
Chapter 1

The systems λ→

1.1. The λ→ systems à la Curry

Types in this part are syntactic objects built from atomic types using the operator →.
In order to classify untyped lambda terms, such types will be assigned to a subset of
these terms. The main idea is that if M gets type A→B and N gets type A, then the
application MN is ‘legal’ (as M is considered as a function from terms of type A to
those of type B) and gets type B. In this way types help determining what terms fit
together.

1.1.1. Definition. (i) Let A be a non-empty set of ‘atomic types’. The set of simple
types over A, notation TT = TTA, is inductively defined as follows.

α∈A ⇒ α∈TT type atoms;

A,B ∈TT ⇒ (A→B)∈TT function space types.

Such definitions will be used often and for these it is convenient to use the so called
abstract syntax , see Waite and Goos [1984]. As an example we give the abstract syntax
for TT = TTA.

TT = A |TT→TT

Figure 1.1: Simple types

(ii) Let Ao = {o}. Then we write TTo = TTAo
.

(iii) Let A∞ = {α0, α1, α2, . . .}. Then we write TT∞ = TTA∞

We consider that o = α0, hence TTo ⊆ TT∞. If we write simply TT, then this refers to TTA

for an unspecified A.

1.1.2. Notation. (i) If A1, . . . , An ∈TT, then

A1→ . . .→An ≡ (A1→(A2→ . . .→(An−1→An)..)).

That is, we use association to the right (here ≡ denotes syntactic equality).

13

14 CHAPTER 1. THE SYSTEMS λ→

(ii) α,β, γ, . . . denote arbitrary elements of A.
(iii) A,B,C, . . . denote arbitrary elements of TT.

Remember the untyped lambda calculus denoted by λ, see e.g. B[1984]1. It consists
of a set of terms Λ defined by the following abstract syntax.

V = x |V′

Λ = V |λV Λ |Λ Λ

Figure 1.2: Untyped lambda terms

This makes V = {x, x′, x′′, . . .} = {x0, x1, x2, . . .}.

1.1.3. Notation. (i) x, y, z, . . . denote arbitrary term variables.
(ii) M,N,L, . . . denote arbitrary lambda terms.
(iii) MN1 . . . Nk ≡ (..(MN1) . . . Nk).
(iv) λx1 . . . xn.M ≡ (λx1(..(λxn(M))..)).

1.1.4. Definition. On Λ the following equational theory λβη is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), inluding congruence
with respect to abstraction:

M = N ⇒ λx.M = λx.N,

and the following special axiom(schemes)

(λx.M)N = M [x := N] (β-rule)
λx.Mx = M, if x /∈FV(M) (η-rule)

Figure 1.3: The theory λβη

As is know this theory can be analyzed by a notion of reduction.

1.1.5. Definition. On Λ we define the following notions of reduction

(λx.M)N → M [x: = N] (β)
λx.Mx → M, if x /∈FV(M) (η)

Figure 1.4: βη-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations →β,→→β,→η,→→η,→βη and →→βη. Also there are the corresponding conversion
relations =β,=η and =βη. Terms in Λ will often be considered modulo =β or =βη. If
we write M = N , then we mean M =βη N by default. (In B[1984] the default was =β.)

1.1.6. Proposition. For all M,N ∈Λ one has

⊢λβη M = N ⇐⇒ M =βη N.

1This is an abbreviation fo the reference Barendregt [1984].

1.1. THE λ→ SYSTEMS À LA CURRY 15

Proof. See B[1984], Proposition 3.3.2.

One reason why the analysis in terms of the notion of reduction βη is useful is that
the following holds.

1.1.7. Theorem (Church-Rosser Theorem for λβη). For the notions of reduction →→β

and →→βη one has the following.

(i) Let M,N ∈Λ. Then

M =β(η) N ⇒ ∃Z ∈Λ.M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈Λ. Then

M →→β(η) N1 & M →→β(η) N2 ⇒ ∃Z ∈Λ.N1 →→β(η) Z & N2 →→β(η) Z.

Proof. (i) See Theorems 3.2.8 and 3.3.9 in B[1984].

(ii) By (i).

1.1.8. Definition (λCu
→). (i) A (type assignment) statement is of the form

M : A,

with M ∈Λ and A∈TT. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.

(ii) A declaration is a statement with as subject a term variable.

(iii) A basis is a set of declarations with distinct variables as subjects.

(iv) A statement M :A is derivable from a basis Γ, notation

Γ ⊢Cu
λ→

M :A

(or Γ ⊢λ→
M : A, Γ ⊢Cu M : A or even Γ ⊢ M :A if there is little danger of confusion) if

Γ ⊢ M :A can be produced by the following rules.

(x:A)∈Γ ⇒ Γ ⊢ x : A;

Γ ⊢ M : (A → B), Γ ⊢ N : A ⇒ Γ ⊢ (MN) : B;

Γ, x:A ⊢ M : B ⇒ Γ ⊢ (λx.M) : (A → B).

These rules are usually written as follows.

16 CHAPTER 1. THE SYSTEMS λ→

(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢ M : (A → B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢ M : B

.
Γ ⊢ (λx.M) : (A → B)

Figure 1.5: The system λCu
→ of type assignment á la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as
developed in Curry et al. [1958].

Notation. Another way of writing these rules is sometimes found in the literature.

Introduction rule x : A

...
M : B

λx.M : (A→B)

Elimination rule
M : (A → B) N : A

MN : B

λ
Cu
→

alternative version

In this version the axiom is considered as implicit and is not notated. The notation

x : A

...
M : B

denotes that M : B can be derived from x:A. Striking through x:A means that for the conclusion
λx.M : A→B the assumption x:A is no longer needed; it is discharged.

1.1.9. Definition. Let Γ = {x1:A1, . . . , xn:An}. Then
(i) dom(Γ) = {x1, . . . , xn}.
(ii) x1:A1, . . . , xn:An ⊢ M : A denotes Γ ⊢ M : A.
(iii) In particular ⊢ M : A stands for ∅ ⊢ M : A.
(iv) x1, . . . , xn:A ⊢ M : B stands for x1:A, . . . , xn:A ⊢ M : B.

1.1.10. Example. (i) ⊢ (λxy.x) : (A → B → A) for all A,B ∈TT.
We will use the notation of version 1 of λ→ for a derivation of this statement.

x:A, y:B ⊢ x : A

x:A ⊢ (λy.x) : B→A

⊢ (λxλy.x) : A→B→A

1.1. THE λ→ SYSTEMS À LA CURRY 17

Note that λxy.x ≡ λxλy.x by definition.
(ii) A natural deduction derivation (for the alternative version of the system) of the

same type assignment is the following.

x:A 2 y:B 1

x:A
1

(λy.x) : (B → A)
2

(λxy.x) : (A → B → A)

The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule
a particular assumption is being discharged.

(iii) A more explicit way of dealing with cancellations of statements is the ‘flag-
notation’ used by Fitch (1952) and in the languages AUTOMATH of de Bruijn (1980).
In this notation the above derivation becomes as follows.

y:B

x:A

(λxy.x) : (A → B → A)

(λy.x) : (B → A)

x:A

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is
less obvious how a statement is derived from previous statements in case applications
are used.

(iv) Similarly one can show for all A∈TT

⊢ (λx.x) : (A → A).

(v) An example with a non-empty basis is y:A ⊢ (λx.x)y : A.

In the rest of this chapter and in fact in the rest of this book we usually will introduce
systems of typed lambda calculi in the style of the first variant of λ→.

1.1.11. Definition. Let Γ be a basis and A∈TT. Then

(i) ΛΓ
→(A) = {M ∈Λ |Γ ⊢λ→

M : A}.

(ii) ΛΓ
→ =

⋃
A∈TT

ΛΓ
→(A).

(iii) Λ→(A) = Λ∅
→(A).

(iv) Λ→ = Λ∅
→

18 CHAPTER 1. THE SYSTEMS λ→

1.1.12. Definition. Let Γ be a basis, A∈TT and M ∈Λ. Then

(i) If M ∈Λ→(A), then we say that

M has type A or A is inhabited by M .

(ii) If M ∈Λ→, then M is called typable.

(iii) If M ∈ΛΓ
→(A), then M has type A relative to Γ.

(iv) If M ∈ΛΓ
→, then M is called typeable relative to Γ.

(v) If Λ
(Γ)
→ (A) 6= ∅, then A is inhabited (relative to Γ).

1.1.13. Example. We have

K ∈ Λ∅
→(A→B→A);

Kx ∈ Λ{x:A}
→ (B→A).

1.1.14. Definition. Let A∈TT(λ→).

(i) The depth of A, notation dpt(A), is defined as follows.

dpt(α) = 0

dpt(A→B) = max{dpt(A),dpt(B)} + 1

(ii) The rank of A, notation rk(A), is defined as follows.

rk(α) = 0

rk(A→B) = max{rk(A) + 1, rk(B)}

(iii) The order of A, notation ord(A), is defined as follows.

ord(α) = 1

ord(A→B) = max{ord(A) + 1, ord(B)}

(iv) The depth (rank or order) of a basis Γ is

max
i

{dpt(Ai) | (xi:Ai)∈Γ},

(similarly for the rank and order, respectively). Note that ord(A) = rk(A) + 1.

1.1.15. Definition. For A∈TT we define Ak→B by recursion on k:

A0→B = B;

Ak+1→B = A→Ak→B.

Note that rk(Ak→B) = rk(A→B), for all k > 0.

1.1. THE λ→ SYSTEMS À LA CURRY 19

Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1.1.18(i).

The asymmetry in the definition of rank is intended because e.g. a type like (o→o)→o
is more complex than o→o→o, as can be seen by looking to the inhabitants of these
types: functionals with functions as arguments versus binary function. Sometimes one
uses instead of ‘rank’ the name type level. This notion will turn out to be used most of
the times.

In logically motivated papers one finds the notion ord(A). The reason is that in
first-order logic one deals with domains and their elements. In second order logic one
deals with functions between first-order objects. In this terminology 0-th order logic can
be identified with propositional logic.

The minimal and maximal systems λo
→ and λ∞

→

The collection A of type variables serves as set of base types from which other types are
constructed. We have TTo = {o} with just one type atom and TT∞ = {α0, α1, α2, . . .}
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.

1.1.16. Definition. We define the following systems of type assignment.
(i) λo

→ = λTTo

→ . This system is also called λτ in the literature.
(ii) λ∞

→ = λTT∞

→ .

If it becomes necessary to distinguish the set of atomic types, will use notations like
Λo(A) = ΛTTo

(A) and Λ∞(A) = ΛTT∞
(A).

Many of the interesting features of the ‘larger’ λ→ are already present in the minimal
version λo

→. The complexity of λ→ is already present in λo
→.

1.1.17. Definition. (i) The following types of TTo ⊆ TTA are often used.

0 = o, 1 = 0→0, 2 = (0→0)→0,

In general
0 = o and k + 1 = k→0.

Note that rk(n) = n.
(ii) Define nk by cases on n.

ok = o;

(n + 1)k = nk→o.

For example

12 = o→o→o;

23 = 1→1→1→o.

Notice that rk(nk) = rk(n), for k > 0.

20 CHAPTER 1. THE SYSTEMS λ→

1.1.18. Lemma. (i) Every type A of λ∞
→ is of the form

A = A1→A2→ . . .→An→α.

(ii) Every type A of λo
→ is of the form

A = A1→A2→ . . .→An→o.

(iii) rk(A1→A2→ . . .→An→α) = max{rk(Ai) + 1 | 1 ≤ i ≤ n}.

Proof. (i) By induction on the structure (depth) of A. If A = α, then this holds for
n = 0. If A = B→C, then by the induction hypothesis one has
C = C1→ . . .→Cn→γ. Hence A = B→C1→ . . .→Cn→γ.

(ii) By (i).

(iii) By induction on n.

1.1.19. Notation. Let A∈TTA and suppose A = A1→A2→ . . .→An→α. Then the Ai

are called the components of A. We write

arity(A) = n,

A(i) = Ai, for 1 ≤ i ≤ n;

target(A) = α.

Iterated components are denoted as follows

A(i, j) = A(i)(j).

Different versions of λA
→

The system λA
→ that was introduced in Definition 1.1.8 assigns types to untyped lambda

terms. These system will be referred to as the Curry system and be denoted by λA
→Cu

or λCu
→ , as the set A often does not need to be specified. There will be introduced two

variants of λA
→.

The first variant of λCu
→ is the Church version of λA

→, denoted by λA
→Ch or λCh

→ . In
this theory the types are assigned to embellished terms in which the variables (free and
bound) come with types attached. For example the Curry style type assignments

⊢Cu
λ→

(λx.x) : A→A (1Cu)

y:A ⊢Cu
λ→

(λx.xy) : (A→B)→A→B (2Cu)

now becoming

(λxA.xA)∈ΛCh
→ (A→A) (1Ch)

(λxA→B .xA→ByA) : ΛCh
→ ((A→B)→A→B) (2Ch)

1.2. NORMAL INHABITANTS 21

The second variant of λCu
→ is the de Bruijn version of λA

→, denoted by λA
→dB or λdB

→ . Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

⊢dB
λ→

(λx : A.x) : A→A (1dB)

y:A ⊢dB
λ→

(λx : (A→B).xy) : (A→B)→A→B (2dB)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. Notation. Terms like (λfx.f(fx))∈Λø(1→o→o) will often be written

λf1x0.f(fx)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. Definition. Let A = A1→ . . . An→α and suppose Γ ⊢ M : A.

(i) Then M is in long-nf, notation lnf, if M ≡ λxA1

1 . . . xAn

n .xM1 . . . Mn and each Mi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1.5.16 it is proved that if M has a β-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique lnf and will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1.2.2. Examples. (i) Note that λf1.f =βη λf1λxo.fx and that λf1.f is a βη-nf but
not a lnf.

(ii) λf1λxo.fx is a lnf, but not a βη-nf.

(iii) λx:o.x is both in βη-nf and lnf.

(iv) The β-nf λF :22λf :1.Ff(λx:o.fx) is neither in βη-nf nor lnf.

(v) A variable of atomic type α is a lnf, but of type A→B not.

(vi) A variable f : 1→1 has as lnf λg1λxo.f(λyo.gy)x.

1.2.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ →→η M .

