Exercises week 7

Languages and Automata

June 14, 2012

7. More on context-free languages

- 7.1. Let the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, +, \times, \}, (\}$ be given.
 - (i) Give a context free grammar that exactly accepts the expressions denoting accepts integers (like $0, -12, 713, \ldots$). Avoid integers like '007'; this one should be denoted as just '7'.
 - (ii) Give a context free grammar that accepts integer expressions with +, and \times . (Like ' $(1 + -(3 \times 22))$ ' and ' $(22 \times (1-3))$ ', ...).
 - (iii) Prove with the pumplemma that the grammar in (ii) isn't regular.
- 7.2. Given grammar G_1

$$\begin{array}{ccc} S & \rightarrow & aABb \\ A & \rightarrow & aA|a \\ B & \rightarrow & bB|b \end{array}$$

and grammar G_2

$$\begin{array}{ccc} S & \rightarrow & AABB \\ A & \rightarrow & AA|a \\ B & \rightarrow & BB|b \end{array}$$

- (i) Construct a PDA accepting $L(G_1)$.
- (ii) Prove $L(G_1) \subseteq L(G_2)$
- (iii) Prove $L(G_2) \subseteq L(G_1)$
- 7.3. Let $\Sigma = \{a, b\}$. Define $\Sigma^+ = \{\emptyset, \lambda, a, b, \cup, *, \cdot,), (\}$. The set R_{Σ} of regular expressions over Σ are special words over Σ^+ , for example

$$\begin{array}{cccc} (\mathbf{a} \cup \lambda) \cdot (\mathbf{b} \cdot \mathbf{a}^*)^* & \in & R_{\Sigma}, \\ & & & (\mathbf{a} \cup \cup \mathbf{b}) & \notin & R_{\Sigma}. \end{array}$$

- 1. Show that R_{Σ} is context-free.
- 2. Show that R_{Σ} is not regular. [Hint. Apply the pumping lemma for regular languages.]