii) Γ ⊢ (MN) : A ⇔ ∃B ∈TT.[Γ ⊢M : (B→A) & Γ ⊢ N : B].

(iii) Γ ⊢ λx.M : A ⇔ ∃n>0∃B1, . . . ,Bn, C1, . . . ,Cn ∈TT

∀i∈{1, . . . , n}.[Γ, x:Bi ⊢M : Ci &
(B1→C1) ∩ . . . ∩ (Bn→Cn) ≤ A].

(iv) Γ ⊢ λx.M : B→C ⇔ Γ, x:B ⊢M : C.
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14.1.12. Definition. LetR be a notion of reduction. We introduce the following
rules:

(R-red)
Γ ⊢M : A M →R N

Γ ⊢ N : A

(R-exp)
Γ ⊢M : A M ←R N

Γ ⊢ N : A

14.1.13. Proposition. The rules (β-red), (β-exp) and (η-red) are admissible
in λBCD

∩ . The rule (η-exp) is not.

The following result characterizes notions related to normalization in terms
of type assignment in the system λBCD

∩ . The notation ⊤ /∈ A means that ⊤
does not occur in A.

14.1.14. Theorem. Let M ∈Λø.

(i) M has a head normal form ⇔ ∃A∈TT.[A 6=BCD ⊤ & ⊢M : A].

(ii) M has a normal form ⇔ ∃A∈TT.[⊤ /∈ A & ⊢M : A].

LetM be a lambda term. For the notion ‘approximant ofM ’, see Barendregt
[1984]. These are roughly obtained from the Böhm tree BT(M) of M by cutting
of branches and replacing these by a new symbol ⊥. The set of approximants
of M is denoted by A(M). We have e.g. for the fixed-point combinator Y

A(Y) = {⊥} ∪ {λf.fn⊥ | n>0}.

Approximants are being typed by letting the typing rules be valid for ap-
proximants. For example one has

⊢ ⊥ : ⊤
⊢ λf.f⊥ : (⊤→A1)→A1

⊢ λf.f(f⊥) : (⊤→A1) ∩ (A1→A2)→A2

. . .

⊢ λf.fn⊥ : (⊤→A1) ∩ (A1→A2) ∩ . . . ∩ (An−1→An)→An

. . .

The set of types of a term M coincides with the union of the sets of types of
its approximants P ∈A(M). This will give an Approximation Theorem for the
filter model of next section.

14.1.15. Theorem. Γ ⊢M : A ⇔ ∃P ∈A(M).Γ ⊢ P : A.

For example since for all n λf.fn⊥ is an approximant of Y we have that all
types of the shape (⊤→A1) ∩ . . . ∩ (An−1→An)→An can be derived for Y.

Finally the question whether an intersection type is inhabited is undecidable.

14.1.16. Theorem. The set {A∈TT | ∃M ∈Λø ⊢M : A} is undecidable.
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14.2. The filter model

14.2.1. Definition. (i) A complete lattice (D,⊑) is a partial order which has
arbitrary least upper bounds (sup’s) (and hence has arbitrary inf’s).

(ii) A subset Z ⊆ D is directed if Z 6= ∅ and

∀x, y ∈Z∃z ∈Z.x, y ⊑ z.

(iii) An element c∈D is compact (in the literature also called finite) if for
each directed Z ⊆ D one has

c ⊑ Z ⇒ ∃z ∈Z.c ⊑ z.

Let K(D) denote the set of compact elements of D.

(iv) A complete lattice is ω-algebraic if K(D) is countable, and for each d∈D,
the set K(d) = {c∈K(D) | c ⊑ d} is directed and d = K(d).

(v) Let (D,⊑) be an ω-algebraic complete lattice. The Scott topology on D
contains as open sets the U ⊆ D such that

(1) d∈U & d ⊑ e ⇒ e∈U ;

(2) if Z ⊆ D is directed then Z ∈U ⇒ ∃z ∈Z.z ∈U.
(vi) If D, E are ω-algebraic complete lattices, then [D→E ] denotes the set of

continuous maps from D to E . This set can be ordered pointwise

f ⊑ g ⇔ ∀d∈D.f(d) ⊑ g(d)

and 〈[D→E ],⊑〉 is again an ω-algebraic lattice.

(vii) The category ALG is the category whose objects are the ω-algebraic
complete lattices and whose morphisms are the (Scott) continuous functions.

14.2.2. Definition. (i) A filter over TT = TT
A⊤
∞

∩ is a non-empty set X ⊆ TT such
that

(1) A∈X & A ≤ B ⇒ B ∈X;

(2) A,B ∈X ⇒ (A ∩B)∈X.

(ii) F denotes the set of filters over TT.

14.2.3. Definition. (i) If X ⊆ TT is non-empty, then the filter generated by X,
notation ↑X, is the least filter containing X. Note that

↑X = {A | ∃n≥1∃B1 . . . Bn ∈X.B1 ∩ . . . ∩Bn ≤ A}.

(ii) A principal filter is of the form ↑{A} for some A∈TT. We shall denote
this simply by ↑A. Note that ↑A = {B | A ≤ B}.

14.2.4. Proposition. (i) F = 〈F ,⊆〉 is an ω-algebraic complete lattice.

(ii) F has as bottom element ↑⊤ and as top element TT.

(iii) The compact elements of F are exactly the principal filters.
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14.2.5. Definition. Let D be an ω-algebraic lattice and let

F : D→[D→D]

G : [D→D]→D

be Scott continuous. D is called a reflexive via F,G if F ◦G = id[D→D].

A reflexive element of ALG is also a λ-model in which the term interpretation
is naturally defined as follows (see Barendregt [1984], Section 5.4).

14.2.6. Definition (Interpretation of terms). LetD be reflexive via F,G.
(i) A term environment in D is a map ρ : Var→D.
(ii) If ρ is a term environment and d∈D, then ρ(x := d) is the term

environment ρ′ defined by

ρ′(y) = ρ(y) if y 6≡ x;
ρ′(x) = d.

(iii) Given a term environment ρ, the interpretation [[ ]]ρ : Λ→D is defined as
follows.

[[x]]Dρ = ρ(x);

[[MN ]]Dρ = F [[M ]]Dρ [[N ]]Dρ ;

[[λx.M ]]Dρ = G(λλd∈D.[[M ]]Dρ(x:=d)).

(iv) The statement M = N , for M,N untyped lambda terms, is true in D,
notation D |= M = N iff

∀ρ∈EnvD.[[M ]]Dρ = [[N ]]Dρ .

14.2.7. Theorem. Let D be reflexive via F,G. Then D is a λ-model, in particular
for all M,N ∈Λ

D |= (λx.M)N = M [x: = N ].

14.2.8. Proposition. Define maps F : F→[F→F ] and G : [F→F ]→F by

F (X)(Y ) = ↑{B | ∃A∈Y.(A→B)∈X}
G(f) = ↑{A→B | B ∈ f(↑A)}.

Then F is reflexive via F,G. Therefore F is a λ-model.

An important property of the λ-model F is that the meaning of a term is
the set of types which are deducible for it.

14.2.9. Theorem. For all λ-terms M one has

[[M ]]Fρ = {A | ∃Γ |= ρ.Γ ⊢M : A},

where Γ |= ρ iff for all (x:B)∈Γ one has B ∈ ρ(x).
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Lastly we notice that all continous functions are representable.

14.2.10. Theorem.

[F→F ] = {f : F→F | f is representable},

where f ∈F→F is called representable iff for some X ∈F one has

∀Y ∈F .f(Y ) = F (X)(Y ).

14.3. Completeness of type assignment

14.3.1. Definition (Interpretation of types). Let D be reflexive via F,G and
hence a λ-model. For F (d)(e) we also write (as usual) d · e.

(i) A type environment in D is a map ξ : A∞→P(D).
(ii) For X,Y ∈P(D) define

X→Y = {d∈D | d ·X ⊆ Y } = {d∈D | ∀x∈X.d · x∈Y }.

(iii) Given a type environment ξ, the interpretation [[ ]]ξ : TT→P(D) is defined
as follows.

[[⊤]]Dξ = D;

[[α]]Dξ = ξ(α), for α∈A∞;

[[A→B]]Dξ = [[A]]Dξ →[[B]]Dξ ;

[[A ∩B]]Dξ = [[A]]Dξ ∩ [[B]]Dξ .

14.3.2. Definition (Satisfaction). (i) Given a λ-model D, a term environment
ρ and a type environment ξ one defines the following.

D, ρ, ξ |= M : A ⇔ [[M ]]Dρ ∈ [[A]]Dξ .

D, ρ, ξ |= Γ ⇔ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii) Γ |= M : A ⇔ ∀D, ρ, ξ.[D, ρ, ξ |= Γ ⇒ ρ, ξ |= M : A].

14.3.3. Theorem (Soundness).

Γ ⊢M : A ⇒ Γ |= M : A.

14.3.4. Theorem (Completeness).

Γ |= M : A ⇒ Γ ⊢M : A.

The completeness proof is an application of the λ-model F , see Barendregt et
al. [1983].
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Chapter 15

The Systems λ
T∩ and λ

T
∩⊤ 16.10.2006:1032

Intersection types are syntactic objects forming a free algebra TT, which is
generated from a set of atoms A, using the operators → and ∩. Postulating
axioms and rules an intersection type theory results, which characterizes a pre-
order ≤T on TT with ∩ as set intersection, giving for two elements a greatest
lower bound (glb). The class of these theories is abbreviated1 as TT.

Taking into account the intuitive meaning of→ as function space constructor
one usually requires that the resulting equivalence relation =T is a congruence.
Then we speak of a compatible type theory, having a corresponding type structure

〈S,≤,∩,→〉 = 〈TT/=T ,≤,∩,→〉.

The collection of type structures is denoted by TS. Each type structure can
be seen as coming from a compatible type theory and compatible type theories
and type structures are basically the same. In the present Part III of this book
both these syntactic and semantic aspects will be exploited.

TT ⊤ is a subset of TT, the set of top type theories, where the set of atoms
A has a top element ⊤. Similarly a top intersection type structure TS⊤ is of
the form 〈S,≤,∩,→,⊤〉.

The various type theories (and type structures) are introduced together in
order to give reasonably uniform proofs of their properties as well of those of
the corresponding type assignment systems and filter models.

Given a (top) type theory T , one can define a corresponding type assignment
system. These type assignment systems will be studied extensively in later
chapters. We also introduce so-called filters, sets of types closed under intersection
∩ and preorder ≤. These play an important role in Chapter 17 to establish
equivalences of categories and in Chapter 18 to build λ-models.

In Section 15.1 we define the notion of type theory and introduce 13 specific
examples, including basic lemmas for these. In Section 15.2 the type assignment
systems are defined. In Section 15.3 we discuss intersection type structures and
introduce specific categories of lattices and type structures to accommodate
these. Finally in Section 15.4 the filters are defined.

1Since all type theories in Part III of this book are using the intersection operator, we keep
this implicit and often simply speak about (top) type theories, leaving ‘intersection’ implicit.

19



20 CHAPTER 15. THE SYSTEMS λT∩ AND λT
∩⊤ 16.10.2006:1032

15.1. Type theories

As in Chapter 14 we will use as syntactic types TT = TTA
∩ defined by

TT = A | TT→TT | TT ∩ TT

as abstract syntax. This time we will use various sets of atoms A.

15.1.1. Definition. (i) An intersection type theory over a set of type atoms A

is a set of judgements T of the form A ≤ B (to be read: A is a subtype of B),
with A,B ∈TTA

∩, satisfying the following axioms and rules.

(refl) A ≤ A

(inclL) A ∩B ≤ A
(inclR) A ∩B ≤ B

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(trans)
A ≤ B B ≤ C

A ≤ C

This means that e.g. (A ≤ A)∈T and (A ≤ B), (B ≤ C)∈T ⇒ (A ≤ C)∈T ,
for all A,B,C.

(ii) A top intersection type theory is an intersection type theory with an
element ⊤∈TT for which one can derive

(⊤) A ≤ ⊤

(iii) The notion ‘(top) intersection type theory’ will be abbreviated as ‘(top)
type theory’, as the ‘intersection’ part is default.

(iv) TT stands for the set of type theories and TT ⊤ for that of top type
theories.

(v) If T ∈TT(⊤) over A, then we also write TTT for TTA
∩.

In this and the next section T ranges over elements of TT(⊤). Most of them
have some extra axioms or rules, the above set being the minimum requirement.
For example the theory BCD over A = A

⊤
∞, defined in Chapter 14 is a TT ⊤

and has the extra axioms (⊤→) and (→∩) and rule (→).

15.1.2. Notation. Let T ∈TT. We write the following.
(i) A ≤T B or ⊢T A ≤ B for (A ≤ B)∈T .
(ii) A =T B for A ≤T B ≤T A.
(iii) A <T B for A ≤ B & A 6=T B.
(iv) If there is little danger of confusion and T is clear from the context, then

we will write ≤,=, < for respectively ≤T ,=T , <T .
(v) We write A ≡ B for syntactic identity. E.g. A ∩ B ≡ A ∩ B, but

A ∩B 6≡ B ∩A.
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15.1.3. Lemma. For any T one has A ∩B =T B ∩A.

Proof. By (inclL), (inclR) and (glb).

15.1.4. Definition. T is called compatible iff the following rule holds.

(→=)
A = A′ B = B′

(A→B) = (A′→B′)

This means A =T A′ & B =T B′ ⇒ (A→B) =T (A′→B′). One way to insure
this is to adopt (→=) as rule determining T .

15.1.5. Remarks. (i) Let T be compatible. Then by Lemma 15.1.3 one has

(A ∩B)→C = (B ∩A)→C.

(ii) The rule (glb) implies that the following rule is admissible.

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′

A T ∈TT can be seen as a structure with a pre-order

T = 〈TT,≤,∩,→〉.

This means that ≤ is reflexive and transitive, but not necessarily anti-symmetric

A ≤T B & B ≤T A 6⇒ A =T B.

If T is compatible one can go over to equivalence classes and obtain a type
structure

T /=T = 〈TT/=T ,≤,∩,→〉.
If moreover T ∈TT ⊤, then T /=T has top [⊤]. In this structure A ∩ B is
inf{A,B}, the greatest lower bound of A and B. If T is also compatible, then
→ can be properly defined on the equivalence classes. This will be done in
Section 15.3.

Specific intersection type theories

Now we will construct several, in total thirteen, type theories that will play an
important role in later chapters, by introducing the following axiom schemes,
rule schemes and axioms. Only two of them are non-compatible, so we obtain
eleven type structures.

In the following ϕ, ω and ⊤ are distinct atoms differing from those in A∞.

15.1.6. Notation. We introduce names for axiom(scheme)s and rule(scheme)s
in Figure 15.1. Using these names a list of well-studied type structures can
be specified in Figure 15.2 as the set of judgements axiomatized by mentioned
rule(scheme)s and axiom(scheme)s.
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Axioms

(ωScott) (⊤→ω) = ω

(ωPark) (ω→ω) = ω

(ωϕ) ω ≤ ϕ
(ϕ→ω) (ϕ→ω) = ω

(ω→ϕ) (ω→ϕ) = ϕ

(I) (ϕ→ϕ) ∩ (ω→ω) = ϕ

Axiom schemes

(⊤) A ≤ ⊤
(⊤→) ⊤ ≤ (A→⊤)

(⊤lazy) (A→B) ≤ (⊤→⊤)

(→∩) (A→B) ∩ (A→C) ≤ A→B ∩ C
(→∩=) (A→B) ∩ (A→C) = A→B ∩ C

Rule schemes

(→)
A′ ≤ A B ≤ B′

(A→B) ≤ (A′→B′)

(→=)
A′ = A B = B′

(A→B) = (A′→B′)

Figure 15.1: Possible Axioms and Rules concerning ≤.

15.1.7. Definition. In Figure 15.2 a collection of TTs is defined. For each
name T a set of atoms AT and a set of rules and axiom(scheme)s are given.
The type theory T is the smallest set of judgements of the form A ≤ B
with A,B ∈TTT = TTAT

∩ which is closed under the axiom(scheme)s and the
rule(scheme)s of Definition 15.1.1 and the corresponding ones in Figure 15.2.

15.1.8. Remark. (i) Note that CDS and CD are non-compatible, while the
other eleven are compatible.

(ii) The first ten type theories of Figure 15.2 belong clearly to TT ⊤. In
Lemma 15.1.14(i) we will see that also HL∈TT ⊤ with ϕ as top. Instead CDS
and CD do not belong to TT ⊤, as shown in Lemma 15.1.14(ii) and (iii).

In this list the given order is logical, rather than historical, and some of
the references define the models directly, others deal with the corresponding
filter models (see Sections 17 and 18): Scott [1972], Park [1976], Coppo et
al. [1987], Honsell and Ronchi Della Rocca [1992], Dezani-Ciancaglini et al.
[2005], Barendregt et al. [1983], Abramsky and Ong [1993], Plotkin [1993],
Engeler [1981], Coppo et al. [1979], Honsell and Lenisa [1999], Coppo et al.
[1981], Coppo and Dezani-Ciancaglini [1980]. These theories are denoted by
names (respectively acronymes) of the author(s) who have first considered the
λ-model induced by such a theory.
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T A
T Rules Axiom Schemes Axioms

Scott {⊤, ω} (→) (→∩), (⊤), (⊤→) (ωScott)
Park {⊤, ω} (→) (→∩), (⊤), (⊤→) (ωPark)
CDZ {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ϕ→ω), (ω→ϕ)
HR {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ϕ→ω), (I)
DHM {⊤, ϕ, ω} (→) (→∩), (⊤), (⊤→) (ωϕ), (ω→ϕ), (ωScott)
BCD A⊤

∞ (→) (→∩), (⊤), (⊤→)

AO {⊤} (→) (→∩), (⊤) (⊤lazy)

Plotkin {⊤, ω} (→=) (⊤) −
Engeler A

⊤
∞ (→=) (→∩=), (⊤), (⊤→) −

CDS A
⊤
∞ − (⊤) −

HL {ϕ, ω} (→) (→∩) (ωϕ), (ω→ϕ), (ϕ→ω)

CDV A∞ (→) (→∩) −
CD A∞ − − −

Figure 15.2: Various type theories

The expressive power of intersection types is remarkable. This will become
apparent when we will use them as a tool for characterizing properties of λ-terms
(see Sections 19.2 and 18.3), and for describing different λ-models (see Section
18). Much of this expressive power comes from the fact that they are endowed
with a preorder relation, ≤, which induces, on the set of types modulo =, the
structure of a meet semi-lattice with respect to ∩. This appears natural when
we think of types as subsets of a domain of discourseD, which is endowed with a
(partial) application · : D×D→D, and interpret ∩ as set-theoretic intersection,
≤ as set inclusion, and give → the realizability interpretation.

[[A]] ⊆ D

A ≤ B ⇔ [[A]] ⊆ [[B]]

[[A ∩B]] = [[A]] ∩ [[B]]

[[A→B]] = [[A]]→[[B]] = {d∈D | d · [[A]] ⊆ [[B]]}.

This semantics, due to Scott, will be studied in Section 19.1.
The type ⊤→⊤ is the set of functions which applied to an arbitrary element

return again an arbitrary element. In that case axiom (⊤→) expresses the fact
that all the objects in our domain of discourse are total functions, i.e. that ⊤
is equal to A→⊤, hence A→⊤ = B→⊤ for all A,B (Barendregt et al. [1983]).
If now we want to capture only those terms which truly represent functions,
as we do for example in the lazy λ-calculus, we cannot assume axiom (⊤→).
One still may postulate the weaker property (⊤lazy) to make all functions total
(Abramsky and Ong [1993]). It simply says that an element which is a function,
because it maps A into B, maps also the whole universe into itself.
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In Figure 15.3 below consider ⊢T
∩⊤ for the ten type theories above the

horizontal line and ⊢T∩ for the other three. Define T1 ⊆ T2 as

∀Γ,M,A. [Γ ⊢T1 M : A ⇒ Γ ⊢T2 M : A].

If this is the case we have connected T1 with an edge towards the higher
positioned T2. In Exercise 16.3.21 we will show that the edges denote strict
inclusions.
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Figure 15.3: Inclusion among some intersection type theories.

The intended interpretation of arrow types also motivates axiom (→∩),
which implies that if a function maps A into B, and the same function maps
also A into C, then, actually, it maps the whole A into the intersection between
B and C (i.e. into B ∩ C), see Barendregt et al. [1983].

Rule (→) is again very natural in view of the set-theoretic interpretation.
It implies that the arrow constructor is contravariant in the first argument and
covariant in the second one. It is clear that if a function maps A into B, and
we take a subset A′ of A and a superset B′ of B, then this function will map
also A′ into B′, see Barendregt et al. [1983].

The rule (→∩=) is similar to the rule (→∩). It capture properties of the
graph models for the untyped lambda calculus, see Plotkin [1975] and Engeler
[1981], as we shall discuss in Section 19.3.

In order to capture aspects of the λI-calculus we introduce TTs without an
explicit mention of a top.

The remaining axioms express peculiar properties of D∞-like inverse limit
models, see Barendregt et al. [1983], Coppo et al. [1984], Coppo et al. [1987],
Honsell and Ronchi Della Rocca [1992], Honsell and Lenisa [1993], Alessi,
Dezani-Ciancaglini and Honsell [2004]. We shall discuss them in more detail in
Section 19.3.

Some classes of type theories

Now we will consider some classes of TT. In order to do this, we list the relevant
defining properties.

15.1.9. Definition. We define special subclasses of TT.
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Class Defining axiom(-scheme)(s) or rule

graph (→=), (→∩=), (⊤)

lazy (→), (→∩), (⊤), (⊤lazy)

natural (→), (→∩), (⊤), (⊤→)

proper (→), (→∩)

15.1.10. Notation. The sets of graph, lazy, natural and proper type theories
are denoted by respectively GTT⊤, LTT⊤ NTT⊤ and PTT.

15.1.11. Remark. The type theories of Figure 15.2 are classified as follows.

non compatible CD,CDS

GTT⊤ Plotkin,Engeler

LTT⊤ AO

NTT⊤ Scott, Park,CDZ,HR,DHM,BCD

PTT CDV,HL

15.1.12. Remark. One has NTT⊤ ⊆ LTT⊤ ⊆ GTT⊤ ⊆ TT and
LTT⊤ ⊆ PTT ⊆ TT. These inclusions are sharp.

Some properties about specific TTs

Results about proper type theories

15.1.13. Proposition. Let T be a proper type theory. Then we have

(i) (A→B) ∩ (A′→B′) ≤ (A ∩A′)→(B ∩B′);

(ii) (A1→B1) ∩ . . . ∩ (An→Bn) ≤ (A1 ∩ . . . ∩An)→(B1 ∩ . . . ∩Bn);

(iii) (A→B1) ∩ . . . ∩ (A→Bn) = A→(B1 ∩ . . . Bn).

Proof. (i) (A→B) ∩ (A′→B′) ≤ ((A ∩A′)→B) ∩ ((A ∩A′)→B′)

≤ (A ∩A′)→(B ∩B′),
by respectively (→) and (→∩).

(ii) Similarly (i.e. by induction on n>1, using (i) for the induction step).

(iii) By (ii) one has (A→B1)∩ . . .∩ (A→Bn) ≤ A→(B1 ∩ . . . Bn). For ≥ use
(→) to show that A→(B1 ∩ . . . ∩Bn) ≤ (A→Bi), for all i.

It follows that the mentioned equality and inequalities hold for Scott,Park,CDZ,
HR,DHM,BCD,AO,HL and CDV.
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Results about the type theories of Figure 15.2

15.1.14. Lemma. (i) ϕ is the top and ω the bottom element in HL.
(ii) CDV has no top element.
(iii) CD has no top element.

Proof. (i) By induction on the generation of TTHL one shows that ω ≤ A ≤ ϕ
for all A∈TTHL.

(ii) If α is a fixed atom and

Bα := α | Bα ∩ Bα

and A∈Bα, then one can show by induction on the generation of ≤CDV that
A ≤CDV B ⇒ A∈Bα. Hence if α ≤CDV B, then B ∈Bα. Since Bα1 and Bα2

are disjoint when α1 and α2 are two different atoms, we conclude that CDV
has no top element.

(iii) Similar to (ii).

15.1.15. Remark. By the above lemma ϕ turns out to be the top element in
HL. But we will not use this and therefore denote it by the name ϕ and not ⊤.

In the following lemmas 15.1.16-15.1.20 we study the positions of the atoms
ω, and ϕ in the compatible TTs introduced in Figure 15.2. The principal result
is that ω < ϕ in HL and, as far as applicable,

ω < ϕ < ⊤,

in the theories Scott,Park,CDZ,HR,DHM and Plotkin.

15.1.16. Lemma. Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,Engeler} be as de-
fined in Figure 15.2. Define inductively the following collection of types

B := ⊤ | TTT→B | B ∩ B

Then B = {A∈TTT | A =T ⊤}.

Proof. By induction on the generation of A ≤T B one proves that B is closed
upwards. This gives ⊤ ≤ A ⇒ A∈B.

By induction on the definition of B one shows, using (⊤→) and (→), that
A∈B ⇒ ⊤ ≤ A.

Therefore
A =T ⊤ ⇔ ⊤ ≤ A ⇔ A∈B.

15.1.17. Lemma. For T ∈ {AO,Plotkin} define inductively

B := ⊤ | B ∩ B

Then B = {A∈TTT | A =T ⊤}, hence ⊤→⊤ 6=T ⊤.
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Proof. Similar to the proof of 15.1.14, but easier.

15.1.18. Lemma. For T ∈ {CDZ,HR,DHM} define by mutual induction

B = ϕ | ⊤ | TTT→B | H→TTT | B ∩ B
H = ω | B→H | H ∩ TTT | TTT ∩H

Then

ϕ ≤ B ⇒ B ∈B,
A ≤ ω ⇒ A∈H.

Proof. By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) ⇒ (B ∈H ⇒ A∈H).

From this the assertion follows immediately.

15.1.19. Lemma. We work with the theory HL.
(i) Define by mutual induction

B = ϕ | H→B | B ∩ B
H = ω | B→H | H ∩ TT | TT ∩H

Then
B = {A∈TTHL | A =HL ϕ};
H = {A∈TTHL | A =HL ω}.

(ii) ω 6=HL ϕ and hence ω <HL ϕ.

Proof. (i) By induction on ≤T one shows

A ≤ B ⇒ (A∈B ⇒ B ∈B) & (B ∈H ⇒ A∈H).

This gives
(ϕ ≤ B ⇒ B ∈B) & (A ≤ ω ⇒ A∈H).

By simultaneous induction on the generation of B and H one shows, using that
ω is the bottom element of HL, by Lemma 15.1.14(i),

(B ∈B ⇒ B = ϕ) & (A∈H ⇒ A = ω).

Now the assertion follows immediately.
(ii) By (i).

15.1.20. Proposition. In HL we have ω < ϕ and as far as applicable we have
for the other systems of Figure 15.2

ω < ϕ < ⊤.
More precisely,

(i) ω ≤ ϕ and ω 6= ϕ in HL.

In all other systems

(ii) ω ≤ ϕ, ω ≤ ⊤, ϕ ≤ ⊤;

(iii) ω 6= ϕ, ω 6= ⊤, ϕ 6= ⊤.
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Proof. (i) By (ωϕ) and Lemma 15.1.19.
(ii) By (ωϕ) and (⊤).
(iii) By Lemmas 15.1.16-15.1.18.

15.2. Type assignment

Assignment of types from type theories

In this subsection we define for a T in TT a type assignment system λT∩ , that
assigns to untyped lambda terms a (possibly empty set of) types in TTT . For a
T in TT ⊤ we also define a type assignment system λT

∩⊤ .

15.2.1. Definition. (i) A T -statement is of the form M : A with the subject
an untyped lambda term M ∈Λ and the predicate a type A∈TTT .

(ii) A T -declaration is a T -statement of the form x : A.
(iii) A T -basis Γ is a finite set of T -declarations, with all variables distinct.
(iv) A T -assertion is of the form Γ ⊢ M : A, where M : A is a T -statement

and Γ is a T -basis.

15.2.2. Definition. (i) The (basic) type assignment system λT∩ derives T -as-
sertions by the following axioms and rules.

(Ax) Γ ⊢ x:A if (x:A∈Γ)

(→I)
Γ, x:A ⊢M : B

Γ ⊢ λx.M : A→B

(→E)
Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

(∩I)
Γ ⊢M : A Γ ⊢M : B

Γ ⊢M : A ∩B

(≤)
Γ ⊢M : A A ≤T B

Γ ⊢M : B

Figure 15.4: Basic type assignment system λT∩ .

(ii) If T has a top element ⊤, then the ⊤-type assignment system λT
∩⊤ is

defined by adding the extra axiom to the basic system

(⊤-universal) Γ ⊢M : ⊤

Figure 15.5: The extra axiom for the top assignment system λT
∩⊤

15.2.3. Notation. (i) We write Γ ⊢T
∩⊤ M : A or Γ ⊢T∩ M : A if Γ ⊢ M : A is

derivable in λT
∩⊤ or λT∩ respectively.

(ii) The assertion ⊢T
∩⊤ may also be written as ⊢T , ⊢∩⊤ or simply ⊢ if by the

context there is little danger of confusion. Similarly, ⊢T∩ may be written as ⊢T ,
⊢∩ or ⊢.
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(iii) λT
∩(⊤) may be denoted by λ∩(⊤) .

15.2.4. Example. Let T ∈TT ⊤ with A,B ∈TTT . Write W ≡ (λx.xx).

(i) ⊢T∩ W : A ∩ (A→B)→B.
⊢T
∩⊤ WW : ⊤, but WW does not have a type in λT∩ .

(ii) Let M ≡ KI(WW ). Then ⊢M : (A→A) in λT
∩⊤ .

(iii) (van Bakel) Let M ≡ λyz.Kz(yz) and N ≡ λyz.z. Then M →→β N . We
have ⊢T∩ N : B→A→A, ⊢T

∩⊤ M : B→A→A, but 6⊢T∩ M : B→A→A.

(iv) 6⊢CD
∩ I : ((A ∩B)→C)→((B ∩A)→C).

In general the type assignment systems λT
∩⊤ will be used for the the λK-

calculus and λT∩ for the λI-calculus.

15.2.5. Definition. Define the rules (∩E)

Γ ⊢M : (A ∩B)

Γ ⊢M : A

Γ ⊢M : (A ∩B)

Γ ⊢M : B

Notice that these rules are derived in λT∩ , λT
∩⊤ for all T .

15.2.6. Lemma. In λT∩ one has the following.

(i) Γ ⊢M : A ⇒ FV(M) ⊆ dom(Γ).

(ii) Γ ⊢M : A ⇒ (Γ ↾ FV(M)) ⊢M : A.

(iii) If in T with top ⊤ one has ⊤ = ⊤→⊤, then

FV(M) ⊆ dom(Γ) ⇒ Γ ⊢M : ⊤.

Proof. (i), (ii) By induction on the derivation.

(iii) By induction on M .

Notice that Γ ⊢M : A⇒ FV(M) ⊆ dom(Γ) does not hold in λT
∩⊤ , since by

axiom (⊤ universal) we have ⊢T M : ⊤ for all T and all M .

15.2.7. Remark. For the type theories of Figure 15.2 with ⊤ we have defined
the type assignment systems λT∩ . For those system having a top, there is
also the type assignment system λT

∩⊤ . We will use for the type theories in
Figure 15.2 only one of the two possibilities. For the first ten systems, i.e.
Scott,Park,CDZ,HR, DHM, BCD,AO, Plotkin,Engeler and CDS, we only
consider λT

∩⊤ . For the other 3 systems, i.e. HL,CDV and CD, we will only

consider λT∩ . In fact by Lemma 15.1.14(ii) and (iii) we know that CDV and CD
have no top at all. The system HL has a top, but we will not use it, as we do
not know interesting properties of λHL

∩⊤ . So, for example, ⊢Scott will be always

⊢Scott
∩⊤ , whereas ⊢HL will be always ⊢HL

∩ . The reader will be reminded of this.

We do not know wether there exist TTs where the interplay of λT∩ and λT
∩⊤

yields results of interest.
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Admissible rules

15.2.8. Proposition. The following rules are admissible in λT
∩(⊤).

(weakening)
Γ ⊢M : A x /∈ Γ

Γ, x:B ⊢M : A
;

(strengthening)
Γ, x:B ⊢M : A x /∈FV (M)

Γ ⊢M : A
;

(cut)
Γ, x:B ⊢M : A Γ ⊢ N : B

Γ ⊢ (M [x := N ]) : A
;

(≤-L)
Γ, x:B ⊢M : A C ≤T B

Γ, x:C ⊢M : A
;

(→L)
Γ, y:B ⊢M : A Γ ⊢ N : C x /∈Γ

Γ, x:(C→B) ⊢ (M [y := xN ]) : A
;

(∩L)
Γ, x:A ⊢M : B

Γ, x:(A ∩ C) ⊢M : B
.

Figure 15.6: Various admissible rules.

Proof. By induction on the structure of derivations.

Proofs later on in Part III will freely use the rules of the above proposition.

As we remarked earlier, there are various equivalent alternative presentations
of intersection type assignment systems. We have chosen a natural deduction
presentation, where T -bases are additive. We could have taken, just as well,
a sequent style presentation and replace rule (→E) with the three rules (→L),
(∩L) and (cut) occuring in Proposition 15.2.8, see Barbanera et al. [1995],
Barendregt and Ghilezan [n.d.]. Next to this we could have formulated the
rules so that T -bases “multiply”. Notice that because of the presence of the
type constructor ∩, a special notion of multiplication of T -bases can be given.

15.2.9. Definition (Multiplication of T -bases).

Γ ⊎ Γ′ = {x:A ∩B | x:A∈Γ and x:B ∈Γ′}
∪ {x:A | x:A∈Γ and x /∈ Γ′}
∪ {x:B | x:B ∈Γ′ and x /∈ Γ}.

Accordingly we define:

Γ ⊆+ Γ′ ⇔ ∃Γ′′.Γ ⊎ Γ′′ = Γ′.

For example, {x:A, y:B} ⊎ {x:C, z:D} = {x:A ∩ C, y:B, z:D}.
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15.2.10. Proposition. The following rules are admissible in all λT
∩(⊤).

(multiple weakening)
Γ1 ⊢M : A

Γ1 ⊎ Γ2 ⊢M : A

(relevant →E)
Γ1 ⊢M : A→ B Γ2 ⊢ N : A

Γ1 ⊎ Γ2 ⊢MN : B

(relevant ∩ I)
Γ1 ⊢M : A Γ2 ⊢M : B

Γ1 ⊎ Γ2 ⊢M : A ∩B

Proof. By induction on derivations.

In Exercise 16.3.17, it will be shown that we can replace rule (≤) with
other more perspicuous rules. This is possible as soon as we will have proved
appropriate “inversion” theorems for λT

∩(⊤) . For some very special theories, one
can even omit altogether rule (≤), provided the remaining rules are reformulated
“multiplicatively” with respect to T -bases, see e.g. Di Gianantonio and Honsell
[1993]. We shall not follow up this line of investigation.

In λT
∩(⊤) , assumptions are allowed to appear in the basis without any restric-

tion. Alternatively, we might introduce a relevant intersection type assignment
system, where only “minimal-base” judgements are derivable, (see Honsell and
Ronchi Della Rocca [1992]). Rules like (relevant →E) and (relevant ∩ I),
which exploit the above notion of multiplication of bases, are essential for this
purpose. Relevant systems are necessary, for example, for giving finitary logical
descriptions of qualitative domains as defined in Girard et al. [1989]. We will
not follow up this line of research either. See Honsell and Ronchi Della Rocca
[1992].

Special type assignment for call-by-value λ-calculus

We will study later the type theory EHR with A
EHR = {ν} and the extra rule

(→) and axioms (→∩) and

A→B ≤ ν.

The type assignment system λEHR
∩ν is defined by the axiom and rules of λT∩ in

Figure 15.4 with the extra axiom

(ν universal) Γ ⊢ (λx.M) : ν.

The type theory EHR has a top, namely ν, so one could consider it as an element
of TT ⊤. This will not be done. Axiom (ν-universal) is different from (⊤-
universal) in Definition 15.2.2. This type assignment system has one particular
application and will be studied in some exercises.
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15.3. Type structures

Intersection type structures

Remember that a type algebra A, see Definition ??, is of the form A = 〈|A|,→〉,
i.e. just an arbitrary set |A| with a binary operation → on it.

15.3.1. Definition. (i) A meet semi-lattice is a structure

M = 〈|M|,≤,∩〉,

such that M = 〈|M|,≤,∩〉 is a partial order, for all A,B ∈ |M| the element
A ∩ B (meet) is the greatest lower bound of A and B. MSL is the set of meet
semi-lattices.

(ii) A top meet semi-lattice is a similar structure

M = 〈|M|,≤,∩,⊤〉,

such that M = 〈|M|,≤,∩〉 is a MSL and ⊤ is the (unique) top of M. MSL⊤

is the set of top meet semi-lattices.

15.3.2. Definition. (i) An (intersection) type structure is a type algebra with
the additional structure of a meet semi-lattice

S = 〈|S|,→,≤,∩〉.

TS is the set of type structures. The relation ≤ and the operation → have a
priori no relation with each other, but in special structures this will be the case.

(ii) A top type structure is a type algebra that is also a top meet semi-lattice

S = 〈|S|,→,≤,∩,⊤〉.

TS⊤ is the set of top type structures.

Notation. (i) As ‘intersection’ is everywhere in this Part III, we will omit this
word and only speak about a type structure.

(ii) Par abus de language we also useA,B,C, . . . to denote arbitrary elements
of type structures and we write A∈S for A∈ |S|.

If T is a type theory that is not compatible, like CD and CDS, then →
cannot be defined on the equivalence classes. But if T is compatible, then one
can work on the equivalence classes and obtain a type structure in which ≤ is
a partial order.

15.3.3. Proposition. Let T be a compatible type theory. Then T induces a
type structure T /= defined as follows.

〈TTT /=T ,→,≤,∩〉,
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by defining on the =T -equivalence classes

[A]→[B] = [A→B]2;

[A] ∩ [B] = [A ∩B];

[A] ≤ [B] ⇔ A ≤T B.

If moreover T has a top ⊤, then T /= is a top type structure with [⊤] as top.

Proof. Here A,B,C range over TTT . Having realized this the rest is easy.
Rule (→=) is needed to ensure that → is well-defined.

The (top) type structure T / =, with T a type theory, is called a syntactical
(top) type structure. In Proposition 15.3.6 we show that every type structure
is isomorphic to a syntactical one.

Although essentially equivalent, type structures and type theories differ in
the following. In the theories the types are freely generated from a fixed set of
atoms and inequality can be controlled somewhat by choosing the right axioms
and rules (this will be exploited in Section 19.3). In type structures one has the
antisymmetric law A ≤ B ≤ A ⇒ A = B, which is in line with the common
theory of partial orders (this will be exploited in Chapter 17).

Now the notion of type assignment will also be defined for intersection type
structures. These structures arise naturally coming from algebraic lattices that
are used towards obtaining a semantics for untyped lambda calculus.

15.3.4. Definition. (i) Now let S ∈TS. The notion of a S-statement M : A,
a S-declaration x : A, a S-basis and a S-assertion Γ ⊢M : A is as in Definition
15.2.1, now for A∈S an element of the type structure S.

(ii) The notion Γ ⊢S∩ M : A is defined by the same set of axioms and rules
as in Figure 15.4 where now ≤S is the inequality of the structure S. The
assignment system λS

∩⊤ has (⊤-universal) as extra axiom.

The following result shows that for syntactic type structures type assignment
is essentially the same as the one coming from the corresponding lambda theory.

15.3.5. Proposition. Let T ∈TT(⊤) and let [T ] = 〈T / =T ,≤,∩,→(,⊤)〉 its
corresponding (top) type structure. For a type A∈T write its equivalence class
as [A]∈ [T ]. For Γ = {x1 : B1, . . . , xn : Bn} a T -basis write [Γ] = {x1 :
[B1], . . . , xn : [Bn]}, a [T ]-basis. Then

Γ ⊢T
∩(⊤) M : A ⇔ [Γ] ⊢[T ]

∩(⊤) M : [A].

Proof. (⇒) By induction on the derivation of Γ ⊢T M : A. (⇐) Show by
induction on the derivation of [Γ] ⊢[T ] M : [A] that for all A′ ∈ [A] and Γ′ =
{x1 : B′

1, . . . , xn : B′
n}, with B′

i ∈ [Bi] for all 1 ≤ i ≤ n, one has

Γ′ ⊢T M : A′.

2Here we misuse notation in a suggestive way, by using the same notation → for equivalence
classes as for types.
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Using this result we could have defined type assignment first for type struc-
tures and then for compatible type theories via translation to the type assign-
ment for its corresponding syntactical type structure, essentially by turning the
previous result into a definition.

15.3.6. Proposition. Every type structure is isomorphic to a syntactical one.

Proof. For a type structure S, define TS as follows. Take A = {c | c∈S}.
Define ≤TS on TT = TTA

∩ as follows. We make every element of TT equal to an
element of A by requiring

(a ∩ b) =TS a ∩ b, & (a→b) =TS a→b.

This means of course (a∩b) ≤TS a ∩ b, (a∩b) ≥TS a ∩ b, etcetera. We moreover
require

a ≤S b

a ≤TS b
.

As a consequence a ≤TS ⊤ if S is a top type structure. The axioms and rules
(refl), (trans), (→=), (inclL), (inclR) and (glb) also hold automatically. Then
S ∼= TS/ =. This can be seen as follows. Define f : S→TS/ = by f(a) = [a].
For the inverse, first define g : TTA

∩→S by

g(c) = c;

g(A→B) = g(A)→g(B);

g(A ∩B) = g(A) ∩ g(B).

Then show A ≤TS B ⇒ g(A) ≤ g(B). Finally set f−1([A]) = g(A), which is
well defined. It is easy to show that f, f−1 constitute an isomorphism.

15.3.7. Remark. Each of the eleven compatible type theories T in Figure 15.2
may be considered as the intersection type structure T /=, also denoted as T .
For example Scott can be a name, a type theory or a type structure.

Categories of meet-semi lattices and type structures

For use in Chapter 17 we will introduce some categories related to given classes
of type structures.

15.3.8. Definition. (i) The category MSL has as objects at most countable
meet semi-lattices and as morphisms maps f :M→M′, preserving ≤,∩:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B).

(ii) The category MSL⊤ is as MSL, but based on top meet semi-lattices.
So now also f(⊤) = ⊤′ for morphisms.

The difference between MSL and MSL⊤ is that, in the MSL case, the top
element is either missing or not relevant (not preserved by morphisms).
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15.3.9. Definition. (i) The category TS has as objects the at most countable
type structures and as morphisms maps f : S→S ′, preserving ≤,∩,→:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B);

f(A→B) = f(A)→′f(B).

(ii) The category TS⊤ is as TS, but based on top type structures. Now also

f(⊤) = ⊤′

for morphisms.

15.3.10. Definition. We define four full subcategories of TS by specifying in
each case the objects.

(i) GTS⊤ with as objects the graph top type structures.
(ii) LTS⊤ with as objects the lazy top type structures.
(iii) NTS⊤ with as objects the natural top type structures.
(iv) PTS with as objects the proper type structures.

15.4. Filters

15.4.1. Definition. (i) Let T ∈TT and X ⊆ TTT . Then X is a filter over T if
the following hold.

(1) X is non-empty;

(2) A∈X & A ≤ B ⇒ B ∈X;

(3) A,B ∈X ⇒ A ∩B ∈X.

(ii) Write FT = {X ⊆ T | X is a filter over T }.

We loosely say that filters are non-empty sets of types closed under ≤ and ∩.

15.4.2. Definition. Let T ∈TT.
(i) For A∈TTT write ↑A = {B ∈TTT | A ≤ B}.
(ii) For a non-empty X ⊆ TTT define ↑X to be the least filter over TTT

containing X; it can be described explicitly by

↑X = {B ∈TTT | ∃n ≥ 1∃A1, . . . ,An ∈X.A1 ∩ . . . ∩An ≤ B}.

15.4.3. Remark. C ∈ ↑ {Bi | i∈I 6= ∅} ⇔ ∃I ⊆fin I.[I 6= ∅ &
⋂

i∈ I Bi ≤ C].

15.4.4. Proposition. Let T ∈TT ⊤.
(i) FT = 〈FT ,⊆〉 is a complete lattice, with for X ⊆ FT the sup is

X = ↑(∪X ), if X 6= ∅,
X = {⊤}, else.

(ii) For A∈TTT one has ↑A = ↑{A} and ↑A∈FT .
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(iii) For A,B ∈TTT one has ↑A ⊔ ↑B = ↑(A ∩B).
(iv) For X ∈FT one has

X = {↑A | A∈X}
= {↑A | ↑A ⊆ X}
=

⋃

{↑A | A∈X}

=
⋃

{↑A | ↑A ⊆ X}.

(v) {↑A | A∈TTT } is the set of finite elements of FT .

Proof. Easy.

15.4.5. Definition. Let T ∈TT. Then FT
s = FT ∪{∅} is the extension of FT

with the emptyset.

15.4.6. Proposition. Let T ∈TT.
(i) FT

s = 〈FT
s ,⊆〉 is a complete lattice, with for X ⊆ FS

s the sup is

X =

{

∅, if X = ∅ or X = {∅},
↑(∪X ), else .

(ii) For A∈TTT one has ↑A = ↑{A} and ↑A∈FT
s .

(iii) For A,B ∈TTT one has ↑A ⊔ ↑B = ↑(A ∩B).
(iv) For X ∈FT

s one has

X = {↑A | A∈X} = {↑A | ↑A ⊆ X}
=

⋃{↑A | A∈X} =
⋃{↑A | ↑A ⊆ X}.

(v) {↑A | A∈TTT } ∪ {∅} is the set of finite elements of FT
s .

Proof. Immediate.

15.4.7. Remark. The items 15.1.9-15.2.10 and 15.4.1-15.4.6 are about type the-
ories, but can be translated immediately to structures and if no→ are involved
to meet-semi lattices. For example Proposition 15.1.13 also holds for a proper
type structure, hence it holds for Scott,Park,CDZ,HR,DHM,BCD,AO,HL
and CDV considered as type structures. Also 15.1.14-15.1.20 immediately yield
corresponding valid statements for the corresponding type structures, though
the proof for the type theories cannot be translated to proofs for the type
structures because they are by induction on the syntactic generation of TT

or ≤. Also 15.2.4-15.2.10 hold for type structures, as follows immediately
from Propositions 15.3.5 and 15.3.6. Finally 15.4.1-15.4.6 can be translated
immediately to type structures and meet semi-lattices. Therefore in the follo-
wing chapters everywhere the type theories may be translated to type structures
(or if no → is involved to meet semi-lattices). In Chapter 17 we work directly
with meet semi-lattices and type structures and not with type theories, because
there a partial order is needed.
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15.5. Exercises 16.10.2006:1032

15.5.1. Show that Γ, x:⊤ ⊢T
∩⊤ M : A ⇒ Γ ⊢T

∩⊤ M : A.

15.5.2. Define the system K and the type assignment system λK∩ of Krivine [1990]
are CD and λCD

∩ , but with rule (≤) replaced by

(∩E)
Γ ⊢M : A ∩B

Γ ⊢M : A

Γ ⊢M : A ∩B
Γ ⊢M : B

Similarly K
⊤ and λK

⊤

∩⊤ are CDS and λCDS
∩⊤ , with (≤) replaced by (∩E).

Show that

(i) Γ ⊢K M : A ⇔ Γ ⊢CD
∩ M : A.

(ii) Γ ⊢K⊤ M : A ⇔ Γ ⊢CDS
∩⊤ M : A.

15.5.3. (i) Show that λx.xxx and (λx.xx)I are typable in system K.
(ii) Show that all closed terms in normal forms are typable in system K.

15.5.4. Show the following:

(i) ⊢K λz.KI(zz) : (A→B) ∩A→C→C.
(ii) ⊢K⊤ λz.KI(zz) : ⊤→C→C.
(iii) ⊢BCD

∩⊤ λz.KI(zz) : ⊤→(A→B ∩ C)→A→B.
15.5.5. For T a type theory, M,N ∈Λ and x /∈dom(Γ) show

(i) Γ ⊢T∩ M : A ⇒ Γ ⊢T∩ M [x: = N ] : A;

(ii) Γ ⊢T
∩⊤ M : A ⇒ Γ ⊢T

∩⊤ M [x: = N ] : A.

15.5.6. Show that
M is a closed term ⇒ ⊢Park

∩⊤ M : ω.

Later we will show the converse (Theorem 18.3.22).

15.5.7. Prove that for all types A∈TTAO there is an n such that

⊤n→⊤ ≤AO A.

15.5.8. Prove that if (ωϕ), (ϕ→ ω) and (ω → ϕ) are axioms in T , then for all
M in normal form {x1 : ω, . . . , xn : ω} ⊢T M : ϕ, where {x1, . . . , xn} ⊇
FV(M).

15.5.9. Let D = 〈D, ·〉 be an applicative structure, i.e. a set with an arbitrary
binary operation on it. For X,Y ⊂ D define

X → Y = {d∈D | ∀e∈X.d · e∈Y }.

Consider (P(D),→,⊆,∩, D), where P(D) is the power set of D, ⊆ and
∩ are the usual set theoretic notions and D is the top of P(D). Show

• (P(D),→,⊆,∩) is a proper type structure.

• D = D → D.

• (P(D),→,⊆,∩,D) is a natural type structure.
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Chapter 16

Basic Properties 16.10.2006:1032

This Chapter us on type theories but, by Remark 15.4.7, applies as well to type
structures. That is, everywhere T , TT and TT ⊤ may be replaced by S, TS
and TS⊤, respectively.

Let T be a type theory. We derive properties of ⊢T , where ⊢T stands for
⊢T∩ or ⊢T

∩⊤ . Whenever we need to require extra properties about T , this will be
stated explicitly. Often T will be one of the theories from Figure 15.2.

The properties that will be studied are inversion theorems that will make it
possible to predict when statements

Γ ⊢T M : A (1)

are derivable, in particular from what other statments. This will be done in
Section 16.1. Building upon this, in Section 16.2 conditions are given when
type assignment statements remain valid after reducing or expanding the M
according to β or η-rules.

16.1. Inversion theorems

In the style of Coppo et al. [1984] and Alessi et al. [2003], [2005] we shall
isolate special properties which allow to ‘reverse’ some of the rules of the
type assignment system ⊢T∩ , thereby achieving some form of ‘generation’ and
‘inversion’ properties. These state necessary and sufficient conditions when an
assertion Γ ⊢T M : A holds depending on the form of M and A, see Theorems
16.1.1 and 16.1.10.

16.1.1. Theorem (Inversion Theorem I). If ⊢ is ⊢T∩ , then the following statements
hold unconditionally; if it is ⊢T

∩⊤, then they hold under the assumption that

39
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A 6= ⊤ in (i) and (ii).

(i) Γ ⊢ x : A ⇔ Γ(x) ≤ A.
(ii) Γ ⊢MN : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[C1 ∩ . . . ∩ Ck ≤ A & ∀i∈{1, . . . , k}
Γ ⊢M : Bi→Ci & Γ ⊢ N : Bi].

(iii) Γ ⊢ λx.M : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& ∀i∈{1, . . . , k}.Γ, x:Bi ⊢M : Ci].

Proof. We only treat (⇒) in (i)-(iii), as (⇐) is trivial. Let first ⊢ be ⊢T∩ .
(i) By induction on derivations. We reason according which axiom or rule

has been used in the last step. Only axiom (Ax), and rules (∩I), (≤) could have
been applied. In the first case one has Γ(x) ≡ A. In the other two cases the
induction hypothesis applies.

(ii) By induction on derivations. By assumption on A and the shape of the
term the last applied step has to be rule (→E), (≤) or (∩I). In the first case
the last applied rule is

(→E)
Γ ⊢M : D→A Γ ⊢ N : D

.
Γ ⊢MN : A

We can take k = 1 and C1 ≡ A and B1 ≡ D. In the second case the last rule
applied is

(≤)
Γ ⊢MN : B B ≤ A

Γ ⊢MN : A
and the induction hypothesis applies. In the last case A ≡ A1∩A2 and the last
applied rule is

(∩I)
Γ ⊢MN : A1 Γ ⊢MN : A2

Γ ⊢MN : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej , with 1 ≤ i ≤ k, 1 ≤ j ≤ k′,
such that

Γ ⊢M : Bi→Ci, Γ ⊢ N : Bi,
Γ ⊢M : Dj→Ej , Γ ⊢ N : Dj ,
C1 ∩ . . . ∩ Ck ≤ A1, E1 ∩ . . . ∩ Ek′ ≤ A2.

Hence we are done, as C1 ∩ . . . ∩ Ck ∩ E1 ∩ . . . ∩ Ek′ ≤ A.
(iii) Again by induction on derivations. We only treat the case A ≡ A1 ∩A2

and the last applied rule is (∩I):

(∩I)
Γ ⊢ λx.M : A1 Γ ⊢ λx.M : A2

Γ ⊢ λx.M : A1 ∩A2
.

By the induction hypothesis there are Bi, Ci, Dj , Ej with 1 ≤ i ≤ k, 1 ≤ j ≤ k′
such that

Γ, x:Bi ⊢M : Ci, (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A1,
Γ, x:Dj ⊢M : Ej , (D1→E1) ∩ . . . ∩ (Dk′→Ek′) ≤ A2.

We are done, since (B1→C1)∩. . .∩(Bk→Ck)∩(D1→E1)∩. . .∩(Dk′→Ek′) ≤ A.

Now we prove (⇒) in (i)-(iii) for λT
∩⊤ .
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(i) The condition A 6= ⊤ implies that axiom (⊤ universal) cannot have been
used in the last step. Hence the reasoning above suffices.

(ii), (iii) The only interesting rule is (∩I). Condition A 6= ⊤ implies that we
cannot have A1 = A2 = ⊤. In case A1 6= ⊤ and A2 6= ⊤ the result follows as
above. The other cases are more easy.

Notice that as a consequence of this theorem the subformula property holds
for all λT

∩(⊤) .

16.1.2. Corollary (Subformula property). Assume Γ ⊢T
∩(⊤) M : A and let N

be a subterm of M . Then N is typable in an extension Γ+ = Γ, x1:B1, . . . , xn:Bn

in which also the variables {x1, . . . ,xn} = FV(N)−FV(M) get a type assigned.

Proof. If we have rule (⊤-universal) the statement is trivial. Otherwise if N
is a subterm of M , then we can write M ≡ C[N ]. The statement is proved by
induction on the structure of C[ ].

16.1.3. Proposition. We have for fresh y ( /∈dom(Γ)) the following.

∃B [Γ ⊢ N : B & Γ ⊢M [x: = N ] : A] ⇒
∃B [Γ ⊢ N : B & Γ, y:B ⊢M [x: = y] : A].

Proof. By induction on the structure of M .

Under some conditions (that will hold for many TTs, notably the ones
introduced in Section 15.1), the Inversion Theorem can be restated in a more
memorable form. This will be done in Theorem 16.1.10.

16.1.4. Definition. T is called β-sound if

∀k≥1∀A1, . . . ,Ak, B1, . . . ,Bk, C,D.

(A1→B1) ∩ . . . ∩ (Ak→Bk) ≤ (C→D) & D 6= ⊤ ⇒
C ≤ Ai1 ∩ . . . ∩Aip & Bi1 ∩ . . . ∩Bip ≤ D,
for some p ≥ 1 and 1 ≤ i1, . . . ,ip ≤ k.







(∗)

This definition immediately translates to type structures. The notion of β-
soundness is introduced to prove invertibility of the rule (→I), which is important
for the next section.

16.1.5. Lemma. Let T satisfy (⊤) and (⊤→). Suppose moreover that T is β-
sound. Then for all A,B

A→B = ⊤ ⇔ B = ⊤.

Proof. (⇒) ⊤→⊤ ≤ ⊤ = A→B, by assumption; hence ⊤ ≤ B (≤ ⊤), by
β-soundness. (⇐) By rule (⊤→).
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Let T be β-sound. Then A→B ≤ A′→B′ ⇒ A′ ≤ A & B ≤ B′ if B′ is
not the top element (but not in general).

In 16.1.6-16.1.8 we will show that all T ’s of Figures 15.2 are β-sound. In
these items ψ,ψi denote atoms.

16.1.6. Remark. Note that in a TT every type A can be written uniquely,
apart from the order, as

A ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck) (+),

i.e. an intersection of atoms (αi ∈A) and arrow types.

For some of our T the shape (+) in Remark 16.1.6 can be simplified.

16.1.7. Definition. For the type theories T of Figure 15.2 we define for each
A∈TTT its canonical form, notation cf(A), as follows.

(i) If T ∈ {BCD,AO,Plotkin,Engeler,CDS,CDV,CD}, then

cf(A) ≡ A.
(ii) If T ∈ {Scott,Park,CDZ,HR,DHM,HL} then the definition is by induction

on A. For an atom α the canonical form cf(α) depends on the type theory in
question; moreover the mapping cf preserves →,∩ and ⊤.

System T A cf(A)

Scott ω ⊤→ω
Park ω ω→ω
CDZ,HL ω ϕ→ω

ϕ ω→ϕ
HR ω ϕ→ω

ϕ (ω→ω) ∩ (ϕ→ϕ)
DHM ϕ ω→ϕ

ω ⊤→ϕ
All systems ⊤ ⊤
except HL

All systems B→C B→C
All systems B ∩ C cf(B) ∩ cf(C)

16.1.8. Theorem. All theories T of Figure 15.2 are β-sound.

Proof. We prove the following stronger statement (induction loading). Let

A ≤ A′,

cf(A) ≡ α1 ∩ . . . ∩ αn ∩ (B1→C1) ∩ . . . ∩ (Bk→Ck),

cf(A′) ≡ α′
1 ∩ . . . ∩ α′

n′ ∩ (B′
1→C ′

1) ∩ . . . ∩ (B′
k′→C ′

k′).

Then

∀j ∈{1, k′}.[Cj′ 6= ⊤ ⇒
∃p≥1∃i1, . . . ip ∈{1, k}.[B′

j ≤ Bi1 ∩ . . . ∩Bip & Ci1 ∩ . . . ∩ Cip ≤ C ′
j ]].

The proof of the statement is by induction on the generation of A ≤ A′. From
it β-soundness follows easily.
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16.1.9. Remark. From the Theorem it follows immediately that for the compatible
theories of Fig. 15.2 the corresponding type structures are β-sound.

16.1.10. Theorem (Inversion Theorem II). Of the following properties (i) holds
in general, (ii) provided that T is proper and A 6= ⊤ if ⊢ is ⊢T

∩⊤ and (iii)
provided that T is β-sound.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. The proof of each (⇐) is easy. So we only treat (⇒).

(i) If B 6= ⊤, then the conclusion follows from Theorem 16.1.1(i). If B = ⊤,
then the conclusion holds trivially.

(ii) Suppose Γ ⊢MN : A. Then by Theorem 16.1.1(ii) there are B1, . . . ,Bk,
C1, . . . ,Ck, with k ≥ 1, such that C1 ∩ . . . ∩ Ck ≤ A, Γ ⊢ M : Bi→Ci and
Γ ⊢ N : Bi for 1 ≤ i ≤ k. Hence Γ ⊢ N : B1 ∩ . . . ∩Bk and

Γ ⊢M : (B1→C1) ∩ . . . ∩ (Bk→Ck)
≤ (B1 ∩ . . . ∩Bk)→(C1 ∩ . . . ∩ Ck)
≤ (B1 ∩ . . . ∩Bk)→A,

by Lemma 15.1.13. So we can take B ≡ (B1 ∩ . . . ∩Bk).

(iii) Suppose Γ ⊢ (λx.M) : (B→C). Then Theorem 16.1.1(iii) applies and
we have for some k ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ B→C,
Γ, x:Bi ⊢M : Ci for all i.

If C = ⊤, then the assertion holds trivially, so let C 6= ⊤. Then by β-soundness
there are 1 ≤ i1, . . . ,ip ≤ k, p ≥ 1 such that

B ≤ Bi1 ∩ . . . ∩Bip ,

Ci1 ∩ . . . ∩ Cip ≤ C.

Applying (≤-L) we get

Γ, x:B ⊢M : Cij , 1 ≤ j ≤ p,
Γ, x:B ⊢M : Ci1 ∩ . . . ∩ Cip ≤ C.

We give a simple example which shows that in general rule (→E) cannot be
reversed, i.e. that if Γ ⊢MN : B, then it is not always true that there exists A
such that Γ ⊢M : A→B and Γ ⊢ N : A.

16.1.11. Example. Let T = Engeler, one of the intersection type theories of
Figure 15.2. Let Γ = {x:(ϕ0→ϕ1) ∩ (ϕ2→ϕ3), y:(ϕ0 ∩ ϕ2)}. Then one has
Γ ⊢T

∩⊤ xy : ϕ1 ∩ ϕ3. Nevertheless, it is not possible to find a type B such that

Γ ⊢T
∩⊤ x : B→(ϕ1 ∩ ϕ3) and Γ ⊢T

∩⊤ y : B. See Exercise ??.
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16.1.12. Remark. In general

Γ ⊢T (λx.M) : A 6⇒ ∃B,C.A = (B→C) & Γ, x:B ⊢T M : C.

A counterexample is ⊢BCD I : (α1→α1) ∩ (α2→α2), with α1, α2 atomic.

16.1.13. Proposition. For T ∈ {Scott, Park, CDZ, HR, DHM, BCD, AO} the
properties (i), (ii) and (iii) of Theorem 16.1.10 hold for ⊢T

∩⊤, provided that in
(ii) A 6= ⊤ for T = AO. For T ∈ {HL,CDV} the properties hold unconditionally
for ⊢T∩ .

Proof. For these T Theorem 16.1.10 applies since they are proper and β-sound
(by Theorem 16.1.8). Moreover, by axiom (→⊤) we have Γ ⊢T

∩⊤ M : ⊤ → ⊤ for
all Γ,M , hence we do not need to assumeA 6= ⊤ for T ∈ {Scott, Park, CDZ, HR,
DHM, BCD}.

Results for type structures

Now let S be a type structure. Again ⊢ stands for ⊢S∩ or ⊢S
∩⊤ .

16.1.14. Theorem (Inversion Theorem I). If ⊢ is ⊢S∩, then the following state-
ments hold unconditionally; if it is ⊢S

∩⊤, then they hold under the assumption
that A 6= ⊤ in (i) and (ii).

(i) Γ ⊢ x : A ⇔ Γ(x) ≤ A.
(ii) Γ ⊢MN : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[C1 ∩ . . . ∩ Ck ≤ A & ∀i∈{1, . . . , k}
Γ ⊢M : Bi→Ci & Γ ⊢ N : Bi].

(iii) Γ ⊢ λx.M : A ⇔ ∃k ≥ 1∃B1, . . . ,Bk, C1, . . . ,Ck

[(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& ∀i∈{1, . . . , k}.Γ, x:Bi ⊢M : Ci].

Proof. As for Theorem 16.1.1. An alternative proof is to use Propositions
15.3.6 and 15.3.5 and to apply Theorem 16.1.1.

16.1.15. Theorem (Inversion Theorem II). Of the following properties (i) holds
in general, (ii) provided that S is proper and A 6= ⊤ if ⊢ is ⊢S

∩⊤ and (iii) provided
that S is β-sound.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. Similarly.

Proposition 16.1.13 immediately gives the following result.

16.1.16. Proposition. For S ∈{Scott,Park,CDZ,HR,DHM,BCD,AO} con-
sidered as type structures the properties (i), (ii) and (iii) of Theorem 16.1.15
hold for λS

∩⊤ provided that in (ii) A 6= ⊤ for S = AO. For S ∈{HL,CDV} they

hold unconditionally for λS∩.

Comment: Because of the Remark at the beginning of this Chapter.
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16.2. Subject reduction and expansion

Various subject reduction and expansion properties are proved, for the classical
β, βI and η notions of reduction. Other results can be found in Alessi et al.
[2003], Alessi et al. [2006]. We consider the following rules.

(R-red)
M →R N Γ ⊢M : A

Γ ⊢ N : A

(R-exp)
MR← N Γ ⊢M : A

Γ ⊢ N : A

where R is a notion of reduction, notably β-, βI, or η-reduction. If one of these
rules holds in λT

∩(⊤) , we write λT
∩(⊤) |= (R-{exp, red}), respectively. If both hold

we write λT
∩(⊤) |= (R-cnv). These properties will be crucial in Chapters 17, 18

and 19, where we will discuss (untyped) λ-models induced by these systems.

Recall that (λx.M)N is a βI-redex if x∈FV(M), Curry and Feys [1958].

β-conversion

We first investigate when λT
∩(⊤) |= (β(I)-red).

16.2.1. Proposition. (i) λT
∩(⊤) |= (βI-red) ⇔

[Γ ⊢T (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T M : A].

(ii) λT
∩(⊤) |= (β-red) ⇔ [Γ ⊢T (λx.M) : (B→A) ⇒ Γ, x:B ⊢T M : A].

Proof. (i) (⇒) Assume Γ ⊢ λx.M : B→A & x∈FV(M), which implies
Γ, y:B ⊢ (λx.M)y : A, by weakening and rule (→E) for a fresh y. Now rule
(βI-red) gives us Γ, y:B ⊢M [x:=y] : A. Hence Γ, x:B ⊢M : A.

(⇐) Suppose Γ ⊢ (λx.M)N : A & x∈FV(M), in order to show that
Γ ⊢ M [x:=N ] : A. We may assume A 6= ⊤. Then Theorem 16.1.1(ii)
implies Γ ⊢ λx.M : Bi→Ci, Γ ⊢ N : Bi and C1 ∩ . . . ∩ Ck ≤ A, for some
B1, . . . ,Bk, C1, . . . ,Ck. By assumption Γ, x:Bi ⊢ M : Ci. Hence by rule (cut),
Proposition 15.2.8, one has Γ ⊢ M [x:=N ] : Ci. Therefore Γ ⊢ M [x:=N ] : A,
using rules (∩I) and (≤).

(ii) Similarly.

16.2.2. Corollary. Let T be β-sound. Then λT
∩(⊤) |= (β-red).

Proof. Using Theorem 16.1.10(iii).

16.2.3. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-red).

(ii) Let T ∈ {HL,CD,CDV}. Then λT∩ |= (β-red).

Proof. By Corollary 16.2.2 and Theorem 16.1.8.
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In Definition 18.2.22 we will introduce a type theory that is not β-sound,
but nevertheless induces a type assignment system satisfying (β-red).
Now we investigate when λT

∩(⊤) |= (β-exp). As a warm-up, suppose that Γ ⊢
M [x:=N ] : A. Then we would like to conclude that N has a type, as it seems to
be a subformula, and therefore Γ ⊢ (λx.M)N : A. There are two problems: N
may occur several times in M [x:=N ], so that it has (should have) in fact several
types. In the system λ→ this problem causes the failure of rule (β-exp). But in
the intersection type theories one has N : B1 ∩ . . . ∩ Bk if N : B1, . . . , N : Bk.
Therefore (λx.M)N has a type if M [x:=N ] has one. The second problem arises
if N does not occur at all in M [x:=N ], i.e. if the redex is a λK-redex. We would
like to assign as type to N the intersection over an empty sequence, i.e. the top
⊤. This makes (β-exp) invalid in λT∩ , but valid in systems λT

∩⊤ .

16.2.4. Proposition. (i) Suppose Γ ⊢T M [x:=N ] : A. Then

Γ ⊢T (λx.M)N : A ⇔ N is typable in context Γ.

(ii) λT
∩(⊤) |= (β-exp) ⇔ ∀Γ,M,N,A

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

(iii) λT
∩(⊤) |= (βI-exp) ⇔ ∀Γ,M,N,A with x∈FV(M)

[Γ ⊢T M [x:=N ] : A ⇒ N is typable in context Γ].

Proof. (i) (⇒) By Theorem 16.1.1(ii). (⇐) Let Γ ⊢ M [x:=N ] : A and
suppose N is typable in context Γ. By proposition 16.1.3 for some B and a
fresh y one has Γ ⊢ N : B & Γ, y:B ⊢ M [x: = y] : A. Then Γ ⊢ λx.M : (B→A)
and hence Γ ⊢ (λx.M)N : A.

(ii) (⇒) Assume Γ ⊢ M [x:=N ] : A. Then Γ ⊢ (λx.M)N : A, by (β-exp),
hence by (i) we are done. (⇐) Assume Γ ⊢ L′ : A, with L→β L

′. By induction
on the generation of L→β L

′ we get Γ ⊢ L : A from (i) and Theorem 16.1.1.
(iii) Similar to (ii).

16.2.5. Corollary. (i) λT
∩⊤ |= (β-exp).

(ii) λT∩ |= (βI-exp).

Proof. (i) Trivial, since every term has type ⊤.
(ii) By the subformula property (Corollary 16.1.2).

Now we can harvest results towards closure under β-conversion.

16.2.6. Theorem. Let T ∈TT be β-sound.
(i) Let T ∈TT ⊤. Then λT

∩⊤ |= (β-cnv).

(ii) λT∩ |= (βI-cnv).

Proof. (i) By Corollaries 16.2.2 and 16.2.5(i).
(ii) By Corollaries 16.2.2 and 16.2.5(ii).
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16.2.7. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then λT

∩⊤ |= (β-cnv).

(ii) Let T ∈ {HL,CDV,CD}. Then λT∩ |= (βI-cnv).

Proof. (i) By Theorem 16.2.6(i).
(ii) By Theorem 16.2.6(ii).

η-conversion

First we give necessary and sufficient conditions for a system λT
∩(⊤) to satisfy

the rule (η-red).

16.2.8. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-red) ⇔ T is natural.

(ii) Let T ∈TT. Then

λT∩ |= (η-red) ⇔ T is proper.

Proof. (i) (⇒) Assume λT
∩⊤ |= (η-red) towards (→∩), (→) and (⊤→).

As to (→∩), one has

x:(A→B) ∩ (A→C), y:A ⊢ xy : B ∩ C,
hence by (→I) it follows that x:(A→B) ∩ (A→C) ⊢ λy.xy : A→(B ∩ C).
Therefore x:(A→B) ∩ (A→C) ⊢ x : A→(B ∩ C), by (η-red). By Theorem
16.1.10(i) one can conclude (A→B) ∩ (A→C) ≤ A→(B ∩ C).

As to (→), suppose that A ≤ B and C ≤ D, in order to show B→C ≤
A→D. One has x:B→C, y:A ⊢ xy : C ≤ D, so x:B→C ⊢ λy.xy : A→D.
Therefore by (η-red) it follows that x:B→C ⊢ x : A→D and we are done as
before.

As to ⊤ ≤ ⊤→⊤, notice that x:⊤, y:⊤ ⊢ xy : ⊤, so we have x:⊤ ⊢ λy.xy :
⊤→⊤. Therefore x:⊤ ⊢ x : ⊤→⊤ and again we are done.

(⇐) Let T be natural. Assume that Γ ⊢ λx.Mx : A, with x /∈ FV(M), in
order to show Γ ⊢M : A. If A = ⊤, we are done. Otherwise,

Γ ⊢ λx.Mx : A ⇒ Γ, x:Bi ⊢Mx : Ci, 1 ≤ i ≤ k, &

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A,
for some B1, . . . ,Bk, C1, . . . ,Ck,

by Theorem 16.1.1(iii). By Lemma 16.1.5 we omit the i such that Ci = ⊤. There
is at least one Ci 6= ⊤, since otherwise A ≥ (B1→⊤)∩ . . .∩ (Bk→⊤) = ⊤, again
by Lemma 16.1.5, and we would have A = ⊤. Hence by Theorem 16.1.10(ii)

⇒ Γ, x:Bi ⊢M : Di→Ci and

Γ, x:Bi ⊢ x : Di, for some D1, . . . ,Dk,

⇒ Bi ≤ Di, by Theorem 16.1.10(i),

⇒ Γ ⊢M : (Bi→Ci), by (≤-L) and (→),

⇒ Γ ⊢M : ((B1→C1) ∩ . . . ∩ (Bk→Ck)) ≤ A.
(ii) Similarly, but simpler.



48 CHAPTER 16. BASIC PROPERTIES 16.10.2006:1032

16.2.9. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD}.
Then λT

∩⊤ |= (η-red).

(ii) Let T ∈ {HL,CDV}. Then λT∩ |= (η-red).

In order to characterize the admissibility of rule (η-exp), we need to introduce
a further condition on type theories. This condition is necessary and sufficient
to derive from the basis x:A the same type A for λy.xy, as we will show in the
proof of Theorem 16.2.11.

16.2.10. Definition. Let T ∈TT.
(i) T is called η-sound iff for all A there are k ≥ 1, m1, . . . ,mk ≥ 1 and
B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with
(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

(ii) Let T ∈TT ⊤. Then T is called η⊤-sound iff for all A 6= ⊤ at least one
of the following two conditions holds.

(1) There are types B1, . . . ,Bn with (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A;

(2) There are k ≥ 1, m1, . . . ,mk ≥ 1 and B1, . . . ,Bk, C1, . . . ,Ck,





D11 . . . D1m1

. . .
Dk1 . . . Dkmk



 and





E11 . . . E1m1

. . .
Ek1 . . . Ekmk





with

(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩
∩ (Bk+1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

This definition immediately translates to type structures. The validity of η-
expansion can be given as follows.

16.2.11. Theorem (Characterization of η-exp).

(i) λT∩ |= (η-exp) ⇔ T is η-sound.

(ii) λT
∩⊤ |= (η-exp) ⇔ T is η⊤-sound.
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Proof. (i) (⇒) Assume λT∩ |= (η-exp). As x:A ⊢ x : A, by assumption we
have x:A ⊢ λy.xy : A. From Theorem 16.1.1(iii) it follows that x:A, y:Bi ⊢ xy :
Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. By Theorem 16.1.1(ii)
for each i there exist Dij , Eij , such that for each j one has x:A, y:Bi ⊢ x :
(Dij→Eij), x:A, y:Bi ⊢ y : Dij and Ei1 ∩ . . . ∩ Eimi

≤ Ci. Hence by Theorem
16.1.1(i) we have A ≤ (Dij→Eij) and Bi ≤ Dij for all i and j. Therefore we
obtain the condition of 16.2.10(i).

(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
By assumption A satisfies the condition of Definition 16.2.10(i).

(B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A
& A ≤ (D11→E11) ∩ . . . ∩ (D1m1→E1m1) ∩

. . .
(Dk1→Ek1) ∩ . . . ∩ (Dkmk

→Ekmk
)

& Bi ≤ Di1 ∩ . . . ∩Dimi
& Ei1 ∩ . . . ∩ Eimi

≤ Ci,
for 1 ≤ i ≤ k.

By rule (≤) for all i, j we have Γ ⊢ M : Dij→Eij and so Γ, x:Dij ⊢ Mx : Eij

by rule (→E). From (≤ L), (∩I) and (≤) we get Γ, x:Bi ⊢ Mx : Ci and this
implies Γ ⊢ λx.Mx : Bi→Ci, using rule (→I). So we can conclude by (∩I) and
(≤) that Γ ⊢ λx.Mx : A.

(ii) The proof is nearly the same as for (i). (⇒) Again we get x:A, y:Bi ⊢
xy : Ci and (B1→C1)∩ . . .∩ (Bk→Ck) ≤ A for some Bi, Ci. If all Ci = ⊤, then
A satisfies the first condition of Definition 16.2.10(ii). Otherwise, consider the
i such that Ci 6= ⊤ and reason as in the proof of (⇒) for (i).

(⇐) Suppose that Γ ⊢M : A in order to show Γ ⊢ λx.Mx : A, with x fresh.
If A satisfies the first condition of Definition 16.2.10(ii), that is (B1→⊤) ∩
. . . ∩ (Bn→⊤) ≤ A, then by rule (⊤) it follows that Γ, x:Bi ⊢ Mx : ⊤, hence
Γ ⊢ λx.Mx : (B1→⊤) ∩ . . . ∩ (Bn→⊤) ≤ A. Now let A satisfy the second
condition. Then the proof is similar to that for (⇐) in (i).

For most intersection type theories of interest the condition of η(⊤)-soundness
is deduced from the following proposition.

16.2.12. Proposition. Let T ∈TT with atoms A be proper.

(i) T is η-sound ⇔ ∀A∈A∃B1, . . . ,Bk, C1, . . . ,Ck ∃n ≥ 1
A = (B1→C1) ∩ . . . ∩ (Bk→Ck).

(ii) Let T ∈TT ⊤. Then

T is η⊤-sound ⇔ ∀A∈A[⊤→⊤ ≤ A ∨ ∃B1, . . . ,Bk, C1, . . . ,Ck

∃k≥1 [(B1→C1) ∩ . . . ∩ (Bk→Ck) ∩ (⊤→⊤) ≤ A
& A ≤ (B1→C1) ∩ . . . ∩ (Bk→Ck)]].

(iii) Let T ∈NTT⊤. Then

T is η⊤-sound ⇔ T is η-sound.
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Proof. (i) (⇒) Suppose T is η-sound. Let A∈A. Then A satisfies the
condition of Definition 16.2.10(i), for some B1, . . . ,Bk, C1, . . . ,Ck,
D11, . . . , D1m1 , . . . , Dk1, . . . , Dkm1 , E11, . . . , E1m1 , . . . , Ek1, . . . , Ekmk

. By (→∩)
and (→), using Proposition 15.1.13, it follows that

A ≤ (D11 ∩ . . . ∩D1m1→E11 ∩ . . . ∩ E1m1) ∩ . . . ∩
(Dk1 ∩ . . . ∩Dkmk

→Ek1 ∩ . . . ∩ Ekmk
)

≤ (B1→C1) ∩ . . . ∩ (Bk→Ck),

hence A =T (B1→C1) ∩ . . . ∩ (Bk→Ck).
(⇐) By induction on the generation of A one can show that A satisfies the

condition of η-soundness. The case A1→A2 is trivial and the case A ≡ A1 ∩A2

follows by the induction hypothesis and Rule (mon).

(ii) Similarly. Note that (⊤→⊤) ≤ (B→⊤) for all B.

(iii) Immediately by (ii) using rule (⊤→).

16.2.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then T
is η⊤-sound.

(ii) HL is η-sound.

Proof. Easy. For AO in (i) one applies (ii) of the Proposition.

16.2.14. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,AO}. Then

λT∩⊤ |= (η-exp).

(ii) Let T = HL, then

λT∩ |= (η-exp).

Proof. By the previous Corollary and Theorem 16.2.11.

Exercise 16.3.15 shows that the remaining systems of Figure 15.2 do not
satisfy (η-exp).

Now we can harvest results towards closure under η-conversion.
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T β-red βI-red β-exp βI-exp η-red η-exp

Scott
√ √ √ √ √ √

Park
√ √ √ √ √ √

CDZ
√ √ √ √ √ √

HR
√ √ √ √ √ √

DHM
√ √ √ √ √ √

BCD
√ √ √ √ √

.

AO
√ √ √ √

.
√

Plotkin
√ √ √ √

. .

Engeler
√ √ √ √

. .

CDS
√ √ √ √

. .

HL
√ √

.
√ √ √

CDV
√ √

.
√ √

.

CD
√ √

.
√

. .

Figure 16.1: Type theories versus reduction and expansion

16.2.15. Theorem. (i) Let T ∈TT ⊤. Then

λT∩⊤ |= (η-cnv) ⇔ T is natural and η⊤-sound.

(ii) Let T ∈TT. Then

λT∩ |= (η-cnv) ⇔ T is proper and η-sound.

Proof. (i) By Theorems 16.2.11(ii) and 16.2.8(i).

(ii) By Theorems 16.2.11(i) and 16.2.8(ii).

16.2.16. Theorem. (i) For T ∈ {Scott,Park,CDZ,HR,DHM} one has

λT∩⊤ |= (η-cnv).

(ii) For T = HL one has

λT∩ |= (η-cnv).

Proof. (i) By Corollaries 16.2.9(i) and 16.2.14(i).

(ii) By Corollaries 16.2.9(ii) and 16.2.14(ii).

Figure 16.1 summarises the results of this section and of the exercises in the
following section for the type theories of Figure 15.2. The symbol ‘

√
’ stands

for “the property holds” and ‘.’ for “the property fails”.
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16.3. Exercises

16.3.1. Show that for each number n∈N there is a type An ∈TTCD such that for
the Church numerals cn one has Γ ⊢CD

∩ cn+1 : An, but Γ 0
CD
∩ cn : An.

16.3.2. Show that S(KI)(II) and (λx.xxx)S are typable in ⊢CD
∩ .

16.3.3. Derive ⊢CDZ
∩⊤ (λx.xxx)S : ϕ and y:ω, z:ω ⊢CDZ

∩⊤ (λx.xxx)(Syz) : ω.
Comment: Moved here as they need lemmas from 16.

16.3.4. Find the relation between the following three types w.r.t. ≤CDZ.

(ω→(ϕ→ϕ)→ω) ∩ ((ϕ→ϕ)→ϕ), (ω→ω)→ω and ϕ→(ω→ω)→ϕ.

16.3.5. Using the Inversion Theorems show the following.

(i) 6⊢CD
∩ 1 : α→α, where α is any constant.

(ii) 6⊢HL
∩ K : ω.

(iii) 6⊢Scott
∩⊤ I : ω.

(iv) 6⊢Plotkin
∩⊤ Ix : ω.

16.3.6. We say that M and M ′ have the same types in Γ, notation M ∼Γ M
′ if

∀A [Γ ⊢M : A ⇔ Γ ⊢M ′ : A].

Prove that M ∼Γ M
′ ⇒ M ~N ∼Γ M

′ ~N , .

16.3.7. Show that T = Plotkin is β-sound by checking that it satisfies the
following stronger condition.

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.8. Show that T = Engeler is β-sound by checking that it satisfies the
following stronger condition:

(A1→B1) ∩ . . . ∩ (An→Bn) ≤ C→D&D 6= ⊤ ⇒
∃k 6= 0∃i1, . . . , ik.1 ≤ ij ≤ n & C = Aij & Bi1 ∩ . . . ∩Bik = D.

16.3.9. Let A
T = {⊤, ω} and T be defined by the axioms and rules of the

theories Scott and Park together. Show that T is not β-sound [Hint:
show that ⊤ 6= ω].

16.3.10. Prove that Theorem 16.1.10(ii) still holds if the condition of properness
is replaced by the following two conditions

A ≤T B ⇒ C→A ≤T C→B

(A→B) ∩ (C→D) ≤T A ∩ C→B ∩D.
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16.3.11. Show that the following condition

A→ B =T ⊤ → ⊤ ⇒ B =T ⊤

is necessary for the admissibility of rule (β-red) in λT∩ . [Hint: Use
Proposition 16.2.1(ii).]

16.3.12. Remember that the systems λK∩ and λK
⊤

∩⊤ are defined in Exercise 15.5.2.

(i) Show that rules (β-red) and (βI-exp) are admissible in λK∩, while
(β-exp) is not admissible.

(ii) Show that rules (β-red) and (β-exp) are admissible in λK
⊤

∩⊤ .

16.3.13. (i) Show that for T ∈ {AO,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-red).

(ii) Show that for T = CD one has

λT∩ 6|= (η-red).

16.3.14. Verify the following.
(i) η-soundness implies η⊤-soundness. Comment: Wil: Is this interesting?
(ii) Let T ∈ {BCD,Plotkin,Engeler,CDS}. Then T is not η⊤-sound.
(iii) Let T ∈ {AO,CDV,CD}. Then T is not η-sound.
Notice that AO is η⊤-sound (Corollary 16.2.13).

16.3.15. (i) Show that for T ∈ {BCD,Engeler,Plotkin,CDS} one has

λT∩⊤ 6|= (η-exp).

(ii) Show that for T ∈ {CDV,CD} one has

λT∩ 6|= (η-exp).

16.3.16. Show that rules (η-red) and (η-exp) are not admissible in the systems

λK∩ and λK
⊤

∩⊤ as defined in Exercises 15.5.2.

16.3.17. Let ⊢ denote derivability in the system obtained from the system λCDV
∩

by replacing rule (≤) by the rules (∩E), see Definition 15.2.5, and adding
the rule

(Rη)
Γ ⊢ λx.Mx : A

Γ ⊢M : A
if x /∈ FV(M).

Show that Γ ⊢CDV
∩ M : A ⇔ Γ ⊢M : A.

16.3.18. (Barendregt et al. [1983]) Let ⊢ denote derivability in the system
obtained from λBCD

∩⊤ by replacing rule (≤) by the rules (∩E) and adding
(Rη) as defined in Exercise 16.3.17. Verify that

Γ ⊢BCD
∩⊤ M : A ⇔ Γ ⊢M : A.

16.3.19. Let ∆ be a basis that is allowed to be infinite. We define ∆ ⊢ M : A
iff there exists a finite basis Γ ⊂ ∆ such that Γ ⊢M : A.
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(i) Show that all the typability rules are derivable except possibly for
(→I).

(ii) Suppose dom(∆) is the set of all the variables. Show that the rule
(→I) is derivable if it is reformulated as

∆x, x:A ⊢M : B ⇒ ∆ ⊢ (λx.M) : (A→ B),

with ∆x the result of removing any x:C from ∆.
(iii) Reformulate and prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1

and 16.1.10 for infinite bases.

16.3.20. A multi-basis Γ is a set of declarations, in which the requirement that

x:A, y:B ∈Γ ⇒ x ≡ y ⇒ A ≡ B

is dropped. Let ∆ be a (possibly infinite) multi-basis. We define ∆ ⊢
M : A iff there exists a singled (only one declaration per variable) basis
Γ ⊂ ∆ such that Γ ⊢M : A.
(i) Show that x : α1, x : α2 6⊢CD x : α1 ∩ α2.
(ii) Show that x : α1 → α2, x : α1 6⊢CD xx : α2.
(iii) Consider ∆ = {x : α1 ∩ α2, x : α1};

A = α2;
B = (α1 → α2 → α3)→ α3;
M = λy.yxx.

Show that ∆, x : A ⊢CD M : B, but ∆ 6⊢CD (λx.M) : (A→ B).
(iv) We say that a multi-basis is closed under ∩ if for all x∈dom(∆) the

set X = ∆(x) is closed under ∩, i.e. A,B ∈X ⇒ A ∩B ∈X , up to
equality of types in the TT under consideration.
Show that all the typability rules of Figures 15.4 and ??, except for
(→I), are derivable for (possibly infinite) multi-bases that are closed
under ∩.

(v) Let ∆ be closed under ∩. We define

∆[x := X] = {y : ∆(y) | y 6= x} ∪ {x : A | A∈X}.

Prove that the following reformulation of (→I) using principal filters
is derivable

∆[x :=↑ B] ⊢ N : C

∆ ⊢ λx.N : B → C
.

(vi) Prove Propositions 15.2.8, 15.2.10, Theorems 16.1.1 and 16.1.10 for
(possible infinite) multi-bases reformulating the statements when-
ever it is necessary.

(vii)Prove that if ∆(x)’s are filters then {A | ∆ ⊢ x : A} = ∆(x).

16.3.21. Show that the inclusions suggested in 15.3 are strict.



Chapter 17

Type and Lambda Structures

This Chapter is on meet semi-lattices and type structures. The pre-order of
type theories is not sufficient, we need a partial order.

There are many models of the untyped lambda calculus that ‘live’ in the
category ALG of ω-complete algebraic lattices: posets with arbitrary sups and
countably many compact elements. For example Pω and D∞ are enriched ALG

objects. Each object D of ALG, that by definition is algebraic, is determined
by its compact (finite) elements K(D). On these compact elements there is a
natural structure of a meet semi-lattice: for d, e∈K(D)

d ≤K(D) e ⇔ e ⊑D d.

The reason for turning around the order is as follows. An element d∈K(D) is
said to approximate an x∈D iff d ⊑ x. Now if d ⊑ e, then d approximates
more elements of D, than e. Therefore it will turn out to be natural to write
e ≤ d. Moreover, if d, e are compact, then so is d ⊔D e. With respect to the
new ordering this element is the meet

d ∩K(D) e.

In this way it is natural to relate the objects of ALG with those of MSL⊤, the
category of meet semi-lattices with top. In fact D can be reconstructed from
K(D) by considering filters of compact elements: D ∼= FK(D). It turns out that
a subcategory ALGa of ALG, which has the same objects but less morphisms,
is equivalent with MSL⊤.

So far so good, but the obtained structures are too poor for interpreting
lambda calculus. Therefore the story is repeated for so-called algebraically
applicative structures (zip structures), objects D of ALG enriched with a kind
of ‘pairing operator’ Z on K(D). The category obtained in this way is called
ZS. Using this pairing operator one can define application and abstraction (not
yet satisfying the β-rule) on D. Corresponding to ZS there is now the category
TS⊤ of intersection type structures with top, that consists of meet semi-lattices
with top enriched with an operator →.

Finally we will show that zip structures correspond with lambda structures,
i.e. triples 〈D, F,G〉, where D∈ALG, F : [D→[D→D]] and G : [[D→D]→D],
such that 〈G,F 〉 is a Galois connection.

55
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Each time we also consider the so-called strict case, in which the objects of
the category may miss a top element or where the top element is treated in a
special way.

In Section 17.1 we introduce the categories ALG,ALGa and ALGs
a (strict

case) of complete lattices, ZS and ZSs of zip structures and lazy (LZS), natural
(NZS) and proper strict (PZSs) subcategories of the latter. We also derive
some basic lemmas.

In Section 17.2 we show the equivalences (of the categories) MSL⊤ ∼= ALGa

and of MSL ∼= ALGs
a.

In Section 17.3 we treat the equivalences TS⊤ ∼= ZS and also of the lazy
and natural subcategories. After that the strict cases are treated.

Finally in Section 17.4 we show that zip structures correspond with lambda
structures. For the general case of zip structures the corresponcence is not
perfect, but it is in the form of an equivalence between categories, for the lazy,
natural and proper strict zip structures.

Summarizing, there are three groups of categories of structures: the type,
lambda and zip structures. The type structures are expansions of meet semi-
lattices with the extra operator→; the lambda and zip structures are expansions
of algebraic lattices D with respectively the extra structure of a pair 〈F,G〉
with F : D→D→D and G : [D→D]→D or a map Z merging (‘zipping’) two
compact elements into one. Within each group there are five or three relevant
items, explained above. The categories equivalences are displayed in Figures
17.1, 17.2.

meet semi-
lattices

MSL⊤
∼=

ALG

MSL
∼=

ALGs

algebraic
lattices

Figure 17.1: Equivalences proved in Section 17.2

NTS⊤
∼=

rr
NZS

∼=
uuu

NLS
uuu

LTS⊤
∼=

mmmm
LZS

∼=
mmmmm LLS

mmmm

TS⊤
∼=

ZS (LS)

PTS
∼=

lllll PZSs
∼=

llll
PLSs

lll

TS
∼=

ZSs (LSs)

type
structures

zip
structures

lambda
structures

Figure 17.2: Equivalences proved in Sections 17.3 and 17.4
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17.1. Algebraic lattices and zip structures

Algebraic lattices

Comment:

• for sure all the content of this subsection is not new, so references are
mandatory. We do not know this. Can you put pointers? Me too I am
not very familiar, and the references become old very quickly today, I
propose to do this work when you will establish a FIXED publication
date.

• I do not have a good suggestion for the top of D, both Ω and ⊤D were
used, I put the macro topD. Is OK It is not OK to call the top of a lattice
exactly as the top type, please change back the macro!

• all new macros are in the file partIII.tex, some of them are red (by ma)
Some I changed, marking them with ‘hb’. For the ones I agreed I removed
the ‘ma’

• indexes are denoted either by I or by I, you must choose to give some
meaning to this notational difference (I finite and I possibly infinite?),
state and respect it, or use the same notation.

The following has already been given in Definition 14.2.1, but now we treat in
in greater detail.

Comment: D is a type, I propose D (macro dD)

17.1.1. Definition. (i) A complete lattice is a poset D = (D,⊑) such that for
arbitrary X ⊆ D the supremum X ∈ D exists. Then one has also a top element
⊤D = D, a bottom element ⊥D = ∅, arbitrary infima

X = {z | ∀x∈X.z ⊑ x}

and the sup and inf of two elements

x ⊔ y = {x, y}, x ⊓ y = {x, y}.

(ii) A subset Z ⊆ D is called directed if Z is non-empty and

∀x, y ∈Z ∃z ∈Z.x ⊑ z & y ⊑ z.

(iii) An element d∈ D is called compact (also sometimes called finite in the
literature) if for every directed Z ⊆ D one has

d ⊑ Z ⇒ ∃z ∈Z.d ⊑ z.

Note that if d, e are compact, then so is d ⊔ e1.
(iv) K(D) = {d∈ D | d is compact}.
1In general it is not true that if d ⊑ e∈K(D), then d∈K(D); take for example ω + 1 in

the ordinal ω + ω = {0, 1, 2, . . . ω, ω + 1, ω + 2, . . .}. It is compact, but ω (⊑ ω + 1) is not.
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(v) Ks(D) = K(D)− {⊥D}.
(vi) D is called an algebraic lattice if

∀x∈ D.x = {e∈K(D) | e ⊑ x}.

D is called an ω-algebraic lattice if moreover K(D) is countable (finite or
countably infinite).

Instead of d∈ D or X ⊆ D we often write d∈D or X ⊆ D, respectively. When
useful we will decorate ⊑, , , ⊥,⊤, ⊔ and ⊓ with D, e.g. ⊑D etcetera.

The following connects the notion of a compact element to the notion of
compact subset of a topological space.

17.1.2. Lemma. Let D be a complete lattice. Then d∈D is compact iff

∀Z ⊆ D.[d ⊑ Z ⇒ ∃Z0 ⊆ Z.[Z0 is finite & d ⊑ Z0]].

Proof. (⇒) Suppose d∈D is compact. Given Z ⊆ D, let

Z+ = { Z0 | Z0 ⊆ Z & Z0 finite}.

Then Z ⊆ Z+, Z0 = Z and Z+ is directed. Hence

d ⊑ Z ⇒ d ⊑ Z+

⇒ ∃z+ ∈Z+.d ⊑ z+

⇒ ∃Z0 ⊆ Z.d ⊑ Z0 & Z0 is finite.

(⇐) Suppose d ⊑ Z with Z ⊆ D directed. By the condition d ⊑ Z0 for
some finite Z0 ⊆ Z. If Z0 is non-empty, then by the directedness of Z there
exists a z ∈Z such that z ⊒ Z0 ⊒ d. If Z0 is empty, then d = ⊥ and we can
take an arbitrary element z in the non-empty Z satisfying d ⊑ z.

17.1.3. Notation. Let D be an ω-algebraic lattice. For x∈D, write

K(x) = {d∈K(D) | d ⊑ x}.

In this Chapter a, b, c, d . . . always denote compact elements in lattices. Generic
elements are denoted by x, y, z . . . .Comment: I do not agree to cancel this, it
helps the reader!

17.1.4. Definition. Let D, E be complete lattices and f : D→E .
(i) f is called (Scott) continuous iff for all directed X ⊆ D one has

f( X) = f(X) (= {f(x) | x∈X}).

(ii) [D→E ] = {f : D→E | f is Scott continuous functions}.
(iii) f is called strict iff f(⊥) = ⊥.
(iv) Write [D→sE ] for the collection of continuous strict maps.

17.1.5. Proposition. Let D, E be algebraic lattices.
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(i) Let f ∈ [D→E ]. Then for x∈D

f(x) = {f(e) | e ⊑ x & e∈K(D)}.

(ii) Let f, g ∈ [D→E ]. Suppose f ↾ K(D) = g ↾ K(D). Then f = g.

Proof. (i) Use that x = {e | e ⊑ x} is a directed sup and that f is
continuous.

(ii) By (i).

17.1.6. Definition. The category ALG has as objects the ω-algebraic complete
lattices and as morphisms the continuous maps.

Comment: Rightarrow is used for implication, so we cannot use it for
step function (macro step), the lemma is unreadable!

17.1.7. Definition. (i) [D→D′] is partially ordered pointwise as follows.

f ⊑ g ⇔ ∀x∈D.f(x) ⊑ g(x).

(ii) If a∈D, a′ ∈D′, then a7→a′ is the step function defined by

(a7→a′)(d) = a′, if a ⊑ d;
= ⊥D′ , else.

17.1.8. Lemma. [D→D′] is a complete lattice with

(
f ∈X

f)(d) =
f ∈X

f(d).

17.1.9. Lemma. For a, b∈D, α′, b′ ∈D′ and f ∈ [D→D′] one has
(i) a compact ⇒ a7→a′ is continuous.
(ii) a7→a′ is continuous and a′ 6= ⊥ ⇒ a is compact.
(iii) a′ compact ⇔ a7→a′ compact.
(iv) a′ ⊑ f(a) ⇔ (a7→a′) ⊑ f.
(v) b ⊑ a & a′ ⊑ b′ ⇒ (a7→a′) ⊑ (b7→b′).
(vi) (a7→a′) ⊔ (b7→b′) ⊑ (a ⊓ b)7→(a′ ⊔ b′).

Proof. Easy.

17.1.10. Lemma. For all b, a1, . . . , an ∈D, b′, a′1, . . . , a
′
n ∈D′, and f ∈ [D→D′]

(b7→b′) ⊑ (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n) ⇔
⇔ ∃I⊆{1, . . . , n} [⊔i∈ Iai ⊑ b & b′ ⊑ ⊔i∈ Ia

′
i].

Clearly in (⇒) we have I 6= ∅ if d 6= ⊥D.

Proof. Easy.

17.1.11. Proposition. Let D,D′ ∈ALG.
(i) For f ∈ [D→D′] one has f = {a⇒ a′ | a′ ⊑ f(a), a∈K(D), a′ ∈K(D′)}.
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(ii) Let D∈ALG and let f : [D→D′] be compact. Then

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n),

for some a1, . . . ,an ∈K(D), a′1, . . . ,a
′
n ∈K(D′).

(iii) [D→D′]∈ALG.

Proof. (i) It suffices to show that RHS and LHS are equal when applied to
an arbitrary element d∈D.

f(d) = f( {a | a ⊑ d & a∈K(D)})
= {f(a) | a ⊑ d & a∈K(D)}
= {a′ | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}
= ( {(a7→a′) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)(d)}.

(ii) For f compact one has f = {a7→a′ | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)},
by (i). Hence by Lemma 17.1.2 for some a1, . . . ,an ∈K(D), a′1, . . . ,a

′
n ∈K(D′)

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n). (17.1)

(iii) It remains to show that there are only countably many compact elements
in [D→D]. Since K(D) is countable, there are only countably many expressions
in the RHS of (17.1). (The cardinality is ≤ Σnn.ℵ2

0 = ℵ0.) Therefore there are
countable many compact f ∈ [D→D]. (There may be more expressions on the
RHS for one f , but this results in less compact elements.)

17.1.12. Definition. (i) The category ALGa has the same objects as ALG

and as morphisms ALGa(D,D′) maps f : D→D′ that satisfy the properties
‘compactness preserving’ and ‘additive’:

(cmp-pres) ∀a∈K(D).f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X).

(ii) The category ALGs
a has the same objects as ALGa and as morphisms

ALGs
a(D,D′) maps f : D→D′ satisfying (cmp-pres), (add) and

(s) ∀d∈D.[f(d) = ⊥D′ ⇒ d = ⊥D].

17.1.13. Remark. (i) Note that the requirement (add) implies that a morphism
f is continuous (only required to preserve sups for directed subsets X) and
strict, i.e. f(⊥D) = ⊥D′ .

(ii) Remember that Ks(D) = K(D)−{⊥D}. Note that ALGs
a(D,D′) consists

of maps satisfying

(cmp-press) ∀a∈Ks(D).f(a)∈Ks(D′);
(add) ∀X ⊆ D.f( X) = f(X).

17.1.14. Remark. By contrast to Proposition 17.1.11(iii) ALGa(D,D′) /∈ALGa,
because from (i) of that Proposition it follows that the set of compactness
preserving functions is not closed under taking the supremum.
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Zip structures

The idea of a zip structure is that we have an element of ALG such that the
information of two compact elements is ‘zipped’ together, not necessarily in
such a way that the constituents can be found back.

17.1.15. Definition. (i) A zip structure is a pair DZ = 〈D, Z〉 with D∈ALG

and Z : K(D)×K(D)→ K(D) an arbitrary map.
(ii) The category ZS has zip structures as objects and maps f : D → D′

such that (a, b, c, . . . ranging over K(D))

(cmp-pres) ∀a.f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X);
(Z-comm) ∀a, b.f(Z(a, b)) = Z ′(f(a), f(b))

as morphisms ZS(〈D, Z〉, 〈D′, Z ′〉). The second requirement implies that a
morphism f is continuous (only required to preserve sups for directed sets X)
and strict, i.e. f(⊥D) = ⊥D′ .

17.1.16. Lemma. Let f : D → D′ be a continuous function with D,D′ ∈ALG.
Then, for any X ⊆ D, b′ ∈K(D′),

b′ ⊑ f( X) ⇔ ∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z).

Proof. Note that Ξ = { Z | Z ⊆fin X∩K(D)} is a directed set and Ξ = X.
Moreover, by monotonicity of f , also the set {f( Z) | Z ⊆fin X ∩ K(D)} is
directed. Therefore

b′ ⊑ f( X) ⇔ b′ ⊑ f( Ξ)

⇔ b′ ⊑ f(Ξ), since f is continuous,

⇔ b′ ⊑ {f( Z) | Z ⊆fin X ∩ K(D)}, by definition of Ξ,

⇔ ∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z), since b′ is compact.

17.1.17. Corollary. A map f : D→D′ satisfies (add) iff f is Scott continuous
and

∀X ⊆fin K(D).f( X) = f(X). (1)

Proof. The non-trivial direction is to show, assuming f is Scott continuous
and satisfies (1), that f is additive. By monotonicity of f we only need to show
for all X ⊆ D

f( X) ⊑ f(X).

As D′ is algebraic, it suffices to assume b′ ⊑ f( X) and conclude b′ ⊑ f(X).
By the Lemma ∃Z ⊆fin X ∩ K(D).b′ ⊑ f( Z) = f(Z), so b′ ⊑ f(X).

We now specialize this general framework to special zip structures.

17.1.18. Definition. Let DZ = (D, Z) be a zip structure.

(i) Then DZ is a lazy zip structure if the following holds.
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(1) (Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);

(2) (Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2);

(3) (Z-lazy) Z(⊥D,⊥D) ⊑ Z(a, b).

(ii) LZS is the full subcategory of ZS consisting of lazy zip structures.

17.1.19. Definition. Let DZ = (D, Z)∈ZS.
(i) Then DZ is a natural zip structure if DZ ∈LZS and moreover

(Z-bot) Z(⊥D,⊥D) = ⊥D.

(ii) NZS is the full subcategory of LZS consisting of natural zip structures.

17.1.20. Remark. Since condition (Z-bot) is stronger than (Z-lazy),D is natural
if it satisfies (Z-contr), (Z-add) and (Z-bot). In fact, (Z-bot) corresponds to
(⊤→), and (Z-lazy) to the weaker (⊤lazy).

Strict zip structures

17.1.21. Definition. Let D be an ω-algebraic lattice.
(i) Let Z : (Ks(D)×Ks(D))→ Ks(D). Then DZ = 〈D, Z〉 is called a strict

zip structure.
(ii) If we write Z(a, b), then it is always understood that (a, b)∈ dom(Z).
(iii) The category ZSs consists of strict zip structures as objects and as

morphisms maps f satisfying

(cmp-press) ∀a∈Ks(D).f(a)∈Ks(D′);
(add) ∀X ⊆ D.f( X) = f(X);
(Z-comm) ∀a, b.f(Z(a, b)) = Z ′(f(a), f(b)).

17.1.22. Definition. (i) Let DZ = 〈D, Z〉 ∈ZSs. Then DZ is called a proper
strict zip structure, if it satisfies the following conditions.

(Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);
(Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2).

(ii) PLSs is the full subcategory of ZSs consisting of proper strict zip structures.

17.1.23. Remark. In Section 15.3 we introduced the names MSL⊤,MSL,TS⊤,
TS for collections of meet semi-lattices and type structures. The superscript
⊤ in these names denotes that the structures in the relevant collections have a
top element.

In the present Section we introduced the names ALGa,ALGs
a,ZS,ZSs.

The superscript s, to be read as ‘strict’, concerns the top element of K(D)≤
(see Definition 17.2.5) and suggests that we are not interested in it.

In the next Section we will establish equivalences of categories like

MSL⊤ ∼= ALGa;

MSL ∼= ALGs
a;

TS⊤ ∼= ZS;

TS ∼= ZSs.
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Note that under this correspondence there is a sort of adjunction in the super-
scripts of the names due to the fact that in the lefthand side of this table the
presence of a top is given explicitly, whereas in the right hand side the name
indicates when we are not interested in the top (of K(D)≤). In particular, note
that TS does not correspond with ZS.

17.2. Meet-semi lattices and algebraic lattices

Comment:

• X,Y are filters and subsets of D.

• X is a set of filters.

• FS is the set of all filters over S

• F̃S = 〈FS ,⊆〉 (the macro is FFL) I use coercion.

The main results of this section are concerned with equivalences between
categories of type structures and lambda structures. The proto-type result is
Corollary 17.2.15, stating the equivalence between the categories MSL⊤ and
ALGa. We start introducing some categories.

Categories of meet-semi lattices and type structures

For use in Chapter 17 we will introduce some categories related to given classes
of type structures.

17.2.1. Definition. (i) The category MSL has as objects at most countable
meet semi-lattices and as morphisms maps f :M→M′, preserving ≤,∩:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B).

(ii) The category MSL⊤ is as MSL, but based on top meet semi-lattices.
So now also f(⊤) = ⊤′ for morphisms.

The difference between MSL and MSL⊤ is that, in the MSL case, the top
element is either missing or not relevant (not preserved by morphisms).

17.2.2. Definition. (i) The category TS has as objects the at most countable
type structures and as morphisms maps f : S→S ′, preserving ≤,∩,→:

A ≤ B ⇒ f(A) ≤′ f(B);

f(A ∩B) = f(A) ∩′ f(B);

f(A→B) = f(A)→′f(B).

(ii) The category TS⊤ is as TS, but based on top type structures. Now also

f(⊤) = ⊤′

for morphisms.
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Remember that in Definition 15.3.10 we defined four full subcategories of
TS by specifying in each case the objects.

(i) GTS⊤ with as objects the graph top type structures.

(ii) LTS⊤ with as objects the lazy top type structures.

(iii) NTS⊤ with as objects the natural top type structures.

(iv) PTS with as objects the proper type structures.

We define now the functors establishing the equivalences between categories
of type structures and lambda structures.

17.2.3. Remark. If T is countable, then FT ∈ALGa.

17.2.4. Definition. We define a map Flt : MSL⊤ → ALGa, that will turn
out to be a functor, as follows.

(i) On objects S ∈MSL one defines

Flt(S) = 〈FS ,⊆〉.

(ii) On morphisms f : S→S ′ one defines Flt(f) : FS→FS′

by

Flt(f)(X) = {s′ | ∃s∈X.f(s) ≤ s′}.

17.2.5. Definition. Let D∈ALGa. On K(D) define

d ≤ e ⇔ e ⊑ d.

17.2.6. Proposition. (K(D),≤)∈MSL⊤.

Proof. Immediate noticing that

d ⊓K(D) e = d ⊔D e;
⊥K(D) = ⊤D;

⊤K(D) = ⊥D.

Instead of ⊓≤ we often write ∩≤ or simply ∩.

17.2.7. Definition. We define a map Cmp : ALGa → MSL⊤, that will turn
out to be a functor, as follows.

(i) On objects D∈ALGa one defines Cmp by

Cmp(D) = (K(D),≤).

(ii) On morphisms f ∈ALGa(D,D′) one defines Cmp(f) by

Cmp(f)(d) = f(d).

17.2.8. Lemma. The map Cmp is a functor.
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Proof. Let f ∈ALGa(D,D′). Note that Cmp(f) = f ↾ K(D) : K(D)→K(D′),
by (cmp-pres). By the fact that f is additive one has f(⊥D) = ⊥D′ , which is
f(⊤K(D)) = ⊤K(D′), and

f(a ∩K(D) b) = f(a ⊔D b) = f(a) ⊔D′ f(b) = f(a) ∩K(D) f(b).

Also f is monotonic as it is continuous.

17.2.9. Lemma. Let S ∈MSL⊤ be a meet semi-lattice, I 6= ∅ and s, t, si ∈S.
Then

(i) In FS we have

i∈ I
↑ si =↑

⋂

i∈ I

si.

(ii) In K(FS) we have
⋂

i∈ I

↑ si =↑
⋂

i∈ I

si,

where the bigcap denote the infima in respectively K(S) and S.
(iii) ↑ s ≤K(FS)↑ t ⇔ s ≤S t.

Proof. From previous definitions.

In the remainder of the present section we write ≤ instead of ≤K(FS).

17.2.10. Lemma. Let f ∈MSL⊤(S,S ′), s∈S. Then Flt(f)(↑ s) =↑ f(s).

Proof. Flt(f)(↑ s) = {s′ | ∃t∈ ↑ s.f(t) ≤ s′},
= {s′ | ∃t ≥ s.f(t) ≤ s′},
= {s′ | f(s) ≤ s′}, since f is monotone,

= ↑ f(s).

17.2.11. Proposition. Flt is a functor from MSL⊤ to ALGa.

Proof. We have to prove that Flt transforms a morphism in MSL⊤ into a
morphism in ALGa. Let f ∈MSL⊤(S,S ′), ↑ s∈K(FS). By Lemma 17.2.10
Flt(f)(↑ s) =↑ f(s), which is compact in FS′

, hence Flt(f) satisfies (cmp-pres).

Flt(f) satisfies (add). Indeed, by Corollary 17.1.17 and the fact that Flt(f)
is trivially Scott continuous, it is enough to prove that it commutes with finite
joins of compact elements. Let I be non-empty. We have

Flt(f)( i∈ I ↑ si) = Flt(f)(↑ ⋂

i∈ I si), by Lemma 17.2.9(ii),

= ↑ f(
⋂

i∈ I si), by Lemma 17.2.10,

= ↑ ⋂

i∈ I f(si), since f commutes with ∩,
= i∈ I ↑ f(si), by Lemma 17.2.9(ii),

= i∈ I Flt(f)(↑ si) by Lemma 17.2.10.
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If I is empty, and ⊤,⊤′ are respectively the bottoms of S,S ′, then

Flt(f)( ∅ ↑ si) = Flt(f)(↑ ⊤),

= ↑ f(⊤), by Lemma 17.2.10,

= ↑ ⊤′, since f preserves tops,

= ∅ Flt(f)(↑ si).

So Flt(f) satisfies (add).

It is possible to leave out conditions (cmp-pres) and (add), obtaining the category
ALG. Then one needs to consider approximable maps as morphisms in the
category MSL⊤. See Exercise ??.the Exercise is to be written by Fabio? Or
did we have it?

Now we will show that the functors Flt and Cmp establish an equivalence
between the categories MSL⊤ and ALGa. First we need another Lemma.

17.2.12. Lemma. (i) Let X ⊆ FK(D). Then taking sups in D one has

(
⋃

X ) =
X ∈X

( X).

(ii) Let θ ⊆ K(D) be non-empty. Then taking the sups in D one has

(↑θ) = θ.

Proof. (i) Realising that a sup (in D) of a union of {Yi}i∈ I ⊆ K(D) is the
sup of the sups Yi, one has

(
⋃

i∈ I

Yi) =
i∈ I

( Yi).

The result follows by making an α-conversion [i := X] and taking I = X and
YX = X.

(ii) ↑θ is obtained from θ by taking extensions and intersections in K(D).
Now the order in this MSL⊤is the reverse of the one induced by D, therefore
↑θ is obtained by taking smaller elements and unions (in D). But then taking
the big union the result is the same.

Comment: the maps where ξ, τ, σ (ξ is a type environment in chapter 14),
now I used the macros maps, mapt and mapx

17.2.13. Proposition. (i) Let S ∈MSL⊤. Then ⊛ = ⊛S : S→K(FS) defined
by ⊛S(s) = ↑s is an MSL⊤ isomorphism.

S Flt //

⊛=↑ ��5
55

5 FS

Cmpxx
K(FS)
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(ii) Let D∈ALGa. Then ⊖ = ⊖D : FK(D)→D defined by ⊖(X) = X, is
an ALGa isomorphism with inverse ⊚ : D→FK(D) defined by
⊚(x) = {c∈K(D) | c ⊑ x}.

K(D)

Flt ''

D
Cmp

oo

FK(D)
⊖=

CC�����

Proof. (i) By Proposition 15.4.4(v) ⊛ is a surjection. It is also 1-1, since
↑s = ↑t ⇒ s ≤ t ≤ s ⇒ s = t. Moreover, ⊛ preserves ≤:

s ≤ t ⇔ ↑t ⊆ ↑s
⇔ ↑s ≤ ↑t, by definition of ≤ on K(FS).

Also ⊛ preserves ∩:

⊛(s ∩ t) = ↑(s ∩ t)
= ↑s ⊔ ↑t in FS , by 15.4.4(iii),

= ↑s ∩ ↑t in K(FS), by definition of ≤ on K(FS),

= ⊛(s) ∩⊛(t).

Then ⊛(⊤S) = ↑⊤S = ⊤K(FS), since {⊤S} is the ⊆-smallest filter; hence ⊛

preserves tops.
Finally ⊛−1 preserves ≤,⊓K(FS) and ⊤K(FS), as by Lemma 15.4.4(v) an

element c∈K(FS) is of the form c = ↑s, with s∈S and ⊛−1(↑s) = s.
(ii) We have ⊖ ◦⊚ = 1D and ⊚ ◦⊖ = 1FK(D) :

⊖(⊚(x)) = {c∈K(D) | c ⊑ x}
= x, since D∈ALGa.

⊚(⊖(X)) = {c | c ⊑ X}
= {c | c∈X}, since one has

c ⊑D X ⇔ ∃x∈X c ⊑D x, as c is compact and X ⊆ K(D) ⊆ D is

a filter w.r.t. ≤, so directed w.r.t. ⊑
⇔ ∃x∈X x ≤K(D) c

⇔ c∈X, as X is a filter on K(D).

We still have to show that ⊖ and ⊚ are morphisms. One easiliy sees that ⊖

satisfies (cmp-pres). The map ⊖ is also additive, i.e. ⊖(X ) = ⊖( X ) for
arbitrary X ⊆ FK(D). Indeed,

⊖(X ) =
X ∈X

( X), by definition of ⊖,

= (
⋃

X ), by Proposition 17.2.12(i),

= (↑(
⋃

X )), by Proposition 17.2.12(ii),

= ⊖(↑(
⋃

X )), by definition of ⊖,

= ⊖( X ), by Proposition 15.4.4(i).
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Now we have to prove that ⊚ satisfies (cmp-pres) and (add). As to (cmp-pres),
assume that b∈K(D) and ⊚(b) ⊑ X, with X directed. Then b ⊑ ⊖(X),
since ⊖ satisfies (add). Since b is compact, there exists x∈X such that b ⊑
⊖(x), hence ⊚(b) ⊑ x and we are done. As to (add), let X ⊆ D. Then

⊚( X) = ⊚( {⊖(⊚(x)) | x∈X}),
= ⊚(⊖( {⊚(x) | x∈X})), since ⊖ satisfies (add),

= {⊚(x) | x∈X}.

17.2.14. Corollary. (i) Let S ∈MSL⊤. Then

S ∼= K(FS).

(ii) Let D∈ALGa. Then
D ∼= FK(D).

17.2.15. Corollary. The categories MSL⊤ and ALGa are equivalent; in fact
the isomorphisms in 17.2.13 form natural isomorphisms showing

Cmp ◦ Flt ∼= 1
MSL⊤ & Flt ◦ Cmp ∼= 1ALGa .

Proof. First one has to show that in MSL⊤ the following diagram commutes.

S

f

��

↑
// K(FS)

Cmp(Flt(µ))

��

S ′
↑

// K(FS′

)

One must show Cmp(Flt(f))(↑s) = ↑(f(s)). This follows from Lemma 17.2.10
and the definition of Cmp.

Secondly one has to show that in ALGa the following diagram commutes.

FK(D)

Flt(Cmp(f))

��

// D

f

��
FK(D′) // D′

Now for X ∈FK(D) one has

Flt(Cmp(f))(X) = {d′ ∈K(D′) | ∃d∈X. f(d) ≤ d′}
= {d′ ∈K(D′) | ∃d∈X. d′ ⊑ f(d)}.

Hence, using also the continuity of f ,

(Flt(Cmp(f))(X)) = d∈Xf(d) = f( X),

and the diagram commutes. As before we have Flt ◦ Cmp ∼= 1ALGa .

This result is a special case of Stone duality, cf. Johnstone [1986] (II, 3.3).



17.2. MEET-SEMI LATTICES AND ALGEBRAIC LATTICES 69

Equivalence between MSL and ALGs
a

17.2.16. Definition. Let S ∈MSL.
(i) The set of filters over S, notation FS , is defined as in Definition 15.4.1.
(ii) FS

s = FS ∪ {∅} is the extension of FS with the empty subset of S.

17.2.17. Proposition. Let S ∈MSL.
(i) FS

s = 〈FS
s ,⊆〉 is a complete lattice, with for X ⊆ FS

s the sup is

X =

{

∅, if X = ∅ or X = {∅},
↑(∪X ), else .

(ii) For t∈S one has ↑t = ↑{t} and ↑t∈FS
s .

(iii) For t, t′ ∈S one has ↑t ⊔ ↑t′ = ↑(t ∩ t′).
(iv) For X ∈FS

s one has

X = {↑t | t∈X} = {↑t | ↑t ⊆ X}
=

⋃{↑t | t∈X} =
⋃{↑t | ↑t ⊆ X}.

(v) {↑t | t∈S} ∪ {∅} is the set of finite elements of FS
s .

(vi) FS
s ∈ALGs

a.

Proof. Immediate.

17.2.18. Remark. If T is countable, then FS
s ∈ALGs

a.

17.2.19. Definition. The functor Flts : MSL→ ALGs
a is defined as follows.

Flts(S) = 〈FS
s ,⊆〉.

For f ∈MSL(S,S ′) define Flts(f)∈ALGs
a(FS

s ,FS′

s ) by

Flts(f)(X) = {s′ | ∃s∈X.f(s) ≤ s′}, if X ∈FS ,

Flts(f)(∅) = ∅.

17.2.20. Lemma. Ks(D)∈MSL with

d ∩Ks(D) e = d ⊔D e;
⊥Ks(D) = ⊤D.

Proof. Easy.

17.2.21. Definition. Let D∈ALGs
a.

(i) The functor Cmps : ALGs
a →MSL is defined as follows

Cmps(D) = (Ks(D),≤).

For a morphism f define Cmps(f) by

Cmps(f)(d) = f(d).
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17.2.22. Proposition. (i) Let S ∈MSL. Then ⊛ : S→Ks(FS
s ) = K(FS)

defined by ⊛(s) = ↑s is an MSL isomorphism.

S Flts //

↑ ��6
66

66
FS

s

Cmps
xx

Ks(FS
s )

(ii) Let D∈ALGs
a. Then ⊖ : FKs(D)

s →D defined by ⊖(X) = X, is an

ALGs
a isomorphism with inverse ⊚ : D→FKs(D)

s defined by

⊚(d) = {c∈Ks(D) | c ⊑ d}.

In diagram,

Ks(D)

Flts
''

D
Cmpsoo

FKs(D)
s

CC�����

Proof. Similar to the proof of Proposition 17.2.13.

17.2.23. Corollary. The categories MSL and ALGs
a are equivalent.

17.2.24. Remark. (i) Notice that Ks(FS
s ) = K(FS).

(ii) The map ρ : FKs(D)
s →FK(D), given by ρ(X) = X∪{⊥D} is an isomorphism

in the category ALGs
a, hence also in ALGa.

Summarizing, we have proved in this section the following statements.

MSL⊤ ∼= ALGa;

MSL ∼= ALGs
a.

17.3. Type and zip structures

Now we will extend the equivalences of the previous Section to the various
categories of type and zip structures.

Equivalence between TS⊤ and ZS

First the functors Flt and Cmp between MSL⊤ and ALGa will be lifted to act
between the richer categories TS⊤ and ZS.

17.3.1. Definition. (i) For S ∈TS⊤, define Flt(S)∈ZS by

Flt(S) = 〈FS , ZS〉,

with ZS : K(FS)×K(FS)→ K(FS) defined by

ZS(↑ s, ↑ t) = ↑ (s→ t).
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(ii) For DZ = 〈D, Z〉 ∈ZS, define Cmp(DZ)∈TS⊤ by

Cmp(DZ) = 〈K(D),≤,∩,→Z ,⊤〉,
with a ≤ b ⇔ b ⊑D a, a∩ b ≡ a⊔D b, and ⊤ ≡ ⊥D, as in Definition 17.2.7 and

a→Zb ≡ Z(a, b).

(iii) The actions of the maps Cmp : ZS→TS⊤ and Flt : TS⊤→ZS on
morphisms are defined as follows. Given f ∈TS⊤(S,S ′),X ∈FS and g ∈ZS(DZ ,D′

Z)
with DZ = 〈D, Z〉, define

Flt(f)(X) = {t | ∃s∈X.f(s) ≤ t};
Cmp(g) = g ↾ K(D).

17.3.2. Lemma. If S ∈TS⊤ and ZS is defined as in Definition 17.3.1(i), then
(K(FS), ZS)∈ZS. Moreover if →ZS is defined for (K(FS), ZS)∈ZS as in
Definition 17.3.1(ii), then

↑s→ZS↑t = ↑(s→t).
Proof. Immediate from Definition 17.3.1.

The following motivates why only one notation is used for the maps Cmp,Flt.

17.3.3. Proposition. (i) Let Fts : TS⊤→MSL⊤ and F ls : ZS→ALG be the
‘forgetful functors’ defined by

Fts(〈S,≤,∩,→,⊤〉) = 〈S,≤,∩,⊤〉, Fts(f) = f ;
F ls(〈D, Z〉) = D, F ls(f) = f .

Then Fts, F ls are functors indeed.
(ii) The following figures are commutative diagrams.

TS⊤
Flt

//

Fts

��

ZS

Fls

��
MSL⊤

Flt
// ALGa

TS⊤

Fts

��

ZS
Cmp

oo

Fls

��
MSL⊤ ALGa

Cmp
oo

Proof. As usual.

17.3.4. Proposition. Cmp is a functor from ZS to TS⊤.

Proof. We just have to prove that Cmp transforms a morphism in ZS into a
morphism into TS⊤. Let m : 〈D, Z〉 → 〈D′, Z ′〉 be a morphism. By Lemma
17.2.8 we only need to show that Cmp(m) commutes with arrows. Now

Cmp(m)(a→Zb) = m(a→Zb), by definition of Cmp(m),

= m(Z(a, b)), by definition of →Z ,

= Z ′(m(a),m(b)), since m satisfies (Z-comm),

= m(a)→Z′m(b)),

= Cmp(m(a))→Z′Cmp(m(b)).
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17.3.5. Proposition. Flt is a functor from TS⊤ to ZS.

Proof. We have to prove that Flt transforms a morphism in TS⊤ into a
morphism in ZS. Let f ∈TS⊤(S,S ′) with arrows→ZS and→ZS′ corresponding

to ZS and ZS′

, respectively. By Proposition 17.2.11 we only need to show
that Flt(f) satisfies (Z-comm). Indeed,

Flt(f)(ZS(↑ s, ↑ t) = Flt(f)(↑ (s→ZS t), by definition of ZS ,

= ↑ f(s→ZS t), by Lemma 17.2.10,

= ↑ (f(s)→ZS′ f(t)), since f ∈TS⊤(S,S ′),
= ZS′

(↑ f(s), ↑ f(t)), by definition of ZS′

,

= ZS′

(Flt(f)(↑ s),Flt(f)(↑ t)), by Lemma 17.2.10.

Now we will prove that ZS and TS⊤ are equivalent. To this aim we show
that natural isomorphisms Id

TS⊤ ≃ Cmp ◦ Flt and Flt ◦Cmp ≃ IdZS are given
by ⊛ and ⊖ respectively, exactly as in the case of the equivalence between the
categories MSL⊤ and ALGa.

17.3.6. Proposition. Let S be a top type structure. Let ⊛ : S → K(FS) be the
map such that ⊛(s) =↑ s. Then ⊛ is an isomorphism in TS⊤.

Proof. By Proposition 17.2.13(i) we only need to show that ⊛ and ⊛−1

commute with arrows. Now ⊛ is a bijection, hence the following suffices.

⊛(s→ t) = ↑ (s→ t),

= ↑ s→ZS ↑ t, by Lemma 17.3.2,

= ⊛(s)→ZS⊛(t).

17.3.7. Proposition. Let DZ = 〈D, Z〉 ∈ZS. Define ⊖ : FK(D) → D by

⊖(x) = x, where the sup is taken in D.
Then ⊖ is an isomorphism in ZS.

Proof. By Proposition 17.2.13(ii) we only need to show that ⊖ and ⊚ satisfy
(Z-comm). As to ⊖, we have

⊖(ZK(D)(↑ a, ↑ b)) = ⊖(↑ (a→Zb)), by definition of ZK(D),

= ⊖(↑ Z(a, b)), by definition of →Z ,

= (↑ Z(a, b))

= Z(a, b)

= Z( ↑ a, ↑b)
= Z(⊖(↑ a),⊖(↑ b)).

As to ⊚, we must show

⊚(Z(a, b)) = ZK(D)(⊚(a),⊚(b)).

This follows immediately from (Z-comm) for ⊖ and ⊚(a) = ↑a, ⊚(b) = ↑b,
⊖ ◦⊚ = IdD and ⊚ ◦⊖ = IdFK(D) .
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17.3.8. Theorem. The categories TS⊤ and ZS are equivalent.

Proof. As in Corollary 17.2.15, using Propositions 17.3.4-17.3.7.

Equivalence between LTS⊤ and LZS

17.3.9. Proposition. Cmp restricts to a functor from LZS to LTS⊤.

Proof. Let DZ = 〈D, Z〉 ∈LLS. Then Cmp(DZ) is a LTS⊤. In fact, it satisfies
(→), since

a′ ≤ a & b ≤ b′ ⇔ a ⊑ a′ & b′ ⊑ b,
⇒ Z(a′, b′) ⊑ Z(a, b), by (Z-contr),

⇔ a→Zb ≤ a′→Zb
′, by definition of →Z .

Cmp(DZ) satisfies (→∩), since

(a→Zb1) ∩ (a→Zb2) = (a→Zb1) ⊔ (a→Zb2), since c ⊔ d = c ∩ d,
= Z(a, b1) ⊔ Z(a, b2), by definition of →Z ,

= Z(a, b1 ⊔ b2), by (Z-add),

= a→Z(b1 ⊔ b2), by definition of →Z ,

= a→Z(b1 ∩ b2), since c ⊔ d = c ∩ d.

Finally Cmp(DZ) satisfies (⊤lazy), since

a→Zb = Z(a, b),

≤ Z(⊥,⊥), by (Z-lazy),

= ⊤→Z⊤.

As to morphisms, we have to prove that Cmp(f)∈LTS⊤(K(D),K(D′)), for
any f ∈LZS(DZ ,D′

Z). Then Cmp(f)∈TS⊤(K(D),K(D′)), by Theorem 17.3.4.

Finally LTS⊤(K(D),K(D′)) = TS⊤(K(D),K(D′)), as LTS⊤ is a full subcategory
of TS⊤.

17.3.10. Proposition. Flt restricts to a functor from LTS⊤ to LZS.

Proof. Let S be a LTS⊤. Then Flt(S) is a LZS satisfying (Z-contr), as

↑ a ⊆↑ a′ & ↑ b′ ⊆↑ b ⇔ a′ ≤ a & b ≤ b′,
⇒ a→ b ≤ a′ → b′, by (→),

⇔ ↑ (a′ → b′) ⊆↑ (a→ b),

⇔ ZS(↑ a′, ↑ b′) ⊆ ZS(↑ a, ↑ b), by definition of ZS .

Now Flt(S) also satisfies (Z-add), since

ZS(↑ a, ↑ b1⊔ ↑ b2) = ZS(↑ a, ↑ (b1 ∩ b2)),
= ↑ (a→ (b1 ∩ b2)), by definition of ZS ,

= ↑ ((a→ b1) ∩ (a→ b2)), by (→ ∩),

= ZS(↑ a, ↑ b1) ∩ ZS(↑a, ↑b2))),
= ZS(↑ a, ↑ b1) ⊔ ZS(↑a, ↑b2).
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Finally Flt(S) satisfies (Z-lazy), since

ZS(⊥,⊥) = ZS(↑ ⊤, ↑ ⊤),

= ↑ (⊤ → ⊤), by def of ZS ,

⊆ ↑ (a→ b), since a→ b ≤ ⊤ → ⊤, by (⊤lazy),

= ZS(↑ a, ↑ b), by definition of ZS .

As to morphisms, from Theorem 17.2.11 it follows that Flt(f)∈ZS(FS ,FS′

),
for f ∈TS⊤(S,S ′). We are done, since LZS is a full subcategory of ZS, hence
LZS(FS ,FS′

) = ZS(FS ,FS′

).

We will prove that LTS⊤ and LZS are equivalent. To this aim we show
that natural isomorphisms Id

LTS⊤ ≃ Cmp ◦ Flt and Flt ◦ Cmp ≃ IdLZS are
given by ⊛ and ⊖.

17.3.11. Proposition. (i) For S ∈LTS⊤ the map ⊛ : S → K(FS) defined by
⊛(s) = ↑s is an isomorphism in LTS⊤.

(ii) For 〈D, Z〉 ∈LZS the map ⊖ : FK(D) → D defined by ⊖(X) = ⊔X is an
isomorphism in LZS.

Proof. Immediate, since ⊛ and ⊖ have been proved, in Propositions 17.3.6
and 17.3.7, to be isomorphisms in TS⊤ and ZS respectively. We conclude by
the fact that LTS⊤ and LZS are full subcategories.

17.3.12. Theorem. The categories LTS⊤ and LZS are equivalent.

Proof. As in Corollary 17.2.15, via Propositions 17.3.9, 17.3.10 and 17.3.11.

Equivalence between NTS⊤ and NZS

17.3.13. Proposition. Cmp restricts to a functor from NZS to NTS⊤.

Proof. By Proposition 17.3.9 it follows that, given a DZ ∈NZS, the map
Cmp(DZ) satisfies (→), (→ ∩) (and (⊤lazy)). We just have to prove that
Cmp(DZ) satisfies (⊤→):

⊤→Z⊤ = Z(⊥,⊥),
= ⊥, by (Z-bot),
= ⊤.

17.3.14. Proposition. Flt restricts to a functor from NTS⊤ to NZS.

Proof. By Proposition 17.3.10 it follows that, given an S ∈NTS⊤, the map
Flt(S) satisfies (Z-contr), (Z-add) (and (Z-lazy)). We just have to prove that
Flt(S) satisfies (Z-bot):

ZS(⊥,⊥) = ZS(⊤,⊤),
= ↑ (⊤ → ⊤), by definition of ZS ,
= ↑ ⊤, by (⊤→),
= ⊥.
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17.3.15. Proposition. (i) Let S ∈NTS⊤. Then ⊛∈NTS⊤(S,K(FS)) is an
isomorphism.

(ii) Let 〈D, Z〉 ∈NZS. Then ⊖∈NZS(FK(D),D) is an isomorphism.

Proof. As the proof of Proposition 17.3.11: ⊛ and ⊖ are isomorphisms in
TS⊤ and ZS respectively. We conclude by the fact that NTS⊤ and NZS are
full subcategories.

17.3.16. Theorem. The categories NTS⊤ and NZS are equivalent.

Proof. As in Corollary 17.2.15, via Propositions 17.3.13, 17.3.14 and 17.3.15.

Equivalence between TS and ZSs

Notation. In the present context, the rest of this section, we use I, J,K for
non-empty finite sets of indexes. Note that for S ∈TS we have Ks(FS

s ) =
K(FS).

17.3.17. Definition. (i) For S ∈TS, define Flts(S)∈ZSs by

Flts(S) = (FS
s , Z

S
s ),

with ZS
s : Ks(FS

s )×Ks(FS
s )→ Ks(FS

s ) defined by

ZS
s (↑s, ↑t) = ↑(s→ t).

(ii) For DZ = (D,Z)∈ZSs, define Cmps(DZ)∈TS by

Cmps(DZ) = 〈Ks(D),≤,∩,→Z〉,

with ≤,∩,→Z as in Definition 17.3.1.

(iii) The action of the maps Cmps and Flts on morphisms are defined as
follows. Given f ∈TS(S,S ′), X ∈FS , and g ∈ZSs(DZ ,D′

Z), define

Flts(f)(X) =

{

{t | ∃s∈X.f(s) ≤ t}, if X 6= ⊥ (= ∅),
⊥, else;

Cmps(g) = g ↾ K(D).

Note that indeed Cmps(DZ)∈TS by Lemma 17.2.20. The following five Propositions
and the Theorem are proved as in 17.3.4-?? for the TS⊤-case.

17.3.18. Proposition. Cmps is a functor from ZSs to TS.

17.3.19. Proposition. Flts is a functor from TS to ZSs.

It follows that the categories TS and ZSs are equivalent. Natural isomorphisms
are given by ⊛ and ⊖ respectively.
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17.3.20. Proposition. Let S ∈TS. Then ⊛ : S → Ks(FS
s ) defined by

⊛(s) = ↑s ,

is an isomorphism in TS.

17.3.21. Proposition. Let (D,Z)∈ZSs. Then ⊖ : FKs(D)
s → D defined by

⊖(x) = x

is an isomorphism in ZSs.

17.3.22. Theorem. The categories TS and ZSs are equivalent.

Equivalence between PTS and PZSs

17.3.23. Definition. (i) Let D∈ALG and Z : (Ks(D) × Ks(D)) → Ks(D).
Then DZ = 〈D, Z〉 is called a proper strict zip structure, if one has

(Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);
(Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2).

(ii) The category PZSs consists of proper strict zip structures as objects
and as morphisms continuous maps f : D→D′ satisfying

(cmp-press) ∀a∈Ks(D).f(a)∈Ks(D′);
(add) ∀X ⊆ D.f( X) = f(X);
(Z-comm) ∀a, b.f(Z(a, b)) = Z ′(f(a), f(b)).

17.3.24. Proposition. Flts restricts to a functor from PTS to PZSs.

Proof. For S ∈PTS one has Flts(S) = 〈FS
s , Z

S
s 〉. As in the proof of Proposition

17.3.10 one can show that ZS
s satisfies (Z-contr) and (Z-add), hence Flts(S)∈PZSs.

The proof that Flts is well-behaved on morphisms follows as in Proposition
17.3.5.

17.3.25. Proposition. Cmps restricts to a functor from PZSs to PTS.

Proof. Let D∈PTS. Then Cmps(D)∈TS, by Proposition 17.3.18. As in the
proof of Proposition 17.3.9 one shows that Cmps(D) is proper, hence in PTS.
The proof that Cmps is well-behaved on morphisms follows as in Proposition
17.3.4.

The proofs of the following two propositions are similar to the proofs of
Propositions 17.3.6 and 17.3.7.

17.3.26. Proposition. Let S ∈PTS. Then ⊛ : S → Ks(FS
s ) defined by

⊛(s) = ↑s ,

is an isomorphism in PTS.
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17.3.27. Proposition. Let DZ = 〈D, Z〉 ∈PZSs. Then ⊖ : FKs(D)
s → D

defined by

⊖(x) = x.

is an isomorphism in PZSs.

It follows that we have an equivalence between categories.

17.3.28. Theorem. The categories PTS and PZSs are equivalent, natural iso-
morphisms are given by ⊛ and ⊖ respectively.

Proof. As in Corollary 17.2.15. using Propositions 17.3.26 and 17.3.27.

Summarizing we have proved in this section the following equivalences.

TS⊤ ∼= ZS;

LTS⊤ ∼= LZS;

NTS⊤ ∼= NZS;

TS ∼= ZSs;

PTS ∼= PZSs.

17.4. From zip to lambda structures

In this section we see that the various categories of zip structures can be related
to suitable categories of lambda structures.

Lambda structures

17.4.1. Definition. (i) A lambda structure, notation LS, is a triple DF,G =
〈D, F,G〉, where D∈ALG and F : D → [D → D] and G : [D → D] → D are
continuous.

(ii) A strict lambda structure, notation LSs is a triple DF,G = 〈D, F,G〉,
where D∈ALG, and F : D→s[D→sD] and G : [D→sD]→sD are continuous.

A (strict) lambda structure DF,G can be viewed as an applicative structure
〈D, ·〉, with

d · e = F (d)(e).

This makes the following definition rather natural.

17.4.2. Definition. Let DF,G be a lambda structure. A map f : D→D is
called representable iff for some element d∈D one has

∀e∈D.f(e) = F (d)(e).

Comment: these definitions are given in Section 18.1, where they are used!

Comment: better to use m for the Galois pair?
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17.4.3. Definition. A pair of continuous functions 〈m,n〉 with m : D → D′,
n : D′ → D is said a Galois connection (shortly: 〈m,n〉 : D → D′) if

(Galois-1) n ◦m ⊒ IdD;
(Galois-2) m ◦ n ⊑ IdD′ .

An equivalent statement is

(Galois) ∀x∈D, x′ ∈D′.m(x) ⊑ x′ ⇔ x ⊑ n(x′).

Here m is said to be the left adjoint of the Galois connection, n the right adjoint.

Next lemma shows two useful properties of the left adjoint in Galois connections.

17.4.4. Lemma. Let 〈m,n〉 : D → D′ be a Galois connection. Then

(i) m is additive.
(ii) ∀d∈K(D).m(d)∈K(D′).

Proof. (i) Of course, being m monotone, it is immediate that for arbitrary
sets I one has

m(
i∈I

di) ⊒
i∈I

m(di).

As to the other inequality

m(
i∈I

di) ⊑ m(
i∈I

(n(m(di)))), by (Galois-1),

⊑ m(n(
i∈I

m(di))), since n is monotone,

⊑
i∈I

m(di), by (Galois-2).

We now prove (ii). Let Z ′ ⊆ D′ any directed set. We have

m(d) ⊑ Z ′ ⇒ n(m(d)) ⊑ n( Z ′),

⇒ n(m(d)) ⊑ n(Z ′), since n is continuous,

⇒ d ⊑ n(Z ′), by (Galois-1),

⇒ ∃z ∈Z.d ⊑ n(z), since d∈K(D),

⇒ ∃z ∈Z.m(d) ⊑ m(n(z))

⇒ ∃z ∈Z.m(d) ⊑ z by Galois-2.

17.4.5. Definition. A Galois connection 〈m,n〉 : D→D′ is called special if for
any x, y ∈D, x′, y′ ∈D′, f ∈ [D → D] and g ∈ [D → D′] one has

1. m(G(f)) ⊑ G′(m ◦ f ◦ n);

2. m(F (x)(y)) ⊑ F ′(m(x))(m(y));

3. n(G′(g)) ⊒ G(n ◦ g ◦m);

4. n(F ′(x′)(y′)) ⊒ F (n(x))(n(y)).
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17.4.6. Definition. (i) The category LS consists of lambda structures as objects
and special Galois connections as morphisms. The composition between morphisms
〈m,n〉 : D → D′, 〈m′, n′〉 : D′ → D′ is given by 〈m′ ◦m,n ◦ n′〉.

(ii) The category of strict lambda structures, notation LSs, has as objects
strict lambda structures and as morphisms special Galois connections 〈m,n〉
such that m and n are strict.

(iii) A proper lambda structure, notation PLSs is a strict lambda structure
DF,G such that 〈G,F 〉 is a Galois connection.

(iv) PLSs is the full subcategory of ZSs having as objects proper lambda
structures.

In order to show the relation between ZS and LS, we will introduce two
operators A and L. Before that, we first show how to build a Galois connection
out of a morphism in ZS.

17.4.7. Definition. Given a morphism m : 〈D, Z〉 → 〈D′, Z ′〉 in ZS we define
n = nm : D′ → D by

nm(x′) = {x | m(x) ⊑ x′}.

The next lemma shows properties of nm (we write just n for short).

17.4.8. Lemma. Let m : 〈D, Z〉 → 〈D′, Z ′〉 be a morphism in ZS. Then
(i) ∀x∈D, x′ ∈D′.x ⊑ n(x′) ⇔ m(x) ⊑ x′.
(ii) 〈m,n〉 is a Galois connection between D and D′:

n ◦m ⊒ IdD,
m ◦ n ⊑ IdD′ .

(iii) n is continuous.

Proof. (i) We have

x ⊑ n(x′) ⇒ x ⊑ {z | m(z) ⊑ x′}, by definition of n,

⇒ m(x) ⊑ {m(z) | m(z) ⊑ x′}, by (add),

⇒ m(x) ⊑ x′, by definition of ,

⇒ x ⊑ n(x′), by definition of n.

(ii) By (i).
(iii) To show that n is continuous it is enough to prove that for any X ′ ⊆ D′

directed and a∈K(D), we have

a ⊑ n( X ′) ⇔ a ⊑ (n(X ′)).

Now

a ⊑ n( X ′)) ⇔ m(a) ⊑ X ′, by (i),

⇔ ∃x′ ∈X ′.m(a) ⊑ x′, by (cmp-pres),

⇔ ∃x′ ∈X ′.a ⊑ n(x′), by (i),

⇔ a ⊑ n(X ′), as n(X ′) is directed.
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The following is another useful property of nm.

17.4.9. Lemma. Let m∈ZS(DZ ,D′
Z′) and a, b∈K(D), so (a7→b)∈ [D → D].

Then
(i) m ◦ (a7→b) ◦ n = (m(a)7→m(b)).
(ii) ∀f ∈ [D′ → D′], (m(a)7→m(b)) ⊑ f ′ ⇔ (a7→b) ⊑ n ◦ f ′ ◦m.

Proof. (i) For any y′ ∈D′,

m ◦ (a7→b) ◦ n(y′) =

{

m(b) if a ⊑ n(y′)
m(⊥) otherwise

}

by definition of
step function,

=

{

m(b) if m(a) ⊑ y′
⊥ otherwise

}

by Lemma 17.4.8(i)
and (add).

(ii)

m(a)7→m(b) ⊑ f ′ ⇔ m ◦ (a7→b) ◦ n ⊑ f ′ by (i)
⇒ n ◦m ◦ (a7→b) ◦ n ◦m ⊑ n ◦ f ′ ◦m
⇒ a7→b ⊑ n ◦ f ′ ◦m since n ◦m ⊒ IdD

⇒ m ◦ (a7→b) ◦ n ⊑ m ◦ n ◦ f ′ ◦m ◦ n
⇒ m ◦ (a7→b) ◦ n ⊑ f ′ since m ◦ n ⊑ IdD′

⇒ m(a)7→m(b) ⊑ f ′ by (i).

17.4.10. Definition. Let DZ = 〈D, Z〉 ∈ZS. Then D induces the continuous
functions ·Z : D2→D, FZ : D → [D → D] and GZ : [D → D]→ D defined by

x ·Z y = ΘDZ
(x, y),

where ΘDZ
(x, y) = {b | ∃a ⊑ y | Z(a, b) ⊑ x};
FZ(x) = λy.x ·Z y;
GZ(f) = {Z(a, b) | b ⊑ f(a)}.

Often we will omit the subscript DZ .

In this way we get a lambda structure from Z. Conversely, from a lambda
structure 〈D, F,G〉 withG compact preserving, one also can define a zip structure
〈D, Z〉.

γ was not good for lambda structure, I used DF,G (macro DDA)Comment:

I always dislike γ, it does not agree with the symbols for the other structures

17.4.11. Definition. LetDF,G be a lambda structure withG compact preserving.
Then we can define

ZF,G(a, b) = G(a7→b).
In this way we obtain a zip structure 〈D, ZF,G〉.

Of course, in the definition above, we cannot drop the requirement that G
preserves compact elements, otherwise ZF,G is not well-defined.

This suggests to introduce the category of cp-lambda structures, notation
LSs, which is the full subcategory of LS which has as objects lambda structures
where G preserves compact elements. We will use LSs later on.
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17.4.12. Lemma. Define A : ZS→ LS as follows:

• let DZ ∈ZS. Define A(DZ) = 〈D, FZ , GZ〉;

• let m∈ZS(DZ ,D′
Z). Define A(m) = 〈m,nm〉.

Then A is a functor.

Proof. The non-trivial proof concerns morphisms. A(m) is a Galois connection
because of Lemma 17.4.8. So we are left to prove the four points of Definition
17.4.5. Let f : DZ→D′

Z and G = GZ , G′ = GD′

Z
.

(1) We have

m(G(f)) =

= m( {Z(a, b) | b ⊑ f(a)}),
= {m(Z(a, b)) | b ⊑ f(a)}, by (add),

= {m(Z(a, b)) | a7→b ⊑ f},
= {Z ′(m(a),m(b)) | a7→b ⊑ f}, by (Z-comm),

⊑ {Z ′(m(a),m(b)) | m ◦ (a7→b) ◦ n ⊑ m ◦ f ◦ n},
= {Z ′(m(a),m(b)) | m(a)7→m(b) ⊑ m ◦ f ◦ n}, by Lemma 17.4.9(i),

⊑ {Z ′(a′, b′) | a′ 7→b′ ⊑ m ◦ f ◦ n},
= G′(m ◦ f ◦ n).

(2) We have

m(x · y) = m( {b | ∃a ⊑ y.Z(a, b) ⊑ x}),
= {m(b) | ∃a ⊑ y.Z(a, b) ⊑ x}, by (add),

⊑ {m(b) | ∃a ⊑ y.m(Z(a, b)) ⊑ m(x)},
⊑ {m(b) | ∃a ⊑ y.Z ′(m(a),m(b)) ⊑ m(x)} by (Z-comm),

⊑ {m(b) | ∃a.m(a) ⊑ m(y) & Z ′(m(a),m(b)) ⊑ m(x)},
⊑ {b′ | ∃a′ ⊑ m(y).Z ′(a′, b′) ⊑ m(x)},
= m(x) ·m(y).

(3) We have

G(n ◦ g ◦m) ⊑ n(m(G(n ◦ g ◦m))), since n ◦m ⊒ Id,

⊑ n(G′(m ◦ n ◦ g ◦m ◦ n)), by (1) above

⊑ n(G′(g)), since m ◦ n ⊑ Id.

(4) We have

n(x′ · y′) ⊒ n(m(n(x′)) ·m(n(y′))), since m · n ⊑ Id,

⊒ n(m(n(x′) · n(y′))) by (2) above,

⊒ n(x′) · n(y′), since n ·m ⊒ Id.
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What about a functor from LS to ZS? As mentioned, there are problems
in going from LS to ZS due to the fact that G does not preserve compact
elements, so it is not clear how to define the induced Z.

We could try to avoid the problem and work with LSs. Similarly to the
definition of A, we could consider the following definition.

17.4.13. Definition. Define L : LSs → ZS as follows:

• Let 〈D, F,G〉 ∈ZSs. Define L(〈D, F,G〉 ∈ZSs) = 〈D, ZF,G〉;

• let 〈m,n〉 ∈ZSs(DZ ,D′
Z′). Define L(〈m,n〉) = m.

Unfortunately L, even though well-defined on objects, is not a functor. In
fact, given a Galois connection 〈m,n〉, then m satisfies (cmp-pres) and (add),
by Lemma 17.4.4, but there is no guarantee that (comm-Z) is satisfied.

Consider for instance

• D = {⊥,⊤} ordered by ⊥ < ⊤. Such a structure will be denoted by
D = {⊥ < ⊤}.

• F, F ′ : D → [D → D] defined by:
∀x∈D.F (x) = ⊥7→⊥;
∀x∈D.F ′(x) = ⊥ ⇒ ⊤;

• G,G′ : [D → D]→ D defined by:
∀f ∈ [D → D].G(f) = ⊥;
∀f ∈ [D → D].G′(f) = ⊤.

Then (IdD, IdD′) is a Galois pair between DF,G = 〈D, F,G〉 and D′
F ′,G′ =

〈D, F ′, G′, 〉, butm = L(〈IdD, IdD′〉) is not a morphism in ZS(L(DF,G),L(D′
F ′,G′)).

So leave out for a while morphisms. If we consider just the action of A and L
on objects, one could ask if the correspondence induced by them is bijective (up
to isomorphisms). The answer is negative: the actions of A and L on objects
are not inverse of each other. By contrast, note that the correspondence will
be perfect in the more specialized cases of lazy Galois zip structures and Galois
zip structures as we will see below. In those settings L will be a functor and
along with A will set up an isomorphism of categories.

On one side, Z cannot be recovered by GZ and FZ . For instance we can
consider the zip structures over D = {⊥ < a, b < ⊤}. Define Z and Z ′ by

Z(a, a) = a; Z(a,⊤) = b; Z(c, d) = ⊥ in the other cases

Z ′(a, a) = a; Z ′(a,⊤) = ⊤; Z ′(c, d) = ⊥ in the other cases

Let DZ = 〈D, Z〉, D′
Z = 〈D, Z ′〉. Then DZ and D′

Z induce the same G and F :
GZ = GZ′ and FZ = FZ′ . So we have proved that A(DZ) = A(D′

Z). Since DZ

and D′
Z are clearly not isomorphic, A is not injective (up to isomorphisms).

On the other side, not every cp-lambda structure DF,G can be obtained by
some zip structure DZ .
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Consider for instance D as any non-trivial ω-algebraic lattice, and let F :
D → [D → D], G : [D → D]→ D defined by:

F (x) = λy.⊥
G(f) = ⊥

Then for no DZ , we have FZ = F and GZ = G. In fact,

FZ(x)(y) = {b | ∃a ⊑ y.Z(a, b) ⊑ x}
= {b | ∃a ⊑ y.G(a7→b) ⊑ x}
= ⊤.

So A is not surjective.

From lazy zip structures to lambda structures

In this subsection we see how the correspondence between zip structures and
lambda structures becomes very smooth (an isomorphism of categories) in the
case of lazy zip structures.

We start with a remark and a technical lemma. Recall that ΘDZ
is defined

in Definition 17.4.10.

17.4.14. Remark. Note that by (Z-contr) and (Z-add) one has in LZS

(i) ∀a∈K(D).Z(a,⊥) = Z(⊥,⊥).
(ii) ΘDZ

(x, y) 6= ∅ ⇔ ΘDZ
(x, y) is directed.

17.4.15. Lemma. Let 〈D, Z〉 ∈LZS and let a, b∈K(D), x∈D, with b 6= ⊥.
Then

b ⊑ x · a ⇔ Z(a, b) ⊑ x.

Proof. (⇐) follows immediately from the definition of application.
We prove (⇒). We have

b ⊑ x · a ⇔ b ⊑ ΘDZ
(x, a),

⇒ ∃a1, b1.b ⊑ b1 & a1 ⊑ a & Z(a1, b1) ⊑ x, as ΘDZ
(x, a) is directed,

⇒ Z(a, b) ⊑ x.

This completes the proof.

Lazy zip structures admit a characterization by means of lazy lambda structures.

Comment: ξ is already used as type environment in chapter 14, the macro
for γ is gb.

17.4.16. Definition. Let D = 〈D, F,G〉 be a lambda structure. Write

γ := G(⊥ ⇒ ⊥).

We say that D is a lazy lambda structure if the following holds.
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(i) (γ-comp) γ ∈K(D);
(ii) (adj1) ∀f ∈ [D → D].F (G(f)) ⊒ f ;
(iii) (adj2) ∀x∈D.γ ⊑ x ⇒ G(F (x)) ⊑ x;
(iv) (γ⊥) ∀x∈D.γ 6⊑ x ⇒ F (x) = ⊥7→⊥.

Note that we are using the notation 〈D, F,G〉 coherent with lambda structure
notation, but this is in contrast with Galois connection notation, since the left
adjoint G is put on the right. The following adjunction properties hold.

(ADJ1) G(f) ⊑ x ⇒ f ⊑ F (x)
(ADJ2) if γ ⊑ x then f ⊑ F (x) ⇒ G(f) ⊑ x.

In a lambda structure DF,G = 〈D, F,G〉, F and G set up a Galois connection
if and only if DF,G is a lazy lambda structure with γ = ⊥. This is stated in the
next lemma.

17.4.17. Lemma. Let DF,G = 〈D, F,G〉 be a lambda structure. Then 〈G,F 〉 is
a Galois connection if and only if DF,G is a lazy lambda structure with γ = ⊥.

Proof. (⇒) Obviously (Galois-1) is equivalent to (adj1), and (Galois-2) implies
(adj2). Moreover

G(⊥ ⇒ ⊥) ⊑ G(F (⊥)),

⊑ ⊥, by (Galois-2).

Therefore γ = ⊥. Finally (γ⊥) is trivial, since the premise γ 6⊑ x is always
false.

(⇐) If γ = ⊥, then (adj2) becomes (Galois-2).

17.4.18. Definition. (i) The category LLS is the full subcategory of LS which
has as objects lazy lambda structures.

(ii) A natural lambda structure is an object 〈D,F,G〉 in LLS such that F
and G is a Galois connection.

(iii) The category of natural lambda structures, notation NLS, is the full
subcategory of LS which has as objects natural lambda structures.

We will establish the following equivalences of catogories.

LZS = LLS;

NZS = NLS;

PZSs = PLSs.

17.4.19. Proposition. Let DZ = 〈D, Z〉 be a lazy zip structure. Then

(i) GZ(a7→b) = Z(a, b).

(ii) A(DZ) = 〈D, FZ , GZ〉 is a lazy lambda structure.
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Proof. (i) We have the following.

GZ(a7→b) = {Z(a′, b′) | b′ ⊑ (a7→b)a′}
= {Z(a′, b′) | a ⊑ a′ & b′ ⊑ b}, because Z(a′,⊥) = Z(⊥,⊥),

by Remark 17.4.14(i),

= Z(a, b), by (Z-contr).

(ii) Omitting the subscript DZ we prove that A(DZ) satisfies the four points
of Definition 17.4.16. We have G(⊥7→⊥) = Z(⊥,⊥), by (i). Therefore (γ-comp)
holds, since Z(⊥,⊥) is compact.

As to (adj1), it is sufficient to reason about compact elements, and prove
that for any a, b,

b ⊑ f(a) ⇒ b ⊑ F (G(f))(a).

Notice that if b ⊑ f(a), then b∈ΘDZ
(G(f), a), so

b ⊑ ΘDZ
(G(f), a),

= G(f) · a,
= F (G(f))(a).

Now we prove (adj2). Suppose γ ⊑ x, that is Z(a,⊥) ⊑ x for any a. Since
G(F (x)) = {Z(a, b) | b ⊑ x · a}, it is enough to prove that Z(a, b) ⊑ x
whenever b ⊑ x · a. There are two cases. If b = ⊥, then the thesis follows from
the hypothesis. If b 6= ⊥, then the thesis follows from Lemma 17.4.15.

Finally we prove (γ⊥). By (Z-lazy) it follows that Z(a, b) 6⊑ x, for all a, b.
So F (x)(y) = ⊥, for any y.

As a corollary of Proposition 17.4.19 and Lemma 17.4.12 we get the following
result.

17.4.20. Theorem. A restricts to a functor from LZS to LLS.

Going the other direction, from any lazy lambda structure one can define
a lazy zip structure. Before showing that, we need to extend Lemma 17.4.4 to
lazy lambda structures. The proof is very similar to that other one and is left
to the reader.

17.4.21. Lemma. Let 〈D, F,G〉 be a lazy lambda structure. Then
(i) G is additive.
(ii) ∀f ∈K([D → D]).G(f)∈K(D).

17.4.22. Proposition. Let DF,G = 〈D, F,G〉 be a lazy lambda structure. Then
L(DF,G) = 〈D, ZF,G〉 is a lazy zip structure.

Proof. We omit the subscript D. First of all notice that Z is well-defined
since by Lemma 17.4.21(ii), Z(a, b) is a compact element.

We prove (Z-contr). Let a ⊑ a′, b′ ⊑ b. Then, in [D → D], a′ 7→b′ ⊑ a7→b,
hence G(a′ 7→b′) ⊑ G(a7→b). By definition of Z, this implies Z(a′, b′) ⊑ Z(a, b)
as desired.
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We prove (Z-add). We have

Z(a, b1 ⊔ b2) = G(a7→(b1 ⊔ b2)), by definition,

= G(a7→b1) ⊔G(a7→b2), by Lemma 17.4.21(i).

Finally, (Z-lazy) is immediate by monotonicity of G and the fact that
(⊥ ⇒ ⊥) ⊑ (a7→b), for all a, b∈K(D).

By contrast to what happened with ZSs, restricting to LLS the functor L
is well-behaved on morphisms, so that we get a functor.

17.4.23. Lemma. Let π = 〈m,n〉 ∈LLS(DF,G,D′
F ′,G′), where DF,G = 〈D,F,G〉,

D′
F ′,G′ = 〈D′, F ′, G′〉. Define L(π) = m. Then L(π)∈LZS(L(DF,G),L(D′

F ′,G′)).

Proof. L(π) = m satisfies (cmp-pres) and (add) by Lemma 17.4.21. So we
are left to prove that m satisfies (Z-comm), that is, for any a, b∈K(D),

m(Z(a, b)) = Z ′(m(a),m(b))

where Z = ZF,G, Z ′ = ZF,G. We have

m(Z(a, b)) = m(G(a7→b)) by definition of Z
⊑ G′(m ◦ (a7→b) ◦ n) by Definition 17.4.5(1)
= G′(m(a)7→m(b)) by Lemma 17.4.9
= Z ′(m(a),m(b))

On the other hand, being by definition (a7→b)(a) = b

b ⊑ (a7→b)(a) ⇒ b ⊑ (F (G(a7→b))(a) by (adj1)
⇒ m(b) ⊑ m((F (G(a7→b))(a))
⇒ m(b) ⊑ F ′(m(G(a7→b)))(m(a)) by Definition 17.4.5(2)
⇒ m(a)7→m(b) ⊑ F ′(m(G(a7→b)))
⇒ G′(m(a)7→m(b)) ⊑ m(G(a7→b)) by (adj2)
⇒ Z ′(m(a),m(b)) ⊑ m(Z(a, b))

As a consequence of Proposition 17.4.22 and Lemma 17.4.23 we obtain

17.4.24. Theorem. L : LLS→ LZS is a functor.

Actually, L and A set up an isomorphism between LLS and LZS. So the
correspondence between LLS and LZS is perfect.

17.4.25. Theorem. (i) A ◦ L = IdLLS.

(ii) L ◦ A = IdLZS.

Proof. (i) We will prove that for any lazy lambda structure DF,G = 〈D,F,G〉,
A(L(DF,G)) = DF,G. This is equivalent to prove that

FZF,G
= F, GZF,G

= G.
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First we prove that GZF,G
= G. We have

GZF,G
(f) = {ZF,G(a, b) | b ⊑ f(a)},

= {G(a7→b) | b ⊑ f(a)},
= G( {a7→b | b ⊑ f(a)} by Lemma 17.4.21(i),

= G( {a7→b | a7→b ⊑ f}),
= G(f).

Now we prove that for any x∈D, FZF,G
(x) = F (x). First consider the case

γ 6⊑ x. In such a case F (x) = ⊥7→⊥ by (γ⊥). On the other hand, since
ZF,G satisfies (Z-lazy), it follows that ZF,G(a, b) 6⊑ x, for any a, b∈K(D), so
for any a∈K(D) we have ΘDZ

(x, a) = ∅. This implies FZF,G
(x)(y) = ⊥ for

any y ∈D, that is FZF,G
(x) = ⊥7→⊥. So we have proved that, if γ 6⊑ x, then

F (x) = FZF,G
(x)).

Now let γ ⊑ x. It is enough to prove that for all compact elements a, b one
has

b ⊑ F (x)(a) ⇔ b ⊑ FZF,G
(x)(a).

Indeed, b ⊑ FZF,G
(x)(a) ⇔ b ⊑ x · a,

⇔ ZF,G(a, b) ⊑ x, by Lemma 17.4.15,

⇔ G(a7→b) ⊑ x, by definition of ZF,G,

⇔ a7→b ⊑ F (x), by (Galois),

⇔ b ⊑ F (x)(a).
(ii) We prove that for any lazy zip structure DZ = 〈D, Z〉, L(A(DZ)) = DZ .

For this aim, it is enough to prove that ZGZ
= Z. We have

ZGZ
(a, b) = GZ(a7→b)

= Z(a, b), by Proposition 17.4.19(i).

17.4.26. Corollary. The categories LZS and LLS are equivalent.

From natural zip structures to natural lambda structures

In this short subsection we specialize the results of the previous subsection to
natural zip structures.

17.4.27. Proposition. Let DZ = 〈D, Z〉 be a natural zip structure. Then

A(DZ) = 〈D, FZ , GZ〉 is a natural lambda structure.

Proof. We conclude immediately by Lemma 17.4.17, since Z(⊥,⊥) = ⊥,
hence GZ(⊥7→⊥) = ⊥.

So we get the following.

17.4.28. Theorem. A restricts to a functor from NZS to NLS.

We now go the other direction.
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17.4.29. Proposition. Let DF,G = 〈D, F,G〉 be a natural lambda structure.
Then L(DF,G) = 〈D,ZF,G〉 is a natural zip structure.

Proof. By Proposition 17.4.22, we just have to prove that ZF,G(⊥,⊥) = ⊥.
By Lemma 17.4.17 we know thatG(⊥7→⊥) = ⊥, so we are done by the definition
of ZF,G.

Finally we get the following.

17.4.30. Theorem. L restricts to a functor from NLS to NZS.

17.4.31. Corollary. The categories NLS and NZS are equivalent.

Proof. From Theorem 17.4.26 and the fact that NLS and NZS are full
subcategories of LLS and LZS respectively.

Comment: this was at page 107

17.4.32. Lemma. Let DF,G ∈NLS.
(i) For f ∈ [D→D]

f is compact ⇒ G(f) is compact.

(ii) For f1, f2 ∈ [D→D]

G(f1 ⊔ f2) = G(f1) ⊔G(f2).

(iii) F determines G: for all f ∈ [D→D]

G(f) = ⊓{d | f ⊑ F (d)}.
Proof. (i) Suppose f is compact. Then

G(f) ⊑
z ∈Z

z ⇒ F (G(f)) ⊑
z ∈Z

F (z), since F is continuous,

⇒ f ⊑
z ∈Z

F (z), since D is Galois,

⇒ ∃z ∈Z.f ⊑ F (z), since f is compact

and F (Z) is directed,

⇒ ∃z ∈Z.G(f) ⊑ G(F (z)), since G is monotonic,

⇒ ∃z ∈Z.G(f) ⊑ z, since D is Galois.

(ii) Since G(fi) ⊑ G(f1⊔f2), by monotonicity of G, one has G(f1)⊔G(f2) ⊑
G(f1 ⊔ f2). Conversely,

G(f1 ⊔ f2) ⊑ G[F (G(f1)) ⊔ F (G(f2))], since F ◦G ⊒ 1[D→D],

⊑ G(F [G(f1) ⊔G(f2)]), by monotonicity of F ,

⊑ G(f1) ⊔G(f2), since G ◦ F ⊑ 1D.

(iii) It suffices to show that G(f) ⊑ d ⇔ f ⊑ F (d). Indeed,

G(f) ⊑ d ⇒ F (G(f)) ⊑ F (d), since F is monotonic

⇒ f ⊑ F (d), as 1[D→D] ⊑ F ◦G,

⇒ G(f) ⊑ G(F (d)), since G is monotonic,

⇒ G(f) ⊑ d as G ◦ F ⊑ 1D.
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From proper strict zip structures to proper strict lambda structures

In this final subsection we specialize the previous results to proper strict zip
structures. Most proofs of this section are left to the reader.

17.4.33. Definition. Let DZ = 〈D, Z〉 ∈ZSs. Then DZ induces the continuous
maps ·Z : D2→D, FZ : D→s[D→sD] and GZ : [D→sD]→sD defined by

x ·Z y = ΘDZ
(x, y),

where ΘDZ
(x, y) = {b | ∃a ⊑ y.Z(a, b) ⊑ x};
FZ(x) = λy.x ·Z y;
GZ(f) = {Z(a, b) | b ⊑ f(a)}.

Usually we will omit the Z.

The following Lemma shows that indeed 〈D, FZ , GZ〉 ∈ZSs.

17.4.34. Lemma. (i) For all x∈D the map FZ(x) is strict.
(ii) FZ is strict.
(iii) GZ is strict.

Proof. (i) Since 〈⊥, b〉 is not in the domain of Z.
(ii) Since Z(a, b) 6= ⊥.
(iii) If b ⊑ (⊥ ⇒ ⊥)(a), then b = ⊥. Moreover, 〈a,⊥〉 is not in the domain

of Z.

17.4.35. Remark. (i) In the proof of As ◦ Ls = IdPLSs use that Remark
17.4.14(ii) and Lemma 17.4.15 also hold for PLSs and a, b∈Ks(D).

(ii) If m is a morphism in ZSs, then m is strict by (add). Moreover, if
m(d) = ⊥, then d = ⊥, hence n(⊥) = ⊥ holds for n of Definition 17.4.7. So m
and n are both strict, hence 〈m,n〉 is a morphism in LSs.

From a proper strict lambda structure DF,G = 〈D, F,G〉 one also can define
a proper strict zip structure 〈D, ZF,G〉, by setting for any a, b∈Ks(D)

ZF,G(a, b) = G(a7→b).
Note that from the strictness of F and the fact that 〈G,F 〉 is a Galois

connection it follows that G(a7→b) 6= ⊥ if a, b 6= ⊥. Hence ZF,G(a, b) is well
defined.

These actions allow to define in the obvious way two operators:

As : PZSs → PLSs

Ls : PLSs → PZSs

Actually both As and Ls are functors:

17.4.36. Theorem. As is a functor from PZSs to PLSs.

17.4.37. Theorem. Ls is a functor from PLSs to PZSs.

17.4.38. Theorem. The categories PZSs and PLSs are equivalent.

Comment: I propose to escape the following section, since the call-by-value
is treated in Simona book.
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17.5. Type structures with top for arrow types

17.5.1. Definition. (i) Let S ∈GTS I, see Definition ??. Let TTS contain a
special atom ν. Then we say that S is a ν-strict TT (GTS Iν) if it satisfies

(ν) A→B ≤ ν

(ii) The category GTS Iν is the full subcategory of GTS I with GTS Iν as
objects.

(iii) Let S be in GTS Iν . Then λ∩Sν denotes the type assignment system with
the axioms and rules of λT∩ , see Definition 15.2.2, extended with

(ν universal) Γ ⊢ λx.M : ν

We write ⊢S∩ν , or simply ⊢S , ⊢ν or ⊢, for derivability in this system.

In this section all TSs are ν-strict and all type assignment systems have
rule (ν-universal). Note that ν-strict type structures are also strict natural
type structures.

The prime example of a ν-strict TS is the syntactic intersection type structure
EHR coming from the intersection type theory EHR with A = {ν} axiomatized
by (η), (→∩), (ν).

Most definitions, propositions and theorems for NTSs and λ∩(Ω) hold in a
slightly modified form for the present setting. We give some of them, with short
indications of proofs. We will also indicate some differences.

Clearly Lemma 15.2.6(ii) and Proposition 15.2.8 hold for λS∩ν .
Also the Generation Theorem 16.1.1 holds for λS∩ν , without the condition

A 6= Ω in (i) and (ii) and with the extra condition ν 6≤ A in (iii).

17.5.2. Definition. S ∈GTS Iν is called ν-sound if for all A,B ∈S

ν 6= (A→B).

17.5.3. Theorem (Inversion Theorem for λS∩ν). Let S ∈GTS Iν . Then in λS∩ν

the following hold provided that in (iii) S is β-sound and ν-sound and C 6= ν.

(i) Γ, x:A ⊢ x : B ⇔ A ≤ B.
(ii) Γ ⊢ (MN) : A ⇔ ∃B ∈S [Γ ⊢M : (B→A) & Γ ⊢ N : B].
(iii) Γ ⊢ (λx.M) : (B→C) ⇔ Γ, x:B ⊢M : C.

Proof. Similar to the proof of Theorem 16.1.10.

17.5.4. Proposition. EHR is β-sound and ν-sound.

Proof. (β-soundness) Similar to the proof of β-soundness of CDV in Theorem
16.1.8.

(ν-soundness) By induction on the definition of ≤EHR one shows

ν ≤ A ⇒ A ≡ ν ∩ . . . ∩ ν.

The result follows.
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17.5.5. Corollary. For EHR Theorem 17.5.3(iii) holds unconditionally.

17.5.6. Remark. One can show that λEHR
∩ν satisfies βI-red, but not βI-exp and

η-exp but not η-red. Indeed, ⊢EHR
ν λx.z : ν, but 6⊢EHR

ν (λyx.y)z : ν; moreover
⊢EHR

ν λy.xy : ν, but 6⊢EHR
ν x : ν.

NLSsν and GTS Iν

17.5.7. Definition. Let D be an ω-algebraic lattice.
(i) Let Z : (Ks(D) × Ks(D)) ∪ {〈⊥,⊥〉} → Ks(D). Then DZ = (D,H) is

called a ν-strict lambda structure (SLSν), if it satisfies the following conditions.

(Z-contr) a ⊑ a′ & b′ ⊑ b ⇒ Z(a′, b′) ⊑ Z(a, b);
(Z-add) Z(a, b1 ⊔ b2) = Z(a, b1) ⊔ Z(a, b2);
(Z-lazy) Z(⊥,⊥) ⊑ Z(a, b).

(ii) The category NLSsν consists of SLSνs as objects and as morphisms
continuous functions which satisfy

(cmp-pres) ∀a.m(a)∈Ks(D′);
(add) ∀X ⊆ D.m( X) = m(X);
(comm-H) ∀a, b.m(Z(a, b)) = Z ′(m(a),m(b)).

Application is defined similarly to the non-strict case.

17.5.8. Definition. LetDZ = (D,Z)∈NLSsν . ThenDZ induces the continuous
functions ·H : D2→D, FH : D →s [D →s D] and GH : [D →s D] → D defined
by

x ·H y = ΘDZ
(x, y),

where ΘDZ
(x, y) = {b | ∃a ⊑ y | Z(a, b) ⊑ x};
FH(x) = λy.x ·H y;

GH(f) = {Z(a, b) | b ⊑ f(a)}.
Usually we will omit the H. FZ(x) is strict, since (⊥, b) is in the domain of H
only if b = ⊥ and FZ is strict, since Z(a, b) 6= ⊥.

17.5.9. Remark. Note that by (H-contr) and (H-add) we have for ΘDZ

ΘDZ
(x, y) 6= ∅ ⇔ ΘDZ

(x, y) is directed.

17.5.10. Lemma. Let DZ = (D,Z) be an SLSν and let a, b∈Ks(DZ), x∈D.
Then

b ⊑ x · a ⇔ Z(a, b) ⊑ x

Proof. As for Lemma 17.4.15.

The ν-strict lambda structures admit a characterization by means of strict
lazy Galois connections.

17.5.11. Definition. Let D∈ALG. A semi strict applicative structure is a
triple 〈D, F,G〉 with F : [[D →s D]→s D] and G : D →s [D →s D] continuous.
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17.5.12. Definition. Let 〈D,F,G〉 be a semi strict applicative structure. Write
ξ := G(⊥ ⇒ ⊥). We say that 〈D,F,G〉 is a strict lazy Galois connection if the
following conditions are fullfilled.

(ξ-comp) ξ ∈K(D);
(adj1) ∀f ∈ [D →s D].F (G(f)) ⊒ f ;
(adj2) ∀x∈D.ξ ⊑ x ⇒ G(F (x)) ⊑ x;
(ξ⊥) ∀x∈D.ξ 6⊑ x ⇒ F (x) = ⊥ ⇒ ⊥.

17.5.13. Proposition. Let (D,Z) be an SLSν .

(i) ∀a, b∈dom(Z).GH(a⇒ b) = H(a, b).

(ii) 〈D,FH , GH〉 is a strict lazy Galois connection.

Proof. Similar to the proof of Proposition 17.4.19. In the proof of (i) we use
the fact that Z(⊥,⊥) ⊑ Z(a, b), by (Z-lazy). In (ii) we get (ξ-comp) from
Z(⊥,⊥)∈Ks(D).

Going the other direction, from any strict lazy Galois connection one can
define an LLS. Before showing that, we need a preliminary lemma.

17.5.14. Lemma. Let 〈D,F,G〉 be a strict lazy Galois connection. Then

(i) G is additive.

(ii) ∀f ∈K([D → D]).G(f)∈Ks(D).

Proof. Similar to the proof of Lemma 17.4.4. In (ii) we must show additionally
G(f) 6= ⊥. This follows by monotonicity of G from G(⊥ ⇒ ⊥) = ξ 6= ⊥, by
ξ-comp.

17.5.15. Proposition. Let γ = 〈D,F,G〉 be a strict lazy Galois connection.
Define Zγ : Ks(D)×Ks(D) ∪ {⊥,⊥} → Ks(D) by

Zγ(a, b) = G(a⇒ b)

Then (D,Zγ) is a ν-strict lambda structure.

Proof. As the proof of Proposition 17.4.22. By Lemma 17.5.14(ii) we get
Zγ(a, b)∈Ks(D).

The next theorem shows that SLSνs can be characterized completely as
strict lazy Galois connections, and vice-versa.

17.5.16. Theorem. (i) Let (D,Z) be a SLSν . Let γ = 〈D,FZ , GZ〉. Then
Zγ = H.

(ii) Let γ = 〈D,F,G〉 be a strict lazy Galois connection. Then FZγ = F ,
GZγ = G.

Proof. Similar to the proof of Theorem ??.
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17.5.17. Definition. Given an object S in GTS Iν , we define the strict lambda
structure Fltν(S) = (FS

s , Z
S
ν ), where ZS

ν : Ks(FS
s )×Ks(FS

s )∪{(∅, ∅)} → Ks(FS
s )

is defined as follows.

ZS
ν (↑s s, ↑s t) = ↑s (s→ t)

ZS
ν (∅, ∅) = ↑sν.

17.5.18. Proposition. Let S ∈GTS Iν . Then 〈FS
s , Z

S
ν 〉 is an NLSsν .

Proof. By Proposition 15.4.6 FS
s is in MSLs. The map ZS

ν satisfies (H-contr)
and (H-add) as in the proof of Proposition 17.3.10. The extra cases needed to
show that (⊥,⊥)∈dom(Z) are easy. As to (Z-lazy).

ZS
ν (⊥,⊥) = ZS

ν (∅, ∅)
= ↑S(s→t), by (ν),

= ZS
ν (↑Ss, ↑St).

17.5.19. Definition. Let S ∈GTS Iν . Define
(i) FS

ν : FS
s →s [FS

s →s FS
s ] and GS

ν : [FS
s →s FS

s ] →s FS
s by FS

ν = FZS
ν
,

GS
ν = GZS

ν
, that is:

FS
ν (X)(Y ) = ↑s {t∈S | ∃s∈Y.s→ t∈X};
GS

ν (f) = ↑s {s→ t | t∈ f(↑s s)} ∪ ↑sν.

(ii) The triple 〈FS
ν , F

S
ν , G

S
ν 〉 is called the ν-strict filter structure over S.

17.5.20. Definition. (i) Given an object (D, Z)∈NLSsν , we define the type
structure Cmpν(D) = (Ks(D),≤,∩, ν,→Z), with

• a ≤ b ⇔ b ⊑ a;
• a ∩ b ≡ a ⊔ b;
• a→Zb ≡ Z(a, b);

• ν = Z(⊥,⊥).

(ii) The maps Cmpν and Fltν can be extended to morphisms as follows.
Given m∈LS(D,D′) and f ∈TS(S, S′), define

Cmpν(m) = m ↾ K(D);

Fltν(f)(X) = {t | ∃s∈X.f(s) ≤ t}.

We now will prove the equivalence between the categories NLSsν and GTS Iν .

17.5.21. Proposition. Cmps is a functor from NLSs to GTS I.

Proof. For any D∈NLSs, Cmps(D) is a GTS I by Proposition ??. The proof
that Cmps is well-behaved on morphisms follows as in the non-strict case (see
Proposition 17.2.11).

17.5.22. Proposition. Fltν is a functor from GTS Iν to NLSsν .
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Proof. For any S ∈GTS I, Fltν(S) is an SLSν by Proposition 17.5.18. The
proof that Fltν is well-behaved on morphisms follows as in the non-strict case
(see Proposition 17.3.6).

17.5.23. Proposition. Let Fts : GTS Iν→MSLs and F ls : NLSsν→ALGs be
the forgetful functors. Then the following figures are commutative diagrams.

GTS I

Flt
//

Fts

��

NLSs

Fls

��
MSLs

Flt
// ALGs

GTS I

Fts

��

NLSs

Cmp
oo

Fls

��
MSLs ALGs

Cmp
oo

It follows that the categories NLSsν and GTS Iν are equivalent. Natural
isomorphisms are given by ξ and τ respectively.

The proof of the following two propositions are similar to the proofs of
Propositions 17.3.6 and 17.3.7 in the non-strict case.

17.5.24. Proposition. Let S ∈GTS Iν . Then ξS : S → Ks(FS
ν ) defined as

ξS(s) = ↑ s ,

is an isomorphism in GTS Iν .

17.5.25. Proposition. Let (D,Z)∈NLSsν . Then τD : FKs(D)
ν → D defined by

τD(x) = x

is an isomorphism in NLSsν .

17.5.26. Theorem. The categories NLSsν and GTS Iν are equivalent.

Proof. As in Corollary 17.2.15. using Propositions 17.5.24 and 17.5.25.

17.6. Exercises

17.6.1. Let S be an arbitrary free type structure. Show that
∅ ·X = ∅ for all X ∈FT

X · ∅ = ∅ for all X ∈FT .

17.6.2. Let S be a natural and β-sound type structure. Show that

↑ ⋂

i∈ I(Ai → Bi)· ↑ C =
⋂

j ∈ I Bj ,

where J = {i∈ I | C ≤T Ai}.
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17.6.3. Let S be a top type structure. Show that

FS(GS(⊥7→⊥)) = (⊥7→⊥) ⇒
B =T ⊤ whenever A→ B =T ⊤ → ⊤.

17.6.4. Let S be a top type structure. Show that

FS(GS(⊥7→⊥)) = (⊥7→⊥) ⇔
[
⋂

i∈ I(Ci→Di) ≤T A→B & ∀i∈ I.Di =T ⊤] ⇒ B =T ⊤.

17.6.5. Let S be an arbitrary type structure. Show that
GS( i∈ I(↑ Ai 7→ ↑ Bi)) ⊇ ↑ ⋂

i∈ I(Ai→Bi).

17.6.6. Let S be a proper type structure. Show that
GS( i∈ I(↑ Ai 7→ ↑ Bi)) = ↑ ⋂

i∈ I(Ai→Bi).

17.6.7. Let S be a natural type structure. Show that
GS( i∈ I(↑ Ai 7→ ↑ Bi)) = ↑ ⋂

i∈ I(Ai→Bi). Comment: immediate
from previous exercise

17.6.8. Let S be a natural type structure. Show that GS(↑ ⊤7→ ↑ ⊤) = ↑ ⊤.
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Chapter 18

Models 16.10.2006:1032

In this Chapter filter models, the main tool of Part III on the intersection types,
will be introduced. A filter is a collection of types closed under intersection (∩)
and expansion (≤). It turns out that there is a natural way to define application
on such filters. This depends on the order ≤ on types and it will be shown for
which of the type theories introduced in Chapter 15 the filters will turn out to
be models of the untyped lambda calculus.

In Section 18.2 the filter models will be introduced as an applicative structures.
Also it will be shown that the value of an untyped lambda term M in this
structure is the collection of types that can be assigned to M . In Section 18.3
the approximation theorem will be shown, i.e. the interpretation of a lambda
term is the supremum of those of its approximations.

18.1. Lambda models

Given a lambda structure DF,G = 〈D, F,G〉, i.e. a D∈ALG with continuous
F : D→D→D and G : [D→D]→D, it is well known how one can interprete
(untyped) lambda-terms in it. For lambda structures of the form D = FT this
interpretation turns out to have a simple form: the interpretation of a lambda
term equals the set (actually a filter) of its possible types (in TTT ). This will
help us to determine for what T the corresponding filter structure is a lambda-
model. This characterization can also be given for restricted lambda calculi,
such as the λI-calculus.Comment: we do not consider other restricted calculi
18.1.1. Definition. (i) Let D be a set and Var the set of variables of the
untyped lambda calculus. An environment in D is a total map

ρ : Var→D.

The set of environments in D is denoted by EnvD.
(ii) If ρ∈EnvD and d∈D, then ρ[x := d] is the ρ′ ∈EnvD defined by

ρ′(x) = d;

ρ′(y) = ρ(y), if y 6= x.

The definition of a syntactic lambda-models was given in Barendregt [1984]
(Definition 5.3.1 Comment: where you do not use coercion!) or Hindley and

97
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Longo [1980]. We simply call these λ-models. We introduce also applicative
structures (Definition 5.1.1 of Barendregt [1984]) and quasi λ-models.

Comment: better to avoid coercion? use DI?

18.1.2. Definition. (i) An applicative structure is a pair 〈D, ·〉, where D is a
set and · : D ×D→D is a binary operation on D.

(ii) A quasi λ-model is of the form

〈D, ·, [[ ]]〉,

where 〈D, ·〉 is an applicative structure and [[ ]] : Λ × EnvD→D satisfies the
following.

(1) [[x]]Dρ = ρ(x)

(2) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ
(3) [[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ (α),

provided y /∈ FV(M),

(4) ∀d∈D.[[M ]]ρ[x:=d] = [[N ]]ρ[x:=d] ⇒ [[λx.M ]]Dρ = [[λx.N ]]Dρ (ξ)

(5) ρ ↾ FV(M) = ρ′ ↾ FV(N) ⇒ [[M ]]Dρ = [[M ]]ρ′ .

(iii) A λ-model is a quasi λ-model which safisfies:

(6) [[λx.M ]]Dρ · d = [[M ]]ρ[x:=d] (β)

(iv) A (quasi) λI-model is defined similarly but replacing Λ by ΛI, the set
of λI-terms that require for each abstraction term λx.M that x∈FV(M). The
corresponding clauses are denoted by (αI), (βI) and (ξI).

We will write simply [[ ]]ρ instead of [[ ]]Dρ when there is no danger of confusion.

We have the following implications:
λ-model =⇒ λI-model =⇒ quasi λI-model;
λ-model =⇒ quasi λ-model =⇒ quasi λI-model.Comment: make a diagram?

18.1.3. Definition. Let D = 〈D, ·, [[ ]]〉 be a (quasi) λ(I)-model.
(i) The statement M = N , for M,N untyped lambda terms, is true in D,

notation D |= M = N iff

∀ρ∈EnvD.[[M ]]ρ = [[N ]]ρ.

(ii) As usual one defines D |= χ, where χ is any statement built up using
first order predicate logic from equations between untyped lambda terms.

(iii) A λ(I)-model D is called extensional iff

D |= (∀x.Mx = Nx) ⇒ M = N.

(iv) A λ(I)-model D is a λ(I)η-model iff

D |= λx.Mx = M for x /∈ FV(M) (η)
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18.1.4. Definition. (i) LetDF,G = 〈D, F,G〉 be a lambda structure, see Definition
17.4.1(i). Then DF,G induces an interpretation [[ ]] : Λ× EnvD → D as follows.

[[x]]ρ = ρ(x);

[[MN ]]ρ = F ([[M ]]ρ)([[N ]]ρ);

[[λx.M ]]ρ = G(λλd∈D.[[M ]]ρ[x:=d]).

Notice that the function λλd∈D.[[M ]]ρ[x:=d] used for [[λx.M ]]ρ is continuous.

(ii) Now let DF,G = 〈D, F,G〉 be a strict lambda structure, see Definition
17.4.1(ii). Then also DF,G induces an interpretation [[ ]] : Λ × EnvD → D as
above, changing the clause for [[λx.M ]]ρ into

[[λx.M ]]ρ = G(λλd∈D. if d = ⊥D then ⊥D else [[M ]]ρ[x:=d]).

18.1.5. Proposition. For all (strict) lambda structures DF,G induce quasi λ(I)-
models.

Proof. LetDF,G = 〈D, F,G〉 be a lambda structure. Defining the interpretation
[[ ]] : Λ×EnvD → D as in Definition 18.1.4 and the application · : D×D→D as
d · e = F (d)e it is easy to prove that one gets a quasi (strict) lambda model.

18.1.6. Proposition. For all (strict) lambda structures DF,G we have

(i) [[λx.M ]]ρ = [[λy.M [x := y]]]ρ, if y /∈ FV(M). (α)

(ii) (∀d∈D. [[M ]]ρ[x:=d] = [[N ]]ρ[x:=d])⇒ [[λx.M ]]ρ = [[λx.N ]]ρ. (ξ)

(iii) ρ ↾ FV(M) = ρ′ ↾ FV(M) ⇒ [[M ]]ρ = [[M ]]ρ′ .

Proof. Easy.

Therefore the only requirement that a (strict) lambda structure misses to
be a λ(I)-model is the axiom (β(I)).

18.1.7. Proposition. (i) Let 〈D, F,G〉 with D∈ALG be a lambda structure.
Then the following statements are equivalent.

(1) D |= (λx.M)N = M [x: = N ], for all M,N ∈Λ;

(2) [[λx.M ]]ρ.d = [[M ]]ρ(x:=d), for all M ∈Λ and d∈D;

(3) D is a λ-model;

(4) D |= λβ, where λβ = {M = N | λβ ⊢M = N}.
(ii) As (i), but D is a strict lambda structure, in (1) and (2) the extra

condition ‘x∈FV(M)’, in (1) D |= (λx.M)N = M [x: = N ], in (3) ‘D is a
λI-model’ and in (4) ‘D |= λβI, where λβI = {M = N | λβI ⊢M = N}.
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Proof. (i) (1)⇒(2). By (1) one has [[(λx.M)N ]]ρ = [[M [x: = N ]]]ρ. Taking
N ≡ x and ρ′ = ρ(x: = d) one obtains

[[(λx.M)x]]ρ′ = [[M ]]ρ′ ,

hence
[[λx.M ]]ρ · d = [[M ]]ρ′ ,

as ρ ↾ FV(λx.M) = ρ′ ↾ FV(λx.M).
(2)⇒(3). By (ii), Definition 18.1.4 and Proposition 18.1.5 all conditions to

be a λ-model, see Definition 18.1.2, are fulfilled.
(3)⇒(4). By Theorem 5.3.4 in Barendregt [1984].
(4)⇒(1). Trivial.

(ii) Similarly.

18.1.8. Corollary. Let DF,G = 〈D, F,G〉 be a (strict) lambda structure and a
λ(I)-model. Then

D is a λ(I)η-model ⇔ D is an extensional λ(I)-model.

Proof. (⇒) Suppose that for some ρ one has for all d∈D

[[Mx]]ρ[x:=d] = [[Nx]]ρ[x:=d].

Then by (η) and Proposition 18.1.5(ii) one has

[[M ]]ρ = [[λx.Mx]]ρ = [[λx.Nx]]ρ = [[N ]]ρ.

(⇐) Note that by (β(I)) one has D |= (λx.Mx)y = My, where x is fresh.
Hence by extensionality one has D |= λx.Mx = M.

Similarly.

18.1.1. Isomorphisms of λ-models

18.1.9. Definition. (i) A reflexive structure 〈D,F,G〉 is a lambda structure
such that F ◦G = Id.

(ii) An extensional reflexive structure is a reflexive lambda structure such
that G ◦ F = Id.

18.1.10. Proposition. (i) Each reflexive structure is a λ-model.
(ii) Each extensional reflexive structure is an extensional λ-model.

Proof. This is Theorem 5.4.4 of Barendregt [1984].

18.1.11. Definition. (i) An isomorphism between two reflexive structures
〈D, F,G〉 and 〈D′, F ′, G′〉 is a bijective mapping m such that

(1) m(G(f)) = G′(m ◦ f ◦m−1)

(2) m(F (d)(e)) = F ′(m(d))(m(e))
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18.1.12. Proposition. (i) If D and D′ are isomorphic lambda models via
m then for all λ-terms M and environments ρ:

m([[M ]]Dρ ) = [[M ]]D
′

m◦ρ

(ii) If two lambda models are isomorphic then they equal the same terms,
i.e. D |= M = N iff D′ |= M = N .

Proof. (i) is proved by induction on M .

(ii) follows from (i).

18.2. Filter models

Now we introduce the fundamental notion of filter structure, which will be
used extensively in this Section. It is of paramount importance, and one can
say that all the preceding sections in this Chapter are a build-up to it. Since
the seminal paper Barendregt et al. [1983], this notion has played a major role
in the study of the mathematical semantics of lambda-calculus. By Definition
?? we write for T ∈TS and X a non-empty subset of T

↑X = {x∈T | ∃n ≥ 1∃x1, . . . , xn.x1 ∩ . . . ∩ xn ≤ x}.

Now we extend this notion as follows.

Comment: we need filter models also for TT, not only for TS

By Definition 15.4.2(ii) we have for T a TT and X a non-empty subset of
T

↑X = {x∈T | ∃n ≥ 1∃x1 . . . xn ∈X.x1 ∩ . . . ∩ xn ≤ x}.

Now we extend this notion as follows.

18.2.1. Definition. (i) We define ↑∅ = {⊤}.
(ii) Let T be a TT. Then we define ↑s X ∈FS

s by

↑s X = ↑X, if X 6= ∅;
↑s ∅ = ∅.

Comment: moved at page 36

18.2.2. Definition. (i) Let T be a TT⊤. We define

F T : [FT→[FT→FT ]] and

GT : [[FT→FT ]→FT ]

by

F T (X)(Y ) = ↑{B ∈TTT | ∃A∈Y.(A→B)∈X};
GT (f) = ↑{A→B | B ∈ f(↑A)}.
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(ii) Let T be a TT. We define

F T
s : [FT

s →s[FT
s →sFT

s ]] and

GT
s : [[FT

s →sFT
s ]→sFT

s ]

by

F T
s (X)(Y ) = ↑s {B ∈TTT | ∃A∈Y.(A→B)∈X};
GT

s (f) = ↑s {A→B | B ∈ f(↑A)}.

18.2.3. Lemma. (i) The structure FT = 〈FT , F T , GT 〉 is a lambda structure:
it is called the filter structure over T .

(ii) The structure FT
s = 〈FT

s , F
T
s , G

T
s 〉 is a strict lambda structure: it is

called the strict filter structure over T .

Proof. It is easy to verify that F T , GT , F T
s , G

T
s are continuous.

Recall that by Proposition 15.3.3 a compatible TT(⊤) induces a TS(⊤).
We can take advantage in this case of the equivalencies between type and zip
structures (Theorems 17.3.8 and 17.3.28).

18.2.4. Lemma. (i) If S ∈TS⊤, then FS = FZS and GS = GZS , where FZS

and GS = GZS are defined in Definitions 17.3.1 and 17.4.10.

(ii) If S ∈TS, then FS
s = FZS

s
and GS

s = GZS
s
, where FZS

s
and GZS

s
are

defined in Definitions 17.3.17 and 17.4.33

Proof. (i) Taking the suprema in FS one has

FS(X)(Y ) = ↑{↑A | ∃B ∈Y.(B→A)∈X}
= {↑A | ∃B ∈Y.↑(B→A) ⊆ X}
= {↑A | ∃↑B ⊆ Y.ZS(↑B, ↑A) ⊆ X}
= X ·ZS Y.

Moreover,

GS(f) = ↑{B→A | A∈ f(↑B)}
= {↑(B→A) | A∈ f(↑B)}
= {Z(↑B, ↑A) | ↑A ⊆ f(↑B)}.

(ii) Now the suprema are taken in FS
s and ∅ = ∅, the bottom of FS

s .

The rest of this section is devoted to the characterization of those type
theories T such that FT is a λ(I)-model, a so-called filter λ-model. The
following type-semantics theorem is important. It has as consequence that for
a closed untyped lambda term M and a TT⊤ T one has

[[M ]]F
T

= {A | ⊢T∩⊤ M : A},
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i.e. the semantical meaning of M in the filter λ-model corresponding to a a
TT⊤ T is the collection of its types. For a TT T one has

[[M ]]F
T
s = {A | ⊢T∩ M : A}.

In order to deal with arbitrary (hence open) terms, we need to extend the notion
of context.

18.2.5. Definition. (i) A flexible context Γ is a set, now possibly infinite, of
statements of the form x : A where the requirement

(x:A), (x:B)∈Γ ⇒ A = B

is dropped.
(ii) If ρ is a valuation in a filter structure FT

(s), then we define the flexible

context Γρ = {(x:B) | B ∈ ρ(x)}.
(iii) For a flexible context Γ we define

Γ ⊢∩⊤(⊤) M : A ⇔ ∃Γ0 ⊆ Γ.[Γ0 finite & ∩ Γ0 ⊢∩⊤(⊤) M : A],

where ∩Γ0 = {x:(B1 ∩ . . . ∩Bk) | (x:Bi)∈Γ0}.

18.2.6. Definition. A context Γ agrees with an environment ρ∈Env
(s)

FT

(s)

(notation

Γ |= ρ) if x : A∈Γ implies A∈ ρ(x).

We immediately get:

18.2.7. Proposition. (i) If Γ |= ρ and Γ′ |= ρ, then Γ ⊎ Γ′ |= ρ.
(ii) If Γ |= ρ[x :=↑(s) A], then Γ\x |= ρ.

18.2.8. Theorem (Type-semantics Theorem). (i) Let T be a TT⊤ and FT its
corresponding filter structure. Then, for any lambda-term M and ρ∈EnvFT ,

[[M ]]ρ = {A | Γ ⊢T∩⊤ M : A for some Γ |= ρ}.

(ii) Let T be a TT and FT
s its corresponding strict filter structure. Then,

for any lambda-term M and ρ∈Envs
FT

s
,

[[M ]]ρ = {A | Γ ⊢T∩⊤ M : A for some Γ |= ρ}.

Proof. (i) By induction on the structure of M .
If M ≡ x, then

[[x]]ρ = ρ(x)

= {A | A∈ ρ(x)}
= {A | A∈ ρ(x) & x : A ⊢T∩⊤ x : A}
= {A | Γ ⊢T∩⊤ x : A for some Γ |= ρ}, by Definition 18.2.6.
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If M ≡ NL, then

[[NL]]ρ = [[N ]]ρ · [[L]]ρ

= ↑{A | ∃B ∈ [[L]]ρ.(B → A)∈ [[N ]]ρ}

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck.

[ (Bi→Ci)∈ [[N ]]ρ & Bi ∈ [[L]]ρ & (
⋂

1≤i≤k Ci) ≤ A]} ∪ ↑{⊤},
by definition of ↑,

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck. for some Γ1i,Γ2i |= ρ

[ Γ1i ⊢T∩⊤ N : (Bi→Ci) & Γ2i ⊢T∩⊤ L : Bi & C1 ∩ . . . ∩ Ck ≤ A]} ∪ ↑{⊤},
by induction hypothesis,

= {A | Γ ⊢T
∩⊤ NL : A for some Γ |= ρ}, taking Γ = Γ11 ⊎ . . . ⊎ Γ1k ⊎ . . . ⊎ Γ21 ⊎ . . . ⊎ Γ2k,

by Theorem 16.1.1(ii) and Proposition 18.2.7(i).

If M ≡ λx.N , then

[[λx.N ]]ρ = GT (λλX ∈FT .[[N ]]ρ[x:=X])

= ↑ {(B→C) | C ∈ [[N ]]ρ[x:=↑B]}

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck. for some Γi |= ρ[x: = ↑Bi]

[ Γi, x:Bi ⊢T∩⊤ N : Ci & (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A]}, by the induction hypothesis,

= {A | Γ ⊢T∩⊤ λx.N : A for some Γ |= ρ}, taking Γ = (Γ1 ⊎ . . . ⊎ Γk)\x

by Theorem 16.1.1(iii), rule (≤) and Proposition 18.2.7(ii).

(ii) Similarly, with ↑ replaced by ↑s. Note that in the case M = NL we
drop ’∪↑{⊤}’ both times and in the case M = λx.N , using Definition 18.1.4,
[[λx.N ]]Tρ =↑s {(B→C) | C ∈ [[N ]]T }ρ[x:=↑B] holds because ↑B 6= ∅.

18.2.9. Corollary. (i) Let T be a TT⊤. Then

FT is a λ-model ⇔ [Γ ⊢T∩⊤ (λx.M) : (B→A) ⇒ Γ, x:B ⊢T∩⊤ M : A].

(ii) Let T be a TT. Then

FT
s is a λI-model ⇔

[Γ ⊢T
∩⊤ (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T

∩⊤ M : A].

Proof. (i) By Propositions 18.1.7(i), 16.2.1(ii) and Corollary 16.2.5(i).

(ii) By Propositions 18.1.7(ii), 16.2.1(i) and Corollary 16.2.5(ii).

18.2.10. Corollary. Let T be an TS I.
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(i) Suppose

Γ ⊢TΩ λx.M : A→B ⇒ Γ, x:A ⊢TΩ M : B.

Then FT is a λ-model.
(ii) Suppose

Γ ⊢T λx.M : A→B ⇒ Γ, x:A ⊢T M : B.

Then FT
s is a λI-model.

Proof. By the Corollary above and the Theorem 16.1.10(iii).

18.2.11. Corollary. (i) Let T be a TT⊤. Then

T is β-sound ⇒ FT is a λ-model.

(ii) Let T be a TT. Then

T is β-sound ⇒ FT
s is a λI-model.

Proof. By the Corollary above and Theorem 16.1.10(iii).

18.2.12. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then

FT is a λ-model.

(ii) Let T ∈ {HL,CDV,CD}. Then

FT
s is a λI-model.

Proof. (i) By (i) of the previous Corollary and Theorem 16.1.8.
(ii) By (ii) of the Corollary, using Theorem 16.1.8.

18.2.13. Proposition. (i) Let T be a TT⊤. Then

T is natural and β- and η⊤-sound ⇒ FT is an extensional λ-model.

(ii) Let T be a TT. Then

T is proper and β- and η-sound ⇒ FT
s is an extensional λI-model.

Proof. (i) and (ii) FT (FT
s ) is a λ(I)-model by Corollary 18.2.11(i)((ii)). For

extensionality by Corollary 18.1.10 one needs to verify for x /∈ FV(M)

[[λx.Mx]]ρ = [[M ]]ρ. (η)

This follows from Theorems 18.2.8(i), and 16.2.15(i).
(ii) We know that extensionality is equivalent to (eta), Barendregt [1984],

Theorem ??. This (eta) follows from Theorems 18.2.8(ii) and 16.2.15(ii).
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18.2.14. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM}. Then

FT is an extensional λ-model.

(ii) Let T = HL. Then

FT
s is an extensional λI-model.

Proof. (i) and (ii) By Corollary 16.2.13.

(ii) By Corollary 16.2.13.

As shown in Meyer [1982], see also Barendregt [1984] Ch.4, an lambda
structure is a λ-model provided that it contains the combinators K, S and ε,
satisfying certain properties. Thus, a condition for being a filter λ-model can
be obtained by simply forcing the existence of such combinators. This yields a
characterization of the natural type theories which induce filter λ-models. See
Alessi [1991] for the rather technical proof.

18.2.15. Theorem. Let T be a NTT.

(i) The filter structure FT is a filter λ-model if and only if the following
three conditions are fulfilled in T .

(K) For all C,E one has

C ≤ E ⇔ ∀D ∃{Ai, Bi}i∈ I .
⋂

i∈ I

(Ai → Bi → Ai) ≤ C → D → E.

(S) For all D,E, F,G one has

∃H.[E ≤ F → H & D ≤ F → H → G] ⇔
[

∃{Ai, Bi, Ci}i∈ I .
⋂

i∈ I(Ai → Bi → Ci)→ (Ai → Bi)→ (Ai → Ci) ≤ D → E → F → G

]

.

(ε) For all C,D one has

∃{Ai, Bi}i∈ I .(
⋂

i∈ I

(Ai → Bi)→ (Ai → Bi)) ≤ (C → D) ⇔

∃{Ej , Fj}j ∈ J .C ≤ (
⋂

j ∈ J

Ej → Fj) ≤ D.

(ii) The structure FT is an extensional filter λ-model iff the third condition
above is replaced by the following two.

(ǫ1) ∀A ∃{Ai, Bi}i∈ I .A =T
⋂

i∈ I(Ai → Bi);

(ǫ2) ∀A,B ∃{Ai}i∈ I .
⋂

i∈ I(Ai → Ai) ≤ (A→ B)⇔ A ≤ B.
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The call-by-value λ-calculus.

18.2.16. Theorem. Let T ∈GTS Iν and FT
ν be its corresponding ν-filter structure.

Then, for any lambda term M , ρ∈EnvFT
ν

and Γρ as above,

[[M ]]F
T
ν

ρ = {A∈T | Γρ ⊢T M : A}.

Proof. Similar to the proof of Theorem 18.2.8. Instead of Theorem 16.1.1 we
now use Theorem 17.5.3.

The model induced by λ∩ν gives a fully abstract model for the call-by-value
operational semantics (for a proof see Egidi et al. [1992]). Moreover one has
the following.

18.2.17. Theorem (Egidi et al. [1992]). Let Dstrict
∞ be an inverse limit solution

of the domain equation D ∼= [D →⊥ D]⊥. Then Dstrict
∞

∼= FEHR.

Models of the call-by-value λ-calculus are the topic of the book Ronchi
Della Rocca and Paolini [2004], which uses many intersection type systems.
EXPAND! (After 12.2.2006) Comment: I will make a chapter on further
reading as soon as the other parts of the book are finished

Representability of continuous functions

In this subsection following Alessi, Barbanera and Dezani-Ciancaglini [2004]
we will isolate a number of conditions on a NTT T implying that the set of
representable functions FT→FT , i.e. the set of functions in the image of F T ,
contains several interesting classes of functions.

18.2.18. Definition. A function f : D → D is representable in the lambda
structure 〈D, F,G〉 if f = F (d) for some d∈D.

18.2.19. Lemma. Let T be a NTT and let f ∈ [FT→FT ]. Then

f is representable ⇔ F T ◦GT (f) = f.

Proof. (⇐) Trivial. (⇒) Suppose F T (X) = f . Claim F T (GT (F T (X))) =
F T (X). One hasGT (F T (X)) = ↑{a→b | a→b∈X}. Hence a→b∈GT (F T (X)) ⇔
a→b∈X. So for each Y we have indeed F T (GT (F T (X)))(Y ) = F T (X)(Y ).

Comment: moved at page 88

18.2.20. Lemma. Let T be a NTT and define the function h : FT → FT by

h = (↑A1 ⇒ ↑B1) ⊔ . . . ⊔ (↑An ⇒ ↑Bn).

Then for C ∈TTT

(i) h(↑C) = {D | Bi1 ∩ . . . ∩Bik ≤ D & C ≤ Ai1 ∩ . . . ∩Aik}.
(ii) (F T ◦GT )(h)(↑c) = {d | (a1→b1) ∩ . . . ∩ (an→bn) ≤ (c→d)}.
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Proof. (i) h(↑C) = {↑Bi | ↑Ai ≤ ↑C}
= ↑⋂{Bi | C ≤ Ai}, by Proposition 15.4.4(iii)
= {D | Bi1 ∩ . . . ∩Bik ≤ D & C ≤ Ai1 ∩ . . . ∩Aik}.

(ii) (F T ◦GT )(h)(↑C) = [Correct!]

= F T (GT ((↑A1 ⇒ ↑B1)) ⊔ . . . ⊔GT ((↑An ⇒ ↑Bn))))(↑C), by Lemma 17.4.32(ii),

= F T ((↑A1→↑B1) ⊔ . . . ⊔ (↑An→↑Bn)))(↑c), by Definition 18.2.2(i),

= F T (((↑A1→↑B1) ∩ . . . ∩ (↑An→↑Bn)))(↑C), by Proposition 15.4.4(iii),

= {D | ∃E ∈↑C.(E→D)∈↑((A1→B1) ∩ . . . ∩ (An→Bn))}, see Definition 18.2.2(ii),

= {D | ∃E ≥ C.(A1→B1) ∩ . . . ∩ (An→Bn) ≤ (E→D)}
= {D | (A1→B1) ∩ . . . ∩ (An→Bn) ≤ (C→D)}, by (→).

18.2.21. Theorem. Let T be a NTT. Let R be the set of representable functions
FT→FT . Then we have the following.

(i) R contains the bottom function K⊥ = ⊥FT 7→⊥FT iff for all C,D

⊤ ≤ C→D ⇒ ⊤ ≤ D.

(ii) R contains the constant functions iff for all B,C,D

⊤→B ≤ C→D ⇒ B ≤ D.

(iii) R contains the continuous step functions iff for all A,B,C,D

A→B ≤ C→D & D 6= ⊤ ⇒ C ≤ A & B ≤ D.

(iv) R contains the continuous functions iff

∀n ≥ 0,∀A1, . . . ,An, B1, . . . ,Bn, C,D∈T
(A1→B1) ∩ . . . (An→Bn) ≤ (C→D) ⇒ [C ≤ Ai1 ∩ . . . ∩Aik & Bi1 ∩ . . . ∩Bik ≤ D]

for some k ≥ 0, 1 ≤ i1 < . . . < ik ≤ n.

Proof. (i) Assume that K⊥∈R. Then F T (GT (K⊥)) = K⊥, by Lemma
18.2.19. Observe that

GT (K⊥) = ↑{A→⊤}, by Definition 18.2.2(i),

= ↑⊤ since T is natural.

Hence F T (⊥FT ) = K⊥, so in particular F T (⊥FT )(↑C) = ⊥FT , and therefore

{D | ⊤ ≤ D} = ↑⊤ = ⊥FT

= F T (⊥FT )(↑C)

= F T (↑⊤)(↑C)

= {d | ⊤ ≤ (C→D)}, by Definition 18.2.2(i).

But then ⊤ ≤ C→D ⇒ ⊤ ≤ D.
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(⇐) Suppose that ⊤ ≤ C→D ⇒ ⊤ ≤ D. We show that F T (⊥FT ) = K⊥.

F T (⊥FT )(X) = {B | ∃A∈X.(A→B)∈⊥FT }
= {B | ∃A∈X.(A→B)∈↑⊤}
= {B | ∃A∈X.⊤ ≤ (A→B)}
= {B | ⊤ ≤ B} by the assumption

= ↑⊤ = ⊥FT .

(ii) Suppose that ⊤→B ≤ C→D ⇒ B ≤ D. We first show that each
compact constant function K ↑B(= λλX ∈FT .↑B) is represented by ↑(⊤→B).
Indeed,

D∈↑(⊤→B) · ↑C ⇔ C→D∈↑(⊤→B) by (→)

⇔ ⊤→B ≤ C→D
⇔ B ≤ D by the assumption, (⊤), and (→)

⇔ D∈↑B = (K ↑B) (↑C).

Now let KX be an arbitrary constant function, where X is directed. Then
KX = ⊔B ∈XK ↑B and {K ↑B | B ∈X} is directed. Hence by Lemma 18.2.19
and the continuity of F T ◦GT we get

KX = ⊔B ∈XK ↑B
= ⊔B ∈XF

T ◦GT (K ↑B)

= F T ◦GT (⊔B ∈XK ↑B).

Conversely, suppose that all constant functions are representable. Then
F T ◦GT (K ↑b) = K ↑b, by Lemma 18.2.19. Therefore

⊤→B ≤ C→D ⇒ (C→D)∈↑(⊤→B)

⇒ d∈↑(⊤→B) · ↑C
⇒ d∈ ((F T ◦GT )(K ↑B))(↑C), by Definition 18.2.2(i),

⇒ D∈ (K ↑B)(↑C) = ↑B
⇒ B ≤ D.

(iv) (We prove (iii) later.) Let T ∈NTT. Using the axioms of the natural
type structure T , it is not difficult to see that the condition in the RHS of (iv)
is equivalent with

(A1→B1)∩. . .∩(An→Bn) ≤ (C→D) ⇔ Bi1∩. . .∩Bik ≤ D & C ≤ Ai1∩. . .∩Aik.
(18.1)

(⇐ always does hold) Let h∈K([FT→FT ]). By Lemma 18.2.20 Proposition
17.1.11(ii) it follows that for some A1, . . . ,An, B1, . . . ,Bn ∈T

h = (↑A1 ⇒ ↑B1) ⊔ . . . ⊔ (↑An ⇒ ↑Bn),

since a finite element of FT is of the form ↑A.
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(⇒) Suppose all continuous functions are representable. Then since h above
is such a function, one has

(FS ◦GS)(h)(↑c) = h(↑c)

and therefore (18.1).
(⇐) Suppose we have (18.1). Then for the compact continuous functions

h one has that (FS ◦ GS)(h) and h coincide on the compact elements ↑c and
therefore by Proposition 17.1.5 everywhere. But then it follows again that
f = (FS ◦ GS)(f) for every continuous f : FT→FT . Hence Lemma 18.2.19
applies.

(iii) (⇒) Suppose all continuous step functions are representable. Suppose
a→b ≤ c→d, d 6= ⊤. Take h = ↑a⇒ ↑b. By Lemma 18.2.20(ii) we have

(FS ◦GS)(h)(↑c) = {e | a→b ≤ c→e}
h(↑c) = {e |

⋂

{b | c ≤ a} ≤ e}.

By the first assumption these two sets are equal. By the second assumption it
follows that c ≤ a & b ≤ d.

(⇐) Let h = X ⇒ Y be continuous. We have to show that

(FS ◦GS)(h) = h (18.1)

By Lemma 17.1.5(ii) it suffices to show this for compact h. If Y 6= ⊥FT , then
by 17.1.9 both X,Y are compact, so h = ↑a⇒ ↑b. Then (18.1) holds by Lemma
18.2.20 and the assumption. If Y = ⊥FT , then h is the bottom function and
hence representable (the assumption in (iii) implies the assumption in (i)).

A non-continuous filter lambda-model

The intersection type theories T ∈ {Scott,Park,BCD,CDZ,HR,AO,DHM} all
induce filter lambda-models, by Corollary 18.2.12(i). These type theories are
all natural and β-sound. Therefore by Theorem 18.2.21(iv) all continuous
functions are representable in these FT . In Section 18 we will give many more
filter lambda-models arising from domain models. It is therefore interesting to
ask whether there exist filter lambda-models where not all continuous functions
are representable. We answer affirmatively, and end this section by giving an
example of a natural type structure which is not β-sound. Therefore by the
same theorem not all continuous functions are representable in the induced filter
structures. The model builds on an idea in Coppo et al. [1984]. In exercise
18.4.7 another such model, due to Alessi [1993], is constructed. See also Alessi,
Barbanera and Dezani-Ciancaglini [2004].

The theory ♦
18.2.22. Definition. Let the TT♦ with constants A♦ = {⊤,♦,♥} be axiomatized
by rule (→) and axioms (→∩), (⊤), (⊤ →) and (♦) where

(♦) A ≤♦ A[♦ := ♥].
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18.2.23. Lemma. (i) A ≤♦ B ⇒ A[♦ := ♥] ≤♦ B[♦ := ♥].
(ii) Γ ⊢♦ M : A ⇒ Γ[♦ := ♥] ⊢♦ M : A[♦ := ♥].
(iii) Γ,Γ′ ⊢♦ M : A ⇒ Γ,Γ′[♦ := ♥] ⊢♦ M : A[♦ := ♥].
(iv) Γ, x:Ai ⊢♦ M : Bi for 1 ≤ i ≤ n & (A1→B1) ∩ . . . ∩ (An→Bn) ≤♦ C→D

⇒ Γ, x:C ⊢♦ M : D.

Proof. (i) By induction on the definition of ≤♦.
(ii) By induction on derivations using (i) for rule (≤♦).
(iii) From (ii) and rule (≤♦-L), taking into account that if (x:B)∈Γ, then

(x:B[♦ := ♥])∈Γ[♦ := ♥] and B ≤♦ B[♦ := ♥].
(iv) We will denote by α, β (possibly with indices) elements of A♦. We show

by induction on the definition of ≤♦ that

[(

⋂

i∈ I(Ai→Bi)∩⊤(
⋂

h∈H αh)
)

≤♦

(

⋂

j ∈ J(Cj→Dj)∩⊤(
⋂

k∈K βk)
)

& ∀i∈ I. Γ, x:Ai ⊢♦ M : Bi

]

⇒ ∀j ∈J. Γ, x:Cj ⊢♦ M : Dj .

The only interesting case is when the applied rule is (♦), i.e. we have

(

⋂

i∈ I(Ai→Bi)∩⊤(
⋂

h∈H αh)
)

≤♦

(

⋂

i∈ I(Ai→Bi)∩⊤(
⋂

h∈H αh)
)

[♦ := ♥].

By hypothesis Γ, x:Ai ⊢♦ M : Bi, so we are done by (iii).

18.2.24. Theorem. (i) T ♦ is a TT that is not β-sound.
(ii) Nevertheless F♦ is a filter lambda-model.

Proof. (i) By definition T ♦ is a TT. We have ♦→♦ ≤♦ ♥→♥, but ♥ 6≤♦ ♦,
so it is not β-sound.

(ii) To show that F♦ is a lambda-model, it suffices, by Proposition 18.2.9,
to verify that Γ ⊢♦ λx.M : A→B ⇒ Γ, x:A ⊢♦ M : B. By Lemma 16.1.1(iii)
Γ ⊢♦ λx.M : A→B ⇒ Γ, x:Ci ⊢♦ M : Di for some I, Ci, Di such that
⋂

i∈ I(Ci→Di) ≤♦ A→B. So, we are done by Lemma 18.2.23(iv).

For example the step function ↑♦ ⇒ ↑♦ is not representable in F♦.

18.3. Approximation theorems

A crucial result in the study of the equational theory of ω-algebraic λ-models
are the Approximation Theorems, see e.g. Hyland [1975/76], Wadsworth [1976],
Barendregt [1984], Longo [1987], Ronchi Della Rocca [1988], Honsell and
Ronchi Della Rocca [1992]. An Approximation Theorem expresses the interpretation
of any λ-term, even a non terminating one, as the supremum of the interpretations
of suitable normal forms, called the approximants of the term, in an appropriate
extended language. Approximation Theorems are very useful in proving, for
instance, Computational Adequacy of models with respect to operational semantics,
see e.g. Barendregt [1984], Honsell and Ronchi Della Rocca [1992]. There are
other possible methods of showing computational adequacy, both semantical
and syntactical, e.g. Hyland [1975/76], Wadsworth [1976], Honsell and Ronchi
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Della Rocca [1992], Abramsky and Ong [1993], but the method based on
Approximation Theorems is usually the most straightforward. However, proving
an Approximation Theorem for a given model theory is usually rather difficult.
Most of the proofs in the literature are based on the technique of indexed
reduction, see Wadsworth [1976], Abramsky and Ong [1993], Honsell and Ronchi
Della Rocca [1992]. However, when the model in question is a filter model,
by applying duality, the Approximation Theorem can be rephrased as follows:
the types of a given term are all and only the types of its approximants.
This change in perspective opens the way to proving Approximation Theorems
using the syntactical machinery of proof theory, such as logical predicates and
computability techniques.

The aim of the present section is to show in a uniform way that all the type
assignment systems which induce filter models isomorphic to the models in
Scott [1972], Park [1976], Coppo et al. [1987], Honsell and Ronchi Della Rocca
[1992], Dezani-Ciancaglini et al. [2005], Barendregt et al. [1983], Abramsky and
Ong [1993] satisfy the Approximation Theorem. To this end following Dezani-
Ciancaglini et al. [2001] we use a technique which can be constructed as a
version of stable sets over a Kripke applicative structure. Comment: Add
relations with Ronchi Della Rocca and Paolini [2004].

For almost all the type theories of Figure 15.2 which induce λ-models we
introduce appropriate notions of approximants which agree with the λ-theories
of different models and therefore also with the type theories describing these
models. Then we will prove that all types of an approximant of a given term
(with respect to the appropriate notion of approximants) are also types of the
given term. Finally we show the converse, namely that the types which can
be assigned to a term can also be assigned to at least one approximant of that
term. Hence a type can be derived for a term if and only if it can be derived for
an approximant of that term. We end this section showing some applications
of the Approximation Theorem.

Approximate normal forms

In this section we consider two extensions of λ-calculus both obtained by adding
one constant. The first one is the well known language λ⊥, see Barendregt
[1984]. The other extension is obtained by adding Φ and it is discussed in Honsell
and Ronchi Della Rocca [1992].

18.3.1. Definition. (i) The set Λ⊥ of λ⊥-terms is obtained by adding the
constant ⊥ to the formation rules of terms.

(ii) The set ΛΦ of λΦ-terms is obtained by adding the constant Φ to the
formation rules of terms.

We consider two mappings (⊠ and ⊞) from λ-terms to λ⊥-terms and one
mapping (⊡) from λ-terms to λΦ-terms. These mappings differ in the translation
of β-redexes. Clearly the values of these mappings are β-irreducible terms,
i.e. normal forms for an extended language. As usual we call such a term an
approximate normal form or abbreviated an anf.
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18.3.2. Definition. The mappings ⊠ : Λ→Λ⊥,⊞ : Λ→Λ⊥,⊡ : Λ→ΛΦ are
inductively defined as follows.

†(λ~x.y ~M) = λ~x.y † (M1) . . . † (Mm);

⊠(λ~x.(λy.R)N ~M) = ⊥;

⊞(λ~x.(λy.R)N ~M) = λ~x.⊥;

⊡(λ~x.(λy.R)N ~M) = λ~x.Φ⊡(λy.R)⊡(N)⊡(M1) . . .⊡(Mm),

where † ∈ {⊠,⊞,⊡}, ~M ≡M1 . . .Mm and m ≥ 0.

The mapping ⊠ is related to the Böhm-tree of untyped lambda terms, whereas
β to the Lévy-Longo trees, see van Bakel et al. [2002], where these trees are
related to intersection types.

In order to give the appropriate Approximation Theorem we will use the
mapping ⊠ for the type assignment systems λScott

∩⊤ , λCDZ
∩⊤ , λDHM

∩⊤ , λBCD
∩⊤ the

mapping ⊞ for the type assignment system λAO
∩⊤ , and the mapping ⊡ for the

type assignment systems λPark
∩⊤ , λHR

∩⊤ . Each one of the above mappings associates
a set of approximants to each λ-term in the standard way.

Comment: the order here is that one of the figure but for AO,Park,HR
which are at the end, since this corresponds to the 3 mappings, would it be
better to change?

18.3.3. Definition. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}.
The set AS(M) of S-approximants of M is defined by

AS(M) = {P | ∃M ′. M →→β M
′ and P ≡ †(M ′)},

where

† = ⊠, for S ∈{Scott,CDZ,DHM,BCD},
† = ⊞, for S ∈{AO},
† = ⊡, for S ∈{Park,HR}.

We extend the typing to λ⊥-terms and to λΦ-terms by adding two different
axioms for Φ and nothing for ⊥.

18.3.4. Definition. (i) Let S ∈{Scott,CDZ,DHM,BCD,AO}. We extend the
definition of type assignment Γ ⊢S

∩⊤ M : A to λ⊥-terms by letting M,N in
Definition 15.2.2 range over Λ⊥.

(ii) We extend the type assignment λPark
∩⊤ to λΦ-terms by adding the axiom

(Ax-Φ-Park) Γ ⊢Park
∩⊤ Φ : ω.

(iii) We extend the type assignment λHR
∩⊤ to λΦ-terms by adding the axiom

(Ax-Φ-HR) Γ ⊢HR
∩⊤ Φ : ϕ.

It is easy to verify that the appropriate generalization of the Inversion Theorems
(Theorems 16.1.1 and 16.1.10) holds also for these two extensions of the type
assignment system. Therefore we do not introduce different notations for these
extended type assignment systems and we will freely refer to the Inversion
Theorems extended with the following proposition.
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18.3.5. Proposition. (i) Let S ∈{Scott,CDZ,DHM,BCD,AO}. Then

Γ ⊢S∩⊤ ⊥ : A ⇔ A =S ⊤.

(ii) Γ ⊢Park
∩⊤ Φ : A ⇔ ω ≤Park A.

(iii) Γ ⊢HR
∩⊤ Φ : A ⇔ ϕ ≤HR A.

18.3.6. Lemma. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}.
(i) M1 →→β M2 & Γ ⊢S

∩⊤ †(M1) : A ⇒ Γ ⊢S
∩⊤ †(M2) : A.

(ii) If P, P ′ ∈AS(M), Γ ⊢S
∩⊤ P : A and Γ ⊢S

∩⊤ P ′ : B, then

∃P ′′ ∈AS(M).Γ ⊢S∩⊤ P ′′ : A ∩B.

Proof. (i). For S ∈{Scott,CDZ,DHM,BCD,AO} the proof follows by induction
on the structure of the term dividing by cases (head normal form or not head
normal form) and using Inversion Theorems.
For S ∈{Park,HR} it sufficies to consider the case M1 ≡ (λx.M)N and M2 ≡
M [x := N ]. Notice that ⊡(M [x := N ]) is ⊡(M) where the occurrences of x
have been replaced by Φ⊡(N) if they are functional and N is an abstraction,
and by ⊡(N) otherwise. More formally, if we define the mapping ⊡ : Λ→ ΛΦ
by

⊡(M) =

{

Φ⊡(M) if M ≡ λx.M ′

⊡(M) otherwise

and the mapping { }xy : Λ→ Λ by

{z}xy = z

{M1M2}xy =

{

y{M2}xy if M1 ≡ x
{M1}xy{M2}xy otherwise

{λz.M}xy = λz.{M}xy .

then ⊡(M1M2) = ⊡(M1)⊡(M2) and one can check, by induction on M , that
⊡(M [x := N ]) ≡ ⊡({M}xy)[x := ⊡(N)][y := ⊡(N)] for y fresh.

We may assume A6=S⊤. Then from Γ ⊢S
∩⊤ Φ(λx.⊡(M))⊡(N) : A we get

Γ ⊢S
∩⊤ Φ(λx.⊡(M)) : C → A, Γ ⊢S

∩⊤ ⊡(N) : C for some C, by Theorem 16.1.10(ii).
By Lemma 15.1.16 we have C → A6=S⊤, hence again by Theorem 16.1.10(ii)
Γ ⊢S

∩⊤ Φ : B → C → A, Γ ⊢S
∩⊤ λx.⊡(M) : B, for some B.

For S = Park we get ω ≤Park B → C → A from Γ ⊢Park
∩⊤ Φ : B → C → A

by Proposition 18.3.5(ii). This implies B ≤Park ω, C ≤Park ω, and ω ≤Park A,
since ω =T ω → ω, the type structure Park is β-sound by Theorem 16.1.8(ii),
(C→A) 6=S ⊤ and A 6=S ⊤. We obtain by rule (≤) Γ ⊢Park

∩⊤ λx.⊡(M) : ω and

Γ ⊢Park
∩⊤ ⊡(N) : ω. We get Γ, x:ω ⊢Park

∩⊤ ⊡(M) : ω (by Theorem 16.1.10(ii)) and

Γ ⊢Park
∩⊤ Φ⊡(N) : ω since ω =T ω → ω. Now ⊡({M}xy) is equal to ⊡(M) with

some occurrences of x replaced by the fresh variable y. Hence Γ, y:ω, x:ω ⊢Park
∩⊤

⊡({M}xy):ω. So we conclude Γ ⊢Park
∩⊤ ⊡({M}xy)[x := ⊡(N)][y := ⊡(N)] : A by

rules (cut) and (≤).
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For S = HR we get ϕ ≤HR B → C → A from Γ ⊢HR
∩⊤ Φ : B → C → A

by Theorem 18.3.5. This implies either (B ≤HR ϕ and ϕ ≤HR C → A) or
(B ≤HR ω and ω ≤HR C → A) since ϕ =HR (ϕ → ϕ)∩⊤(ω → ω) and HR
is β-sound by Theorem 16.1.8(ii), C→A 6=HR ⊤ and A 6=HR ⊤ (notice that
ϕ∩⊤ω = ω). Similarly in the first case from ϕ ≤HR C → A we get either
C ≤HR ϕ and ϕ ≤HR A or C ≤HR ω and ω ≤HR A. In the second case from
ω ≤HR C → A we get C ≤HR ϕ and ω ≤HR A since ω =HR ϕ→ ω.

To sum up, using rule (≤) we have the following alternative cases.

• Γ ⊢HR
∩⊤ λx.⊡(M) : ϕ, Γ ⊢HR

∩⊤ ⊡(N) : ϕ, and ϕ ≤HR A;

• Γ ⊢HR
∩⊤ λx.⊡(M) : ϕ, Γ ⊢HR

∩⊤ ⊡(N) : ω, and ω ≤HR A;

• Γ ⊢HR
∩⊤ λx.⊡(M) : ω, Γ ⊢HR

∩⊤ ⊡(N) : ϕ, and ω ≤HR A.

Therefore we get alternatively:

• Γ, x:ϕ ⊢HR
∩⊤ ⊡(M) : ϕ, and Γ ⊢HR

∩⊤ Φ⊡(N) : ϕ;

• Γ, x:ω ⊢HR
∩⊤ ⊡(M) : ω, and Γ ⊢HR

∩⊤ Φ⊡(N) : ω;

• Γ, x:ϕ ⊢HR
∩⊤ ⊡(M) : ω, and Γ ⊢HR

∩⊤ Φ⊡(N) : ϕ,

so we can conclude as in the previous case.
(ii). By hypotheses there are M1, M2 such that M →→β M1, M →→β M2 and

P ≡ †(M1), P
′ ≡ †(M2). By the Church-Rosser property of→β we can find M3

such that M1 →→β M3 and M2 →→β M3. By (i) we can choose P ′′ ≡ †(M3).

Approximation Theorem - Part 1

It is useful to introduce the following definition.

18.3.7. Definition. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Write

[A]SΓ = {M | ∃P ∈AS(M). Γ ⊢S
∩⊤ P : A}.

By definition we get that M ∈ [A]SΓ and N →→β M imply N ∈ [A]SΓ. Moreover
Γ ⊆+ Γ′ implies [A]SΓ ⊆ [A]SΓ′ for all types A∈TTS .

In this subsection we prove that, if M ∈ [A]SΓ , then there exists a derivation
of Γ ⊢S

∩⊤ M : A.

18.3.8. Proposition. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}.

M ∈ [A]SΓ ⇒ Γ ⊢S∩⊤ M : A.

Proof. By Corollary 16.2.14(ii) it is sufficient to show

Γ ⊢S∩⊤ P : A⇒ Γ ⊢T∩⊤ M : A. (18.2)

where P ≡ †(M) and † = ⊠ for S ∈{Scott,CDZ,DHM,BCD},
† = ⊞ for S = AO,
† = ⊡ for S ∈{Park,HR}.
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For S ∈{Scott,CDZ,DHM,BCD,AO} from Γ ⊢T
∩⊤ P : A we get Γ ⊢T

∩⊤ M : A
by Proposition 18.3.5(i) and the definition of the mappings ⊠ and ⊞.
For S ∈{Park,HR} we prove (18.2) by induction on M , assuming A6=S⊤.

Case M ≡ x is trivial.
CaseM ≡ λx.M ′, then P ≡ λx.P ′ where P ′ ≡ ⊡(M ′). By Theorem 16.1.1(iii)

from Γ ⊢T
∩⊤ P : A we get Γ, x:Bi ⊢T∩⊤ P ′ : Ci and

⋂

i∈ I(Bi → Ci) ≤S A for

some I,Bi, Ci. We get by induction Γ, x:Bi ⊢T∩⊤ M ′ : Ci and so we conclude

Γ ⊢T
∩⊤ M : A using rules (→I), (∩I) and (≤S ).
Case M ≡ M1M2 where M1 is not an abstraction. Then P ≡ P1P2 where

P1 ≡ ⊡(M1) and P2 ≡ ⊡(M2). By Theorem 16.1.10(ii) from Γ ⊢T
∩⊤ P : A we

get Γ ⊢T
∩⊤ P1 : B → A, Γ ⊢T

∩⊤ P2 : B for some B. By induction this implies

Γ ⊢T
∩⊤ M1 : B → A and Γ ⊢T

∩⊤ M2 : B, hence Γ ⊢T
∩⊤ M ≡M1M2 : A.

Case M ≡ M1M2 where M1 is an abstraction. Then P ≡ ΦP1P2 where
P1 ≡ ⊡(M1) and P2 ≡ ⊡(M2). As in the proof of Lemma 18.3.6(i) from
Γ ⊢T

∩⊤ P : A, where A6=S⊤, we get Γ ⊢T
∩⊤ Φ : B → C → A, Γ ⊢T

∩⊤ P1 : B,

Γ ⊢T
∩⊤ P2 : C for some B,C. By induction this implies Γ ⊢T

∩⊤ M1 : B and

Γ ⊢T
∩⊤ M2 : C.

For S = Park, as in the proof of Lemma 18.3.6(i), we get Γ ⊢Park
Ω M1 : ω

and Γ ⊢Park
Ω M2 : ω. We can conclude Γ ⊢T

∩⊤ M : A using rules (≤Park) and
(→E) since ω =Park ω → ω.

For S = HR as in the proof of Lemma 18.3.6(i) we have the following
alternative cases.

• Γ ⊢HR
∩⊤ M1 : ϕ, Γ ⊢HR

∩⊤ M2 : ϕ, and ϕ ≤HR A;

• Γ ⊢HR
∩⊤ M1 : ϕ, Γ ⊢HR

∩⊤ M2 : ω, and ω ≤HR A;

• Γ ⊢HR
∩⊤ M1 : ω, Γ ⊢HR

∩⊤ M2 : ϕ, and ω ≤HR A.

It is easy to verify that in all cases we can derive Γ ⊢T
∩⊤ M : A from (I) and

(ϕ→ω) using rules (≤HR) and (→E).

Approximation Theorem - Part 2

In order to prove the converse of Proposition 18.3.8 we will use a Kripke-like
version of stable sets Mitchell [1996]. First we need a technical result.

18.3.9. Lemma. Let S ∈{Scott,CDZ,DHM,AO,BCD,Park,HR}. If Γ′ = Γ, z :
B, z /∈ FV(M), and A6=S⊤ for S = AO, then Mz ∈ [A]SΓ′ implies M ∈ [B →
A]SΓ.

Proof. Let P ∈AS(Mz) and Γ′ ⊢T
∩⊤ P : A. We show by cases on P and M

that there is P̂ ∈AS(M) such that Γ ⊢T
∩⊤ P̂ : B → A.

There are two possibilities.

• Mz →→β M
′z and P ≡ †(M ′z);

• Mz →→β (λx.M ′)z →β M
′[x := z] and P ∈AS(M ′[x := z]).
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In the first case again there are two possibilities.

• M ′ ≡ yM1 . . .Mm, m ≥ 0;

• M ′ ≡ (λy.M0)M1 . . .Mm, m ≥ 0.

In total there are 4 cases:

• P ≡ P ′z and P ′ ∈AS(M);

• P ≡ ⊥ and S ∈{Scott,CDZ,DHM,BCD,AO};

• P ≡ ΦP ′z, P ′ ∈AS(M) and S ∈{Park,HR};

• M →→β λx.M
′ and P ∈AS(M ′[x := z]).

Case P ≡ P ′z where P ′ ∈AS(M), then we can choose P̂ ≡ P ′. This is
clear if A =S ⊤ because then S 6= AO, hence we have (⊤−η). Now let A6=S⊤.
Then by Theorem 16.1.10(ii) from Γ′ ⊢T

∩⊤ P : A we get Γ′ ⊢T
∩⊤ P ′ : C → A,

Γ′ ⊢T
∩⊤ z : C for some C. B ≤S C by Theorem 16.1.10(i) and we conclude using

(≤) and (strenghtening) Γ ⊢T
∩⊤ P ′ : B → A.

Case P ≡ ⊥ is trivial for S ∈{Scott,CDZ,DHM,BCD} because of (⊤−η)
and impossible for S = AO by Proposition 18.3.5(i).

Case P ≡ ΦP ′z where P ′ ∈AS(M) and S ∈{Park,HR}, then we show that
we can choose P̂ ≡ P ′. Again let A6=S⊤. Then from Γ′ ⊢T

∩⊤ P : A we get by

Theorem 16.1.10(ii) and (i) Γ′ ⊢T
∩⊤ Φ : C → D → A, Γ′ ⊢T

∩⊤ P ′ : C, Γ′ ⊢T
∩⊤ z :

D for some C,D with B ≤S D. For S = Park using Proposition 18.3.5(ii)
as in the proof of Lemma 18.3.6(i), we get C ≤Park ω, D ≤Park ω, and
ω ≤Park A (remember that ω =Park ω→ω). Similarly for S = HR, using
Proposition 18.3.5(iii), we get either C ≤HR ϕ, D ≤HR ϕ, and ϕ ≤Park A or
C ≤HR ϕ, D ≤HR ω, and ω ≤HR A or C ≤Park ω, D ≤HR ϕ, and ω ≤Park A
(remember that ϕ =HR (ϕ→ϕ)∩⊤(ω→ω) and ω =HR ϕ→ω). In all cases we
can conclude C ≤ D → A ≤ B → A and therefore by (≤) and (strenghtening)
Γ ⊢T

∩⊤ P ′ : B → A.

Case M →→β λx.M ′ and P ∈AS(M ′[x := z]).If † = ⊠ and P ≡ ⊥, then we

choose P̂ ≡ P. Else we choose P̂ ≡ λz.P.

The following crucial definition is somewhat involved. It amounts essentially to
the definition of the natural set-theoretic semantics of intersection types over a
suitable Kripke applicative structure, where bases play the role of worlds.1 In
order to keep the treatment elementary we don’t develop the full theory of the
natural semantics of intersection types in Kripke applicative structures. The
definition below is rather long, since we have different cases for the type ω and
for arrow types according to the different type theories under consideration.

1As already observed in Berline [2000]) we cannot use here stable sets as we will do in
section 19.2 since we need to take into account also the S-bases, not only the λ-terms and
their types.
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18.3.10. Definition (Kripke type interpretation).

Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Define

[[α]]SΓ = [α]SΓ for α∈A∞ ∪ {⊤, ϕ}
[[ω]]SΓ = {M | ∀ ~N.M ~N ∈ [ω]SΓ} for S ∈{Scott,DHM};

[[ω]]SΓ = {M | ∀Γ′⊇+ Γ∀ ~N ∈ [ϕ]SΓ′ .M ~N ∈ [ω]SΓ′} for S ∈{CDZ,HR}

[[ω]]Park
Γ = [ω]Park

Γ

[[A→B]]SΓ = {M | ∀Γ′⊇+ Γ∀N ∈ [[A]]SΓ′ .MN ∈ [[B]]SΓ′}, if S 6= AO or B 6=AO⊤;

[[A→B]]AO
Γ = [A→B]AO

Γ , if B =AO ⊤;

[[A∩⊤B]]SΓ = [[A]]SΓ ∩ [[B]]SΓ .

If in clause four the condition S 6= AO or B 6=AO⊤ or alternatively the whole
clause five is dropped, then Lemma 18.3.12(ii) would not hold for S = AO.

It is easy to verify that:

18.3.11. Proposition. (i) M ∈ [[A]]SΓ and N →→β M imply N ∈ [[A]]SΓ.

(ii) Γ ⊆+ Γ′ implies [[A]]SΓ ⊆ [[A]]SΓ′ for all types A∈TTS .

Notice that, sinceM ∈ [A]SΓ andN →→β M implyN ∈ [A]SΓ, the same property
holds for [[A]]SΓ. Moreover Γ ⊆+ Γ′ implies [[A]]SΓ ⊆ [[A]]SΓ′ for all types A∈TTS .

The Lemmas 18.3.12, 18.3.15 and the final theorem are standard.

18.3.12. Lemma. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Then

(i) x ~M ∈ [A]SΓ ⇒ x ~M ∈ [[A]]SΓ;

(ii) [[A]]SΓ ⊆ [A]SΓ.

Proof. (i) and (ii) can be simultaneously proved by induction on A. We
consider only some interesting cases.

(i) Case A ≡ ω and S = CDZ. Let Γ′⊇+ Γ and ~N ∈ [ϕ]CDZ
Γ′ .

Clearly P ∈ACDZ(x ~M), ~Q∈ACDZ( ~N)⇒ P ~Q∈ACDZ(x ~M ~N). Hence

x ~M ∈ [ω]CDZ
Γ ⇒ x ~M ~N ∈ [ω]CDZ

Γ′ by rules (≤CDZ) and (→E)
since ω =CDZ ϕ→ ω,

⇒ x ~M ∈ [[ω]]CDZ
Γ by Definition 18.3.10.

Case A ≡ B → C. Let Γ′⊇+ Γ and S 6= AO or C 6=AO⊤ and let N ∈ [[B]]SΓ′ .
[[B]]SΓ′ ⊆ [B]SΓ′ by induction on (ii). Hence

x ~M ∈ [A]SΓ ⇒ x ~MN ∈ [C]SΓ′ by rule (→E),

⇒ x ~MN ∈ [[C]]SΓ′ by induction on (i),

⇒ x ~M ∈ [[B → C]]SΓ by Definition 18.3.10.
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(ii) Case A ≡ B→C and S 6= AO or C 6=AO⊤. Let Γ′ = Γ, z:B with z fresh,
and suppose M ∈ [[B → C]]SΓ ; as z ∈ [[B]]SΓ,z:B by induction on (i), we have

M ∈ [[B → C]]SΓ and z ∈ [[B]]SΓ,z:B ⇒ Mz ∈ [[C]]SΓ′ by Definition 18.3.10,

⇒ Mz ∈ [C]SΓ′ by induction on (ii),
⇒ M ∈ [B→C]SΓ by Lemma 18.3.9.

CaseA ≡ B∩C. This follows from induction hypothesis and from [[B ∩ C]]SΓ =
[[B]]SΓ ∩ [[C]]SΓ by Lemma 18.3.6(ii).

The following lemma essentially states that the Kripke type interpretations
agree with the corresponding type theories.

18.3.13. Lemma. (i) Let S ∈{CDZ,DHM}. Then

M ∈ [A]SΓ,z:ω & N ∈ [[ω]]SΓ ⇒ M [z := N ]∈ [A]SΓ .

(ii) Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Then

∀A,B ∈TTS [A ≤S B ⇒ [[A]]SΓ ⊆ [[B]]SΓ].

Proof. (i) We may assume A6=S⊤. For S = CDZ if M ∈ [A]CDZ
Γ,z:ω there is

P ∈ACDZ(M) such that Γ, z:ω ⊢CDZ
∩⊤ P : A. The proof is by induction on P .

Case P ≡ ⊥. Trivial.
Case P ≡ λx.P ′. ThenM →→β λx.M

′ and P ′ ∈ACDZ(M ′). From Γ, z:ω ⊢CDZ
∩⊤

P : A we get Γ, z:ω, x:Bi ⊢CDZ
∩⊤ P ′ : Ci and

⋂

i∈ I(Bi→Ci) ≤CDZ A for some

I and Bi, Ci ∈TTCDZ by Theorem 16.1.1(iii). By induction for each i∈ I there
is a Pi ∈ACDZ(M ′[z := N ]) such that Γ, x:Bi ⊢CDZ

∩⊤ Pi : Ci. Let Pi = †(Mi),
where M ′[z := N ] →→β Mi and let M ′′ be a common reduct of the Mi and
P ′′ ≡ †(M ′′). Then P ′′ ∈ACDZ(M ′[z := N ]) and Γ, x:Bi ⊢CDZ

∩⊤ P ′′ : Ci,
for all i∈ I, by lemma 18.3.6(i). Clearly λx.P ′′ ∈ACDZ(M [z := N ]) and by
construction Γ ⊢CDZ

∩⊤ λx.P ′′ : A.

Case P ≡ x~P , then M →→β x ~M and ~P ∈ACDZ( ~M). From Γ, z:ω ⊢CDZ
∩⊤ P : A

we get Γ, z:ω ⊢CDZ
∩⊤ x : ~B → A and Γ, z:ω ⊢CDZ

∩⊤
~P : ~B by Theorem 16.1.10(ii)

and Lemma 15.1.16. By induction there are ~P ′ ∈ACDZ( ~M [z := N ]) such that
Γ ⊢CDZ

∩⊤
~P ′ : ~B. If x 6= z we are done since x ~P ′ ∈ACDZ(M [z := N ]) and we

can derive Γ ⊢CDZ
∩⊤ x ~P ′ : A using (→E). Otherwise Γ, z:ω ⊢CDZ

∩⊤ z : ~B → A

implies ω ≤CDZ
~B → A by Theorem 16.1.10(i). Being CDZ β-sound by

Theorem 16.1.8(ii) from ω =CDZ ~ϕ → ω we obtain ~B ≤CDZ ~ϕ and ω ≤CDZ A
by Lemma 15.1.16. So we get Γ ⊢CDZ

∩⊤
~P ′ : ~ϕ, i.e. ~M [z := N ]∈ [ϕ]CDZ

Γ .

By Definition 18.3.10 N ∈ [[ω]]CDZ
Γ and ~M [z := N ]∈ [ϕ]CDZ

Γ imply M [z :=
N ]∈ [ω]CDZ

Γ . Since ω ≤CDZ A we get M [z := N ]∈ [A]CDZ
Γ .

The proof for S = DHM is similar but easier than that for S = CDZ. In
the case P ≡ z ~P it follows from Definition 18.3.10 that N ∈ [[ω]]DHM

Γ implies
M [z := N ]∈ [A]DHM

Γ .
(ii) We treat the cases related to A→B≤⊤→⊤ in AO, (ω→ϕ)=ϕ, ω=(ϕ→ω)

in CDZ, (ϕ→ϕ) ∩ (ω→ω)=ϕ in HR, and (ω→ω)=ω in Park.
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Proof of [[A→B]]AO
Γ ⊆ [[⊤→⊤]]AO

Γ . If B =AO ⊤, then

[[A→B]]AO
Γ = [A→B]AO

Γ ⊆ [⊤→⊤]AO
Γ = [[⊤→⊤]]AO

Γ .

If on the other hand B 6=AO ⊤, then M ∈ [[A→B]]AO
Γ . Write Γ′ = Γ, z:A. Then

z ∈ [A]AO
Γ′ by Lemma 18.3.12(i), hence z ∈ [[A]]AO

Γ′ . So Mz ∈ [[B]]AO
Γ′ ⊆ [B]AO

Γ′ by

Lemma 18.3.12(ii), and therefore by Lemma 18.3.9 we have M ∈ [A→B]AO
Γ ⊆

[⊤→⊤]AO
Γ = [[⊤→⊤]]AO

Γ .

Proof of [[ω→ϕ]]CDZ
Γ ⊆ [[ϕ]]CDZ

Γ . We have

[[ω→ϕ]]CDZ
Γ ⊆ [ω→ϕ]CDZ

Γ , by Lemma 18.3.12(ii),

= [ϕ]CDZ
Γ , since ω→ϕ =CDZ ϕ,

= [[ϕ]]CDZ
Γ , by Definition 18.3.10.

Proof of [[ϕ]]CDZ
Γ ⊆ [[ω→ϕ]]CDZ

Γ . Suppose Γ′⊇+ Γ,M ∈ [[ϕ]]CDZ
Γ andN ∈ [[ω]]CDZ

Γ′

in order to show MN ∈ [[ϕ]]CDZ
Γ′ . By Definition 18.3.10 [[ϕ]]CDZ

Γ = [ϕ]CDZ
Γ . If

M ∈ [ϕ]CDZ
Γ , then there is P ∈ACDZ(M) such that Γ ⊢CDZ

∩⊤ P : ϕ. We will show

MN ∈ [[ϕ]]CDZ
Γ′ by cases of P

Case P ≡ ⊥. By Proposition 18.3.5(i) one has ϕ =CDZ ⊤, and this contradicts
Proposition 15.1.20. So this case is impossible. Then [[ϕ]]CDZ

Γ′ = [ϕ]CDZ
Γ′ = Λ.

Hence MN ∈ [[ϕ]]CDZ
Γ′ .

Case P ≡ λz.P ′. Then M →→β λz.M ′ and P ′ ∈ACDZ(M ′). From Γ ⊢CDZ
∩⊤

P : ϕ we get Γ, z:ω ⊢CDZ
∩⊤ P ′ : ϕ by Theorem 16.1.10(iii), since ϕ =CDZ ω→ϕ.

This implies M ′ ∈ [ϕ]CDZ
Γ,z:ω. We may assume that z /∈ dom(Γ′). Then also

M ′ ∈ [ϕ]CDZ
Γ′,z:ω. Therefore

MN →→β (λz.M ′)N

→β M ′[z := N ]

∈ [ϕ]CDZ
Γ′ , by (i),

= [[ϕ]]CDZ
Γ′ .

Case P ≡ x~P . Notice that Γ ⊢CDZ
∩⊤ P : ϕ implies Γ ⊢CDZ

∩⊤ P : ω→ϕ,

since ϕ =CDZ ω→ϕ. By Lemma 18.3.12(ii) [[ω]]CDZ
Γ′ ⊆ [ω]CDZ

Γ′ , hence there

is P ′ ∈ACDZ(N) such that Γ′ ⊢CDZ
∩⊤ P ′ : ω. We get Γ′ ⊢CDZ

∩⊤ PP ′ : ϕ. As

PP ′ ∈ACDZ(MN) we conclude that MN ∈ [[ϕ]]CDZ
Γ′ .

Proof of [[ϕ→ω]]CDZ
Γ ⊆ [[ω]]CDZ

Γ . We have [[ϕ→ω]]CDZ
Γ ⊆ [ϕ→ω]CDZ

Γ by

Lemma 18.3.12(ii) and [ϕ→ω]CDZ
Γ = [ω]CDZ

Γ , as ϕ→ω =CDZ ω, using Definition 18.3.7.

Moreover using Definition 18.3.10 it follows that

[[ϕ→ω]]CDZ
Γ = {M | ∀Γ′⊇+ Γ,∀N ∈ [[ϕ]]CDZ

Γ′ .MN ∈ [[ω]]CDZ
Γ′ }

= {M | ∀Γ′⊇+ Γ,∀N ∈ [ϕ]CDZ
Γ′ .MN ∈ [[ω]]CDZ

Γ′ }

⊆ {M | ∀Γ′⊇+ Γ,∀N, ~N ∈ [ϕ]CDZ
Γ′ .MN ~N ∈ [ω]CDZ

Γ′ }



18.3. APPROXIMATION THEOREMS 121

From [[ϕ→ω]]CDZ
Γ ⊆ [ω]CDZ

Γ and

[[ϕ→ω]]CDZ
Γ ⊆ {M | ∀Γ′⊇+ Γ,∀N, ~N ∈ [ϕ]CDZ

Γ′ .MN ~N ∈ [ω]CDZ
Γ′ }

we can conclude

[[ϕ→ω]]CDZ
Γ ⊆ {M | ∀Γ′⊇+ Γ, ~N ∈ [ϕ]CDZ

Γ′ .M ~N ∈ [ω]CDZ
Γ′ } = [[ω]]CDZ

Γ .

Proof of [[ω]]CDZ
Γ ⊆ [[ϕ→ω]]CDZ

Γ . Again using Definition 18.3.10 one has

M ∈ [[ω]]CDZ
Γ ⇒ ∀Γ′⊇+ Γ,∀N, ~N ∈ [ϕ]CDZ

Γ′ .MN ~N ∈ [ω]CDZ
Γ′

⇒ ∀Γ′⊇+ Γ,∀N ∈ [ϕ]CDZ
Γ′ .MN ∈ [[ω]]CDZ

Γ′

⇒ M ∈ [[ϕ→ω]]CDZ
Γ .

Proof of [[(ϕ→ϕ)∩⊤(ω→ω)]]HR
Γ ⊆ [[ϕ]]HR

Γ . By Lemma 18.3.12(ii) one has

[[(ϕ→ϕ)∩⊤(ω→ω)]]HR
Γ ⊆ [(ϕ→ϕ)∩⊤(ω→ω)]HR

Γ

= [ϕ]HR
Γ

= [[ϕ]]HR
Γ

by Definition 18.3.7, (ϕ→ϕ)∩⊤(ω→ω) = ϕ and Definition 18.3.10.

Proof of [[ϕ]]HR
Γ ⊆ [[(ϕ→ϕ)∩⊤(ω→ω)]]HR

Γ . Let Γ′⊇+ Γ.

M ∈ [[ϕ]]HR
Γ ⇒M ∈ [ϕ]HR

Γ

⇒ ∃P ∈AHR(M) Γ ⊢HR
∩⊤ P : ϕ, by Definition 18.3.7. (18.3)

N ∈ [[ϕ]]HR
Γ′ ⇒ N ∈ [ϕ]HR

Γ′

⇒ ∃P ′ ∈AHR(N) Γ′ ⊢HR
∩⊤ P ′ : ϕ, by Definition 18.3.7. (18.4)

Let P̂ ≡ ΦPP ′ if P is a lambda-abstraction and P̂ ≡ PP ′ otherwise.

(18.3) and (18.4) ⇒ Γ′ ⊢HR P̂ : ϕ, by (Ax-Φ-HR), (≤T ), (→E)

⇒ MN ∈ [ϕ]HR
Γ′ , since P̂ ∈AHR(MN)

⇒ MN ∈ [[ϕ]]HR
Γ′

⇒ M ∈ [[ϕ→ ϕ]]HR
Γ

N ∈ [[ω]]HR
Γ′ ⇒ N ∈ [ω]HR

Γ′

⇒ ∃P ′ ∈AHR(N) Γ′ ⊢HR
∩⊤ P ′ : ω, by Definition 18.3.7. (18.5)

~N ∈ [[ϕ]]HR
Γ′ ⇒ ~N ∈ [ϕ]HR

Γ′

⇒ ∃~P ∈AHR( ~N) Γ′ ⊢HR
∩⊤

~P : ~ϕ, by Definition 18.3.7. (18.6)
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Let P̂ ≡ ΦPP ′ ~P if P is a lambda-abstraction and P̂ ≡ PP ′ ~P otherwise.

(18.3), (18.5) and (18.6) ⇒ Γ′ ⊢HR P̂ : ω, by (Ax-Φ-HR), (≤T ), (→E)

⇒ MN ~N ∈ [ω]HR
Γ′ since P̂ ∈AHR(MN ~N)

⇒ MN ∈ [[ω]]HR
Γ′

⇒ M ∈ [[ω → ω]]HR
Γ .

Proof of [[ω→ω]]Park
Γ ⊆ [[ω]]Park

Γ . Let M ∈ [[ω→ω]]Park
Γ and Γ′ = Γ, z : ω, where

z /∈ FV(M).

z ∈ [ω]Park
{z:ω} ⇒ z ∈ [[ω]]Park

{z:ω}

⇒ Mz ∈ [[ω]]Park
Γ′

⇒ Mz ∈ [ω]Park
Γ′

⇒ M ∈ [ω]Park
Γ , by Lemma 18.3.9 and (ω → ω) ≤Park ω,

⇒ M ∈ [[ω]]Park
Γ .

Proof of [[ω]]Park
Γ ⊆ [[ω→ω]]Park

Γ . Let Γ′⊇+ Γ. Then we have

M ∈ [[ω]]Park
Γ ⇒M ∈ [ω]Park

Γ

⇒ ∃P ∈APark(M) Γ ⊢Park
∩⊤ P : ω, by Definition 18.3.7. (18.7)

N ∈ [[ω]]Park
Γ′ ⇒ N ∈ [ω]Park

Γ′

⇒ ∃P ′ ∈APark(N) Γ′ ⊢Park
∩⊤ P ′ : ω, by Definition 18.3.7. (18.8)

Let P̂ ≡ ΦPP ′ if P is a lambda-abstraction and P̂ ≡ PP ′ otherwise.

(18.7) and (18.8) ⇒ Γ′ ⊢Park
∩⊤ P̂ : ω, by (Ax-Φ), (≤Park), (→E)

⇒ MN ∈ [ω]Park
Γ′ , since P̂ ∈APark(MN)

⇒ MN ∈ [[ω]]Park
Γ′

⇒ M ∈ [[ω → ω]]Park
Γ .

18.3.14. Definition (Semantic Satisfiability). Let ρ be a mapping from term
variables to terms and write [[M ]]ρ = M [~x := ρ(~x)], where ~x = FV(M).

(i) S, ρ,Γ |= M : A ⇔ [[M ]]ρ ∈ [[A]]Γ.
(ii) S, ρ,Γ′ |= Γ ⇔ S, ρ,Γ′ |= x : B, for all (x:B)∈Γ;
(iii) Γ |=S M : A ⇔ S, ρ,Γ′ |= Γ ⇒ S, ρ,Γ′ |= M : A, for all ρ,Γ′.

In line with the previous remarks, the following result can be constructed
also as the soundness of the natural semantics of intersection types over a
particular Kripke applicative structure, where bases play the role of worlds.

18.3.15. Lemma. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Then

Γ ⊢S∩⊤ M : A ⇒ Γ |=S M : A.
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Proof. The proof is by induction on the derivation of Γ ⊢T
∩⊤ M : A.

Cases (Ax), (Ax-⊤). Immediate.
Cases (→E), (∩I). By induction.
Case (≤). By Lemma 18.3.13(ii).
Case (→I). Suppose M ≡ λy.R, A ≡ B→C and Γ, y : B ⊢S

∩⊤ R : C.
Subcase S 6= AO or C 6=AO⊤. Suppose S, ρ,Γ′ |= Γ in order to show

[[λy.R]]ρ ∈ [[B→C]]SΓ′ . Let Γ′′⊇+ Γ′ and T ∈ [[B]]SΓ′′ . Then by the induction hypothesis
[[R]]ρ[y:=T ] ∈ [[C]]SΓ′′ .We may assume y /∈ ρ(x) for all x∈dom(Γ). Then by Proposition 18.3.11

[[λy.R]]ρT →β [[R]]ρ[y:=T ] and hence [[λy.R]]ρT ∈ [[C]]SΓ′′ . So [[λy.R]]ρ ∈ [[B→C]]SΓ′ .
Subcase S = AO and C =AO ⊤. The result follows easily observing that

λx.⊥∈AAO([[λy.R]]ρ) for all ρ and we can derive ⊢AO
∩⊤ λx.⊥ : B→C using

(Ax-⊤), (→I) and (≤AO). We conclude [[M ]]ρ ∈ [A]SΓ which implies [[M ]]ρ ∈ [[A]]SΓ
by Definition 18.3.10.

Now we can prove the converse of Proposition 18.3.8.

18.3.16. Proposition. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Then

Γ ⊢S∩⊤ M : A⇒M ∈ [A]SΓ .

Proof. Let ρ0(x) = x. By Lemma 18.3.12(i) S, ρ0,Γ |= Γ. Then Γ ⊢T
∩⊤ M : A

implies M = [[M ]]ρ0 ∈ [[A]]SΓ by Lemma 18.3.15. So we conclude M ∈ [A]SΓ by
Lemma 18.3.12(ii).

18.3.17. Theorem (Approximation Theorem). Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}.
Then

Γ ⊢S∩⊤ M : A ⇔ ∃P ∈AS(M).Γ ⊢S∩⊤ P : A.

Proof. By Propositions 18.3.8 and 18.3.16.

18.3.18. Corollary. Let S ∈{Scott,CDZ,DHM,BCD,AO,Park,HR}. Let M
be an untyped lambda term and write Γρ = {x:B | B ∈ ρ(x)}. Then

[[M ]]F
S

ρ = {A | Γρ ⊢S∩⊤ P : A for some P ∈AS(M) and some Γ |= ρ}.

Proof. By Theorem 18.2.8, Exercise ?? (for S = AO) and the Approximation
Theorem.

Another way of writing this is

[[M ]]F
S

ρ =
⋃

P ∈AS(M)

[[P ]]F
S

ρ

=
⋃

P ∈AS(M)

{A | Γ ⊢S∩⊤ P : A for some Γ |= ρ}.

This gives the motivation for the name ‘Approximation Theorem’. Theorem
18.3.17 was first proved for S = BCD in Barendregt et al. [1983], for S = Scott
in Ronchi Della Rocca [1988], for S = CDZ in Coppo et al. [1987], for S = AO
in Abramsky and Ong [1993], for S = Park and S = HR in Honsell and Ronchi
Della Rocca [1992].
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Some applications of the Approximation Theorem

As discussed in Section 18.2 type theories give rise in a natural way to filter
λ-models. Properties of FS with S ∈{Scott,CDZ,AO,BCD,Park,HR} can be
easily derived using Theorem 18.3.17. For instance, one can check the following.

• The models FScott,FCDZ,FDHM,FBCD are sensible (see Barendregt [1984]).

• The top element in FAO is the interpretation of the terms of order ∞.

• The model FPark characterizes the terms reducible to closed terms.

• The model FHR characterizes the terms reducible to λI-terms.

The rest of this section is devoted to the proof of these properties. Other uses of
the Approximation Theorem can be found in the corresponding relevant papers,
i.e. Barendregt et al. [1983], Coppo et al. [1987], Ronchi Della Rocca [1988],
Abramsky and Ong [1993], Honsell and Ronchi Della Rocca [1992].

18.3.19. Theorem. The models FS with S ∈{Scott,CDZ,DHM,BCD} are sensible,
i.e. for all unsolvable terms M,N one has

[[M ]]F
S

ρ = [[N ]]F
S

ρ .

Proof. It follows immediately from Corollary 18.3.18 of the Approximation
Theorem, the fact that ⊥ is the only approximant of an unsolvable term for the
mapping ⊠, and Proposition 18.3.5(i).

Let us recall the definition of term of order ∞, see Longo [1983].

18.3.20. Definition. An untyped lambda term M is of order ∞ iff

∀n∃M ′.M →→β λx1 . . . λxn.M
′.

18.3.21. Theorem. Let M be an untyped lambda term. Then the following are
equivalent.

(i) M is of order ∞.

(ii) ⊢AO
∩⊤ M : A for all types A∈TTAO.

(iii) [[M ]]F
AO

ρ = ⊤ = TTAO ∈FAO for all valuations ρ.

Proof. Write ⊢,≤ for ⊢AO
∩⊤ ,≤AO, respectively. ((i)⇔(ii)). It is easy to check

by structural induction on types (see Exercise 16.3.1) that

∀A∈TTAO∃n∈N.(⊤n → ⊤) ≤ A.

So by the Approximation Theorem it suffices to show that if P ∈Λ⊥ is an
approximate normal form we have

⊢ P : (⊤n → ⊤) ⇔ P ≡ λx1 . . . λxn.P
′ for some P ′.
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(⇐) By axiom (⊤-universal) and rule (→I). (⇒) Assume towards a contradiction
that P ≡ λx1 . . . λxm.P

′ for m < n and P ′ is of the form ⊥ or x~P . Then by
Theorem 16.1.10(iii)

⊢ P : (⊤n → ⊤) ⇒ {x1:⊤, . . . , xm:⊤} ⊢ P ′ : (⊤n−m → ⊤).

But this latter judgment can neither be derived if P ′ ≡ ⊥, by Proposition
18.3.5(i) and Lemma 15.1.17, nor if P ′ ≡ x~P , by Theorem 16.1.1(i) and (ii) and
Lemma 15.1.17.

((ii)⇔(iii)). Suppose ⊢M : A for all A. Then by Theorem 18.2.8

[[M ]]F
AO

ρ = {A | Γ ⊢M : A for some Γ |= ρ} = TTAO,

for all ρ. This is the top element in FAO. Conversely, if [[M ]]F
AO

ρ = ⊤ = TTAO,
for all ρ, then take ρ0(x) = ↑⊤. Then Γρ0 = {x:⊤ | x∈Var}. Hence

TTAO = [[M ]]F
AO

ρ0

= {A | Γ ⊢M : A for some Γ |= ρ0}, by Theorem 18.2.8,

= {A | ⊢M : A}, since the assumptions x:⊤ are superfluous.

Therefore ⊢M : A for all A∈TTAO.

18.3.22. Theorem. A term M reduces to a closed term iff ⊢Park
∩⊤ M : ω.

Proof. By the Approximation Theorem it suffices to check that if P ∈ΛΦ is
an anf and V is a finite set of term variables:

{x:ω | x∈V} ⊢Park
∩⊤ P : ω iff FV (P ) ⊆ V.

(⇐) By an easy induction on P , using that ω = ω→ω.

(⇒) By induction on P . Lemmas 15.1.16 shows ~B→ω 6= ⊤.

Case P ≡ λy.P ′. By Theorem 16.1.10(iii) and the induction hypothesis for
P ′.

Case P ≡ y ~P . By Theorem 16.1.10(ii) we have Γ ⊢Park
∩⊤ y : ~B→ω,Γ ⊢Park

∩⊤
~P :

~B. Hence by Theorem 16.1.10(i) one has y ∈V and ω ≤ ~B→ω. By β-soundness
and ω = ω→ω we get Bi ≤ ω. Thus Γ ⊢Park

∩⊤ Pi : ω and hence FV(Pi) ⊆ V, by
the induction hypothesis.

Case P ≡ Φ~P . Similar to the previous case.

Lastly we work out the characterization of terms reducible to λI-terms.
We define the set of terms we want to characterize and the set obtained by
adding the constant Φ to it.

18.3.23. Definition. (i) The set ΛIβ of λIβ-terms is the set of lambda-terms
that reduce to a λI-term.

(ii) The set ΛIβΦ of λIβΦ-terms is obtained by adding the constant Φ to the
formation rules of λIβ-terms.
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In the following key lemma we show that each approximate normal form
P ∈ΛIβΦ is typable with ϕ from the HR-basis all whose predicates are ϕ. To
properly deal with the structural induction on approximate normal forms (in
the case of abstractions) we also show that, if x∈P , then P is typable with ω
from the HR-basis containing x:ω and all whose other predicates are ϕ. This is
useful since ϕ = (ϕ→ϕ)∩⊤(ω→ω).

18.3.24. Lemma. Let P ∈ΛΦ be an anf, and Γϕ = {y:ϕ | y ∈Var}. Then

(i) P ∈ΛIβΦ ⇔ Γϕ ⊢HR
∩⊤ P : ϕ.

(ii) Let P ∈ΛIβΦ. Then x∈P ⇔ Γϕ ⊎ {x:ω} ⊢HR
∩⊤ P : ω.

Proof. (i) and (ii) can be simultaneously proved by induction on P . Write
⊢,≤ for ⊢HR

∩⊤ ,≤HR, respectively.

Case P ≡ y is trivial.

Case P ≡ λz.P ′. (⇒) Notice that P ∈ΛIβΦ implies P ′ ∈ΛIβΦ and z ∈P ′.
Then we have by induction Γϕ ⊢ P ′ : ϕ and Γϕ ⊎ {z:ω} ⊢ P ′ : ω, so by rules
(→I), (∩I) and (≤) we get Γϕ ⊢ P : ϕ. If x∈P , then x∈P ′ and by induction
Γϕ⊎{x:ω} ⊢ P ′ : ω, so by rules (→I) and (≤) we get Γϕ⊎{x:ω} ⊢ P : ω. For (⇐)
Γϕ ⊢ P : ϕ implies Γϕ ⊢ P ′ : ϕ and Γϕ ⊎ {z:ω} ⊢ P ′ : ω by Theorem 16.1.10(iii)
since ϕ = (ϕ→ϕ)∩⊤(ω→ω) and HR is β-sound. By induction P ′ ∈ΛIβΦ and
z ∈P ′ so we get P ∈ΛIβΦ. Moreover Γϕ ⊎ {x:ω} ⊢ P : ω implies Γϕ ⊎ {x:ω} ⊢
P ′ : ω so we get by induction x∈P ′, i.e. x∈P .

Case P ≡ χP ′ ~P where χ∈{Φ, z}. For (⇒) notice that P ∈ΛIβΦ implies
P ′ ∈ΛIβΦ and ~P ∈ΛIβΦ. Then we have by induction Γϕ ⊢ P ′ : ϕ and Γϕ ⊢
Pi : ϕ for all i, so by axiom either (Ax) or (Ax-Φ-HR) and rules (→E), (≤)
we get Γϕ ⊢ P : ϕ. If x∈P , then either χ ≡ x or x∈P ′ ~P . In the first case
x:ω ⊢ x : ω so by rules (weakening), (→E), (≤) we get Γϕ ⊎ {x:ω} ⊢ P : ω. In
the second case by induction either Γϕ ⊎ {x:ω} ⊢ P ′ : ω or Γϕ ⊎ {x:ω} ⊢ Pi : ω
for some i, so by axiom either (Ax) or (Ax-Φ-HR) and rules (→E), (≤) we get
Γϕ ⊎ {x:ω} ⊢ P : ω.

(⇐) Notice that ~B→ϕ 6= ⊤, by Lemma 15.1.16(iii) and (iv).

Subcase (⇐(i)). By Theorem 16.1.10(ii) we get

Γϕ ⊢ χ : B′→ ~B→ϕ & Γϕ ⊢ P ′ : B′ & Γϕ ⊢ ~P : ~B.

So ϕ ≤ B′→ ~B→ϕ, by Theorem 16.1.10(i) and Proposition 18.3.5(iii). From
ω ≤ ϕ and ω = (~ϕ→ω) we get ~ϕ→ω ≤ B′→ ~B→ϕ. Hence by β-soundness
B′ ≤ ϕ and Bi ≤ ϕ, for some i. Therefore Γϕ ⊢ P ′ : ϕ and Γϕ ⊢ Pi : ϕ. So
P ′ ∈ΛIβΦ and Pi ∈ΛIβΦ, by the induction hypothesis and hence P ∈ΛIβΦ.

Subcase (⇐(ii)). Suppose P ≡ χP ′ ~P ∈ΛIβΦ and Γϕ ⊎ {x:ω} ⊢ P : ω in
order to prove that x∈P . This clearly holds if χ = x, so let χ = Φ. Similar to
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the case (⇐(i)) above we get

Γϕ ⊎ {x:ω} ⊢ Φ : B′→ ~B→ω,
Γϕ ⊎ {x:ω} ⊢ P ′ : B′,

Γϕ ⊎ {x:ω} ⊢ ~P : ~B,

ϕ ≤ B′→ ~B→ω,
B′ ≤ ϕ,

Bi ≤ ϕ.

Now (ϕ→ϕ) ∩ (ω→ω) ≤ B′→ ~B→ω. Hence by β-soundness we have

(B′ ≤ ϕ & ϕ ≤ ~B→ω) ∨ (B′ ≤ ω & ω ≤ ~B→ω).

So from ϕ ≤ B′→B→ω we get B′ ≤ ω or ϕ ≤ ~B→ω. Now (ϕ→ϕ) ∩ (ω→ω) ≤
Bn→ω implies Bn ≤ ω, by β-soundness and Proposition 15.1.20. So we get
B′ ≤ ω or Bi ≤ ω, for some i. Hence Γϕ ⊎ {x:ω} ⊢ P ′ : ω ∨Γϕ ⊎ {x:ω} ⊢ Pi : ω,
for some i. Therefore x∈P ′ or x∈Pi for some i, by the induction hypothesis.

18.3.25. Lemma. If ϕ ≤ A1 → . . . Am → ω, then there exists i such that Ai = ω.

Proof. By induction on m.
Case m = 1. ϕ = (ϕ → ϕ) ∩ (ω → ω) ≤ A1 → ω. By β-soundness, the only
possible case is A1 ≤ ω. Since ω is the least element, we have that A1 = ω.
Case m > 1. Similar, using induction.

18.3.26. Lemma. Let Γ such that A = ϕ for all x : A in Γ, then there is no anf
P such that Γ ⊢ P : ω.

Proof. Suppose there exists P towards a contradiction. By induction on P
using the Inversion Lemmas.
If P = λz.P ′, then Γ ⊢ P : ω implies Γ, z : ϕ ⊢ P ′ : ω and induction applies.
If P = P0P1...Pm where P0 is either a variable z or Φ, then

Γ ⊢ P0 : A1 → . . . Am → ω (18.9)

and Γ ⊢ Pi : Ai for some Ai. (18.9) implies ϕ ≤ A1 → . . . Am → ω. By Lemma
18.3.25, there exists i such that Ai = ω and then Γ ⊢ Pi : ω. By induction
hypothesis, this is impossible.

We define ΓP
ϕ = {x:ϕ | x∈FV (P )}.

18.3.27. Corollary. If ΓP
ϕ ⊎ {x:ω} ⊢ P : ω, then x∈FV (P ).

18.3.28. Lemma. If ΓP
ϕ ⊢ P : ϕ, then P is a λI-term.
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Proof. By induction on P.
Case P ≡ y. Trivial.
Case P ≡ λz.P ′. By Inversion Theorem 16.1.10(iii), ΓP ′

ϕ ⊢ P ′ : ϕ and

ΓP ′

ϕ ⊎ z : ω ⊢ P ′ : ω. By induction hypothesis, we have that P ′ is a λI-term. It
remains to prove that z ∈FV (P ′). Suppose that z /∈FV (P ′). Then we could
remove it from the context and get ΓP ′

ϕ ⊢ P ′ : ω. But this contradicts Lemma
18.3.26.

Case P ≡ P0P1 . . . Pn where P0 = x or P0 = Φ. By Inversion Theorem 16.1.10
(ii), ΓP

ϕ ⊢ P0 : A1 → . . .→ An → ϕ and ΓP
ϕ ⊢ Pi : Ai for all i > 0. By Inversion

Theorem 16.1.10(i) for P0 = x or Proposition 18.3.5(iii) for P0 = Φ, we get
ϕ ≤ A1 → . . . → An → ϕ. Since ω ≤ ϕ and ω = ϕ → ω, we get that
ϕ → . . . → ϕ → ω ≤ A1 → . . . → An → ϕ. By β-soundness, Ai ≤ ϕ. Hence,
by rules (strengthening) and (≤), ΓPi

ϕ ⊢ Pi : ϕ for all i > 0. By induction
hypothesis, all Pi’s are λI-terms.

18.3.29. Lemma. Let P ∈ΛΦ be an anf.

(i) If P is a λI-term, then ΓP
ϕ ⊢ P : ϕ.

(ii) If P is a λI-term and x∈FV (P ), then ΓP
ϕ ⊎ {x : ω} ⊢ P : ω.

Proof. Simultaneously by induction on P .

(i) Case P ≡ y. Trivial.
Case P ≡ λz.P ′. If P is a λI-term, so is P ′ and z ∈FV (P ′). By induction

hypothesis (i), we have that ΓP ′

ϕ ⊢ P ′ : ϕ. By induction hypothesis (ii), we have

that ΓP ′

ϕ ⊎ {z : ω} ⊢ P ′ : ω. Since ϕ ∩ ω = ω and ϕ = (ϕ → ϕ) ∩ (ω → ω) and

by rules (→I),(∩I), (≤) we get ΓP
ϕ ⊢ P : ϕ.

Case P = P ′P ′′. By induction hypothesis (i), we have that ΓP ′

ϕ ⊢ P ′ : ϕ ≤
ϕ → ϕ and ΓP ′′

ϕ ⊢ P ′′ : ϕ. By rules (weakening), (≤) and (→E), we get that

ΓP
ϕ ⊢ P : ϕ.
(ii) Case P ≡ x. Trivial.
Case P ≡ λz.P ′. Since x∈FV (P ), x∈FV (P ′). By induction hypothesis

(ii), ΓP ′

ϕ ⊎ {x : ω} ⊢ P ′ : ω. By rules (→I), (≤) with ϕ → ω = ω we get

ΓP
ϕ ⊎ {x : ω} ⊢ P : ω.

Case P ≡ P ′P ′′. We have two subcases:
x∈FV (P ′). By induction hypothesis (ii), ΓP ′

ϕ ⊎ {x : ω} ⊢ P ′ : ω = ϕ→ ω.

By induction hypothesis (i) ΓP ′′

ϕ ⊢ P ′′ : ϕ. Hence by (weakening) and (→E)

we conclude ΓP
ϕ ⊎ {x : ω} ⊢ P : ω.

x∈FV (P ′′). By induction hypothesis (ii), ΓP ′′

ϕ ⊎ {x : ω} ⊢ P ′′ : ω. By

induction hypothesis (i) ΓP ′

ϕ ⊢ P ′ : ϕ ≤ ω → ω. Hence by (weakening) and

(→E) we conclude ΓP
ϕ ⊎ {x : ω} ⊢ P : ω.

Finally we prove the following result characterizing λI-terms in a type theoretic
way.

18.3.30. Theorem. Let M be an untyped lambda term, Define for ~x = x1, . . . ,xn

the context Γ~x = {x1:ϕ, . . . , xn:ϕ}. then

M reduces to a λI-term ⇔ ΓM
ϕ ⊢HR

∩⊤ M : ϕ.
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Proof. Easy from Theorem 18.3.17 and Lemma 18.3.29(i), observing that if
⊡(N) is a λI-term, then N is a λI-term too.

Theorem 18.3.30 was first proved in Honsell and Ronchi Della Rocca [1992] by
purely semantic means.

18.4. Exercises

18.4.1. Check the following equalities:

[[λx.y]]CDV
ρ0

= ∅;
[[λx.y]]HL

ρ1
= ↑ ω;

[[λx.y]]AO
ρ0

= ↑ (⊤→⊤).

[[λx.y]]ρ0 = ↑ ν.

where ρ0(y) =↑ ∅ and ρ1(y) =↑ ω.

18.4.2. Using the Approximation Theorem shows that

• there is no type deducible for ∆∆ in the system ⊢CDV
∩ ;

• ⊢BCD
∩⊤ ∆∆ : A iff A =BCD ⊤;

• ⊢Park
∩⊤ ∆∆ : A iff ω ≤Park A.

18.4.3. Using the Approximation Theorem shows that in the system λAO
∩⊤ the set

of types deducible for ∆∆ is stricty included in the set of types deducible
for K(∆∆).

18.4.4. Using the Approximation Theorem shows that in the system λScott
∩⊤ the

set of types deducible for J and I coincide.

18.4.5. (i) Define K∞ ≡ YK. This term is called the “ogre”. Find a type for

it in the system λ∩⊤AO
.

(ii) Is there a type which cannot be derived for the “ogre” in λ∩⊤AO
?

[Hint: use (i) and Exercise 15.5.7.]

18.4.6. Prove using the results of Exercise 18.4.5 that [[K∞]]ρ = FAO.

18.4.7. Define t : TT({⊤, ϕ, ω})→TT({⊤, ϕ, ω}) inductively:

t(α) = α, where α∈{⊤, ω};
t(ϕ) = Ω;

t(A→B) = A→t(B);

t(A ∩B) = t(A) ∩ t(B).

The intersection type theory ♣ is axiomatized by rule (→) and axioms
(→∩), (⊤), (⊤ →), (ωϕ), (ϕ→ω), (ω→ϕ), see Fig. 15.1.7, and (♣), (♣→),
where

(♣) A ≤ t(A).
(♣→) A→B ≤ t(A)→t(B).

If Γ = {x1:A1, . . . , xn:An}, then write t(Γ) = {x1:t(A1), . . . , xn:t(An)}.
Show the following.
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(i) The map t is idempotent, i.e. t(t(A)) = t(A).
(ii) A→t(B) =♣ t(A)→t(B).
(iii) A ≤♣ B ⇒ t(A) ≤♣ t(B).
(iv) Γ ⊢♣ M : A⇒ t(Γ) ⊢♣ M : t(A).
(v) Γ,Γ′ ⊢♣ M : A⇒ Γ, t(Γ′) ⊢♣ M : t(A).
(vi) ∀i∈ I. Γ, x:Ai ⊢♣ M : Bi &

⋂

i∈ I(Ai→Bi) ≤♣ C→D ⇒
Γ, x:C ⊢♣ M : D.

(vii) ♣ is not β-sound. [Hint. ϕ→ω ≤♣ Ω→ω.]
(viii) F♣ is a filter λ-model. [Hint. Modify Theorem 18.2.24, and

Lemma 18.2.23(vi).]
(ix) The step function ↑ ϕ⇒↑ ω is not representable in F♣.

Actually, F♣ is the inverse limit solution of the domain equation D ≃
[D→D] taken in the category of ♣-lattices, whose objects are ω-algebraic
lattices D endowed with a finitary additive projection δ : D→D and
whose morphisms f : (D, δ)→(D′, δ′) are continuous functions such that
δ′◦f ⊑ f ◦δ. See Alessi [1993], Alessi, Barbanera and Dezani-Ciancaglini
[2004] for details.

18.4.8. Let S be a type structure such that ν ∈AS and (A→B) ≤S ν.
(i) Show ↑ ν ·X = ∅ for all X ∈FS ⇔ S is ν-sound.
(ii) Show FS(GS(⊥7→⊥)) = ⊥7→⊥ ⇔ S is ν-sound.
(iii) Show that if each type is equivalent to some constant ψ ∈AS , then

FS(↑ ν) = {ψ 7→ψ′ | ν ≤S ψ→ψ′}.

(iv) Examine whether the condition in (iii) is necessary. Comment:

Do you know the answer? No.
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Applications 16.10.2006:1032

The type assignment systems introduced in Section 15.2 will be put to use in the
present chapter, where we show how to characterize a number of properties of
λ-terms using intersection types. In particular, in Section 19.1 we characterize
the soundness and completeness of the intersection type assignments for several
variants of a natural semantics. In Section 19.2 we shall discuss several normalization
properties. In Section 19.3 we see how to solve domain equations by building
suitable filter structures. Finally in Section 19.5 it will be shown that given
Γ, A one cannot predict inhabitation, i.e. the existence of an M such that (1).

19.1. Realizability interpretation of types

The natural set-theoretic semantics for type assignment in λ→ based on untyped
λ-models is given in Scott [1975] where it was shown that

Γ ⊢λ→
M : A ⇒ Γ |= M : A.

Scott asked whether the converse (completeness) holds. In Barendregt et al.
[1983] the notion of semantics was extended to intersection types and completeness
was proved for λBCD

∩ via the corresponding filter model. Completeness for λ→
follows by a conservativity result. In Hindley [1983] an alternative proof of
completeness for λ→ was given, using a term model. Variations of the semantics
are presented in Dezani-Ciancaglini et al. [2003].

19.1.1. Definition. (Type Interpretation Domain)
(i) A quasi λ-model is a triple D = 〈D, ·, [[ ]]〉 with
(1) 〈D, ·〉 is a free applicative structure;
(2) [[ ]] : Λ×EnvD → D, where EnvD = [Var→ D], is a mapping (interpretation

function for λ-terms) which satisfies the following properties
a. [[x]]ρ = ρ(x);
b. [[MN ]]ρ = [[M ]]ρ · [[N ]]ρ;
c. [[λx.M ]]ρ = [[λy.M [x := y]]]ρ if y /∈FV(M);
d. (∀d∈D. [[M ]]ρ[x:=d] = [[N ]]ρ[x:=d])⇒ [[λx.M ]]ρ = [[λx.N ]]ρ.

(ii) For X,Y ⊆ D writeX→Y = {d∈D | ∀e∈X.d · e∈Y }.

Comment: we used ξ (macro ten) for type environment in Chapter 14

131
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19.1.2. Definition (Type Interpretation). Let D = 〈D, ·, [[ ]] 〉 be a quasi λ-
model and let T be an intersection type theory over the constants AT . The
type interpretation induced by the type environment ξ : A

T → P(D) is defined
by:

1. [[⊤]]Dξ = D;

2. [[α]]Dξ = ξ(α) if α∈AT and α 6= ⊤;

3. [[A→B]]Dξ = [[A]]Dξ →[[B]]Dξ ;

4. [[A ∩B]]Dξ = [[A]]Dξ ∩ [[B]]Dξ ,

where X→Y = {d∈D | ∀e∈X.d · e∈Y }.

The above definition is the extension to intersection-types of the simple
semantics for simple types of Scott [1975], generalized by allowing 〈D, ·〉 to be
just a quasi λ-terms instead of a λ-model.

In discussing sound type assignment systems we consider only quasi λ-
models and type environments which are good (the notion of goodness will
depend on the current intersection type theory) and which preserve with the
inclusion relation between types in the following sense:

In order to prove soundness, we have to check that the interpretation preserves
the typability rules. We already know that the interpretation preserves the
typing rules for application and intersection. This is because ∩ is interpreted as
intersection on sets and→ is interpreted as the arrow induced by the application
· on D. The following definition is necessary to require that the interpretation
preserves the remaining two typability rules: abstraction and subtyping.

19.1.3. Definition. Let a quasi λ-modelD = 〈D, ·, [[ ]] 〉 and a type environment
ξ : AT → P(D) be given.

(i) (D, ξ) are →-good if for all A,B ∈TTT for all environments ρ, terms M
and variables x

[∀d∈ [[A]]ξ. [[M ]]ρ[x:=d] ∈ [[B]]ξ] ⇒ [[λx.M ]]ρ ∈ [[A]]ξ→[[B]]ξ;

(ii) (D, ξ) is T -F -good if they are T -good and moreover for all environments
ρ and A∈TTT

[[x]]ρ ∈ [[A]]ξ ⇒ [[λy.xy]]ρ ∈ [[A]]ξ;

(iii) (D, ξ) preserve ≤T iff for all A,B ∈TTT :

A ≤T B ⇒ [[A]]ξ ⊆ [[B]]ξ.

We now introduce the semantics of type assignment.

19.1.4. Definition (Semantic Satisfiability). Let T be a TT⊤.
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(i) Let D = 〈D, ·, [[ ]] 〉 be a quasi λ-model. Define

D, ρ, ξ |= M : A ⇔ [[M ]]ρ ∈ [[A]]ξ;

D, ρ, ξ |= Γ ⇔ D, ρ, ξ |= x : B, for all (x:B)∈Γ.

(ii)

Γ |=T
∩⊤ M : A ⇔ D, ρ, ξ |= Γ ⇒ D, ρ, ξ |= M : A, for all

for all D, ξ, ρ such that (D, ξ) are →-good and preserve ≤T .

In order to distinguish it from other notions of semantics |=T is called the
simple semantics.

Derivability in the type system implies semantic satisfiability, as shown in
the next theorem.

19.1.5. Theorem (Soundness). For all T one has

Γ ⊢T∩⊤ M : A ⇒ Γ |=T
∩⊤ M : A.

Proof. By induction on the derivation of Γ ⊢T
∩⊤ M : A. Rules (→E), (∩I) and

(⊤-universal) are sound by the definition of type interpretation (Definition 19.1.2).

As to the soundness of rule (→I), assume Γ, x:A ⊢T
∩⊤ M : B in order to

show Γ |=T (λx.M) : (A→B). Assuming D, ρ, ξ |= Γ we have to show

[[λx.M ]]Dρ ∈ [[A]]Dξ →[[B]]Dξ .

Let d∈ [[A]]Dξ . We are done if we can show

[[M ]]Dρ[x:=d] ∈ [[B]]Dξ ,

because (D, ξ) are→-good. NowD, ρ[x: = d], ξ |= Γ, x:A, hence [[M ]]Dρ[x:=d] ∈ [[B]]Dξ ,

by the induction hypothesis for Γ, x:A ⊢T
∩⊤ M : B.

Rule (≤) is sound, as we consider only (D, ξ) that preserve ≤T .

As to completeness, first we observe that only lazy type structures (see
Definition ??) can be complete.

19.1.6. Proposition (Adequacy implies laziness). Suppose

∀Γ,M,A [Γ |=T
∩⊤ M : A ⇒ Γ ⊢T∩⊤ M : A].

Then T ∈LTS⊤.

Comment: the previous schema was sensible considering more semantics,
now we have only the simple semantics, therefore I put the proof of this proposition
inside that one of the completeness theorem
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Completeness

Now we characterize those theories which are complete.with respect to the given
semantics.

19.1.7. Definition. Let T be a NTT.

(i) Define DT = 〈FT , ·, [[ ]]T 〉, with [[ ]]T as in Definition 18.1.4(i).

(ii) Let ξT : AT → P(FT ) be the type environment defined by

ξT (α) = {X ∈FT | α∈X}.

(iii) Let [[ ]]T : TTT → P(FT ) be the mapping [[ ]]ξT .

The mapping [[ ]]T : TTT → P(FT ) has the property of associating to each
type A the set of filters which contain A (thus preserving the property which
defines ξT in the basic case of type constants).

19.1.8. Proposition. Let T be a NTT. Then we have

[[A]]T = {X ∈FT | A∈X}.

Proof. By induction on A. The only interesting case is when A is an arrow
type. If A ≡ B→C we have

[[B→C]]T = {X ∈FT | ∀Y ∈ [[B]]T . X · Y ∈ [[C]]T } by definition,

= {X ∈FT | ∀Y. B ∈Y ⇒ C ∈X · Y } by induction,

= {X ∈FT | C ∈X· ↑ B} by monotonicity,

= {X ∈FT | C ∈↑{C ′ | ∃B′ ∈↑B.B′→C ′ ∈X}}, by the definition of

filter application,

= {X ∈FT | B→C ∈X}, by (→) and (⊤ →).

19.1.9. Lemma. Let T be a NTT. Then (DT , ξT ) are→-good and preserve ≤T .

Proof. For condition (i) of Definition 19.1.3 let X ∈ [[A]]T be such that

[[M ]]ρ[x:=X] ∈ [[B]]T .

Then, by Proposition 19.1.8, B ∈ [[M ]]ρ[x:=X], hence B ∈ f(X), where we have
put f = λλd.[[M ]]ρ[x:=d]. SinceComment: the reason is that for each filter
structure F,G give a Galois connection, this was stated before but I do not find
it anymore! one has f ⊑ F T (GT (f)), it follows that B ∈F T (GT (f))(X). So
F T (GT (f))(X)∈ [[B]]T , by Proposition 19.1.8. We are done since F T (GT (f))(X) =
[[λx.M ]]ρ ·X, by Definition 18.1.4(i).

Lastly notice that as an immediate consequence of the Proposition 19.1.8
we get

A ≤T B ⇔ ∀X ∈FT .[A∈X ⇒ B ∈X]⇔ [[A]]T ⊆ [[B]]T,

and therefore (DT , ξT ) preserve ≤T .
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Finally we can prove the desired completeness result.

19.1.10. Theorem. (Completenessfor the Simple Semantics)
(i) [Γ |=T

∩⊤ M : A ⇒ Γ ⊢T
∩⊤ M : A] iff T is a NTT.

(ii) Let T be a NTT. Then

Γ |=T
∩⊤ M : A ⇔ Γ ⊢T∩⊤ M : A.

Proof. (i) (⇒) From Proposition 19.1.6 it follows that T ∈LTS⊤. It is easy
to verify that all type interpretations validate rule (→) and the axioms (→∩),
and (⊤).and (⊤lazy). For instance, as regards to axiom (→∩), consider the
T -basis Γ = {x:(A → B) ∩ (A → C)}. From Definition 19.1.2 we get Γ |=T

∩⊤

x : A→(B ∩ C). Hence, by hypothesis, we have Γ ⊢T
∩⊤ x : A→(B ∩ C). Using

Theorem 16.1.10(i) it follows that (A→B)∩⊤(A→C) ≤T A→B ∩C. Therefore
axiom (→∩) holds. As to (⊤ →) we have |=T

∩⊤ x : ⊤ → ⊤, since [[x]]ρ · d∈D for
all D, d∈D and ρ : EnvD → D. Now by assumption

|=T
∩⊤ x : ⊤ → ⊤ ⇒ ⊢T∩⊤ x : (⊤→⊤)

⇒ x:⊤ ⊢T∩⊤ x : (⊤→⊤)

⇒ ⊤ ≤T (⊤→⊤), by Theorem 16.1.10(i).

This proves (⇒).
(⇐) To show that Γ |=T M : A implies Γ ⊢T

∩⊤ M : A under the given

conditions we use the quasi λ-model 〈FT , ·, [[ ]] 〉 induced by the lambda structure
〈FT , F T , GT 〉. So by Lemma 19.1.9 we have that Γ |=T

∩⊤ M : A implies

[[M ]]ρΓ ∈ [[A]]T , where ρΓ(x) =

{

↑ A if x:A∈Γ,

↑ ⊤ otherwise.

We conclude Γ ⊢T
∩⊤ M : A using Proposition 19.1.8.

(ii) By Proposition 19.1.5 and (i).

The strict story

In this subsection T is always a proper intersection type theory, with or without
top element. That is T is a PTT, c.f. Definition 15.1.9. Filters are strict filters,
so they may be empty, c.f. Definition 15.4.5, and we do not have the axiom
(⊤-universal) for type assignment. The definitions are very similar to the non-
strict case. At many places one adds an index ‘s’ and everywhere one erases ⊤.
Also the statements are very similar and proofs will be omitted mostly.

We keep Definitions 19.1.1-19.1.4, except that in Definition 19.1.2 we now
define [[α]]Dξ,s = ξ(α) for α∈AT and we omit the clause [[⊤]]Dξ,s = D.

19.1.11. Proposition (Soundness). For all PTT T one has

Γ ⊢T∩ M : A ⇒ Γ |=T
∩ M : A.

Proof. As for Proposition 19.1.5, without the case (⊤-universal).
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19.1.12. Proposition (Adequacy implies strict naturality). Suppose

∀Γ,M,A [Γ |=T
i,s M : A ⇒ Γ ⊢T∩⊤ M : A].

Then T ∈TT I.

Proof. As for Proposition 19.1.6, without the cases (Ω) and (Ω-lazy).

19.1.13. Definition. Let T be a PTT.
(i) Define DT

s = 〈FT
s , ·, [[ ]]F

T
s 〉, with [[ ]]F

T
s

s as in Definition 18.1.4(ii).
(ii) Let ξTs : A

T → P(FT
s ) be the type environment defined by the map

ξTs (α) = {X ∈FT
s | α∈X}.

(iii) Let [[ ]]Ts : TTT → P(FT
s ) be the mapping [[ ]]ξTs ,s.

19.1.14. Proposition. Let T be a PTT. Then we have

[[A]]Ts = {X ∈FT
s | A∈X}.

Proof. Similar to the proof of Proposition 19.1.8.

19.1.15. Lemma. Let T be a PTT. Then DT
s , ξTs are →-good and preserve ≤T .

Proof. Similar to the proof of Lemma 19.1.9.

19.1.16. Theorem. (Completenessfor the strict Simple Semantics)
(i) [Γ |=T

∩ M : A ⇒ Γ ⊢T∩ M : A] iff T is a PTT.
(ii) Let T be a PTT. Then

Γ |=T
∩ M : A ⇔ Γ ⊢T∩ M : A.

Proof. (i) Similar to the proof of Theorem 19.1.10.
(ii) By Proposition 19.1.11 and (i).

19.2. Characterizing syntactic properties

In this section we will see the intersection type systems at work in the characterization
of properties of λ-terms. Since types are preserved by reduction, we can
characterize only properties which induce equivalences that are preserved by
reduction. In particular we will consider some normalization properties of λ-
terms, i.e. the standard properties of having a head normal form or a normal
form, and of being strongly normalizable.

First we recall some basic definitions.

19.2.1. Definition (Severi [1996]). The set SN is the least set of terms closed
under the following rules.

M1 ∈ SN, . . . ,Mn ∈ SN

xM1 . . .Mn ∈ SN
n≥0
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M ∈ SN

λx.M ∈ SN

M [x := N ]M1 . . .Mn ∈ SN N ∈ SN

(λxM)NM1 . . .Mn ∈ SN
n≥0

19.2.2. Lemma. M ∈ SN ⇔ M is strongly normalizing.

Proof. (⇒) By induction on the generation of SN.

(⇐) By induction on M it follows that if M is a nf, then M ∈ SN. Now
suppose that M is strongly normalizing. Let ||M ||, the norm of M , be the
length of the longest reduction path starting with M . Then by induction on
||M || one can show that M ∈ SN. The case ||M || = n > 0 is done by induction
on the structure of M , being x ~M, λx.N or (λx.P )Q ~M . In the first two cases
the result follows from the induction hypothesis for the structure of M , in the
third case from the induction hypothesis for ||M ||.

19.2.3. Definition. (i) A term M is persistently head normalizing iff M ~N has
a head normal form for all terms ~N .

(ii) A term M is persistently normalizing iff M ~N has a normal form for all
normalizable terms ~N .

The notion of persistently normalizing terms has been introduced in Böhm
and Dezani-Ciancaglini [1975]. The following predicates will come in handy in
the sequel.

19.2.4. Definition.

(i) M ∈HN ⇔M has a head normal form.

(ii) M ∈PHN ⇔M is persistently head normalizing.

(iii) M ∈N ⇔M has a normal form.

(iv) M ∈PN ⇔M is persistently normalizing.

(v) M ∈ SN ⇔M is strongly normalizing.

(vi) M ∈NF ⇔M is a normal form. Comment: I think we do not use NF
any more and I suggest to erase them, right?

The following inclusions follow immediately by definition, but the inclusion
PN ⊆ PHN, see Exercise 19.6.3.

NF ⊆ SN ⊆ N ⊆ HN

PN ⊆ N ⊆ HN

PN ⊆ PHN ⊆ HN

The above inclusions are visualized in Figure 19.1.

19.2.5. Example. (i) λx.x and λy.y(λx.xx) are in N and in HN but they
are not in PN nor in PHN.

(ii) λy.xΩ is in PHN but not in PN.
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Figure 19.1: Inclusions between sets of λ-terms

Stable sets

Comment: moved here: it was after the main theorem
We will use the standard proof technique of type stable sets (Krivine [1990]).
We take as quasi λ-model DΛ = 〈Λ, ·, [[ ]]〉, where Λ is the set of λ-terms

modulo β-conversion, i.e. the term model of β-equality, and therefore [[M ]]ρ =

{N | N =β M [~x := ~ρ(x)] where ~x = FV (M)}, [[M ]]ρ · [[N ]]ρ = [[MN ]]ρ. Notice
that X→Y = {M ∈Λ | ∀N ∈X MN ∈Y }.

19.2.6. Definition. (i) A set X ⊆ Λ is called closed under head expansion of
redexes if

M [x := N ] ~M ∈X implies (λx.M)N ~M ∈X.
The term N is called the argument of the head expansion.

(ii) A set X ⊆ HN is HN-type-stable if it contains x ~M for all ~M ∈Λ and it
is closed under head expansion of redexes;

(iii) A set X ⊆ N is N-type-stable if it contains x ~M for all ~M ∈N and it is
closed under head expansion of redexes;

(iv) A set X ⊆ SN is SN-type-stable if it contains x ~M for all ~M ∈ SN and it
is closed under head expansion of redexes whose argument is in SN.

From the above definition and Definition 19.2.1 we easily get the following.

19.2.7. Proposition. Let S∈{HN,N,SN}.
(i) Each S is S-type-stable.
(ii) PHN is HN-stable and PN is N-stable.
(iii) If X,Y are S-type-stable, then X ⇒ Y is S-type-stable.
(iv) If Y is HN-type-stable, then Z ⇒ Y is HN-type-stable, for ∅ 6= Z ⊆ Λ.
(v) If X,Y are S-type-stable then X ∩ Y is S-type-stable.

19.2.8. Lemma. (i) a. If A 6= ⊤, then [[A]]V1
BCD

is HN-type-stable.

b. If A 6= ⊤, then [[A]]VDHM
is HN-type-stable.

(ii) a. If ⊤ /∈ A, then [[A]]V2
BCD

is N-type-stable.

b. If ⊤ /∈ A, then [[A]]VCDZ
is N-type-stable.
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(iii) [[A]]VCDV
is SN-type-stable.

Proof. All points follow easily from Proposition 19.2.7.

We need some definitions of type interpretation and semantic satisfability
that will be used also in Section 19.1 in a slight variation.

19.2.9. Definition (Type Interpretation). The interpretation of types in TTT

induced by the type environment ξ : A
T → P(Λ) is defined as follows.

[[A]]ξ = ξ(A) if A∈A
T ;

[[A→B]]ξ = [[A]]ξ ⇒ [[B]]ξ;

[[A∩⊤B]]ξ = [[A]]ξ ∩ [[B]]ξ.

19.2.10. Definition (Type environments). (i) The type environment ξ = ξ1BCD

is defined as follows.

[[A]]ξ = HN, if A∈A∞;

[[⊤]]ξ = Λ.

(ii) The type environment ξ = ξ2BCD is defined as follows.

[[A]]ξ = N, if A∈A∞;

[[⊤]]ξ = Λ.

(iii) The type environment ξ = ξDHM is defined as follows.

[[ω]]ξ = PHN;

[[ϕ]]ξ = HN;

[[⊤]]ξ = Λ.

(iv) The type environment ξ = ξCDZ is defined as follows.

[[ω]]ξ = PN;

[[ϕ]]ξ = N;

[[⊤]]ξ = Λ.

(v) The type environment ξ = ξCDV is defined as follows.

[[A]]ξ = SN, if A∈A∞.

19.2.11. Definition. A type environment ξ is called nice for T iff
(i) [[Ω]]ξ = Λ.
(ii) A ≤T B ⇒ [[A]]ξ ⊆ [[B]]ξ.
(iii) M [x := N ]∈ [[A]]ξ, N ∈ [[B]]ξ ⇒ (λx.M)N ∈ [[A]]ξ.
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We shall show that each type environment of Definition 19.2.10 is nice for
its implicit T . The proof occupies 19.2.12-19.2.14.

We shall show that for each type environment ξT of Definition 19.2.10
(DΛ, ξT ) are T -good and preserve ≤T . The proof occupies 19.2.12-??.

19.2.12. Lemma. (i) M ∈ N, N ∈ PN ⇒ M [x := N ]∈ N.
(ii) M ∈ N, N ∈ PN ⇒ MN ∈ N.
(iii) M ∈ HN, N ∈ PHN ⇒ M [x := N ]∈ N.
(iv) M ∈ HN, N ∈ PHN ⇒ MN ∈ HN.

Proof. By an easy induction on the (head) normal form of M .

19.2.13. Proposition. (i) PN = (N 7→PN).
(ii) N = (PN 7→N).
(iii) PHN = (HN 7→PHN).
(iv) HN = (PHN 7→HN).

Proof. All cases are immediate except the inclusions N ⊆ (PN 7→N) and HN ⊆
(PHN 7→HN). These follow easily from Lemma 19.2.12(ii) and (iv).

19.2.14. Lemma. For all ξT of Definition 19.2.10 we have the following.
(i) ∀N ∈ [[B]]ξT ,M [x := N ]∈ [[A]]ξT implies λx.M ∈ [[B → A]]ξT .
(ii) A ≤T B ⇒ [[A]]ξT ⊆ [[B]]ξT .

I.e. for all ξT of Definition 19.2.10 (DΛ, ξT ) are →-good and preserve ≤T .

Proof. (i) If either T 6= CDV or T = CDV and N ∈SN one easily shows
that M [x := N ]∈ [[A]]ξT implies (λx.M)N ∈ [[A]]ξT by induction on A using
Proposition 19.2.7. The conclusion from the definition of →.

(ii) By induction on the generation of ≤T , using Proposition 19.2.13.

19.2.15. Definition (Semantic Satisfability). Let ρ : V→Λ.
(i) [[M ]]ρ = M [~x := ~N ], where ~x = FV (M) and ρ(~x) = ~N .
(ii) ρ, ξ |= M : A ⇔ [[M ]]ρ ∈ [[A]]ξ.
(iii) ρ, ξ |= Γ ⇔ ρ, ξ |= x : B, for all (x:B)∈Γ.
(iv) Γ |=T M : A ⇔ ρ, ξ |= Γ implies ρ, ξ |= M : A, for all nice ξ and all ρ.

19.2.16. Theorem (Soundness). Γ ⊢T M : A ⇒ Γ |=T M : A.

Proof. By induction on the derivation of Γ ⊢M : A.

19.2.17. Lemma. (i) a. A 6∼ Ω ⇒ [[A]]V1
BCD

is HN-type-stable.

b. A ∼ Ω ⇒ [[A]]V1
BCD

= Λ.

(ii) a. Ω /∈ A ⇒ [[A]]V2
BCD

is N-type-stable.

b. x∈ PN for x∈Var.
(iii) [[A]]VCDV

is SN-type-stable.

Proof. (i)a., (ii)a. and (iii) follow easily from Lemma 19.2.7. (i)b. follows
directly from Lemma 15.1.16. (ii)b. holds trivially.
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In the following result several important syntactic properties of lambda
terms are characterized by typability in some assignment system related to
some intersection type theory. FV(M):ω ⊢ stands for x1:ω, . . . , xn:ω ⊢, where
{x1, . . . ,xn} = FV(M).Comment: we used ΓM

ω in section 18, we need to
choose 1 notation! and ΛI is the set of terms reducing to a λI-term; finally T ∋Ω
indicates that Ω is one of the constants of T .

19.2.18. Theorem (Characterization Theorems). Let M ∈Λ and let T be an
arbitrary intersection type theory.

(i) M ∈N ⇔ ∀ TT⊤T ∃Γ, A.Γ ⊢T
∩⊤ M : A & ⊤ /∈Γ, A

⇔ ∃Γ, A.Γ ⊢BCD
∩⊤ M : A & ⊤ /∈ Γ, A.

⇔ FV(M) : ω ⊢CDZ
∩⊤ M : ϕ.

(ii) M ∈HN ⇔ ∀ TT⊤T ∃Γ ∃n,m∈N.Γ ⊢T
∩⊤ M : (⊤m→A)n→A

⇔ ∃Γ, A.Γ ⊢BCD
∩⊤ M : A & A 6=BCD ⊤

⇔ FV(M) : ω ⊢DHM
∩⊤ M : ϕ.

(iii) M ∈ SN ⇔ ∀T ∃Γ, A.Γ ⊢T∩ M : A.

⇔ ∃Γ, A.Γ ⊢CDV
∩ M : A.

Proof. (⇒).
(i) By Corollary 16.2.5(ii) it suffices to consider M in nf. The proof is by

induction on M . The only interesting case is M ≡ x ~M where ~M ≡M1 . . .Mm.
By the induction hypothesis we have Γj ⊢T Mj : Aj , for some Γj , Aj not
containing ⊤ and for j ≤ m. This implies: ⊎j≤mΓj⊎{x:A1→ . . .→Am→A} ⊢T∩⊤

x ~M : A. Therefore ∀ TT⊤T ∃Γ, A.Γ ⊢T
∩⊤ M : A & ⊤ /∈Γ, A and in particular

this holds for T = BCD.
For λCDZ

∩⊤ we show by induction on M that if Γ = {x:ω | x∈FV (M)}, then

Γ ⊢ M : ϕ. If M ≡ x ~M then by the induction hypothesis and weakening we
have Γ ⊢CDZ

∩⊤ Mj : ϕ. As ω = ϕ→ ω in CDZ, this implies Γ ⊢CDZ
∩⊤ x ~M : ω.

By rule (≤CDZ) we conclude Γ ⊢CDZ
∩⊤ M : ϕ. If M ≡ λy.N then by the induction

hypothesis we have Γ, y : ω ⊢CDZ
∩⊤ N : ϕ and this implies Γ ⊢CDZ

∩⊤ M : ω → ϕ.

By rule (≤CDZ) we conclude Γ ⊢CDZ
∩⊤ M : ϕ.

(ii) As in the proof of (i), we can considerM in hnf. LetM ≡ λy1 . . . yn.xM1 . . .Mm.
We have x:⊤m→A ⊢T

∩⊤ xM1 . . .Mm : A by (→E). By rules (weakening) and

(→I) this implies x:⊤m→A ⊢T
∩⊤ M : (⊤m→A)n→A.

Being A arbitrary we can choose it different from ⊤ in λBCD
∩⊤ .

For λDHM
∩⊤ by choosing A ≡ ω we get from above x:Ωm → ω ⊢DHM

∩⊤ M :

(Ωm → ω)n → ω. By rules (≤DHM) and (≤) this implies x:ω ⊢DHM
∩⊤ M : ϕ since

ω =DHM ⊤ → ω, ω ≤DHM ϕ and ϕ =DHM ω → ϕ.
(iii) By induction on the structure of strongly normalizing terms following

Definition 19.2.1. We only consider the case M ≡ (λx.R)N ~M with ~M ≡
M1 . . .Mn and both R[x := N ] ~M and N are strongly normalizing. By the
induction hypothesis there are Γ, A,Γ′, B such that Γ ⊢T∩ R[x := N ] ~M : A and
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Γ′ ⊢T∩ N : B. We get Γ ⊎ Γ′ ⊢T∩ R[x := N ] ~M : A and Γ ⊎ Γ′ ⊢T∩ N : B, so if
n = 0 we are done by Theorem 16.2.4(i). If n > 0 by iterated applications of
Theorem 16.1.1(ii) to Γ ⊢T∩ R[x := N ] ~M : A we have

Γ ⊢T∩ R[x := N ] : B
(i)
1 → . . .→B(i)

n →B(i) Γ ⊢T∩ Mj : B
(i)
j , (j ≤ n)

and
⋂

i∈ I B
(i) ≤T A for some I,B

(i)
j (j ≤ n), B(i) ∈TTT . As in case n = 0

we obtain Γ ⊎ Γ′ ⊢T∩ (λx.R)N : B
(i)
1 → . . .→B(i)

m→B(i). So we can conclude

Γ ⊎ Γ′ ⊢T∩ (λx.R)N ~M : A.
The proof of (⇐) will occupy the rest of this section.
Now we are able to finish the proof of Theorem 19.2.18. Proof of Theorem 19.2.18

(⇐). Take ρ0(x) = x for x∈Var.
(i) Let Γ ⊢BCD

∩⊤ M : A and ⊤ /∈A,Γ. By soundness (Theorem 19.1.5)

Γ |=BCD
∩⊤ M : A. By Lemmas 19.2.14 and 19.2.8(ii)a one has ρ0, ξ

2
BCD |= Γ,

hence M ∈ [[A]]ξ2
BCD
⊆ N, again by that Lemma. Let

FV (M):ω ⊢CDZ
∩⊤ M : ϕ.

By Lemmas 19.2.14 and 19.2.8(ii)b one has ρ0, ξCDZ |= Γ, hence M ∈ [[ϕ]]ξCDZ
=

N, by Definition 19.2.10(iv).
(ii) Let Γ ⊢BCD

∩⊤ M : A 6= ⊤. By Lemmas 19.2.14 and 19.2.8(i)a one has

ρ0, ξ
1
BCD |= Γ, hence by the same Lemma it follows that M ∈ [[A]]ξ1

BCD
⊆ HN.

Let
FV (M):ω ⊢DHM

∩⊤ M : ϕ.

By Lemmas 19.2.14 and 19.2.8(i)b one has ρ0, ξDHM |= Γ, hence M ∈ [[ϕ]]ξDHM
=

HN, by Definition 19.2.10(iii).
(iii) Let Γ ⊢CDV

∩ M : A. By Lemmas 19.2.14 and 19.2.8(iii) one has ρ0, ξCDV |=
Γ, hence M ∈ [[A]]ξCDV

⊆ SN, by the same Lemma.

19.2.19. Remark. (i) For a TT⊤ T one has

∃A,Γ.Γ ⊢T∩⊤ M : A & ⊤ 6=T A,Γ 6⇒ M ∈HN.

Take for example T = Park, then ⊢Park
∩⊤ (λx.xx)(λx.xx) : ω 6=Park ⊤, by

Theorem 18.3.22, but this term is unsolvable.
(ii) There are many proofs of Point Theorem 19.2.18(iii) in the literature

Pottinger [1981], Leivant [1986], van Bakel [1992], Krivine [1990], Ghilezan
[1996], Amadio and Curien [1998]. As observed in Venneri [1996] all but Amadio
and Curien [1998] contain some bugs, which in the case of Krivine [1990] can
be easily remedied with a suitable non-standard notion of length of reduction
path.

In Coppo et al. [1987] persistently normalizing normal forms have been given a
similar characterization using the notion of replaceable variable (Coppo et al.
[1987]). Other classes of terms are characterized in Dezani-Ciancaglini et al.
[2005].



19.3. D∞ MODELS AS FILTER MODELS 143

19.3. D∞ models as filter models

In this section we give some applications of the results of Section 17.2, focusing
on natural type structures and natural lambda-structures.

The first application is concerned with the lambda models D∞, see Scott
[1972] or Barendregt [1984]. These models are constructed from an initial D
and it is not much of a restriction to consider them to be in ALG, i.e. the
category of ω-algebraic lattices and Scott-continuous maps. To begin with,
Corollary 17.2.14(ii)Comment: this is for ALGa, we need more! states that
forall D∈NLS

D ∼= FK(D),

(isomorphism within the category NLS). For a given lambda model D∞

obtained from a D0 ∈ALG we have that D∞ ∈NLS. We can construct directly
(without having to construct first D∞) a S∞ ∈NTS such that

K(D∞) ∼= S∞,

obtaining for such D∞

D∞
∼= FS∞ .

The construction of D∞ does not only depend on the initial D0, but also on
the projection pair i0, j0 which gives the start of the D∞ construction:

i0 : D0→D1, j0 : D1→D0,

where D1 = [D0→D0]. By making various variations on the theme (D0, i0, j0)
one obtains the following versions of D∞

DScott
∞ , DPark

∞ , DCDZ
∞ , DDHM

∞ and DHR
∞ ,

each having some specific property. For S ∈{Scott,Park,CDZ,DHM,HR} ????we
construct a NTS S∞ such that

S∞ ∼= S.

Hence, writing FS for FS as usual, hence we obtain the isomorphisms

DS
∞
∼= FS .

The pleasant fact is that S and the triple t = (D0, i0, j0) correspond to each
other in a canonical way. For S ∈{Scott,Park} one has that the model DS

∞ was
constructed first and the natural type structure S came later. For S ∈{CDZ,DHM,HR}
one first constructed the natural type structure S in order to obtain the model
DS

∞ satisfying a certain property.
The second application illustrates the expressiveness and flexibility of intersection

types: following Alessi et al. [2001] we show that the term ⊤ ≡ (λx.xx)(λx.xx)
is easy in the sense of Jacopini [1975], as has been shown in various ways,
see e.g. Baeten and Boerboom [1979] or Mitschke’s proof in Barendregt [1984],
Proposition 15.3.9. Given any λ-termM , we inductively build natural intersection
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type structures Sn in such a way that the union of these structures, call it S∗,
forces the interpretation of M to coincide with the interpretation of ⊤.

Further applications of intersection types consist of necessary conditions for
filter λ-models to be sensible or semi-sensible. We will not consider this issue,
see Zylberajch [1991]. Comment: Berline students?

Let D be an ω-algebraic lattice that is reflexive (i.e. there are continuous
maps F : D→[D→D] and G : [D→D]→D with F ◦G = id[D→D], see Barendregt
[1984] Definition 5.4.1) and as such an extensional lambda-model (implying
G ◦ F = idD, ibidem Theorem 5.4.4). Then D is clearly a natural lambda
structure (in which only F ◦G ⊒ id[D→D] and G ◦ F ⊑ idD are required). Now
Theorem ??Comment: where is now this isomorphism result? disappeared?
implies that any such λ-model D is isomorphic to a filter λ-model FS , provided
that we have S ∼= K(D). In this section we show that in the special case
of D = D∞, one can obtain a concise type theoretic description of K(D∞)
via a suitable natural type structure S∞. Remarkably this type theory S∞
is exactly the natural type structure freely generated by defining A

∞ = K(D0)
and, axiomatizing S∞ by postulating on TT∞ = TT∩(K(D0)) the equalities which
arise from encoding the initial embedding-projection pair 〈i0, j0〉. In this section
we follow Alessi [1991], Alessi, Dezani-Ciancaglini and Honsell [2004].

We fix some notations and recall the standard D∞ construction.

19.3.1. Definition. (i) Let D0 be an ω-algebraic complete lattice and

〈i0, j0〉

be an embedding-projection pair between D0 and [D0→D0], i.e.

i0 : D0→[D0→D0]

j0 : [D0→D0]→D0

are Scott continuous maps satisfying

i0 ◦ j0 ⊑ Id[D0→D0]

j0 ◦ i0 = IdD0 .

(ii) Define a tower 〈in, jn〉 : Dn→Dn+1 in the following way:

• Dn+1 = [Dn→Dn];

• in(f) = in−1 ◦ f ◦ jn−1 for any f ∈Dn;

• jn(g) = jn−1 ◦ g ◦ in−1 for any g ∈Dn+1.

(iii) For d∈Πn∈NDn write dn = d(n). The set D∞ is defined by

D∞ = {d∈Πn∈NDn | ∀n∈N. dn ∈Dn & jn(dn+1) = dn},

Notation. dn denotes the projection on Dn, while dn is an element of Dn.

19.3.2. Lemma. X exists for all X ⊆ D∞.
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Proof. Clearly X = λλn∈N.dn, where dn = ⊔{en | e∈X}.

19.3.3. Definition. (i) The ordering on D∞ is given by
d ⊑ e ⇔ ∀k∈N. dk ⊑ ek.

(ii) Let 〈Φm∞,Φ∞m〉 denote the standard embedding-projection pair from
Dm to D∞ defined as follows. For any element dm ∈Dm, d∈D∞,

Φmn(dm) =







jn(. . . (jm−1(d
m))) if m > n

dm if m = n
in−1(. . . (im(dm))) if m < n

Φm∞(dm) = 〈Φm1(d
m),Φm2(d

m) . . . ,Φmn(dm), . . .〉
Φ∞m(d) = dm = d(m)

19.3.4. Definition. Let

F∞ : D∞→[D∞→D∞]

G∞ : [D∞→D∞]→D∞

be defined as follows

F∞(d) =
n∈N

(Φn∞ ◦ dn+1 ◦ Φ∞n);

G∞(f) =
n∈N

Φ(n+1)∞(Φ∞n ◦ f ◦ Φn∞).

19.3.5. Lemma. (i) in ◦ jn ⊑ Id[Dn→Dn], jn ◦ in = IdDn.
(ii) ∀p, q ∈Dn [in+1(p 7→q) = (in(p)7→in(q)) &

jn+1(in(p)7→in(q)) = (p 7→q)].
(iii) Φm∞ ◦ Φ∞m ⊑ Id∞ and Φ∞m ◦ Φm∞ = IdDm.
(iv) ∀e∈K(Dn) [in(e)∈K(Dn+1)].
(v) ∀e∈K(Dn) [m ≥ n⇒ Φnm(e)∈K(Dm)].
(vi) ∀e∈K(Dn) [Φn∞(e)∈K(D∞)].
(vii) If n ≤ k ≤ m and d∈Dn, e∈Dk, then

Φnk(d) ⊑ e ⇔ Φnm(d) ⊑ Φkm(e) ⇔ Φn∞(d) ⊑ Φk∞(e).

(viii) Φmn : Dm→Dn = Φ∞n ◦ Φm∞.
(ix) ∀a, b∈Dn [(Φn∞(a)7→Φn∞(b)) = Φn∞ ◦ (a7→b) ◦ Φ∞n].

Proof. (i) follows by induction on n.
(iv) and (v) and (vi) follow from Lemma 17.4.4(ii) observing that the following
pairs are all Galois connections:

1. 〈in, jn〉

2. 〈Φnm,Φmn〉 for n ≤ m

3. 〈Φn∞,Φ∞n〉
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(viii) follows from a variation of Lemma 17.4.9 (where the Z does not play a
role) observing that 〈Φn∞,Φ∞n〉 is a Galois connection.

19.3.6. Lemma. n∈N Φn∞ ◦ Φ∞n = IdD∞
.

Proof. Since 〈Φn∞,Φ∞n〉 is an embedding-projection pair, we have for all
n∈N Φn∞ ◦ Φ∞n ⊑ IdD∞

, hence for all d∈D∞

n∈N

Φn∞ ◦ Φ∞n(d) ⊑ d.

On the other hand, for all k∈N, we have

( n∈N Φn∞ ◦ Φ∞n(d))k ⊒ (Φk∞ ◦ Φ∞k(d))k because ( )k is monotone
= Φ∞k(d) because (Φk∞(x))k = x for all x
= dk

Therefore also

n∈N

Φn∞ ◦ Φ∞n(d) ⊒ d,

and we are done.

Next lemma characterizes the compact elements of D∞ and [D∞→D∞].

19.3.7. Lemma. (i) d∈K(D∞) ⇔ ∃k, e∈K(Dk).Φk∞(e) = d.

(ii) f ∈K([D∞→D∞]) ⇔ ∃k, g ∈K(Dk+1).f = Φk∞ ◦ g ◦ Φ∞k.

(iii) If f = Φk∞ ◦ g ◦ Φ∞k with g ∈Dk+1, then G∞(f) = Φ(k+1)∞(g).

Proof. (i) (⇒) Let d∈K(D∞). Then d = n∈N Φn∞(dn), by Lemma 19.3.6.
Since d is compact, there exists k∈N such that d = Φk∞(dk). Now we prove
that dk ∈K(Dk). Let X ⊆ Dk be directed. Then

dk ⊑ X ⇒ d ⊑ Φk∞( X)

⇒ d ⊑ Φk∞(X), since Φk∞ is continuous,

⇒ ∃x∈X.d ⊑ Φk∞(x), for some k since d is compact,

⇒ Φ∞k(d) ⊑ Φ∞k ◦ Φk∞(x)

⇒ dk ⊑ x.

This proves that dk ∈K(Dk). (⇐) It follows from Lemma 19.3.5(vi).

(ii) (⇒) By Lemma 19.3.6, we have

f =
n∈N

Φn∞ ◦ (Φ∞n ◦ f ◦ Φn∞) ◦ Φ∞n.

Using similar arguments as in the proof of (i), we have that

• ∃k∈N.f = Φk∞ ◦ (Φ∞k ◦ f ◦ Φk∞) ◦ Φ∞k,

• (Φ∞k ◦ f ◦ Φk∞)∈K(Dk+1).

Put g = (Φ∞k ◦ f ◦ Φk∞). (⇐) Easy.
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(iii) Let f = Φk∞ ◦ g ◦ Φ∞k with g ∈Dk+1. Then

G∞(f) = G∞(Φk∞ ◦ g ◦ Φ∞k)

=
n∈N

Φ(n+1)∞(Φ∞n ◦ (Φk∞ ◦ g ◦ Φ∞k) ◦ Φn∞)

=
n∈N

Φ(n+1)∞(Φkn ◦ g ◦ Φnk), by definition of Φkn,

=
n∈N

Φ(n+1)∞(Φ(k+1)(n+1)(g)), by Lemma 19.3.6,

= Φ(k+1)∞(g).

19.3.8. Lemma. (i) ∀x∈D∞.x = ⊔{e∈K(D∞) | e ⊑ x}.
(ii) K(D∞) is countable.
(iii) D∞ ∈ALG.

Proof. (i) Let x∈D∞ and Ux = {e∈K(D∞) | e ⊑ x}. Clearly, Ux ⊑ x.
Now let f = Ux in order to show x ⊑ f . By definition of sup in D∞ we have
that

fn = V (n, x) where V (n, x) = {en ∈Dn | e∈K(D∞)&e ⊑ x}

Since Dn is algebraic, we have that

xn = W (n, x) where W (n, x) = {d∈K(Dn) | d ⊑ xn}

We will prove thatW (n, x) ⊆ V (n, x). Suppose d∈W (n, x). Then d∈K(Dn)
and d ⊑ xn. Let e = Φn∞(d). Then,

(1) d = Φ∞n ◦ Φn∞(d) = en

(2) e = Φn∞(d)∈K(D∞) by Lemma 19.3.5(vi)

(3) e = Φn∞(d) ⊑ Φn∞(xn) ⊑ x by monotonicity of Φn∞ and Lemma 19.3.5(iii)

Hence d∈V (n, x). Clearly, xn ⊑ fn. Hence x ⊑ f .
(ii) By Proposition 17.1.11 one has Dn ∈ALG for each n. Hence K(Dn) is

countable for each n. But then also K(D∞) is countable, by Lemma 19.3.7(i).
(iii) By (i), (ii) and (iii).

19.3.9. Theorem. (Scott [1972]) Let D∞ be constructed from D0 ∈ALG and
a projection pair i0, j0. Then D∞ ∈ALG and D∞ with F∞, G∞ is reflexive.
Moreover,

F∞ ◦G∞ = Id[D∞→D∞] & G∞ ◦ F∞ = IdD∞
.

It follows that D∞ is an extensional λ-model.

Proof. See Barendregt [1984] Theorem 18.2.16 for the proof that F and G are
each other’s inverse. Therefore, by Proposition 18.1.10(ii), D∞ is an extensional
λ-model.

19.3.10. Corollary. Let D∞ be constructed from D0 ∈ALG and a projection
pair i0, j0. Then 〈D∞, F∞, G∞〉 is in NLS.

Proof. Immediate from the Theorem.
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D∞ as a filter λ-model

Let D∞ be constructed from the triple t = (D0, i0, j0). To emphasize the
dependency on t we write D∞ = Dt

∞. From the previous corollary and applying
various results of Chapter 17 it follows that Dt

∞
∼= FK(Dt

∞). In this subsection
we associate with t = (D0, i0, j0) a rather simple intersection type structure St

∞

such that St
∞
∼= K(Dt

∞), hence

Dt
∞
∼= FSt

∞ .

Later in Proposition 19.3.27 we will prove for S ∈{Scott,Park,CDZ,DHM,HR}
that

S ∼= St
∞,

and hence DS
∞
∼= FSt

∞ = FS .

19.3.11. Definition. (Definition of St
∞ and ≤∞) Let t = (D0, i0, j0) be given.

(i) The partial order ≤0 on K(D0) is defined by

d ≤0 e⇔ d ⊒ e d, e∈K(D0);

(ii) TT∞ = K(D0) | TT∞→TT∞ | TT∞ ∩ TT∞.

(iii) Write ⊤ for ⊥D0 . Let ≤∞ be the lazy type theory on TT∞, i.e. having
the axiom and rules of Definition 15.1.1 plus (→∩), (→), (⊤) and (⊤ →) with
as extra axiom

c ∩ d =∞ c ⊔ d
where ⊔ is the lub for the ordering ⊑ on K(D0)
and the extra rules

c ≤0 d ⇒ c ≤∞ d

and

io(e) = (c1 7→d1) ⊔ . . . ⊔ (cn 7→dn) ⇒ e =∞ (c1→d1) ∩ . . . ∩ (cn→dn),

where c, d, e, , c1, d1, . . . , cn, dn ∈K(D0).

(iv) St
∞ = TT∞/ =∞. So we have St

∞ ∈NTS.

19.3.12. Remark. The fact that wn(A)∈K(Dt
n) for all A∈TT∞

n follows from
Lemma 17.1.9.

The proof of the next lemma follows easily from Definition 19.3.11.

19.3.13. Lemma. c1 ∩ . . . ∩ cn =∞ c1 ⊔ . . . ⊔ cn.

The proof of St
∞
∼= K(Dt

∞) will occupy 19.3.16-19.3.18. First we classify
the types in TT∞ according to the maximal number of nested arrow occurrences
they may contain.
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19.3.14. Definition. (i) We define the map rank rk : TT∞→N by:

rk(c) = 0, for c∈K(D0);

rk(A→B) = max{rk(A), rk(B)}+ 1;

rk(A ∩B) = max{rk(A), rk(B)}.

(ii) Let TT∞
n = {A∈TT∞ | rk(A) ≤ n}.

Remark that wn(A)∈K(Dt
n) for all A∈TT∞

n by Lemma 17.1.9.

We can associate to each type in TT∞
n an element in Dn: this will be crucial

for defining the required isomorphism (see Definition 19.3.20).

19.3.15. Definition. We define, for each n∈N, a map wn : TT∞
n →K(Dt

n) by a
double induction on n and on the construction of types in TT∞:

wn(c) = Φ0n(c);
wn(A ∩B) = wn(A) ⊔ wn(B);
wn(A→B) = (wn−1(A)7→wn−1(B)).

19.3.16. Lemma. Let n ≤ m and A∈TT∞
n . Then Φm∞(wm(A)) = Φn∞(wn(A)).

Proof. We show by induction on the definition of wn that wn+1(A) = in(wn(A)).
Then the desired equality follows from the definition of the function Φ. The
only interesting case is when A ≡ B → C. We get

wn+1(B→C) = wn(B)7→wn(C), by definition,

= in−1(wn−1(B))7→in−1(wn−1(C)), by induction,

= in(wn−1(B)7→wn−1(C)), by Lemma 19.3.5(ii),

= in(wn(B → C)), by Definition 19.3.15.

The maps wn reverse the order between types.

19.3.17. Lemma. Let rk(A ∩B) ≤ n. Then

A ≤∞ B ⇒ wn(B) ⊑ wn(A).

Proof. The proof is by induction on the definition of ≤∞. We consider only
two cases.

Case (→). Let A ≤∞ B because A ≡ C→D, B ≡ E→F , E ≤∞ C and
D ≤∞ F . Then

E ≤∞ C & D ≤∞ F ⇒ wn−1(C) ⊑ wn−1(E) & wn−1(F ) ⊑ wn−1(D),

by induction

⇒ wn−1(E)7→wn−1(F ) ⊑ wn−1(C)7→wn−1(D)

⇒ wn(B) ⊑ wn(A).
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Case e =∞ (c1→d1) ∩ . . . ∩ (ck→dk) as i0(e) = (c1 7→d1) ⊔ . . . ⊔ (ck 7→dk).
We show by induction on n ≥ 1 the following.

wn(e) = (wn−1(c1)7→wn−1(d1)) ⊔ . . . ⊔ (wn−1(ck)7→wn−1(dk)).

It trivially holds for n = 1, so let n > 1.

wn(e) = in−1(wn−1(e))

= in−1((wn−2(c1)7→wn−2(d1)) ⊔ . . . ⊔ (wn−2(ck)7→wn−2(dk)))

= in−1(wn−2(c1)7→wn−2(d1)) ⊔ . . . ⊔ in−1(wn−2(ck)7→wn−2(dk))

= (in−2(wn−2(c1))7→in−2(wn−2(d1))) ⊔ . . . ⊔ (in−2(wn−2(ck))7→in−2(wn−2(dk))

= (wn−1(c1)7→wn−1(d1)) ⊔ . . . ⊔ (wn−1(ck)7→wn−1(dk)).

Also the reverse implication of Lemma 19.3.17 holds.

19.3.18. Lemma. Let rk(A ∩B) ≤ n. Then

wn(B) ⊑ wn(A) ⇒ A ≤∞ B.

Proof. By induction on rk(A ∩B).
If rk(A ∩B) = 0 we have A ≡ ⋂

i∈ I ci, B =
⋂

j ∈ J dj . Then

wn(B) ⊑ wn(A) ⇒
j ∈ J

Φ0n(dj) ⊑
i∈ I

Φ0n(ci)

⇒ Φn0(
j ∈ J

Φ0n(dj)) ⊑ Φn0(
i∈ I

Φ0n(ci))

⇒
j ∈ J

(Φn0 ◦ Φ0n)(dj) ⊑
i∈ I

(Φn0 ◦ Φ0n)(ci)

⇒
j ∈ J

dj ⊑
i∈ I

ci

⇒ A ≤∞ B.

Otherwise, let

A ≡ (
⋂

i∈ I

ci) ∩ (
⋂

l∈L

(Cl→Dl)),

B ≡ (
⋂

h∈H

dh) ∩ (
⋂

m∈M

(Em→Fm)).

By Proposition 17.1.11 we have

ci =∞

⋂

j ∈ Ji

(aj → bj), dh =∞

⋂

k∈Kh

(ek → fk),

where aj , bj , ek, fk ∈K(D0). Now for all n ≥ 1

wn(ci) =
j ∈ Ji

(wn−1(aj)7→wn−1(bj))),

wn(dh) = (
k∈Kh

(wn−1(ek)7→wn−1(fk))),
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since by Lemma 19.3.17 the function wn identifies elements in the equivalence
classes of =∞. So we get

h∈H
(
k∈Kh

wn−1(ek)7→wn−1(fk)) ⊔ (
m∈M

wn−1(Em)7→wn−1(Fm)) ⊑

i∈ I
(
j ∈ Ji

wn−1(aj)7→wn−1(bj)) ⊔ (
l∈L

wn−1(Cl)7→wn−1(Dl)).

Hence for each h∈H, k∈Kh we have

(wn−1(ek)7→wn−1(fk)) ⊑
i∈ I

(
j ∈ Ji

wn−1(aj)7→wn−1(bj)) ⊔

(
l∈L

wn−1(Cl)7→wn−1(Dl)).

Suppose wn−1(fk) 6= ⊥Dn . Then by Lemma 17.1.10 there exist I ′ ⊆ I, J ′
i ⊆ Ji,

L′ ⊆ L such that

i∈ I′
(
j ∈ J ′

i

wn−1(aj)) ⊔ (
l∈L′

wn−1(Cl)) ⊑ wn−1(ek),

i∈ I′
(
j ∈ J ′

i

wn−1(bj)) ⊔ (
l∈L′

wn−1(Dl)) ⊒ wn−1(fk).

Notice that all types involved in the two above judgments have ranks strictly
less than rk(A ∩B):

1. the rank of aj , bj , ek, fk is 0, since they are all constants in K(D0) and
that

2. the rank of Cl, Dl is stricly smaller than the one of A ∩B, since they are
subterms of an arrow in A.

Then by induction and by Lemma 19.3.13 we obtain

ek ≤∞

⋂

i∈ I′

(
⋂

j ∈ J ′
i

aj) ∩
⋂

l∈L′

Cl,

fk ≥∞

⋂

i∈ I′

(
⋂

j ∈ J ′
i

bj) ∩
⋂

l∈L′

Dl.

Therefore we have by (→) and Proposition 15.1.13 A ≤∞ ek→fk.
If wn−1(fk) = ⊥Dn , then wn−1(fk) = Φ0n(fk) since fk ∈K(D0). This gives
fk = Φn0◦Φ0n(fk) = Φn0(⊥Dn) = ⊥D0 because jn(⊥Dn+1) = ⊥Dn . We conclude
since fk = ⊥D0 implies A ≤∞ ek → fk.
In a similar way we can prove that A ≤∞ Em→Fm, for any m∈M . Putting
together these results we get A ≤∞ B.

19.3.19. Proposition. 〈K(Dt
∞),→∞,∩,⊤〉 is a natural type structure where

a→∞ b = G∞(a7→b), ∩ is the least upper bound of Dt
∞ and ⊤ is the bottom of

Dt
∞.
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Proof. By Theorem 19.4.10 we have that Ξ∞ = 〈Dt
∞, F∞, G∞〉 is a natural

lambda structure. By Proposition 17.4.29, L(Ξ∞) = 〈Dt
∞, Z∞〉 is a natural zip

structure, where Z∞(a, b) = G∞(a7→b). Using Proposition 17.3.13, we know
that Cmp ◦L(Ξ∞) = 〈K(Dt

∞),→∞,∩,⊤〉 is a natural type structure, where the
arrow →∞ is given by Z∞.

We can now prove the isomorphism in NTS between K(D∞) and S∞

19.3.20. Definition. For A∈TT∞ write

m([A]) = Φr∞(wr(A)),

where r ≥ rk(A).

19.3.21. Theorem. In NTS one has St
∞
∼= K(Dt

∞) via m.

Proof. First of all notice that m is well defined, in the sense the it does not
depend on either the type chosen in [A] or the rank r. In fact let B,B′ ∈ [A],
and let p ≥ rk(B), p′ ≥ rk(B′). Fix any q ≥ p, p′. Then we have

Φp∞(wp(B)) = Φq∞(wq(B)), by Lemma 19.3.16,

= Φq∞(wq(B
′)), by Lemma 19.3.17,

= Φp′∞(wp′(B
′)), by Lemma 19.3.16.

Write m(A) for m([A]). We prove that m satisfies all the conditions of Proposition
??. m is injective by Lemma 19.3.18 and monotone by Lemma 19.3.17.

From Lemma 17.1.11(ii) we get immediately

K(Dn+1) = {c1 7→d1 ⊔ . . . ⊔ cn 7→dn|ci, di ∈K(Dn)}.

it is easily proved by induction on n that wn is surjective on K(Dn), hence m

is surjective by Lemma 19.3.7(i). The function m−1 is monotone by Lemma
19.3.18. Finally, we have to prove that m satisfies condition (??) of Proposition
??. Taking into account that the order ≤∞ on K(Dt

∞) is the reversed of ⊑ of
Dt

∞ and that, by Definition ??, we have d→∞e = G∞(d 7→e), we need to show:

A ≤∞ B → C ⇔ m(A) ⊒ G∞(m(B)7→m(C)) (19.1)

In order to prove (19.1), let r ≥ max{rk(A), rk(B → C)} (in particular it follows
rk(B), rk(C) ≤ r − 1). We have

G∞(m(B)7→m(C)) = G∞(Φ(r−1)∞(wr−1(B))7→Φ(r−1)∞(wr−1(C)))

= G∞(Φ(r−1)∞ ◦ (wr−1(B)7→wr−1(C)) ◦ Φ∞(r−1)),

by Lemma 19.3.5(viii),

= Φr∞(wr−1(B)7→wr−1(C)), by Lemma 19.3.7(iii),

= Φr∞(wr(B → C)), by definition of wr.
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Finally we have

A ≤∞ B → C ⇔ wr(A) ⊒ wr(B → C),

by Lemmas 19.3.17 and 19.3.18,

⇔ Φr∞(wr(A)) ⊒ Φr∞(wr(B → C))

since Φr∞ is an embedding

⇔ Φr∞(wr(A)) ⊒ G∞(m(B)7→m(C)), as above,

⇔ m(A) ⊒ G∞(m(B)7→m(C)).

So we have proved (19.1) and the proof is complete.

19.3.22. Theorem. FSt
∞ ∼= Dt

∞ in NLS, via the map

m(X) = {m(B) | B ∈X}

satisfying m(↑A) = m(A).

Proof. One has FSt
∞ ∼= FK(Dt

∞) ∼= Dt
∞, by Theorems 19.3.21 and ??(i).

Notice that if S ∼= S ′ via the map m, then also via the approximable map
µm and hence FS ∼= FS′

via the map

Flt(µm)(X) = {B′ | ∃B ∈X.BµmB
′}.

Therefore by Theorem 19.3.21 the map

µm : FSt
∞→FK(Dt

∞)

is an isomorphism. By Proposition ?? the map

: FK(Dt
∞)→Dt

∞

is an isomorphism. Therefore the required isomorphism is

m(X) = Fltµm(X)

= {B′ | ∃B ∈X.BµmB
′}

= {B′ | ∃B ∈X.m(B) ≤ B′}
= {B′ | ∃B ∈X.B′ ⊑ m(B)}
= {m(B) | B ∈X}.

In particular m(↑A) = {m(B) | B ⊒ A} = m(A). Let m : S∞ → K(D∞) be
the isomorphism in NTS. By Proposition 17.3.14 we know that Flt is a functor
from NTS to NLS. Then

Flt(m) : FS∞ → FK(D∞)

is an isomorphism in NLS where Flt(m)(X) = {B | ∃A∈X.m(A) ⊑ B}.
By Proposition 17.3.15(ii) we have that

⊖ : FK(D∞) → D∞



154 CHAPTER 19. APPLICATIONS 16.10.2006:1032

is an isomorphism in NLS where ⊖(X) = ⊔X.
The composition of ⊖ and Flt(m) is an isomorpshim from FS∞ to D∞

explicitley given by

⊖ ◦ Flt(m)(X) = ⊔{B | ∃A∈X.m(A) ⊑ B} ⊔ {m(A) | A∈X}

Specific models D∞ as filter models

In this subsection we specialize Theorem 19.3.22 to Dt
∞ models constructed

from specific triples t = (D0, i0, j0), five in total, each satisfying a specific mo-
deltheoretic property. For each of these the corresponding type structure St

∞

can be described in a relatively simple way. This will be done as follows. Five
type structures S will be defined with S ∈{Scott,Park,CDZ,DHM,HR}. Also
five corresponding choices of the triple tS = (D0, i0, j0) will be defined, giving
rise to DtS

∞ for S ∈{Scott,Park,CDZ,DHM,HR}. Moreover, we will show that
StS
∞ = S, hence

DtS
∞
∼= FS

tS
∞ ∼= FS ,

by Theorem 19.3.22. We will write FS := FSS , DS
∞ := DtS

∞ and SS∞ := StS
∞ .

Then the equation becomes

DS
∞
∼= FSS

∞ ∼= FS .

19.3.23. Definition. (i) Remember the following type theoretic axioms.

(ωScott) (⊤→ω) = ω

(ωPark ) (ω→ω) = ω

(ωϕ) ω ≤ ϕ
(ϕ→ω) (ϕ→ω) = ω

(ω→ϕ) (ω→ϕ) = ϕ

(I) (ϕ→ϕ) ∩ (ω→ω) = ϕ

(ii) In Definition 15.1.7 the natural type structures1 S ∈{Scott,Park,CDZ,DHM,HR}
have been defined by specifying its set of constants A

S and some extra axioms
(besides the axioms (→∩), (⊤) and (⊤ →) and the rule (→)).

S Constants AS Axioms of S
Scott {⊤, ω} (ωScott)
Park {⊤, ω} (ωPark)
CDZ {⊤, ω, ϕ} (ωϕ), (ϕ→ω), (ω→ϕ)
HR {⊤, ω, ϕ} (ωϕ), (ϕ→ω), (I)
DHM {⊤, ω, ϕ} (ωϕ), (ω→ϕ), (ωScott)

1To be precise Definition 15.1.7 introduces compatible type theories, but we can view them
as structures exploiting Remark 15.4.7.
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(iii) As usual we write S for TTS/ =S .

19.3.24. Definition. (i) For S ∈{Scott,Park,CDZ,DHM,HR} the following
triples (D0, i0, j0) are defined. For S ∈{Scott,Park}, we define DS

0 as the two
point chain {⊤ ⊑ ω}. For S ∈{CDZ,HR,DHM}, we define DS

0 as the three
point chain {⊤ ⊑ ϕ ⊑ ω}.

(ii) We define iS0 : DS
0→[DS

0→DS
0 ] and jS0 : [DS

0→DS
0 ]→DS

0 as follows. First
iS0 .

iS0 (⊤) = ⊤7→⊤ for any S ∈{Scott,Park,CDZ,DHM,HR}

iS0 (ϕ) =

{

(ϕ 7→ϕ) ⊔ (ω 7→ω) if S ∈{HR}
ω 7→ϕ if S ∈{CDZ,DHM}

iS0 (ω) =







⊤7→ω if S ∈{Scott,DHM}
ω 7→ω if S ∈{Park}
ϕ 7→ω if S ∈{CDZ,HR}

Then we define, for all S, and f ∈ [DS
0→DS

0 ]

jS0 (f) = {d∈DS
0 | iS0 (d) ⊑ f}.

(iii) Write tS = (DS
0 , i

S
0 , j

S
0 ). It is easy to prove that 〈iS0 , jS0 〉 is an embedding-

projection pair from DS
0 to [DS

0 → DS
0 ], so we can build DS

∞ = DtS
∞ following

the steps outlined in Definition 19.3.1.

19.3.25. Lemma. Let S ∈{Scott,Park,CDZ,DHM,HR} and c1, . . . ,cn, d1, . . . ,dn,
e1, . . . ,ek, f1, . . . ,fk ∈DS

0 . Then

(e1→f1) ∩ . . . ∩ (ek→fk) =S (c1→d1) ∩ . . . ∩ (cn→dn) ⇔
(c1 7→d1) ⊔ . . . ⊔ (cn 7→dn) = (e1 7→f1) ⊔ . . . ⊔ (ek 7→fk).

Proof. It suffices to prove

(c 7→d) ⊑ (e1 7→f1) ⊔ . . . ⊔ (ek 7→fk) ⇔ (e1→f1) ∩ . . . ∩ (ek→fk) ≤S (c→d).

Now, (c 7→d) ⊑ (e1 7→f1) ⊔ . . . ⊔ (ek 7→fk) ⇔

⇔ ∃I⊆{1, . . . , k} [⊔i∈ Iei ⊑ c & d ⊑ ⊔i∈ Ifi], by Lemma 17.1.10,

⇔ ∃I⊆{1, . . . , k} [c ≤S ∩i∈ Iei & ∩i∈ I fi ≤S d],

⇔ (e1→f1) ∩ . . . ∩ (ek→fk) ≤S (c→d), by β-soundness, (→)

and (→∩).

19.3.26. Corollary. The definition of iS0 is canonical. By this we mean that
we could have given equivalently the following definition.

iSo (e) = (c1 7→d1) ⊔ . . . ⊔ (cn 7→dn) ⇔ e =S (c1→d1) ∩ . . . ∩ (cn→dn).

Proof. Immediate, by the definition of iS0 , the axioms (⊤) and (⊤ →), the
special axioms (ωScott), (ωPark), (ϕ→ω), (ω→ϕ), (I) respectively, and the previous
Lemma.
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By Theorem 19.3.22 we get FS
tS
∞ ∼= DtS

∞ for these five cases, where tS is the

triple tS = (DS
0 , i

S
0 , j

S
0 ). We abbreviate this as FS

tS
∞ ∼= DS

∞.

19.3.27. Proposition. For S ∈{Scott,Park,CDZ,DHM,HR} one has

S ∼= StS
∞ .

Proof. Remember that

S = TT(AS)/ =S

StS
∞ = TT(K(DS

0 ))/ =∞ .

Then TT(AS) = TT(DS
0 ) = TT(K(DS

0 )) for all S, since each DS
0 only contains

compact elements. It remains to show that =∞ and =S are the same. This
follows from

A ≤∞ B ⇔ A ≤S B.

As to (⇒), this follows by induction on the generation of ≤∞. Now S
satisfies the axioms (→∩), (⊤) and is closed under the rule (→), since it is a
natural type structure. It remains to show that the new axioms and rules are
valid in this structure.

As to the axiom c ≤∞ d because d ⊑ c, we have d = ⊤, c = ω or d = c.
Then in all cases c ≤S d, by the axioms (⊤) and (ωϕ).

As to the axiom c∩d =∞ c⊔d, with c, d∈K(D0) = D0, we have, say, c ⊑ d.
Then c ⊔ d = d. Again we have d ≤S c. Therefore d ≤S c ∩ d ≤S d, and hence
c ∩ d =S d = c ⊔ d.

Finally, suppose e =∞ (c1→d1) ∩ . . . ∩ (cn→dn), because

i0(e) = (c1 7→d1) ⊔ . . . ⊔ (cn 7→dn).

Then e =S (c1→d1) ∩ . . . ∩ (cn→dn), by Corollary 19.3.26.

As to (⇐), the axioms and rules (⊤), (⊤ →), (→∩) and (→) hold for S by
definition. Moreover, all axioms extra of S hold in StS

∞ , as follows from the
definitions of iS0 .

Now we can obtain the following result

19.3.28. Corollary. Let S ∈{Scott,Park,CDZ,DHM,HR}. Then in the category
NLS we have

FS ∼= DS
∞.

Proof. FS ∼= FS
tS
∞ , by Proposition 19.3.27,

∼= DS
∞, by Theorem 19.3.22.

We will end this subsection by telling what is the interest of the various
models DT

∞. In Barendregt [1984], Theorem 19.2.9, the following result is
proved.
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19.3.29. Theorem (Hyland and Wadsworth). Let t = (D0, i0, j0), where D0 is
cpo (or object of ALG) with at least two elements and

i0(d) = λλe∈D0.d, for d∈D0,

j0(f) = f(⊥D0), for f ∈ [D0→D0].

Then for M,N ∈Λ (untyped lambda terms) and C[ ] ranging over contexts

Dt
∞ |= M = N ⇔ ∀C[ ].(C[M ] is solvable ⇔ C[N ] is solvable).

In particular, the local structure of Dt
∞ (i.e. {M = N | Dt

∞ |= M = N}) is
independent of the initial D0.

19.3.30. Corollary. For t as in the theorem one has for closed terms M,N

Dt
∞ |= M = N ⇔ ∀A∈SScott [⊢Scott

∩⊤ M : A ⇔ ⊢Scott
∩⊤ N : A].

Proof. Let M,N ∈Λø. Then

Dt
∞ |= M = N ⇔ DScott

∞ |= M = N, by Theorem 19.3.29,

⇔ FS |= M = N, by Corollary 19.3.28,

⇔ ∀A∈SScott [⊢Scott
∩⊤ M : A ⇔ ⊢Scott

∩⊤ N : A],

by Theorem 18.2.8.

The model DPark
∞ has been introduced to contrast the following result, see

Barendregt [1984], 19.3.6.

19.3.31. Theorem (Park). Let t be as in 19.3.29. Then for the untyped λ-term

YCurry ≡ λf.(λx.f(xx))(λx.f(xx))

one has
[[YCurry]]

Dt
∞ = YTarski,

where YTarski is the least fixed-point combinator on Dt
∞.

The model DPark
∞ has been constructed to give YCurry a meaning different

from YTarski.

19.3.32. Theorem (Park). [[YCurry]]
DPark

∞ 6= YTarski.

Now this model can be obtained as a simple filter model DPark
∞

∼= FPark and
therefore, by Corollory 19.3.28, one has

[[YCurry]]
FPark 6= YTarski.

The models DScott
∞ and DPark

∞ have been introduced before the definition of
the type structures SScott and SPark. In case ofDCDZ

∞ , DDHM
∞ andDHR

∞ , however,
the natural type structures SCDZ,SDHM and SHR were defined first, in order to
create models in which the images of important classes of lambda terms become
definable.already said at the beginning of this section The following results are
translations of the results in Theorems 18.3.22, 18.3.30 and 19.2.18.
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19.3.33. Proposition. Let M ∈Λø be a closed lambda term. Then

(i) M has a normal form ⇔ [[M ]]D
CDZ
∞ ⊒ ϕ.

(ii) M is solvable ⇔ [[M ]]D
DHM
∞ ⊒ ϕ.

(iii) M reduces to a λI-term ⇔ [[M ]]D
HR
∞ ⊒ ϕ.

(iv) M is strongly normalizing ⇔ [[M ]]F
CDV 6= ∅.

Let M ∈Λ be an (open) lambda term. Then

(iv) M reduces to a closed term ⇔ [[M ]]D
Park
∞

ρ ⊒ ω, for all ρ.

Proof. (i)-(ii) We explain the situation for (i), the other case being similar.

M has a nf ⇔ ⊢CDZ
∩⊤ M : ϕ, by Theorem 19.2.18(i),

⇔ [[M ]]F
CDZ ∋ ϕ, by 18.2.8,

⇔ [[M ]]F
CDZ ⊒ ↑ϕ, by the definition of filters,

⇔ [[M ]]D
CDZ
∞ ⊒ m(↑ϕ) = m(ϕ), by Theorem 19.3.22,

⇔ [[M ]]D
CDZ
∞ ⊒ Φ0,∞(ϕ), since ϕ∈D0,

⇔ [[M ]]D
CDZ
∞ ⊒ ϕ,

by the identification of D0 as a subset of D∞.

(iii) Similarly, using Theorem 18.3.30.

(iv) As (i), but simpler as the step towards D∞ is not made.

(iv) Similarly, using Theorem 18.3.22.

As particular cases we get that Scott model as defined in Scott [1972] is isomorphic
to the filter λ-model induced by the type structure Scott and Park model as
defined in Park [1976] is isomorphic to the filter λ-model induced by the type
structure Park (see Definition 19.3.23). The construction presented here was
first discussed in Coppo et al. [1984]. Other relevant references are Coppo et al.
[1987], which presents the filter λ-model induced by the type structure CDZ,
Honsell and Ronchi Della Rocca [1992], where the filter λ-models induced by
the type structures Park,HR and other models are considered, and Alessi [1991],
Di Gianantonio and Honsell [1993], Plotkin [1993], where the relation between
applicative structures and type structures is studied.

We do not have a characterization like (i) in the Theorem for DScott
∞ , as it

was shown in Wadsworth [1976] that there is a closed term J without a normal
form such that DScott

∞ |= I = J.

Other domain equations

Results similar to Theorem 19.3.21 can be given also for other, non-extensio-
nal, inverse limit λ-models. These are obtained as solutions of domain equations
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involving different functors. For instance one can solve the equations

D = [D → D]×A
D = [D → D] +A

D = [D →⊥ D]×A
D = [D →⊥ D] +A

for the analysis of models for restricted λ-calculi. In all such cases one gets
concise type theoretic descriptions of the λ-models obtained as fixed points of
such functors corresponding to suitable choices of the mapping G, see Coppo
et al. [1983]. Solutions of these equations will be discussed below. At least the
following result is worthwhile mentioning in this respect, see Coppo et al. [1984]
for a proof.

19.3.34. Proposition. The filter λ-model induced by BCD is isomorphic to
〈D, F,G〉, where D is the initial solution of the domain equation [D → D] ×
P(A∞) ≡ D, the pair 〈F,G〉 set up a Galois connection2 and G is the map which
picks always the minimal element in the extensionality classes of all functions.

Lazy λ-calculus

Intersection types are flexible enough to allow for the description of λ-models
which are computationally adequate for the lazy operational semantics (Abramsky
and Ong [1993]), i.e. lazy λ-models. Following Berline [2000] we define a lazy
λ-model as a λ-model in which equal terms have the same order.

19.3.35. Definition. The order of an untyped lambda term is

order(M) = sup{n | ∃N.M →→β λx1 . . . xn.N},
i.e. the upperbound of the number of its initial abstractions modulo β conversion.
So order(M)∈N ∪∞.

For example order((λx.xx)(λx.xx))=0, order(K)=2 and order(YK) =∞.
By 18.2.8(i) we have the following result.

19.3.36. Theorem. Let S be an ITS. Then FS is a lazy λ-model iff the following
two conditions hold.

(i) FS is a λ-model;
(ii) ∀Γ, A.[Γ ⊢S

∩⊤ M : A⇔ Γ ⊢S
∩⊤ N : A] ⇒ order(M) = order(N),

i.e. M and N have the same order if they have the same types.

One of the simplest type structures one can think of is AO as defined in
Figure 15.1.7. This gives a lazy λ-model, which is discussed in Abramsky and
Ong [1993]. It can be also used for proving the completeness of F-semantics
(see Dezani-Ciancaglini and Margaria [1986]).

19.3.37. Theorem (Abramsky and Ong [1993]). Let Dlazy
∞ be the initial solution

of the domain equation D ∼= [D → D]⊥ in ALG. Then Dlazy
∞
∼= FAO.

2F ◦ G ⊒ Id[D→D] & G ◦ F ⊑ IdD.
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The λN-calculus.

Models of the λI and the λN-calculi are considered in Honsell and Lenisa
[1993], Honsell and Lenisa [1999]. These are λ-applicative structures with
interpretations which equate all βI or βN-redexes to their contracta. So all
filter structures induced by type structures which validate βI and βN-reduction
are models of the λN-calculus. Like Theorem 19.3.21 one has the following.

19.3.38. Theorem (Honsell and Lenisa [1999]). Let DI
∞ be the inverse limit solutions

of the domain equation [D →⊥ D] ∼= D. Then DI
∞
∼= FS , where S is a strict

natural type structure, with A
S = K(D0).

Honsell and Lenisa [1999] discusses a filter structure which gives a computationally
adequate model for the perpetual operational semantics and a mathematical
model for the maximal sensible λI-theory.

19.4. Other models

A filter model equating an arbitrary closed term to ∆∆

In Jacopini [1975] it has been proved by an analysis of conversion that the
lambda term ∆∆, where ∆ = λx.xx, is easy, i.e. for any closed lambda term M
the equation ∆∆ = M is consistent. This fact was proved by a Church-Rosser
argument by Mitschke, see Mitschke [1976] or Barendregt [1984], Proposition
15.3.9. A model theoretical proof was given by Baeten and Boerboom [1979]
who showed that for any closed M one has

P(ω) |= ∆∆ = M,

for a particular way of coding pairs on the set of natural numbers ω. We will
now present the proof in Alessi et al. [2001] using intersection types. For an
arbitrary closed λ-term M we will build a filter model FSM such that

FSM |= ∆∆ = M.

We first examine which types can be assigned to ∆ and ∆∆.

19.4.1. Lemma. Let S be a natural type structure that is β-sound.

(i) ⊢S
∩⊤ ∆ : A→ B ⇔ A ≤S A→ B.

(ii) ⊢S
∩⊤ ∆∆ : B ⇔ ∃A∈TTS . ⊢S

∩⊤ ∆ : A ≤S (A→ B).

(iii) ⊢S
∩⊤ ∆∆ : B ⇔ ∃A∈TTS .A ≤S (A→ B).

Proof. (i) (⇐) Suppose A ≤S (A→B). Then

x:A ⊢S
∩⊤ x : (A→B)

x:A ⊢S
∩⊤ xx : B

⊢S
∩⊤ λx.xx : (A→B).
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(⇒) Suppose ⊢S
∩⊤ ∆ : (A→ B). If B =S ⊤, then A ≤S ⊤ =S (A→ B), by

Proposition 16.1.5(ii). Otherwise, by Theorem 16.1.10,

⊢S∩⊤ λx.xx : (A→B) ⇒ x:A ⊢S∩⊤ xx : B,

⇒ x:A ⊢S∩⊤ x : C, x:A ⊢S∩⊤ x : (C→B), for some C,

⇒ A ≤S (C→B) ≤S (A→B), by (→).

(ii) (⇐) Immediate. (⇒) If B =S ⊤, then ⊢S
∩⊤ ∆ : ⊤ ≤S ⊤→B. If B 6=S ⊤,

then by Theorem 16.1.10(ii) one has ⊢S
∩⊤ ∆ : (A→B), ⊢S

∩⊤ ∆ : A, for some A.
By (i) one has A ≤S A→B.

(iii) By (i) and (ii).

We associate to each type the maximum number of nested arrows in the
leftmost path.

19.4.2. Definition. Let S be a type structure. For A∈TTS its type nesting,
notation #(A), is defined inductively on types as follows:

#(A) = 0 if A∈A
S ;

#(A→ B) = #(A) + 1;
#(A ∩B) = max{#(A),#(B)}.

Lemma 19.4.1(ii) can be strengthened using type nesting. First we need the
following lemma that shows that in a strongly β type structure, Definition ??,
any type A with #(A) ≥ 1 is equivalent to an intersection of arrows with the
same type nesting.Comment: the proof needs to be redone using the canonical
form instead of the notion of strongly β, is it worthwhile or is it better to erase
the whole subsection?

19.4.3. Lemma. Let S be strongly β. Then for all A∈TTS with #(A) ≥ 1, there
exists an A′ ≡ (

⋂

i∈ I(Ci → Di)) =S A such that #(A′) = #(A).

Proof. Every type A is an intersection of arrow types and constants:

A ≡ (C → B) ∩ . . . ∩ ψ ∩ . . . .

Since S is strongly β, the constants can be replaced by an intersection of arrows
between constants. As #(A) ≥ 1 this does not increase the type nesting.

19.4.4. Lemma. Let S be a natural type structure which is strongly β. Then

⊢S∩⊤ ∆∆ : B ⇒ ∃A∈TTS [⊢S∩⊤ ∆ : A ≤S A→ B & #(A) = 0].

Proof. Let ⊢S
∩⊤ ∆∆ : B. If B =S ⊤ take A ≡ ⊤. Otherwise, by Lemma

19.4.1(ii), there exists A∈TTS such that ⊢S
∩⊤ ∆ : A and A ≤ A→ B. We show

by course of value induction on n = #(A) that we can take an alternative A′

with #(A′) = 0. If n = 0 we are done, so suppose n ≥ 1. By Lemma 19.4.3,
we may assume that A is of the form A ≡ (C1 → D1) ∩ . . . ∩ (Cm → Dm).
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Now A ≤S A → B, hence A ≤S Ci1 ∩ . . . ∩ Cip and Di1 ∩ . . . ∩Dip ≤ B, with
1 ≤ i1, . . . , ip ≤ m, since S is beta. Since B 6=S ⊤ one has p > 0. Hence,

⊢S∩⊤ ∆ : A ⇒ ⊢S∩⊤ ∆ : (Cik → Dik), 1 ≤ k ≤ p,
⇒ Cik ≤S (Cik → Dik), by 19.4.1(i),

⇒ ⋂

kCik ≤S
⋂

k(Cik → Dik)

≤S (
⋂

kCik →
⋂

kDik), since S is natural,

≤S (
⋂

kCik → B), as
⋂

kDik ≤S B.

Now take A′ =
⋂

kCik . Then #(A′) < n and we are done by the IH.

Now let M ∈Λø. We will build the desired model satisfying |= ∆∆ =
M by taking the union of a countable sequence of type structures Sn defined
in a suitable way to force the final interpretation of M to coincide with the
interpretation of ∆∆. In the following 〈·, ·〉 denotes any bijection between N×N

and N.

19.4.5. Definition. (i) Define the growing sequence of intersection type structures
Sn by induction on n∈N, specifying the constants, axioms and rules.

• A
S0 = {⊤, ω};

• S0 = {(→∩), (⊤), (⊤ →), (→)} ∪ {ωScott};
• ASn+1 = ASn ∪ {ξ〈n,m〉 | m∈N};
• Sn+1 = Sn ∪ {ξ〈n,m〉 = (ξ〈n,m〉 →W〈n,m〉)},

where 〈W〈n,m〉〉m∈N is any enumeration of the set

{A | ⊢Sn

∩⊤ M : A}.

(ii) We define SM as follows:

A
SM =

⋃

n∈N

A
Sn ; SM =

⋃

n∈N

Sn.

19.4.6. Proposition. SM is a strongly β, η⊤-sound and natural intersection
type structure.

Proof. It is immediate to check that SM is strongly β and η⊤-sound. Clearly
the axioms (⊤), (⊤ →) and (→∩) are valid in SM , as they are already in SS0 .
The validity of rule (→) in SM follows by a “compactness” argument: if A′ ≤SM

A & B ≤SM
B′, then A′ ≤Sn A & B ≤Sm B′; but then (A→B) ≤Smax(n,m)

(A′→B′) and hence (A→B) ≤SM
(A′→B′). Therefore the type structure is

natural.

19.4.7. Theorem. The filter structure FSM is an extensional λ-model.

Proof. By Propositions 19.4.6 and 18.2.13.

We now need to show that some types cannot be deduced for ∆.
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19.4.8. Lemma. 6⊢SM

∩⊤ ∆ : ω and 6⊢SM

∩⊤ ∆ : (ω → ω)→ ω → ω.

Proof. Define the set EΩ ⊆ TT(ASM ) as the minimal set such that:

⊤∈EΩ;

A∈TTSM , B ∈EΩ ⇒ (A→ B)∈EΩ;
A,B ∈EΩ ⇒ (A ∩B)∈EΩ;
Wi ∈EΩ ⇒ ξi ∈EΩ.

Claim: A∈EΩ ⇔ A =SM
⊤.

(⇒) By induction on the definition of EΩ, using Lemma 16.1.5(i).
(⇐) By induction on ≤SM

it follows that

EΩ ∋ B ≤SM
A ⇒ A∈EΩ.

Hence if A =SM
⊤, one has EΩ ∋ ⊤ ≤SM

A and thus A∈EΩ.
As ω /∈EΩ, it follows by the claim that

⊤ 6=SM
ω. (19.2)

Suppose towards a contradiction that ⊢SM

∩⊤ ∆ : ω. Then ⊢SM ∆ : ⊤ → ω,
by ωScott. By Lemma 19.4.1(i) we get ⊤ ≤SM

(⊤ → ω) =SM
ω ≤SM

⊤, i.e.
⊤ =SM

ω, contradicting (19.2).

Similarly from ⊢SM

∩⊤ ∆ : (ω → ω) → ω → ω, by Lemma 19.4.1(i), we get
ω → ω ≤SM

(ω → ω) → (ω → ω), which implies ω → ω ≤SM
ω ≤SM

⊤→ω, by
β-soundness and (ωScott). Therefore ⊤ =SM

ω, contradicting (19.2).

We finally are able to prove the main theorem.

19.4.9. Theorem. Let M ∈Λø. Then FSM is a non-trivial extensional λ-model
such that FSM |= M = ∆∆.

Proof. The model is non-trivial since clearly ⊢SM

∩⊤ I : (ω → ω) → ω → ω and

by Lemma 19.4.8 6⊢SM

∩⊤ ∆ : (ω → ω)→ ω → ω, therefore FSM 6|= I = ∆.

We must show that [[M ]]SM = [[∆∆]]SM . Suppose that W ∈ [[M ]]. Then

⊢SM

∩⊤ M : W ⇒ ⊢Sn

∩⊤ M : W, for some n,

⇒ ξi =Sn+1(ξi →W ), for some i,

⇒ ⊢SM

∩⊤ ∆∆ : W, by Lemma 19.4.1(iii),

⇒ W ∈ [[∆∆]]SM .

This proves [[M ]] ⊆ [[∆∆]].
Now suppose B ∈ [[∆∆]], i.e. ⊢SM

∩⊤ ∆∆ : B. Then by Lemma 19.4.4 there

exists A such that #(A) = 0 and ⊢SM

∩⊤ ∆ : A ≤SM
A → B. Let A ≡ ⋂

i∈ I ψi,
with ψi ∈A = {⊤, ω, ξ0, . . .}. By Lemma 19.4.8 ψi 6=SM

ω. Hence it follows that
A =SM

⊤ or A =SM

⋂

j ∈ J(ξj), for some finite J ⊆ N. Since ⊤ =SM
(⊤→⊤)

and ξj =SM
(ξj→W ) we get A =SM

(⊤ → ⊤) or A =SM

⋂

j ∈ J(ξj →Wj). Since
A ≤SM

A → B it follows by β-soundness that in the first case ⊤ ≤SM
B or in

the second case
⋂

j ∈LWj ≤SM
B, for some L ⊆ J . Since each Wj is in [[M ]],

we have in both cases B ∈ [[M ]]. This shows [[∆∆]] ⊆ [[M ]] and we are done.
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Graph models as filter models

Scott’s P(ω) model

Following the original notation by Scott, in the P(ω) model ω denotes the set
of natural numbers. Pfin(ω) denotes the set of finite subsets of ω.

Notation. (i) Let λλnm.〈n,m〉 : N×N→N be a bijection, e.g. the well-known
one defined by 〈n,m〉 = 1

2(n+m)(n+m+ 1) +m.

(ii) Let λλn.en : N→Pfin(ω) be a bijection, e.g. the well-known one defined
by

en = {k0, . . . , km−1} with k0 < k1 < . . . < km−1 ⇔ n = Σi<m2i.

19.4.10. Definition. [Scott [1972]] Let γ : Pfin(ω) × ω→ω be the bijection
defined by

γ(en,m) = 〈n,m〉.

(i) Define Fω : P(ω)→[P(ω)→P(ω)] by

Fω(X) = {u 7→i | γ(u, i)∈X}.

(ii) Gω : [P(ω)→P(ω)]→P(ω) by

Gω(f) = {γ(u, i) | i∈ f(u)}

for all f ∈ [P(ω)→P(ω)].

19.4.11. Proposition. Define for X,Y ∈P(ω) the application

X ·P(ω) Y = {m | ∃en ⊆ Y 〈n,m〉 ∈X}.

Then Fω(X)(Y ) = X ·P(ω) Y is a (more common) equivalent definition for Fω.

Proof. Do exercise 19.6.18.

19.4.12. Theorem (Scott [1972]). P(ω) is a λ-model via Fω, Gω.

19.4.13. Theorem (Alessi [1991]). Define

A∇ω
= ω

∇ω = ∇Engeler ∪ {⋂k∈ e(k→n) ∼ γ(e, n) | e∈Pfin, n∈ω}.

Then P(ω) ∼= F∇ω
.
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Plotkin’s Model

19.4.14. Definition (Plotkin [1993]). Let ω be an atom.

(i) Define Pm as the least set such that

Pm = {ω} ∪ (Pfin(Pm)× Pfin(Pm)).

(ii) Define FPm : P(Pm)→[P(Pm)→P(Pm)]
GPm : [P(Pm)→P(Pm)]→P(Pm)

by

FPm(X) = {u 7→v | 〈u, v〉 ∈X}
GPm(f) = {〈u, v〉 | v ⊆ f(u)}.

19.4.15. Theorem (Plotkin [1993]). FPm, GPm satisfy FPm ◦GPm = Id, making
P(Pm) a λ-model.

19.4.16. Theorem (Plotkin [1993]). Let Plotkin be as defined in Figure 15.1.7.
Then P(Pm) ∼= FPlotkin are isomorphic as natural λ-structures (λ-models).

Engeler’s Model

19.4.17. Definition (Engeler [1981]). Let A∞ be a countable set of atoms.

(i) Define Em as the least set satisfying Em = A∞ ∪ (Pfin(Em)× Em)

(ii) Define FEm : P(Em)→ [P(Em)→P(Em)]
GEm : [P(Em)→P(Em)]→P(Em)

by

FEm(X) = {u 7→e | 〈u, e〉 ∈X}
GEm(f) = {〈u, e〉 | e∈ f(u)}.

19.4.18. Theorem (Engeler [1981]). FEm, GEm satisfy FEm ◦ GEm = 1, making
P(Em) a λ-model.

19.4.19. Theorem (Plotkin [1993]). Let Engeler be as defined in Figure 15.1.7.
Then P(Em) ∼= FEngeler are isomorphic as natural λ-structures (λ-models).

19.5. Undecidability of inhabitation

In this section we consider type theories with infinitely many type atoms, as
described in Section 15.1. To fix ideas, we are concerned here with the theory
T = CDV. Since we do not consider other type theories, in this section the
symbols ⊢ and ≤ stand for ⊢CDV

∩ and ≤CDV, respectively. Moreover TT = TTCDV.

We investigate the inhabitation problem for this type theory, which is to
determine, for a given a type A, if there exists a closed term of type A (the
inhabitant). In symbols, the problem can be presented as follows:

⊢ ? : A
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A slightly more general variant of the problem is the inhabitation problem
relativized to a given context Γ:

Γ ⊢ ? : A

It is however not difficult to show that these two problems are equivalent.

19.5.1. Lemma. Let Γ = {x1:A1, . . . , xn:An}. Then the following are equivalent.

1. There exists a term M ∈Λ such that Γ ⊢M : A.
2. There exists a term N ∈Λ such that ⊢ N : A1 → · · · → An → A.

Proof. (1) ⇒ (2) Define N ≡ λx1 . . . xn.M . Apply n times rule (→I).

(2)⇒ (1) Take M ≡ Nx1 · · ·xn and apply n times (→E) and (weakening).

The main result of the present section (Theorem 19.5.30) is that type
inhabitation is undecidable for T = CDV. Compare this to Statman [1979],
stating that for simple types the problem is decidable in polynomial space.

By Theorem 19.2.18 and Corollary 16.2.3 we can consider only inhabitants
which are in normal form. The main idea of the undecidability proof is based on
the following observation. The process of solving an instance of the inhabitation
problem can be seen as a certain (solitary) game of building trees. In this way,
one can obtain a combinatorial representation of the computational contents of
the inhabitation problem (for a restricted class of types). We call this model
a “tree game”. In order to win a tree game, the player may be forced to execute
a computation of a particular automaton (a “typewriter automaton”, TWA).
Thus, the global strategy of the proof is as follows. We make the following
abbreviations.

EQA := Emptiness Problem for Queue Automata;
ETW := Emptiness Problem for Typewriter Automata;
WTG := Problem of determining whether one can Win a Tree Game;
IHP := Inhabitation Problem in λCDV

∩ .

If we write P1 ≤T P2, this means that problem P1 is (Turing) reducible to P2,
and hence that undecidability of P1 implies that of P2. It is well known that
EQA is undecidable, see e.g. Kozen [1997]. The following inequalities show that
IHP is undecidable.

EQA ≤T ETW (Lemma 19.5.25);
ETW ≤T WTG (Proposition 19.5.29);
WTG ≤T IHP (Corollary 19.5.23).

Basic properties

We begin with some basic observations concerning the relation ≤.

19.5.2. Lemma. Let n > 0.

(i) Let α∈A∞, and none of the A1, . . . ,An ∈TT be an intersection. Then

A1 ∩ . . . ∩An ≤ α ⇒ ∃i.α ≡ Ai.
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(ii) Let α1, . . . ,αn ∈A∞ and A∈TT be not an intersection.nor Ω. Then

α1 ∩ . . . ∩ αn ≤ A ⇒ ∃i.A ≡ αi.

(iii) Let α1, . . . ,αn ∈A∞ and A∈TT. Then

α1 ∩ . . . ∩ αn ≤ A ⇒ A = αi1 ∩ . . . ∩ αik ,

for some k ≥ 0 and 1 ≤ i1 < . . . < ik ≤ n.

Proof. (i), (ii) Exercise 19.6.24.
(iii) Let A = B1∩ . . .∩Bk with k > 0 and the Bj not intersections., Bj 6= Ω.

Then for each j one has α1 ∩ . . . ∩ αn ≤ Bj and can apply (ii) to show that
Bj ≡ αij .

19.5.3. Lemma. Let A1, . . . ,An, B ∈TT and α1, . . . ,αn, β ∈A∞, with n > 0. Then

(A1 → α1) ∩ . . . ∩ (An → αn) ≤ (B → β) ⇒ ∃i.β ≡ αi & B ≤ Ai.

Proof. By Theorem 16.1.8 CDV is β-sound. Hence the assumption implies
that B ≤ (Ai1 ∩ . . . ∩ Aik) and (αi1 ∩ . . . ∩ αik) ≤ β. By Lemma 19.5.2(ii) one
has β ≡ αip , for some 1 ≤ p ≤ k, and the conclusion follows.

19.5.4. Lemma. If Γ ⊢ λx.M : A then A /∈ A∞.

Proof. Suppose Γ ⊢ λx.M : α. By Lemma 16.1.1(iii) it follows that there are
n > 0 and B1, . . . ,Bn, C1, . . . ,Cn such that Γ, x : Bi ⊢ M : Ci, for 1 ≤ i ≤ n,
and (B1→C1) ∩ . . . ∩ (Bn→Cn) ≤ α. This is impossible by Lemma 19.5.2(i).

Game contexts

In order to prove that a general decision problem is undecidable, it is enough
to identify a “sufficiently difficult” fragment of the problem and prove undeci-
dability of that fragment. Such an approach is often useful. This is because
restricting the consideration to specific instances may simplify the analysis of
the problem. Of course the choice should be done in such a way that the “core”
of the problem remains within the selected special case. This is the strategy we
are applying for our inhabitation problem. Namely, we restrict our analysis to
the following special case of relativized inhabitation.

Γ ⊢ ? : α,

where α is a type atom, and Γ is a “game context”, the notion of game context
being defined as follows.

19.5.5. Definition. (i) If X ,Y ⊆ TT are sets of types, then

X→Y = {X→Y | X ∈X , Y ∈Y}.
X ∩ Y = {X ∩ Y | X ∈X , Y ∈Y}.
X∩ = {A1 ∩ . . . ∩An | n ≥ 1 & A1, . . . ,An ∈X}.

If A ≡ A1 ∩ . . . ∩An, and each Ai is not an intersection, then Ai are called the
components of A.
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(ii) We consider the following sets of types.
(1) A = A∩

∞.
(2) B = (A∞→A∞)∩.
(3) C = (D→A∞)∩.
(4) D = (B→A∞) ∩ (B→A∞).

(iii) Types in A ∪ B ∪ C are called game types.
(iv) A type context Γ is a game context iff all types in Γ are game types.

Write A∈A (respectively ∈B, ∈C) if A = A′ ∈A (B, C) for some A′. We show
some properties of type judgements involving game types.

19.5.6. Lemma. For a game context Γ and A 6= Ω the following hold.
(i) Γ ⊢ xM : A ⇒ A∈A & Γ(x) = (E1→α1) ∩ . . . ∩ (En→αn), n > 0,

& A = αi1 ∩ . . . ∩ αik & Γ ⊢M : Ei1 ∩ . . . ∩ Eik ,
for some k > 0 & 1 ≤ i1 < . . . < ik ≤ n.

(ii) Γ ⊢ xM : α ⇒ Γ(x) = (E1→α1) ∩ . . . ∩ (En→αn), n > 0,
& α = αi & Γ ⊢M : Ei, for some 1 ≤ i ≤ n.

(iii) Γ 6⊢ xMN : A.

Proof. (i) Suppose Γ ⊢ xM : A. By Lemma 16.1.10(ii) we have for some type
B that Γ ⊢ x : (B→A) and Γ ⊢ M : B. Then Γ(x) ≤ B → A, by Lemma
16.1.1(i). By Lemma 19.5.2(ii), this cannot happen if Γ(x) is in A. Thus Γ(x),
being a game type, is of the form (E1→α1) ∩ . . . ∩ (En→αn). Since CDV is
β-sound and

(E1→α1) ∩ . . . ∩ (En→αn) = Γ(x) ≤ (B→A),

we have B ≤ (Ei1→αi1) ∩ . . . ∩ (Eih→αih) and αi1 ∩ . . . ∩ αik ≤ A, for some
ij such that 1 ≤ ij ≤ n. Then, by Lemma 19.5.2(iii), we conclude that A =
αi1 ∩ . . . ∩ αik , where 0 < k ≤ h.

(ii) By (i) and Lemma 19.5.2(ii).
(iii) By (i), using that B→A 6= αi1 ∩ . . . ∩ αik , by Lemma 19.5.2(ii).

19.5.7. Lemma. If A is a game type and D∈D, then A 6≤ D.

Proof. Suppose A ≤ D ≤ (B→α), with B ∈B. The case A∈A, is impossible
by Lemma 19.5.2(ii). If A∈B, then (α1→β1)∩. . .∩(αn→βn) ≤ B→α and hence
B ≤ αi for some i, by Lemma 19.5.3. By Lemma 19.5.2(i) this is also impossible.
If A∈C, then (D1→β1) ∩ . . . ∩ (Dn→βn) ≤ B→α and hence B ≤ Di ∈D for
some i, by Lemma 19.5.3. We have already shown that this is impossible.

For game contexts the Generation Lemma 16.1.10 can be extended as follows.

19.5.8. Lemma. Let Γ be a game context, and let M be in normal form.
(i) If Γ ⊢ M : (B1 → α1) ∩ (B2 → α2)∈D, with Bi ∈B, then M ≡ λy.N ,

and Γ, y:Bi ⊢ N : αi for i = 1, 2.
(ii) If Γ ⊢M : α, with α∈A∞, then there are two exclusive possibilities.

• M is a variable z and Γ(z) is in A, where α is one of the components.
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• M ≡ xN , where Γ(x) = (E1 → β1) ∩ · · · ∩ (En → βn), and α = βi and
Γ ⊢ N : Ei, for some 1 ≤ i ≤ n.

Proof. (i) Notice first that by Lemmas 19.5.6 and 19.5.2(ii) the term M
cannot be an application. If it is a variable x, then Γ(x) ≤ (B1 → α1)∩ (B2 →
α2), by Lemma 16.1.1(i). This contradicts Lemma 19.5.7, because Γ(x) is a
game type. It follows that M = λy.N and Γ ⊢ λy.N : (Bi→αi). Then for
i = 1, 2 one has Γ, y:Bi ⊢ Ni : αi, by Lemma 16.1.10(iii).

(ii) M is not an abstraction by Lemma 19.5.4. If M ≡ x, then Γ(x) ≤ α and
Γ(x) is a game type, i.e. in A∪B∪C. By Lemma 19.5.2(i) one has Γ(x)∈A, with
α as one of the components. If M is an application, M ≡ xM1 . . .Mm, m > 0,
write Γ(x) = (E1 → β1)∩· · ·∩ (En → βn), as it is a game type and by Theorem
16.1.10(ii) it cannot be in A. Then M ≡ xN , by Lemma 19.5.6(iii). By (ii) of
the same Lemma one has α = βi and Γ ⊢ N : Ei for some i.

Tree games

In order to show the undecidability of inhabitation for CDV we will introduce
a certain class of tree games. ‘Rounds’ in a tree game are an intermediate step
in our construction. The idea of a tree game is to represent, in an abstract way,
the crucial combinatorial behaviour of proof search in CDV. We will first show
how inhabitation problems can be represented by tree games and then how
tree games can represent computations of certain machines called typewriter
automata (TWA).

19.5.9. Definition. Let Σ be a finite alphabet; its elements are called labels.

1. A local move (over Σ) is a finite nonempty set B of pairs of labels.

2. A global move (over Σ) is a finite nonempty set C of triples of the form

〈 〈X, b 〉, 〈Y, c 〉, d 〉,

where b, c, d∈Σ and X,Y are local moves.

3. A tree game (over Σ) is a triple of the form

G = 〈 a,A, {C1, . . . , Cn} 〉,

where a∈Σ, A ⊆ Σ and C1, . . . , Cn are global moves. We call a the initial
label and A the set of final labels.

Before we explain the rules of the game, we give an interpretation of the
constituents of the tree games in terms of types.

19.5.10. Definition. Let Σ be a finite subset of A∞, the infinite set of type
atoms, and let G be a tree game over Σ. Moves of G, and the set of final labels,
can be interpreted as types of CDV as follows.

1. If A = {a1, . . . , an}, then Ã = a1 ∩ . . . ∩ an.
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Figure 19.2: An example position

2. If B = {〈 a1, b1 〉, . . . , 〈 an, bn 〉}, then B̃ = (a1 → b1) ∩ . . . ∩ (an → bn).

3. If C = {〈 〈B1, b1 〉, 〈B′
1, b

′
1 〉, c1 〉, . . . , 〈 〈Bn, bn 〉, 〈B′

n, b
′
n 〉, cn 〉}, then

C̃ = (((B̃1 → b1) ∩ (B̃′
1 → b′1))→ c1) ∩ . . . ∩ (((B̃n → bn) ∩ (B̃′

n → b′n))→ cn).

Notice that Ã∈A, B̃ ∈B and C̃ ∈C.

A tree game is a solitary game, i.e., there is only one player. Starting from
an initial position, the player can nondeterministically choose a sequence of
moves, and wins if (s)he can manage to reach a final position. Every position
(configuration) of the game is a finite labelled tree, and at every step the depth
of the tree is increasing.

19.5.11. Definition. Let G = 〈a,A, {C1, . . . ,Cn}〉 be a tree game over Σ.
A position T of G is a finite labelled tree, satisfying the following conditions.

• The root is labelled by the initial symbol a;

• Every node has at most two children;

• Nodes at the same level (the same distance from the root) have the same
number of children (in particular all leaves are at the same level);

• All nodes are labelled by elements of Σ;

• In addition, if a node v has two children v′ and v′′, then the branches
〈 v, v′ 〉 and 〈 v, v′′ 〉 are labelled by local moves.

19.5.12. Definition. Let G = 〈a,A, {C1, . . . ,Cn}〉 be a tree game.

1. The initial position of G is the tree with a unique node labelled a.

2. A position T is winning iff all labels of the leaves of T are in A.
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Figure 19.3: Local move X associated to node v

19.5.13. Definition. Let T be a position in a game G = 〈a,A, {C1, . . . ,Cn}〉,
and let v be a leaf of T . Let k be such that all nodes in T at level k−1 have two
children as shown in Figure 19.3. There is a node u at level k − 1 which is an
ancestor of v, one of the children of u, say u′, is also an ancestor of v (possibly
improper, i.e., it may happen that u′ = v). Assume that B is the label of the
branch 〈u, u′ 〉. Then we say that B is the k-th local move associated to v, and
we write B = Bv,k.

Now we can finally describe the rules of the game.

19.5.14. Definition. (i) Let G = 〈 a,A, {C1, . . . , Cn} 〉 and let T be a (current)
position in G. There are two possibilities to obtain a next position.

(1) The player can perform a “global” step, by first selecting one of the global
moves Ci and then performing the following actions for each leaf v of T .

• Choose a triple 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈Ci such that c is the label of v;

• Create two children of v, say v′ and v′′, labelled b and b′, respectively;

• Label the branch 〈 v, v′ 〉 by B and the branch 〈 v, v′′ 〉 by B′.

The step is only allowed if the resulting tree is legal, i.e. satisfies the
conditions of definition 19.5.11.

(2) The player can also perform a “local” step. This begins with a choice of
a level k > 0 of T such that each node at level k − 1 has two children.
Then, for each leaf v of T , the player executes the following actions.

• Choose a pair 〈 a, b 〉 ∈Bv,k such that b is the label of v;

• Create a single child of v, labelled a.
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Again the step is only allowed the appropriate actions can be performed
at every leaf, otherwise the resulting tree is not a position.

(ii) If a position T ′ is reachable from T with help of one global step Ci, we
write

T ⇒Ci T ′.

If T ′ is obtained from T by a local step defined via level k, we write

T ⇒k T ′.

If T ′ is reachable from T in one step (global or local), then we write T ⇒ T ′.

(iii) A position T in G is called favorable iff there is a position T ′ with

T ⇒∗
T T ′ and T ′ is winning,

where ⇒∗
T is the reflexive transitive closure of ⇒T .

(iv) The game G can be won by the player, notation sol(G), iff the initial
position is favorable.

The following example gives an idea of the tree games and moreover it is
important for our principal construction.

19.5.15. Example. Consider the tree game G0 = 〈 1, {c}, {C1, C2} 〉, over the
alphabet Σ = {1, 2, a, b, c}, where

• C1 = {〈 〈 {〈a, a〉}, 1 〉, 〈 {〈b, a〉}, 2 〉, 1 〉, 〈 〈 {〈a, b〉}, 1 〉, 〈 {〈b, b〉}, 2 〉, 2 〉};

• C2 = {〈 〈 {〈c, a〉}, a 〉, 〈 {〈c, a〉}, a 〉, 1 〉, 〈 〈 {〈c, b〉}, a 〉, 〈 {〈c, b〉}, a 〉, 2 〉}.

Figure 19.4 demonstrates a possible winning position T of the game. Note that
this position can actually be reached from the initial one in 6 steps, so that the
player can win G0. These 6 steps are as follows

T0 ⇒C1 T1 ⇒C1 T2 ⇒C2 T3 ⇒1 T4 ⇒2 T5 ⇒3 T6 = T,

where each Ti is of depth i. The reader should observe that every sequence of
steps leading from T0 to a winning position must obey a similar pattern:

T0 ⇒C1 T1 ⇒C1 · · · ⇒C1 Tn−1 ⇒C2 Tn ⇒1 Tn+1 ⇒2 · · · ⇒n T2n,

where T2n is winning. Thus, the game must consist of two phases: first a number
of applications of C1, then a single application of C2 and then a sequence of
steps using only local moves. What is important in our example is that the
order of local steps is fully determined. Indeed, at the position Tn+k−1 the only
action possible is “⇒k”. That is, one must apply the k-th local moves associated
to the leaves (the moves labelling branches at depth k). This is forced by the
distribution of symbols a, b at depth n+ k − 1.



19.5. UNDECIDABILITY OF INHABITATION 173

1

〈a,a〉

nnnnnnnnnnnnnnnnnnnnn

〈b,a〉

PPPPPPPPPPPPPPPPPPPPP

1

〈a,a〉

~~
~~

~~
~~

~~
~~

〈b,a〉

@@
@@

@@
@@

@@
@@

2

〈a,b〉

~~
~~

~~
~~

~~
~~

〈b,b〉

@@
@@

@@
@@

@@
@@

1

〈c,a〉

��
��
��
��
�

〈c,a〉

00
00

00
00

0 2

〈c,b〉

��
��
��
��
�

〈c,b〉

00
00

00
00

0 1

〈c,a〉

��
��
��
��
�

〈c,a〉

00
00

00
00

0 2

〈c,b〉

��
��
��
��
�

〈c,b〉

00
00

00
00

0

a a a a a a a a

a a a a b b b b

a a b b a a b b

c c c c c c c c

Figure 19.4: A winning position in G0 of Example 19.5.15.
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Let us emphasize a few properties of our games. First, a game is a non-
deterministic process, and there are various sequences of steps possible. We
can have winning sequences (reaching a winning position), and infinitely long
sequences, but also “deadlocks” when no rule is applicable. Note that there are
various levels of nondeterminism here: we can choose between Ci’s and k’s and
then between various elements of the chosen set Ci (respectively Bv,k). It is an
important property of the game that the actions performed at various leaves
during a local step may be different, as different moves Bv,k were “declared”
before at the corresponding branches of the tree.

We now explain the relationship between tree games and term search in
CDV. Since we deal with intersection types, it is not unexpected that we need
sometimes to require one term to have many types, possibly within different
contexts. This leads to the following definition.

19.5.16. Definition. Let k, n > 0. Let ~A1, . . . , ~An be n sequences of k types:

~Ai = Ai1, . . . ,Aik.

Let Γi = {x1:Ai1, . . . , xk:Aik} and let αi ∈A∞, for 1 ≤ i ≤ n. A generalized
inhabitation problem (gip) is a finite set of pairs P = {〈Γi, αi 〉 | i = 1, . . . , n},
where each Γi and αi are as above. A solution of P is a term M such that
Γi ⊢ M : αi holds for each i. We say ‘M solves P ’. This is equivalent to
requiring that

⊢ λ~x.M : ( ~A1→α1) ∩ . . . ∩ ( ~An→αn).

19.5.17. Definition. Let G = 〈 a,A, {C1, . . . , Cn} 〉 be a tree game and let T
be a position in G.

(i) We have ΓG = {x0:Ã, x1:C̃1, . . . , xn:C̃n}.
(ii) Let J be the set of all numbers k such that every node in T at level k−1

has two children. We associate a new variable yk to each k∈J . Define for a leaf
v of T the basis

Γv = {yk:B̃v,k | k∈J}.
(iii) Define the gip PG

T = {〈ΓG ∪ Γv, av〉 | v is a leaf of T with label av}.

The following lemma states the exact correspondence between inhabitation
and games. Let us make first one comment that perhaps may help to avoid
confusion. We deal here with quite a restricted form of inhabitation problem
(only game contexts), which implies that the lambda terms to be constructed
have a “linear” shape (Exercise 19.6.26). Thus we have to deal with trees
not because of the shape of lambda terms (as often happens with proof search
algorithms) but exclusively because the nature of intersection types, and because
we need to solve various inhabitation problem uniformly (i.e., to solve gip).

19.5.18. Lemma. Let G = 〈 a,A, {C1, . . . , Cn} 〉 be a tree game.

(i) If T is a winning position of G, then x0 solves PG
T .

(ii) If T1 ⇒Ci T2 and N solves PG
T2

, then xi(λyk.N) solves PG
T1

, where k is
the depth of T1 and i > 0.
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(iii) If T1 ⇒k T2 and N solves PG
T2

, then ykN solves PG
T1

.

Proof. (i) T is winning, hence av ∈A for each leaf v. Hence x0:Ã ⊢ x0 : av

and therefore ΓG ∪ Γv ⊢ x0 : av.

(ii) T1 ⇒Ci T2, hence each leaf v of T1 has two children v′ and v′′ in
T2 and the branches 〈v, v′〉 and 〈v, v′′〉 are labelled by B and B′ such that
〈〈B, av′ , av〉, 〈B′, av′′〉〉 ∈Ti. Let k =level(v). As N solves PG

T2
one has

ΓG ∪ Γv, yk:B̃ ⊢ N : av′ ;

ΓG ∪ Γv, yk:B̃
′ ⊢ N : av′′ .

So ΓG∪Γv ⊢ λyk.N : (B̃→av′)∩(B̃′→av′′). Therefore ΓG∪Γv ⊢ xi(λyk.N) : av.

(iii) T1 ⇒k T2, hence each leaf v of T1 has a child v′ in T2 such that
〈av′ , av〉 ∈Bv,k. Then yk:B̃v,k ⊢ yk : a′v→av and ΓG ∪ Γv ⊢ N : av′ , by assump-
tion. Therefore ΓG ∪ Γv ⊢ ykN : av.

19.5.19. Corollary. Let G be a tree game. For positions T one has

T is favorable ⇒ PG
T has a solution.

Proof. By induction on the number of steps needed to reach a winning position
and the lemma.

For the converse we need the following result.

19.5.20. Lemma. Let T1 be a position in a tree game G and let M be a solution
in β-nf of PG

T1
. Then we have one of the following cases.

1. M ≡ x0 and T1 is winning.

2. M ≡ ykN and N is the solution of PG
T2

, for some T2 with T1 ⇒k T2.

3. M ≡ xi(λyk.N) and N is the solution of PG
T2

, for some T2 with T1 ⇒Ci T2.

Proof. Case M ≡ z. As M is a solution of PG
T1

, one has

∆v = ΓG ∪ Γv ⊢ z : av,

for all leaves v of T1. Then by Lemma 16.1.1(i) one has ∆v(z) ≤ av. Hence by
Lemma 19.5.2(i) av ∈A and z = x0. Therefore T1 is winning.

Case M is an application. Then for all leaves v of T1

∆v = ΓG ∪ Γv ⊢M : av.

By Lemma 19.5.8(ii) M ≡ zN and ∆v(z) ≡ (E1 → β1)∩ · · · ∩ (En → βn), with
∆v ⊢ N : Ej and av = βj , for some j. Now choose a leaf v of T1. As ∆v is a
game context there are only two possibilities

Ej ∈A∞ or Ej ∈D.
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Subcase Ej ∈A∞. Let Ej ≡ αj . Now z /∈ dom(ΓG), hence z ∈dom(Γv) and
z:(α1→β1) ∩ . . . ∩ (αn→βn) being yk : B̃v,k, for some k. Also for each leaf w
of T1 one has z ∈dom(Γw) and z:Γw(z) is yk:B̃w,k. Define T1 ⇒k T2 by giving
each leaf v of T1 with label βj a child v′ with label αj . We have ∆v ⊢ N : αj

and yk:B̃v,k ⊢ yk : αj→βj . Hence ∆v′ ⊢M : av′ .

Subcase Ej ∈D. Then ∆v(z) ≡ (E1→β1)∩. . .∩(En→βn). Hence z : ∆v(z) is
xi:C̃i for some i. So z ∈dom(ΓG) and therefore ∆w(z) = ∆v(z) for all leaves w of
T1. Let Ci = {. . . , 〈〈Bj , αj〉, 〈B′

jα
′
j〉, βj〉, . . .} and Ej = ((B̃j→αj) ∩ (B̃′

j→α′
j)).

Define the move T1 ⇒Ci T2 as follows. Give each leaf v with label βj two
children v′ and v′′ with labels αj and α′

j , respectively. Label the branches with
Bj and B′

j , respectively. Let k =depth(T1). One has ∆v ⊢ N : Ej , hence by
Lemma 19.5.8(i) one has N ≡ λyk.N

′, with

∆v, yk:B̃j ⊢ N ′:αj & ∆v, yk:B̃
′
j ⊢ N ′ : α′

j .

Therefore ∆v′ ⊢ N ′ : av′ and ∆v′′ ⊢ N ′ : av′′ .

The case that M is an abstraction is impossible, by Lemma 19.5.4.

19.5.21. Corollary. Let G be a tree game. For positions T one has

T is favorable ⇔ PG
T has a solution.

Proof. (⇒) This was Corollary 19.5.19. (⇐) Let M be a solution of PG
T . By

Theorem 19.2.18(ii) one may assume that M is in normal form. The conclusion
follows from the previous lemma by induction on the size of M .

19.5.22. Theorem. Let G be a tree game with initial position {a}. Then

sol(G) ⇔ PG
{a} has a solution.

Proof. Immediate from the previous Corollary.

19.5.23. Corollary. WTG ≤T IHP, i.e. winning a tree-game can be reduced
to the inhabitation problem.

Proof. By the theorem, as PG
T0

= PG
a is an inhabitation problem.

Typewriters

In order to simplify our construction we introduce an auxiliary notion of a
typewriter automaton. Informally, a typewriter automaton is just a reusable
finite-state transducer. At each step, it reads a symbol, replaces it by a new
one and changes the internal state. But at the end of the word, our automaton
moves its reading and printing head back to the beginning of the tape and
continues. This goes on until a final state is reached. That is, a typewriter
automaton is a special case of a linear bounded automaton, see Kozen [1997].
A formal definition follows.
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19.5.24. Definition. (i) A (deterministic) typewriter automaton A is a tuple
of the form

A = 〈Σ, Q, q0, F, ̺ 〉,

where Σ is a finite alphabet, Q is a finite set of states, q0 ∈Q is an initial state
and F ⊆ Q is a set of final states. The last component is a transition function
̺ : (Q − F ) × (Σ ∪ {ε}) → Q × (Σ ∪ {ε}), which must satisfy the following
condition: whenever ̺(q, a) = (p, b), then either a, b∈Σ or a = b = ε.

(ii) A configuration (instantaneous description, ID) of A is represented by
a triple 〈w, q, v 〉, where (as usual) wv ∈Σ∗ is the tape contents, q ∈Q is the
current state, and the machine head points at the first symbol of v.

(iii) The next ID function ̺ is defined as follows:

• ̺(〈w, q, av 〉) = 〈wb, p, v 〉, if a 6= ε and ̺(q, a) = (p, b);

• ̺(〈w, q, ε 〉) = 〈 ε, p, w 〉, if ̺(q, ε) = (p, ε).

(iv) The language LA accepted by A is the set of all w∈Σ∗, such that

̺k(〈 ε, q0, w 〉) = 〈u, q, v 〉, for some k and q ∈F, uv ∈Σ∗.

(v) ETW is the emptiness problem for typewriter automata.

Recall that EQA, the emptiness problem for queue automata, is undecidable
(see Kozen [1997]). We need the following.

19.5.25. Lemma. EQA ≤T ETW.

Proof. Exercise 19.6.28.

It follows that also ETW is undecidable.

Our goal is now to represent typewriters as games, in order to establish
ETW≤WTG. We begin with a refinement of Example 19.5.15. In what follows,
triples of the form 〈 〈B1, b 〉, 〈B2, c 〉, d 〉 will be represented graphically as

d
B1

����
��

��
�� B2

��=
==

==
==

=

b c

in order to enhance readability.

19.5.26. Definition. The alphabet Σ1 is the following Cartesian product.

Σ1 = {⊥, a, b} × {⊥, 1, 2} × {loc, glo}.

We define a tree game G1 = 〈 〈⊥, 1, C 〉,Σ1, {C1, C2, C3} 〉. The set of accepting
labels is Σ1, because we are interested in all possible ‘rounds’ (i.e. instances) of
the game. The moves are defined as follows.

(i) Global move C1 consists of the following two triples:
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〈⊥, 1, glo 〉

{(〈 a,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈⊥, 1, glo 〉 〈⊥, 2, glo 〉

and

〈⊥, 2, glo 〉

{(〈 a,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈⊥, 1, glo 〉 〈⊥, 2, glo 〉

Before we define other global moves, let us point out that C1 is very similar to
rule C1 of the game G0 in Example 19.5.15 (observe the a and b in the first
component and 1 and 2 in the second one).

(ii) Global move C2 consists again of two triples:

〈⊥, 1, glo 〉

{(〈 a,x,glo, 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo, 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈 a, 1, loc 〉 〈 a, 2, loc 〉

and

〈⊥, 2, glo 〉

{(〈 a,x,glo, 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~}}
}}

}}
}}

}}
}}

}}
}}

}

{(〈 b,x,glo, 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  A
AA

AA
AA

AA
AA

AA
AA

AA

〈 a, 1, loc 〉 〈 a, 2, loc 〉
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(iii) Global move C3 consists of the triples (where z ∈{a, b}, i.e., z 6= ⊥)

〈 z, 1, glo 〉

{(〈 a,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

~~~~
~~

~~
~~

~~
~~

~~
~~

~

{(〈 b,x,glo 〉,〈 a,x,loc 〉) | x∈{⊥,1,2}}

  @
@@

@@
@@

@@
@@

@@
@@

@@

〈 z, 1, loc 〉 〈 z, 2, loc 〉

and

〈 z, 2, glo 〉

{(〈 a,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

~~~~
~~

~~
~~

~~
~~

~~
~~

~

{(〈 b,x,glo 〉,〈 b,x,loc 〉) | x∈{⊥,1,2}}

  @
@@

@@
@@

@@
@@

@@
@@

@@

〈 z, 1, loc 〉 〈 z, 2, loc 〉

19.5.27. Lemma. Every round of G1 must have the following sequence of moves.

C1; C1; C1; . . . C1; (m× C1)
C2; 1; C3; 2; C3; 3; . . . C3; m; C3;
m+ 1; C3; m+ 3; C3; m+ 5; C3; . . .

That is, the game starts with m times a C1 move (possibly m = 0 or m =∞).
After that, from the m+ 1-st position, the global and local moves alternate and
the local move declared at every alternating step C3 is executed exactly 2m+ 1
steps later.

Proof. Exercise 19.6.29.

19.5.28. Definition. Let G1 be as above and let A = 〈ΣA, Q, q0, F
A, ̺ 〉 be a

typewriter automaton. We define a game GA as follows.

(i) The alphabet of GA is the cartesian product Σ1 ×Q× (ΣA ∪ {⊥, ε}).
(ii) For each local move B of G1 and each β ∈ΣA ∪ {ε}, we define a local

move Bβ = {(〈 a, q, β 〉, 〈 b, q,⊥〉) | q ∈Q and 〈 a, b 〉 ∈B}.
(iii) If ∆ = 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈ C1 ∪ C2, then we define ∆β as the triple

〈c, q0,⊥〉
Bβ

xxqqqqqqqqqq B′

β

&&MMMMMMMMMM

〈b, q0,⊥〉 〈b′, q0,⊥〉
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(iv) For each triple ∆ = 〈 〈B, b 〉, 〈B′, b′ 〉, c 〉 ∈C3 we define a set CA
∆ consisting

of all triples of the form

〈c, q, α〉
Bβ

yyssssssssss B′

β

%%LLLLLLLLLL

〈b, p,⊥〉 〈b′, p,⊥〉

where ̺(q, α) = (p, β).

(v) Define CA
1 (β) = {∆β | ∆∈C1}, for β ∈ΣA;

CA
2 = {∆ε | ∆∈C2};

CA
3 =

⋃{CA
∆ | ∆∈C3}.

(vi) The initial symbol of GA is a = 〈 a1, q0,⊥〉, where a1 = 〈⊥, 1, G〉, the
initial symbol of G1.

(vii) The set of final symbols is A = Σ1 × (ΣA ∪ {⊥, ε})× FA;

(viii) Finally, we take GA = 〈 a,A, {CA
1 (β) | β ∈ΣA} ∪ {CA

2 , C
A
3 } 〉

19.5.29. Proposition. Let A be a typewriter that accepts the language LA.
Then

LA 6= ∅ ⇔ GA is solvable.

Hence ETW ≤T WTG.

Proof. Our gameGA behaves as a “cartesian product” ofG1 andA. Informally
speaking, there is no communication between the first component and the other
two. In particular we have the following.

1. Lemma 19.5.27 remains true with G1 replaced by GA and C1, C2, C3

replaced respectively by CA
1 (β), CA

2 and CA
3 . That is, a legitimate round

of GA must look as follows.

CA
1 (β1); CA

1 (β2); . . . CA
1 (βm);

CA
2 ; 1; CA

3 ; 2; . . . CA
3 ; m;

CA
3 ; m+ 1; CA

3 ; m+ 3; CA
3 ; . . .

2. If a position T of GA can be reached from the initial position, then the
second and third component of labels are always the same for all nodes
at every fixed level of T .

Consider a round of the game GA as in 1 above. Note that this sequence is
fully determined by the choice of m and β1, . . . , βm. Also observe that βi, for
i = 1, . . . ,m are the third components of the labels of all leaves of Tm+2i. Let
w denote the word β1β2 . . . βm and OA(w) the ‘opening’ CA

1 (β1), . . . , C
A
1 (βm)

in the game GA.

Claim. Typewriter A accepts w iff OA(w) leads to a winning position in GA.
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We shall now prove the claim. Let βk
j denote the symbol contained in the j-th

cell of the tape of A, after the machine has completed k − 1 full phases (the
tape has been fully scanned k − 1 times). That is, βk

j is the symbol to be read

during the k-th phase. Of course β1
j is βj . For uniformity write βk

m+1 = ε.

Note that the q0, . . . , qm are renamed as q11, . . . ,q
1
m+1 and the β1, . . . ,βm, ǫ as

β1
1 , . . . ,β

1
m+1. Further, let qk

j be the internal state of the machine, just before
it reads the j-th cell for the k-th time (i.e., after k− 1 full phases). The reader
will easily show that for all k and all j = 1, . . . ,m+1 the following holds.

(i) The third component of labels of all leaves of T(2k−1)(m+1)+2j−1 is βk
j ,

(ii) The second component of labels of all leaves of T(2k−1)(m+1)+2j−2 is qk
j .

〈a, qk
j ,⊥〉

��
〈b, qk

j , β
k
j 〉

B
β

k+1
j

��~~
~~

~~
~~

~~
~~

~~
~~

~

B′

β
k+1
j

��@
@@

@@
@@

@@
@@

@@
@@

@@

〈c, qk
j+1,⊥〉 〈d, qk

j+1,⊥〉

Figure 19.5: Simulation of a single machine step

Figure 19.5 illustrates the induction hypothesis by showing labels of a node at
depth (2k − 1)(m+ 1) + 2j − 2 together with her daughter and grandchildren.
The claim follows when (ii) is applied to the final states.

It follows immediately from 1 and the claim that LA 6= ∅ iff there is a
strategy to win GA. Hence the emptiness problem for typewriter automata can
be reduced to the problem of winning tree games.

19.5.30. Theorem. The inhabitation problem for λCDV
∩ is undecidable.

Proof. By Corollary 19.5.23, Lemma 19.5.25 and Proposition 19.5.29.

Remarks

The proof of undecidability of the inhabitation problem presented in this section
is a modified version of the original proof in Urzyczyn [1999].

The following notion of rank has been given for intersection types by Leivant
[1983]. We denote it by i-rank in order to distinguish it from the notion defined
in Definition ??.

i-rank(A) = 0, for simple types A;

i-rank(A ∩B) = max(1, i-rank(A), i-rank(B));

i-rank(A→ B) = max(1 + i-rank(A), i-rank(B)), if ∩ occurs in A→ B.
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It should be observed that all types in game contexts are of i-rank at most 3.
Thus, the relativized inhabitation problem is undecidable for contexts of i-rank
3, and the inhabitation problem (with empty contexts) is undecidable for types
of i-rank 4. It is an open problem whether inhabitation is decidable for i-rank 3.
But it is decidable for i-rank 2 (Exercise 19.6.30). Some other decidable cases
are discussed in Kurata and Takahashi [1995].

From the point of view of the the formulae as types principle, (the “Curry-
Howard isomorphism”), the inhabitation problem should correspond to a prova-
bility problem for a certain logic. It is however not at all obvious what should
be the logic corresponding to intersection types. We deal here with a “proof-
functional” rather than “truth-functional” connective ∩, which is called some-
times “strong conjunction”: a proof of A∩B must be a proof of both A and B,
rather than merely contain two separate proofs of A and B. See Lopez-Escobar
[n.d.], Mints [1989], and Alessi and Barbanera [1991] for the discussion of strong
conjunction logics.

Various authors defined Church-style calculi for intersection types, which is
another way leading to understand the logic of intersection types. We refer
the reader to Venneri [1994], Dezani-Ciancaglini et al. [1997], Wells et al.
[1997], Ronchi Della Rocca [2002], Liquori and Ronchi Della Rocca [2005],
and Pimentel et al. [2005] for this approach.

19.6. Exercises

19.6.1. Show by means of examples that the type theories Plotkin and Engeler
are not adequate.

19.6.2. Show that Σ({ω},CDV) is the smallest complete type theory (w.r.t. the
order of Figure 15.3).

19.6.3. 1. The terms that are in PHN have the form λx1 . . . xn.yM1 . . .Mk

where y /∈{x1, . . . xk}. Are these all of them? Is this enough to
characterize them?

2. The terms that are in PN have the form λx1 . . . xn.yM1 . . .Mk where
y /∈{x1, . . . xk} and M1 . . .Mk ∈N. Are these all of them? Is this
enough to characterize them?

3. Conclude that PN ⊂ PHN.

19.6.4. Show that PHN is HN-stable and PN is N-stable.

19.6.5. Construct a normal form X such that x(λy.a(y(λz.b(yz)))[x := X] does
not have a normal form.

19.6.6. Show that in the system induced by the type theory Σ(ACDZ,Scott ∪
{(ωϕ), (⊤ → ϕ)}), where

(⊤ → ϕ) ⊤ → ϕ ∼ ϕ,

the terms typable with type ϕ in the context all whose predicates are ω
are precisely the head normalizing ones.
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19.6.7. Show that in the system induced by the type theory AO, the terms
typable with type ⊤ → ⊤ for a suitable context are precisely the lazy
normalizing ones, i.e. the terms which reduce either to an abstraction
or to a (λ-free) head normal form.

19.6.8. Show that in the system induced by the type theory EHR the terms
typable with type ν in the context all whose predicates are ν are precisely
the terms which reduce either to an abstraction or to a variable using
the call-by-value β-reduction rule.

19.6.9. Show that in the system induced by the type theory Park the terms
typable with type ω in the empty context are precisely the closed terms.

19.6.10. Let TM be the term model of β-equality and [M ] the equivalence class
of M under β-equality. Let a term M be persistently head normalizing
iff M ~N has a head normal form for all terms ~N (see Definition 19.2.3).
Prove that the type interpretation domain 〈TM, ·, [[ ]] , TM〉, and the
type environment ξScott(ω) = {[M ] |M is persistently head normalizing}
agree with the type theory Scott.

19.6.11. Let TM and [M ] be as in Exercise 19.6.10. Prove that the type
interpretation domain 〈TM, ·, [[ ]] , TM〉, and the type environment ξPark(ω) =
{[M ] |M reduces to a closed term} agree with the type theory Park.

19.6.12. Let TM and [M ] be as in Exercise 19.6.10. Let a termM be persistently
normalizing iff M ~N has a normal form for all normalizing terms ~N (see
Definition 19.2.3). Prove that the type interpretation domain 〈TM, ·, [[ ]] , TM〉,
and the type environment ξCDZ(ω) = {[M ] |M is persistently normalizing},
ξCDZ(ϕ) = {[M ] |M is normalizing} agree with CDZ.

19.6.13. Show that for all T , x, A,B ∈TTT , ψ ∈A
T , A′, B′ ∈TTPlo:

1. |=T
s x : ⊤ → ⊤;

2. 6|=T
i x : ⊤ → ⊤;

3. |=T
s x : ν;

4. 6|=T
i x : ν;

5. x:ψ∩⊤(A→ B) |=T
F λy.xy : ψ;

6. x:ϕ∩⊤(A′ → B′) 6|=Plo
i λy.xy : ϕ.

19.6.14. Show that if S is a natural type structure which is adequate for the
F-semantics, then for all n ≥ 0 and for all ψ ∈A

S we can find I 6=
∅, A(1)

i , . . . , A
(n)
i , Bi such that

ψ∩⊤(⊤n → ⊤) =S

⋂

i∈ I

(A
(1)
i → . . .→ A

(n)
i → Bi).

19.6.15. Show that if S is a natural type structure which is adequate for the
F-semantics, then the following rule (Dezani-Ciancaglini and Margaria
[1986])

(Hindley rule)
Γ ⊢S

∩⊤ M : ψ∩⊤(⊤n → ⊤) xi /∈ FV(M) (1 ≤ i ≤ n)

Γ ⊢S
∩⊤ λx1 . . . xn.Mx1 . . . xn : ψ
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is admissible in λ∩
S for all ψ ∈AS . [Hint. Use the result of Exercise

19.6.14.]

19.6.16. Show that all type interpretation domains and all type environments
agree with AO and with EHR.

19.6.17. Show that all quasi λ-models and all type environments preserve≤BCD.

19.6.18. Show Proposition 19.4.11.

19.6.19. Show Theorem 19.4.13 using the mapping m : P(ω)→TTT (ω) defined as

m(∅) = ⊤,
m({i}) = i,
m(u ∪ {i}) = m(u)∩⊤i.

where u∈Pfin(ω), i∈ω.

19.6.20. Show Theorem 19.4.16 using the mapping m : Pfin(Pm)→ΠPm defined
as

m(∅) = ⊤,
m({ω}) = ω,
m(u ∪ {a}) = m(u)∩⊤m({a}),
m({〈u, v〉}) = m(u)→m(v).

where u, v ∈Pfin(Pm), a∈Pm.

19.6.21. Show Theorem 19.4.19 using the mapping m : Pfin(Em)→TTEm defined
as

m(∅) = ⊤,
m({a}) = a,
m(u ∪ {e}) = m(u)∩⊤m({e})
m({〈u, e〉}) = m(u)→m({e}).

where u∈Pfin(Em), e∈Em, a∈A∞.

19.6.22. A term (λx.M)N is a βN-redex if x /∈FV (M) or [N is either a variable
or a closed SN (strongly normalizing) term] (Honsell and Lenisa [1999]).
We denote by→→

βN the induced reduction. Show that if Γ assigns types

to all free variables in N , i.e. x∈dom(Γ) for all x∈FV(N), then

Γ ⊢HL
∩ M : A & N →→

βN M ⇒ Γ ⊢HL
∩ N : A.

[Hint: use Theorem 19.2.18(iii).]

19.6.23. Prove that the set {M | ∃Γ, A . Γ ⊢T
∩⊤ M : A} is recursive. [Hint. This

is obvious.]

19.6.24. Prove Lemma 19.5.2(i) and (ii). [Hint. Similar to the proof of Lemma 15.1.14.]

19.6.25. Consider the type assignment systems K and K⊤ as defined in Exercises
15.5.2 and ??.
(i) Prove an analogue of Lemma 19.5.8.
(ii) Prove that if Γ is a game context then Γ ⊢K M : α and Γ ⊢K⊤ M : α

are equivalent to Γ ⊢M : α, for all type variables α. Conclude that
type inhabitation remains undecidable without (≤).
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(iii) Prove that the type δ ∩ (α → β) ∩ (α → γ) → δ ∩ (α → β ∩ γ) is
inhabited in λBCD

∩⊤ but is not inhabited in K⊤.

19.6.26. Let Γ be a game context and α∈A∞. Prove that if Γ ⊢ M : α then
every node in the Böhm tree of M (as defined in Barendregt [1984]) has
at most one branch.

19.6.27. Complete the proofs of Proposition 19.5.22 and Lemma 19.5.23.

19.6.28. Prove Lemma 19.5.25. [Hint. Encode a queue automaton (also called
a Post machine, i.e. a deterministic finite automaton with a queue) into
a typewriter, thus reducing the halting problem for queue automata to
the emptiness problem for typewriters. One possible way of doing it is
as follows. Represent a queue, say “011100010”, as a string of the form

$$ · · · $<011100010>♯ · · · ♯♯,

with a certain number of the $’s and ♯’s. The initial empty queue is
just “<>♯ · · · ♯♯”. Now an insert instruction means: replace “>” with
a digit and replace the first “ ♯” with “>”, and similarly for a remove.
The number of $’s increases after each remove, while the suffix of ♯’s
shrinks after each insert , so that the queue “moves to the right”. If the
number of the initial suffix of ♯’s is sufficiently large, then a typewriter
automaton can verify the queue computation.]

19.6.29. Prove Lemma 19.5.27. [Hint. Compare G1 to the game G0 of Example
19.5.15. Observe that in each sequence of positions

T(2k+1)n, . . . , T(2k+3)n,

the odd steps behave as an initial phase of G0, while the even steps
behave as a final phase of G0. Writing

⊥i = 〈⊥, i, G〉;
A = 〈a, 1, {G,L}〉〈a, 2, {G,L}〉;
B = 〈b, 1, {G,L}〉〈b, 2, {G,L}〉

we have the following (the canope of a tree is the collection of its leaves)
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for the case of two initial C1 steps.

position # via move canope of position

0 ⊥1

1 C1 ⊥1⊥2

2 C1 (⊥1⊥2)
2

3 C2 A2A2

4 1 A2B2

5 C3 A4B4

6 2 (A2B2)2

7 C3 (A4B4)2

8 3 (A2B2)4

9 C3 (A4B4)4

10 5 (A2B2)8

11 C3 (A4B4)8

12 7 (A2B2)16

. . . . . . . . .

4 + 2k (A2B2)2
k

If one starts with m moves of C1 (0<m<∞), then the canope of position

m + 2 + 2k will be (A2m−1
B2m−1

)2
k
. Note that m = 0 or m = ∞ yield

possible plays of the game.]

19.6.30. Prove that in λCDV
∩ the inhabitation problem for types of i-rank at most

2 is decidable. Here rank is defined as after Theorem 19.5.30. Note
that a type of the shape B→C is of i-rank at most 2 iff it B→C ≡ A1 →
. . . → An and all Ai have i-rank at most 1.Comment: I cannot find a
simple solution, we need to check the literature and ask Pawel.

19.6.31. [D. Kuśmierek]
(i) Let ι = (α→ β) ∩ (β → α) and define for k = 0, . . . , n the type

Ak = α→ ιk → (α→ β)→ (β → α)n−k → β.

Prove that the shortest inhabitant ofA1, . . . ,An is of length exponential
in n. Can you modify the example so that the shortest inhabitant
is of double exponential length?

(ii)∗ How long (in the worst case) is the shortest inhabitant of a given
type of rank 2, if it exists?

Comment: the actual further reading chapter is a waste of time and paper!
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